EP2859196B1 - Energy transformation system - Google Patents

Energy transformation system Download PDF

Info

Publication number
EP2859196B1
EP2859196B1 EP12737198.7A EP12737198A EP2859196B1 EP 2859196 B1 EP2859196 B1 EP 2859196B1 EP 12737198 A EP12737198 A EP 12737198A EP 2859196 B1 EP2859196 B1 EP 2859196B1
Authority
EP
European Patent Office
Prior art keywords
energy
heat
cycle
storage
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12737198.7A
Other languages
German (de)
French (fr)
Other versions
EP2859196A1 (en
Inventor
Klaus Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arano-Trade Ltd
Original Assignee
Arano-Trade Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arano-Trade Ltd filed Critical Arano-Trade Ltd
Publication of EP2859196A1 publication Critical patent/EP2859196A1/en
Application granted granted Critical
Publication of EP2859196B1 publication Critical patent/EP2859196B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • electric power is generated by various techniques, such as nuclear power plants, thermal power plants, renewable energy sources by chemical, thermal and mechanical conversion of nature's energy resources, such as wind, solar, biogas conversion, and liquefaction of air and its conversion to oxygen, nitrogen and other gases.
  • Regenerative energies can only be produced and stored sporatically, since they depend on the natural conditions of wind and heat from solar radiation and on the storage capacities of the central grids.
  • the existing power generation, conversion and reconversion plants either have too little or no storage. This has the consequence that the energy generated must be conducted mainly directly into the central power line networks.
  • the tanks in such plants are pure product stores and the products are used exclusively outside the plants.
  • the energies already mentioned, such as cold, heat and gases, which are generated by their manufacturing process are lost unused.
  • These air liquefaction plants are technologically costly, since the products they produce with special transporters to the user need to be transported, and low energy efficiency, due to the resulting energy losses in product production.
  • an air separation process in which oxygen and nitrogen and possibly natural gases are discharged separately via product gas lines, characterized in that at least one branch gas line is connected to a product gas line, which is guided via a heat exchanger that liquefied at least two memory for two different Gases are provided. Again, this is pure product memory.
  • the DE 2434238 provides a method for storing and recovering energy, wherein in times of low energy demand, a gaseous auxiliary energy carrier is liquefied and stored almost without pressure, while in times of greater energy demand, the gaseous auxiliary energy carrier is compressed, warmed and relaxed work. This storage method is based only on the storage of individual products.
  • ORC Organic Rankine Cycle
  • the ORC processes are broken down into different individual processes to regulate the resulting energies. It accounts for more than 90% of the electrical power consumption from the grid in the form of heat, which is passed into a cooling circuit and also goes unused about the water outlet temperatures. The plants generate process-related energies that are returned to the environment unused. Moreover, this method is not suitable in the known forms for reconversion.
  • a superconducting current storage is disclosed with a storage coil consisting of several sub-coils, these are characterized in that when charging a part or all sub-coils are connected in series and a part or all sub-coils are connected in parallel during discharging. Furthermore, separate discharge coils are provided, which are magnetically coupled to the sub-coils, wherein the number of sub-coils connected in parallel is adjustable during discharge. These plants are pure electricity storage and are only used as such.
  • the storage coil is constructed with a plurality of successive in the longitudinal direction of the storage coil segments, which are individually prefabricated and combined under electrical wiring to a storage coil.
  • the interconnections of the DE 3739411 C1 provided and a variety of materials for the superconductors and their various forms of construction disclosed, which can be produced in a simple manner and optionally storage coils with smaller and larger storage capacity. All of the above-described methods and installations are localized, since the energy resources used by them are only available on site. The energy that is generated must be transported via appropriate networks. The exergia produced in the manufacturing process are mostly not used and are lost to the environment unused.
  • the object of the invention is to increase the overall efficiency of industrial production by, for example, storing waste heat in a thermal energy store in order to generate electricity therefrom.
  • the invention seeks to increase the efficiency of the overall system by means of a waste heat recovery system.
  • a waste heat recovery circuit a storage medium from a continuous heat source, consisting of waste heat that otherwise escapes into the atmosphere and is wasted, is passed into a heat pump cycle in a heat recovery cycle.
  • the heat of the storage medium for example water
  • a working medium for example hydrocarbon
  • the temperature of the working medium can be increased step by step from 38 to 130 ° C via a returning heat pump process.
  • the storage medium water that heats the working fluid thus regenerates thermal energy or by expanding the working fluid mechanical energy.
  • a heat storage medium is heated from a low temperature to the heat recovery temperature.
  • the working medium is heated by cooling the heat storage medium and the heat recovery temperature is cooled, etc.
  • the described thermoelectric energy storage (0043) includes four modes that can be combined depending on the instantaneous availability of the waste heat. They require considerable electricity costs.
  • the heat recovery circuit will only work if the waste heat source is available (0045).
  • the four modes of operation in the invention relate to four different heat cycles.
  • the first operating mode is the Heat Recovery Heat Recovery Circuit (0048) - (0049), (0060).
  • a disadvantage of this described process is that the various heat pump circuits stage and thus slowly generates electricity. In this process, large amounts of heat are generated at the same time, especially in the summer, when the memory is full, evaporates without economic value.
  • the waste heat recovery works only when the waste heat source is available. Excess waste heat is then pumped into the water using a heat pump.
  • the second mode is the heat pump cycle where cheap electricity can be used.
  • This mode uses the electrical power proportional to the difference in temperature from heat sources of heat and from the desired temperature of the hot water tank.
  • the third operating mode is a heat engine cycle (0065), (0067), (0069) - (0071), which is operated at the highest electricity prices. To generate electricity from the heat currently generated, an additional heat engine must convert the waste heat into electricity.
  • the fourth operating mode is based on an additional heat engine cycle (0072) for continuous power generation. This mode can not be used if the electrical energy storage operation is used. It is described that all modes of operation can be used in parallel to the others. However, their function is linked to various conditions (0069) - (0073), which in turn is detrimental to a continuous process.
  • the method is a decentralized and adiabatic energy transformation system, with the mechanical energy from the air liquefaction and decomposition, kinetic energy, from kinetic and thermal energy sources, and electric energy from external power and independent of this from process waste heat from own plants, from mechanical energy, regenerative thermal energies, as well as energy from wind and solar plants need to be stored separately and in individually required quantities at the place of consumption, that with the decentralized adiabatic energy transformation system process heat and cold, Regenerating environmental heat, compression, decompression and fuel heat from regenerative sources, or directly converting it into mechanical and kinetic energy, is such that the energy storage, energy conversion and reconversion processes are interconnected, that the basic process steps, power generation, storage and reconversion, according to the respective existing energy resources and the energy requirements at a local consumer, are carried out as cold-led, heat-managed or current-carrying system and that the cold, heat and power systems individually or in Combination constantly working in a steady state and, if necessary, immediately
  • the energy transformation system has the advantage that it can be adapted independently of the location of the consumer to its individual energy requirements and the locally available energy resources. It can be used as a compact and specially adapted process system. It should be emphasized that the regenerative treatment of functionally incurred accrued previously unused exergy, for example, from compressed air systems, heating systems, air conditioning, freezer, air conditioning systems, emergency oxygen devices, etc., and their conversion is ensured in electricity. All energy flows and their manifestations can be used economically.
  • the decentralized and adiabatic energy transformation system works with heat of compression during storage and with cold during reconversion and ensures continuous operation in steady state. It keeps the operating state of the system between power generation, storage and reconversion constantly in equilibrium and thus in an economically advantageous area.
  • the system can be controlled immediately and, if necessary, on demand performance by load management.
  • the reverse power is first the environmental heat, then the process heat, then the power from the power storage, such as excess electricity from the grid and wind power and photovoltaic systems to be incorporated, from thermal power plants with night power and last from the oxidation of biomass, hydrogen and biogas and the Used fuel heat.
  • the basic supply of the consumer and the constant operation of the system in steady state can be secured. Due to the three different storage systems, which complement each other, the system is also able to provide island supply without external power. Expansion circuits also load the kinetic energy storage systems and the electricity storage systems.
  • the charging and discharging as well as the continuous power supply are regulated as required by the consumer via the load management.
  • the efficiency of the reconversion in the combined or individual systems depends on the on-site energy resources and their own energy needs.
  • the consumer is protected and external power must be removed only at low-load times from the central networks, which in turn saves costs and helps to relieve the networks.
  • the consumer can decide for himself when he wants to remove what amounts of energy from the network and what energies he wants to take inexpensively from cheaper resources, self-generated energy or surplus energy of his own production from their own power storage.
  • thermal energy and pressure energy using the pressure gradient is to be supplied to an expansion circuit and to include a part of the mechanical energy and the cooling energy via the cooling water circuit of a compressor again in the storage process for mechanical energy and the heat of compression of the compressor from the waste heat of the cooling circuit a generator and a circulation pressure pump is fed, the own power consumption is low and the reconversion by the return of gaseous working fluid, its pressure energy and cold energy below the ambient temperature takes place from an expansion circuit and the integration and retrieval of mechanical energy from the expansion circuit, the irreversible expansion of a refrigerant evaporator during storage of the working fluid air and the precooling of the working fluid through the cooling circuit of the circulation pressure pump from a heat exchanger, wherein the generated energy in a partially closed loop is due to the work cycle of the refrigerated system and another part of the liquefied air, which arises during reconversion, to maintain the steady state of an Organic Rankine cycle process is available.
  • the system according to the invention is also adapted to the need to use individually as a thermally-controlled system in which the working fluid is heated by additional heat energy from renewable fuels to be processed in an evaporation process, isentropically expanded in the expansion circuit in several stages, and the entire refrigeration capacity in the Organic Rankine cycle process is to be consumed and that pressurized, cold liquefied air is to be passed through several circuits of an air heat exchanger, where it is to be heated, gasified and regulated to be passed into the evaporation process.
  • compressed fuel can also be fed from a fuel tank via a pressure pump and the solid fuel is first gasified, then compressed and then passed into the evaporation process.
  • the efficiency of the reconversion including the coverage of compressed air and industrial gas requirements for a furnace, is higher than that of a refrigerated system, it has a much lower own electricity and production cooling and process cooling, and a very high overall efficiency through the use of waste heat the production.
  • the refrigerant circuit in the consumer and the cold discharged from a heat exchanger and the cold required for the Organic Rankine Cycle process are available.
  • the current-guided system adapted to the need to use individually, by the current-carrying system with external power or independently of this at least a multi-stage expansion circuit of mechanical energy to load and with the working fluid from the air stored in the expansion circuit mechanical energy or be supplied with the refrigerant from the Organic Rankine cycle process, these processes are simultaneously run in parallel or in series and the working medium air is heated with the heat of compression from the compression circuit of a base compressor to heat the waste heat of a production process or with excess heat and stored thermal energy, the refrigerant from oxygen-poor liquid air, especially liquid nitrogen, from a nitrogen-rich zone of a pressure condenser from the air liquefaction process usable, the refrigerant is to perform work in a working process, the environmental heat and waste heat of the power storage process, from the charging and discharging process, by short-term energy pulses infinitely repeatable, thereby keeping the required transition temperature of the storage process for kinetic energy safely and that a pressure pump increases the operating pressure for a multi-stage
  • the decentralized and adiabatic energy transformation system must be adapted locally to a consumer and taking into account the individual conditions as well as the existing and resulting energy resources, with unnecessary procedures from the outset can be left out if they are not required.
  • the cold-run system is used by a consumer who has a high demand for cold save power and where the heat energy resulting from the manufacturing process is absorbed, converted and stored.
  • the heat-driven system is used when the consumer needs a lot of heat in addition to electricity.
  • a current-carrying system is used when the consumer needs a lot of electricity and heat and cold can be converted back into electricity as controllable by-products and stored.
  • the decentralized and adiabatic energy transformation system makes it possible to retrieve electric energy from the individual storage processes at peak load times, to market it at a high surplus on the power exchange, and to take electricity from the central networks inexpensively in low-load periods.
  • the block diagram, according to Fig.1 shows that the decentralized and adiabatic energy transformation system according to the invention is subdivided essentially into three basic process sequences. It includes a recording procedure adapted to individual requirements and conditions for all forms of energy. With this recording method, it is able to absorb process waste heat, environmental heat, electricity surplus from the grid of wind power and photovoltaic systems, from thermal power plants with night power, from oxidation of biomass, hydrogen and biogas. Depending on the type, from the recording process it passes on the absorbed energy forms either directly into the three possible storage processes for mechanical energy, kinetic energy and electricity or into the conversion and reconversion processes.
  • the converted and recovered energy can be directed into the storage processes.
  • the storage processes and of the conversion and gearing processes can be returned as needed, the respective required amounts of the various generated and stored forms of energy either directly into the existing on-site manufacturing process, or in the energy transformation system to maintain its internal work processes or for purchase for other consumers or for sale at the Electricity exchange can be retrieved.
  • the energy to be produced in this way, back to leading and to be taken away, are electricity, liquid gases and air and nitrogen produced therefrom and pure oxygen as well as heat, cold and pressurized gas.
  • the energy transformation system described consists of a combination of all possible systems, namely the cold-guided, the heat-guided and the current-guided system.
  • these processes can also be used individually or combined differently depending on requirements and conditions.
  • this energy transformation system can work independently of the season, because it can compensate energy surpluses in certain seasons and energy requirements to third parties that are not available.

Description

Verfahren zur dezentralen und individuellen Aufnahme, Erzeugung, Umwandlung und kontinuierlichen Bereitstellung von Elektroenergie, das von Verbrauchern von Elektroenergie aus den zentralen Netzen in allen Bereichen der Industrie, insbesondere bei Großabnehmern zu nutzen ist.
Derzeit wird Elektroenergie mit verschiedenen Techniken erzeugt, so aus Atomkraftwerken, Wärmekraftwerken, aus regenerativen Energiequellen durch chemische, thermische und mechanische Umwandlung von EnergieRessourcen der Natur, wie Wind, Sonnenenergie, Umwandlung von Biogas sowie aus der Verflüssigung von Luft und deren Umwandlung in Sauerstoff Stickstoff und andere Gase. Die regenerativen Energien können nur sporatisch hergestellt und gespeichert werden, da sie von den natürlichen Bedingungen Wind und Wärme aus der Sonnenstrahlung sowie von Speicherkapazitäten der zentralen Netze abhängig sind.
Die vorhandenen Energieerzeugungs-, -umwandlungs und Rückverstromungsanlagen verfügen entweder über zu kleine oder gar keine Speicher. Das hat zur Folge, daß die erzeugte Energie überwiegend direkt in die zentralen Energieleitungsnetze geleitet werden muß. Da die Atomkraftwerke die Netze kontinuierlich mit großen Mengen Elektroenergie bestücken, die nicht kontinuierlich in gleichen Mengen von den Verbrauchern abgenommen werden können und die Netze ebenfalls nur über eine begrenzte Speicherkapazität verfügen, müssen alternative Energieerzeuger zeitweise abgeschaltet werden, weil deren Energiespeicher ebenfalls begrenzt und die zentralen Netze in Stoßzeiten überlastet sind. Die hohen Energiemengen, die von Energiegroßverbrauchern aus dem Netz entnommen werden, sind nur zu Spitzenzeiten erforderlich, so daß der Energiebedarf in den schwachen Nutzungszeiten rapide absinkt. Dazu benötigt man sogenannte Schattenkraftwerke, die, die durch nicht kontinuierliche Stromabnahme entstehenden, Stromschwankungen ausgleichen müssen.
A method for the decentralized and individual reception, generation, conversion and continuous provision of electrical energy that is to be used by consumers of electricity from the centralized networks in all sectors of industry, in particular large-scale customers.
At present, electric power is generated by various techniques, such as nuclear power plants, thermal power plants, renewable energy sources by chemical, thermal and mechanical conversion of nature's energy resources, such as wind, solar, biogas conversion, and liquefaction of air and its conversion to oxygen, nitrogen and other gases. Regenerative energies can only be produced and stored sporatically, since they depend on the natural conditions of wind and heat from solar radiation and on the storage capacities of the central grids.
The existing power generation, conversion and reconversion plants either have too little or no storage. This has the consequence that the energy generated must be conducted mainly directly into the central power line networks. Since the nuclear power plants continuously supply the networks with large amounts of electrical energy that can not be continuously decreased in equal amounts by the consumers and the networks also have only a limited storage capacity, alternative energy producers must be temporarily shut down because their energy storage also limited and the central Networks are overloaded during rush hours. The large amounts of energy that are taken from the mains by large consumers of energy are only required at peak times, so that the energy requirement drops rapidly in the weak usage times. For this purpose one needs so-called shadow power plants, which, which must compensate for fluctuations in power resulting from discontinuous power take-off.

Außerdem werden bei fast allen industriellen Produktionsprozessen durch Stromnutzung aus den zentralen Netzen, große Mengen der aufgenommenen Energie durch die prozeßbedingte Entstehung von Wärme und Kälte ungenutzt wieder in die Umwelt abgegeben, wodurch hohe Energieverluste entstehen.In addition, in almost all industrial production processes by using electricity from the central networks, large amounts of energy absorbed through the process-related generation of heat and cold unused returned to the environment, resulting in high energy losses.

Alle bisher genutzten Lösungen, wie Erweiterung der Netze, Bau neuer Netze über oder unter der Erde, Pumpspeicherwerke, Windräder usw. sind kostenaufwendig und verunstalten teilweise erheblich die Natur.All previously used solutions, such as expansion of the networks, construction of new networks above or below ground, pumped storage power plants, wind turbines, etc. are costly and sometimes severely deface nature.

Auch bei Verfahren, die alternative Energien umwandeln und als Fertigprodukt verkaufen, wird prozeßbedingt entstehende Wärme und Kälte ungenutzt in die Umwelt zurückgeführt.Even in processes that convert alternative energy and sell it as a finished product, process-related heat and cold is returned unused to the environment.

Beispielsweise bei Luftverflüssigungssystemen, wie sie aus der DE 3307181 C2 und der EP 0989375 bekannt sind, in denen flüssige Luft in reinen flüssigen Sauerstoff, in Stickstoff und ggf. in Edelgase getrennt wird. Der flüssige Sauerstoff und Stickstoff werden im kalten flüssigen Zustand bei -196°C aus der Anlage entnommen und verkauft. Mit der Entnahme der Produkte wird auch der Exergiegehalt in Form von Kälteenergie entnommen. Gleichzeitig wird gereinigte gasförmig aufbereitete Luft mit einem Druck von 1,2 bar und mit einer Wärmetemperatur von 20°C aus dem Prozeßkreislauf als Abfall zurück in die Atmosphäre geleitet. Werden in diesen Anlagen ausschließlich einzelne gasförmige Produkte, wie Stickstoff, erzeugt, wird bei deren Entnahme auch der gesamte Sauerstoffanteil ungenutzt in die Atmosphäre zurückgeführt. Die in derartigen Anlagen befindlichen Tanks sind reine Produktspeicher und die Produkte werden ausschließlich außerhalb der Anlagen benutzt. Bei Entnahme der Produkte aus den Tanks gehen die bereits aufgeführten Energien wie Kälte, Wärme und Gase, die durch deren Herstellungsprozeß erzeugt werden, ungenutzt verloren. Diese Luftverflüssigungsanlagen sind technologisch kostenaufwendig, da die in ihnen erzeugten Produkte mit Spezialtransportern zum Anwender transportiert werden müssen, und wenig energieeffizient, aufgrund der entstehenden Energieverluste bei der Produkterzeugung.For example, in air liquefaction systems, as they are known from DE 3307181 C2 and the EP 0989375 are known in which liquid air is separated into pure liquid oxygen, in nitrogen and possibly in noble gases. The liquid oxygen and nitrogen are removed from the plant in cold liquid state at -196 ° C and sold. With the removal of the products, the exergy content in the form of cooling energy is taken. At the same time purified gaseous treated air is passed with a pressure of 1.2 bar and with a heat temperature of 20 ° C from the process circuit as waste back into the atmosphere. If only individual gaseous products, such as nitrogen, are produced in these plants, the entire oxygen content is also returned unused to the atmosphere when they are removed. The tanks in such plants are pure product stores and the products are used exclusively outside the plants. When removing the products from the tanks, the energies already mentioned, such as cold, heat and gases, which are generated by their manufacturing process, are lost unused. These air liquefaction plants are technologically costly, since the products they produce with special transporters to the user need to be transported, and low energy efficiency, due to the resulting energy losses in product production.

In der EP 0250390 wird auch ein Luftzerlegungsverfahren offenbart, in dem Sauerstoff und Stickstoff sowie ggf. Erdgase gesondert über Produktgasleitungen ausgebracht werden, dadurch gekennzeichnet, daß an eine Produktgasleitung wenigstens eine Zweiggasleitung angeschlossen ist, welche über einen Wärmetauscher geführt ist, daß wenigstens zwei Speicher für zwei voneinander verschiedene verflüssigte Gase vorgesehen sind. Auch hier handelt es sich um reine Produktspeicher. Bei der Entnahme dieser Produkte aus den Speichern werden die, bei der Herstellung entstehenden, Exergien ungenutzt in die Umwelt zurückgeführt. Die DE 2434238 sieht ein Verfahren zur Speicherung und Rückgewinnung von Energie vor, bei dem in Zeiten geringem Energiebedarfs ein gasförmiger Hilfsenergieträger verflüssigt und nahezu ohne Druck gespeichert wird, während in Zeiten größeren Energiebedarfs der gasförmige Hilfsenergieträger verdichtet, angewärmt und arbeitsleistend entspannt wird. Auch dieses Speicherverfahren ist nur auf die Speicherung von einzelnen Produkten orientiert.In the EP 0250390 is also disclosed an air separation process in which oxygen and nitrogen and possibly natural gases are discharged separately via product gas lines, characterized in that at least one branch gas line is connected to a product gas line, which is guided via a heat exchanger that liquefied at least two memory for two different Gases are provided. Again, this is pure product memory. When these products are removed from the storage tanks, the exergy produced during production is returned to the environment unused. The DE 2434238 provides a method for storing and recovering energy, wherein in times of low energy demand, a gaseous auxiliary energy carrier is liquefied and stored almost without pressure, while in times of greater energy demand, the gaseous auxiliary energy carrier is compressed, warmed and relaxed work. This storage method is based only on the storage of individual products.

Aus der DE 19632019 C1 ist auch der ORC- Prozeß (Organic- Rankine-Cycle- Prozeß) bekannt. Dabei handelt es sich um einen thermodynamischen Kreisprozeß zur Abwärmenutzung, in dem an Stelle von Wasser andere, niedrig siedende, organische Stoffe, wie Silikonöle, Kohlenwasserstoffe und Flourkohlenwasserstoffe, als Arbeitsmedium zirkulieren. Dieser Prozeß kann bereits bei Temperaturen ab 100°C und Drücken von weit unter 20 bar arbeiten, um maximale Arbeit aus diesem Prozeß auszukoppeln. So können in derartigen Anlagen mit geringem technologischen Aufwand auch kleine thermische Energiequellen wirtschaftlich in Elektroenergie umgewandelt werden. In diesen ORC- Prozessen ist es aufgrund der besonderen thermodynamischen Eigenschaften sowie der verschiedenen Arbeitsmedien möglich, elektrische Energie aus, Abwärme, Geothermie, Biomasse oder aus solarthermischen Quellen, zu generieren. Dazu sind die Anlagen mit spezifischen technologischen Besonderheiten für die jeweiligen Anwendungsfälle ausgestattet. So sind zur Regelung der anfallenden Energien die ORC- Prozesse in unterschiedliche Einzelvorgänge zerlegt. Dabei fällt mehr als 90% der elektrischen Leistungsaufnahme aus dem Netz in Form von Wärme an, die in einen Kühlkreislauf geleitet und auch über die Wasseraustrittstemperaturen ungenutzt verloren geht. In den Anlagen entstehen prozeßbedingt Energien, die ungenutzt in die Umwelt zurückgeführt werden. Außerdem ist dieses Verfahren in den bekannten Formen für eine Rückverstromung nicht geeignet.From the DE 19632019 C1 The ORC (Organic Rankine Cycle) process is also known. This is a thermodynamic cycle for the use of waste heat, in which, instead of water, other, low-boiling, organic substances, such as silicone oils, hydrocarbons and fluorocarbons, circulate as a working medium. This process can already work at temperatures above 100 ° C and pressures well below 20 bar to couple out maximum work from this process. Thus, in such systems with little technological effort and small thermal energy sources can be converted economically into electrical energy. In these ORC processes it is possible to generate electrical energy, waste heat, geothermal energy, biomass or from solar thermal sources due to the special thermodynamic properties and the various working media. These are the plants with specific technological features for each Use cases equipped. Thus, the ORC processes are broken down into different individual processes to regulate the resulting energies. It accounts for more than 90% of the electrical power consumption from the grid in the form of heat, which is passed into a cooling circuit and also goes unused about the water outlet temperatures. The plants generate process-related energies that are returned to the environment unused. Moreover, this method is not suitable in the known forms for reconversion.

In der DE 3739411 C1 wird ein supraleitender Stromspeicher mit einer Speicherspule offenbart, die aus mehreren Teilspulen besteht, diese sind dadurch gekennzeichnet, daß beim aufladen ein Teil oder alle Teilspulen in Serie geschaltet und beim Entladen ein Teil oder alle Teilspulen parallel geschaltet sind. Des weiteren sind gesonderte Entladespulen vorgesehen, die magnetisch an die Teilspulen angekoppelt sind, wobei die Anzahl der parallel geschalteten Teilspulen beim Entladen einstellbar ist. Diese Anlagen sind reine Stromspeicher und werden auch nur als solche genutzt.
Schließlich wird auch in der EP 0348465 B1 ein Stromspeicher in Form einer supraleitenden Speicherspule beschrieben, dadurch gekennzeichnet, daß die Speicherspule mit mehreren, in Längsrichtung der Speicherspule aufeinanderfolgenden Spulensegmenten aufgebaut ist, die einzeln vorgefertigt und unter elektrischer Verschaltung zu einer Speicherspule zusammengefaßt sind. In den Unteransprüchen werden die Verschaltungen aus der DE 3739411 C1 vorgesehen und die unterschiedlichsten Materialien für die Supraleiter und deren unterschiedlichste Aufbauformen offenbart, mit denen auf einfache Weise und wahlweise Speicherspulen mit kleinerem und größerem Speichervermögen herstellbar sind.
Alle vorbeschriebenen Verfahren und Anlagen sind ortsgebunden, da die Energieresourcen, die von ihnen genutzt werden, nur standortbedingt zur Verfügung zu stellen sind. Die Energie, die dabei erzeugt wird, muß wieder über entsprechende Netze transportiert werden. Die im Herstellungsprozeß entstehenden Exergien werden überwiegend nicht genutzt und gehen ungenutzt an die Umwelt verloren.
In the DE 3739411 C1 a superconducting current storage is disclosed with a storage coil consisting of several sub-coils, these are characterized in that when charging a part or all sub-coils are connected in series and a part or all sub-coils are connected in parallel during discharging. Furthermore, separate discharge coils are provided, which are magnetically coupled to the sub-coils, wherein the number of sub-coils connected in parallel is adjustable during discharge. These plants are pure electricity storage and are only used as such.
Finally, in the EP 0348465 B1 a current storage in the form of a superconducting storage coil described, characterized in that the storage coil is constructed with a plurality of successive in the longitudinal direction of the storage coil segments, which are individually prefabricated and combined under electrical wiring to a storage coil. In the subclaims, the interconnections of the DE 3739411 C1 provided and a variety of materials for the superconductors and their various forms of construction disclosed, which can be produced in a simple manner and optionally storage coils with smaller and larger storage capacity.
All of the above-described methods and installations are localized, since the energy resources used by them are only available on site. The energy that is generated must be transported via appropriate networks. The exergia produced in the manufacturing process are mostly not used and are lost to the environment unused.

Aus der EP 2 441 925 A1 ist ein Verfahren zur Rückgewinnung von Abwärme in einem Abwärme- Rückgewinnungssystem offenbart. Die Aufgabe der Erfindung besteht darin die Gesamteffizienz der industriellen Produktion dadurch zu erhöhen, daß zum Beispiel Abwärme in einem Wärmeenergiespeicher gelagert wird, um daraus Strom zu erzeugen. Bei der Erfindung wird die Zunahme der Effizienz des Gesamtsystems durch ein Abwärme- Rückgewinnungssystem angestrebt. In dem Abwärme- Rückgewinnungskreislauf wird in einem Wärmerückgewinnungs- Kreislauf ein Speichermedium aus einer kontinuierlichen Wärmequelle, bestehend aus Abwärme, die sonst in die Atmosphäre entweicht und verschwendet wird, in einen Wärmepumpenkreislauf geleitet. Die Wärme des Speichermediums, beispielsweise Wasser, wird über ein Arbeitsmedium, beispielsweise Kohlenwasserstoff, bei einer Temperatur über der Wärmerückgewinnungstemperatur in einen Wärmepumpenkreislauf, bestehend aus mehreren Wasserpumpen, die stufenweise angeordnet sind übertragen. Dabei kann die Temperatur des Arbeitsmediums über einen rücklaufenden Wärmepumpenprozeß schrittweise von 38 bis 130°C erhöht werden. Das Speichermedium, Wasser, das das Arbeitsmedium erhitzt erzeugt so wieder Wärmeenergie oder durch expandieren des Arbeitsmediums mechanische Energie. Dabei wird im Wärme- Rückgewinnungskreislauf ein Wärmespeichermedium von einer niedrigen Temperatur auf die Wärmerückbildungstemperatur erhitzt. In dem Wärmepumpenkreislauf wird das Arbeitsmedium durch Kühlen des Wärmespeichermediums erwärmt und die Wärme- Rückbildungstemperatur abgekühlt usw. Die beschriebene thermoelektrische Energiespeicherung (0043) beinhaltet vier Betriebsarten die, je nach der momentanen Verfügbarkeit der Abwärme, kombiniert werden können. Sie erfordern erhebliche Stromkosten. Außerdem arbeitet der Wärmerückgewinnungskreislauf nur, wenn die Abwärmequelle verfügbar ist (0045). Die vier Betriebsarten betreffen in der Erfindung vier verschiedene Wärmekreisläufe. Die erste Betriebsart ist der Wärme- Rückgewinnungskreislauf zur Wärmerückgewinnung (0048)- (0049), (0060). Nachteilig bei diesem beschriebenen Prozeß ist, daß durch die verschiedenen Wärmepumpenkreisläufe etappenartig und somit langsam Strom erzeugt wird. Bei diesem Prozeß werden gleichzeitig große Mengen Wärme erzeugt, die insbesondere im Sommer, wenn die Speicher voll sind, ohne wirtschaftlichen Wert verpufft. Außerdem arbeitet die Abwärmegewinnung nur, wenn die Abwärmequelle verfügbar ist. Überschüssige Abfallwärme wird dann mit Hilfe einer Wärmepumpe in das Wasser gepumpt.From the EP 2 441 925 A1 discloses a method of recovering waste heat in a waste heat recovery system. The object of the invention is to increase the overall efficiency of industrial production by, for example, storing waste heat in a thermal energy store in order to generate electricity therefrom. The invention seeks to increase the efficiency of the overall system by means of a waste heat recovery system. In the waste heat recovery circuit, a storage medium from a continuous heat source, consisting of waste heat that otherwise escapes into the atmosphere and is wasted, is passed into a heat pump cycle in a heat recovery cycle. The heat of the storage medium, for example water, is transferred via a working medium, for example hydrocarbon, at a temperature above the heat recovery temperature into a heat pump cycle, consisting of several water pumps arranged in stages. The temperature of the working medium can be increased step by step from 38 to 130 ° C via a returning heat pump process. The storage medium, water that heats the working fluid thus regenerates thermal energy or by expanding the working fluid mechanical energy. In the heat recovery circuit, a heat storage medium is heated from a low temperature to the heat recovery temperature. In the heat pump cycle, the working medium is heated by cooling the heat storage medium and the heat recovery temperature is cooled, etc. The described thermoelectric energy storage (0043) includes four modes that can be combined depending on the instantaneous availability of the waste heat. They require considerable electricity costs. In addition, the heat recovery circuit will only work if the waste heat source is available (0045). The four modes of operation in the invention relate to four different heat cycles. The first operating mode is the Heat Recovery Heat Recovery Circuit (0048) - (0049), (0060). A disadvantage of this described process is that the various heat pump circuits stage and thus slowly generates electricity. In this process, large amounts of heat are generated at the same time, especially in the summer, when the memory is full, evaporates without economic value. In addition, the waste heat recovery works only when the waste heat source is available. Excess waste heat is then pumped into the water using a heat pump.

Die zweite Betriebsart ist der Wärmepumpenkreislauf bei dem billiger Strom genutzt werden kann. Diese Betriebsart nutzt die elektrische Leistung proportional zur Temperaturdifferenz aus Wärmequellen gewonnener Wärme und aus der gewünschten Temperatur des Warmwasserspeichers. Die dritte Betriebsart ist ein Wärme- Kraftmaschinenkreislauf (0065), (0067), (0069)- (0071), der zu höchsten Strompreisen betrieben wird. Um Strom aus der aktuell erzeugten Wärme zu erzeugen, muß eine zusätzliche Wärmekraftmaschine die anfallende Abwärme in Strom umwandeln. Die vierte Betriebsart basiert auf einem zusätzlichen Wärme-Kraftmaschinenkreislauf (0072) zur kontinuierlichen Stromerzeugung. Diese Betriebsart kann nicht benutzt werden, wenn der elektrische Energiespeichervorgang benutzt wird. Es wird beschrieben, daß alle Betriebsarten parallel zu den anderen genutzt werden können. Allerdings ist deren Funktion an verschiedene Bedingungen geknüpft (0069) - (0073), was wiederum nachteilig für einen kontinuierlichen Prozeß ist.The second mode is the heat pump cycle where cheap electricity can be used. This mode uses the electrical power proportional to the difference in temperature from heat sources of heat and from the desired temperature of the hot water tank. The third operating mode is a heat engine cycle (0065), (0067), (0069) - (0071), which is operated at the highest electricity prices. To generate electricity from the heat currently generated, an additional heat engine must convert the waste heat into electricity. The fourth operating mode is based on an additional heat engine cycle (0072) for continuous power generation. This mode can not be used if the electrical energy storage operation is used. It is described that all modes of operation can be used in parallel to the others. However, their function is linked to various conditions (0069) - (0073), which in turn is detrimental to a continuous process.

Zusammenfassen ist festzustellen, daß eine Vielzahl stufenweiser Erwärmungs- und Kühlungs-, Verdichtungs-, und Rekuperations-, Pumpen- und Speicherungsabläufe mit Hilfe einer aufwendigen Anlagenkonzeption (0039), unter Nutzung von zwei Medien, nämlich einem Speichermedium und einem Arbeitsmedium, in zwei verschiedenen Anlagen mit mehreren Zwischenspeichern mit verschiedenen Zwischentemperaturen, mehreren Wärmetauschern, einer erheblichen Anzahl von Wasser- und Wärmepumpen, die wiederum einen erheblichen Eigenelektroenergiebedarf haben und einer Vielzahl verschiedener Energiespeicher zu dem Fazit führen, daß diese Erfindung ein konstruktiv kompliziertes, langsames, unflexibles und somit ineffizientes System ist, das hohe Investitionskosten erfordert.In summary, a variety of stepwise heating and cooling, compression and recuperation, pumping and storage operations using a sophisticated plant design (0039) utilizing two media, a storage medium and a working medium, are divided into two different types Plants with multiple buffers with different intermediate temperatures, multiple heat exchangers, a significant number of water and heat pumps, which in turn have a significant self-electrical energy demand and a variety of different energy storage lead to the conclusion that this invention is a structurally complicated, slow, inflexible and thus inefficient system is that requires high investment costs.

Es war deshalb Aufgabe der Erfindung, bereits bekannte technische Verfahren so zu verändern und miteinander zu verbinden, das unabhängig am Standort eines Verbrauchers und von den vor Ort zur Verfügung stehenden und bisher ungenutzten Energieformen wahlweise aufzunehmen, umzuwandeln, herzustellen und zu nutzen sind, mit dem Ziel, den Energiebedarf aus zentralen Netzen zu senken und die Netze in Spitzenzeiten zu entlasten, die weitestgehende Nutzung aller anfallenden Exergien aus Produktionsprozessen und deren Rückverstromung mit erheblich höherem Wirkungsgrad zu nutzen, die Exergieverluste zu minimieren und damit eine erhebliche Einsparung von Produktionskosten, sowie die Schonung der Umwelt zu erreichen.
Die Aufgabe wird mit den Merkmalen des Anspruchs 1 dadurch gelöst, daß das Verfahren ein dezentrales und adiabates Energietransformations- System ist, mit dem mechanische Energie aus der Luftverflüssigung und -zerlegung, Bewegungsenergie, aus kinetischen und thermischen Energiequellen, sowie Elektroenergie aus Fremdstrom und unabhängig von diesem aus Prozeßabwärme aus eigenen Anlagen, aus mechanischer Energie, regenerativen thermischen Energien, sowie Energie aus Wind- und Solaranlagen bedarfsgerecht und in individuell erforderlichen Mengen am Ort eines Verbrauches getrennt zu speichern sind, daß mit dem dezentralen adiabaten Energietransformations- System Prozeßwärme und -kälte, Umweltwärme, Kompressions-, Dekompressions- und Brennstoffwärme aus regenerativen Quellen zurück zu verstromen oder direkt in mechanische und kinetische Energie umzuwandeln ist, daß die Energiespeicherungs-, Energieumwandlungs- und - rückverstromungsprozesse untereinander derart verbunden sind, daß die grundsätzlichen Verfahrensschritte, Verstromung, Speicherung und Rückverstromung, entsprechend den jeweils vorhandenen Energieressourcen und den energetischen Erfordernissen bei einem Verbraucher vor Ort, als kältegeführtes, wärmegeführtes oder als stromgeführtes System durchzuführen sind und daß die kälte-, wärme- und stromgeführten Systeme einzeln oder in Kombination ständig in einem Beharrungszustand arbeiten und bei Bedarf sofort auf erforderliche Abrufleistung, über ein Lastmanagement zu regeln sind.
It was therefore an object of the invention to change already known technical processes and connect with each other, which can be taken independently at the location of a consumer and of the locally available and previously unused forms of energy optional, convert, manufacture and use, with the The aim is to reduce the energy demand from centralized networks and to relieve the grids in peak periods, to make the most extensive use of all the exergy from production processes and their re-conversion with significantly higher efficiency, to minimize exergy losses and thus to a considerable saving of production costs as well as the protection to reach the environment.
The object is achieved with the features of claim 1, characterized in that the method is a decentralized and adiabatic energy transformation system, with the mechanical energy from the air liquefaction and decomposition, kinetic energy, from kinetic and thermal energy sources, and electric energy from external power and independent of this from process waste heat from own plants, from mechanical energy, regenerative thermal energies, as well as energy from wind and solar plants need to be stored separately and in individually required quantities at the place of consumption, that with the decentralized adiabatic energy transformation system process heat and cold, Regenerating environmental heat, compression, decompression and fuel heat from regenerative sources, or directly converting it into mechanical and kinetic energy, is such that the energy storage, energy conversion and reconversion processes are interconnected, that the basic process steps, power generation, storage and reconversion, according to the respective existing energy resources and the energy requirements at a local consumer, are carried out as cold-led, heat-managed or current-carrying system and that the cold, heat and power systems individually or in Combination constantly working in a steady state and, if necessary, immediately on required on-demand performance, are to be regulated by a load management.

Das erfindungsgemäße Energietransformations - System hat den Vorteil, daß es unabhängig vom Standort des Verbrauchers an dessen individuellen Energiebedarf und die vor Ort zur Verfügung stehenden Energieressourcen angepaßt werden kann. Es ist als kompaktes und als speziell angepaßtes Verfahrenssystem nutzbar.
Hervorzuheben ist, daß die regenerative Aufbereitung von funktionsbedingt anfallenden bisher ungenutzten Exergien, beispielsweise aus Druckluftanlagen, Heizungsanlagen, Klimaanlagen, Gefrierkälteanlagen, Luftaufbereitungsanlagen, Sauerstoffnotstromgeräte usw. und deren Umwandlung in Strom gewährleistet ist. Alle Energieströme und deren Erscheinungsformen können betriebswirtschaftlich genutzt werden. Das dezentrale und adiabate Energietransformations- System arbeitet mit Kompressionswärme bei der Speicherung und mit Kälte bei der Rückverstromung und gewährleistet einen Ständigen Betrieb im Beharrungszustand. Es hält den Betriebszustand des Systems zwischen Verstromung, Speicherung und Rückverstromung ständig im Gleichgewicht und somit in einem betriebswirtschaftlich vorteilhaften Bereich. Darüber hinaus ist gewährleistet, daß durch ein Lastmanagement das System sofort und bei Bedarf auf Abrufleistung regelbar ist. Bei der Rückverstromung wird zuerst die Umweltwärme, danach die Prozeßwärme, dann der Strom aus dem Stromspeicher, wie Stromüberschuß aus dem Netz sowie aus einzubindenden Windkraft- und Fotovoltaikanlagen, aus thermischen Kraftwerken mit Nachtmehrleistung und zuletzt aus der Oxydation von Biomassen, Wasserstoff und Biogasen sowie der Brennstoffwärme genutzt. Außerdem kann die Grundversorgung des Verbrauchers und der ständige Betrieb des Systems im Beharrungszustand gesichert. Durch die drei verschiedenen Speichersysteme, die sich untereinander ergänzen, ist das System auch in der Lage eine Inselversorgung ohne Fremdstrom zu gewährleisten. Über Expansionskreisläufe werden auch die Speicherungssysteme für Bewegungsenergie und die Stromspeicher geladen. Wobei das Laden und Entladen sowie die durchgehende Stromversorgung nach Bedarf des Verbrauchers über das Lastmanagement geregelt wird. Der Wirkungsgrad der Rückverstromung bei den kombinierten oder einzeln arbeitenden Systemen ist abhängig von den vor Ort vorhandenen Energieressourcen und dem eigenen Energiebedarf. Der Verbraucher ist abgesichert und Fremdstrom muß nur zu lastarmen Zeiten aus den zentralen Netzen abgenommen werden, was wiederum kostensparend ist und zur Entlastung der Netze beiträgt. Da der Betreiber des Systems aber auch selbst Stromerzeuger ist und Überproduktionen abspeichern kann, kann er, wenn vorhanden, auch Wind- und Solarstrom in sein Verfahren integrieren, deren Energiemengen kontinuierlich aufnehmen, bedarfsgerecht nutzen oder an der Strombörse verkaufen. Der Verbraucher kann selbst entscheiden, wann er welche Energiemengen aus dem Netz entnehmen will und welche Energien er aus preisgünstigeren Ressourcen, aus selbst erzeugter Energie oder Überschußenergien seiner eigenen Produktion aus eigenen Stromspeichern preisgünstig entnehmen will. Das trägt zur Entlastung der Netze bei, indem die aus Produktionsprozessen anfallende Exergie in den Prozeß zurückführt und bedarfsgerecht vom Erzeuger genutzt werden kann. Es verhindert, daß diese Exergie nicht ungenutzt in die Umwelt zurückgeführt wird und diese schädigt. Von besonderem Vorteil ist es außerdem, daß das System in Kombination aller möglichen kältegeführten, wärmegeführten und stromgeführten Verfahrensabläufe, ständig in einem Beharrungszustand arbeiten und bei Bedarf sofort auf erforderliche Abrufleistung geregelt werden kann.
The energy transformation system according to the invention has the advantage that it can be adapted independently of the location of the consumer to its individual energy requirements and the locally available energy resources. It can be used as a compact and specially adapted process system.
It should be emphasized that the regenerative treatment of functionally incurred accrued previously unused exergy, for example, from compressed air systems, heating systems, air conditioning, freezer, air conditioning systems, emergency oxygen devices, etc., and their conversion is ensured in electricity. All energy flows and their manifestations can be used economically. The decentralized and adiabatic energy transformation system works with heat of compression during storage and with cold during reconversion and ensures continuous operation in steady state. It keeps the operating state of the system between power generation, storage and reconversion constantly in equilibrium and thus in an economically advantageous area. In addition, it is ensured that the system can be controlled immediately and, if necessary, on demand performance by load management. In the reverse power is first the environmental heat, then the process heat, then the power from the power storage, such as excess electricity from the grid and wind power and photovoltaic systems to be incorporated, from thermal power plants with night power and last from the oxidation of biomass, hydrogen and biogas and the Used fuel heat. In addition, the basic supply of the consumer and the constant operation of the system in steady state can be secured. Due to the three different storage systems, which complement each other, the system is also able to provide island supply without external power. Expansion circuits also load the kinetic energy storage systems and the electricity storage systems. The charging and discharging as well as the continuous power supply are regulated as required by the consumer via the load management. The efficiency of the reconversion in the combined or individual systems depends on the on-site energy resources and their own energy needs. The consumer is protected and external power must be removed only at low-load times from the central networks, which in turn saves costs and helps to relieve the networks. Since the Operators of the system but also is self-generators and can store overproductions, he can, if available, integrate wind and solar power in its process, continuously absorb their energy levels, use as needed or sell on the power exchange. The consumer can decide for himself when he wants to remove what amounts of energy from the network and what energies he wants to take inexpensively from cheaper resources, self-generated energy or surplus energy of his own production from their own power storage. This helps to relieve the burden on the nets by returning the exergy from production processes to the process and using it as needed by the producer. It prevents that exergy from being recycled into the environment unused and damaging it. Of particular advantage, it is also that the system in combination of all possible cold-guided, heat-guided and current-controlled procedures, constantly working in a steady state and can be controlled immediately if necessary on demand demanded.

Hervorzuheben ist aber auch die Flexibilität des erfindungsgemäßen dezentralen und adiabaten Energietransformations- Systems, das dem Bedarf angepaßt, einzeln als kältegeführtes System, zu nutzen ist, in dem in dem kältegeführten System flüssiges Arbeitsmittel aus dem Speicherrungsprozeß für mechanische Energie in den Kältekreislauf zu leiten ist, wobei thermische Energie und Druckenergie unter Nutzung des Druckgefälles einem Expansionskreislauf zuzuführen ist und ein Teil der mechanischen Energie und der Kälteenergie über den Kühlwasserkreislauf eines Verdichters wieder in den Speicherrungsprozeß für mechanische Energie aufzunehmen und die Kompressionswärme des Verdichters aus der Abwärme des Kühlkreislaufs einem Generator und einer Kreislaufdruckpumpe zuzuführen ist, wobei der eigene Strombedarf gering ist und die Rückverstromung durch die Rückführung von gasförmigem Arbeitsmittel, von dessen Druckenergie und von Kälteenergie unterhalb der Umgebungstemperatur aus einem Expansionskreislauf erfolgt und das Einbinden und Abrufen der mechanischen Energiegewinnung aus dem Expansionskreislauf, die irreversible Expansion eines Kältemittel- Verdampfers während der Speicherung des Arbeitsmittels Luft und die Vorkühlung des Arbeitsmittels durch den Kühlkreislauf der Kreislaufdruckpumpe aus einem Wärmetauscher erfolgt, wobei die so erzeugte Energie in einem zum Teil geschlossen geführten Kreislauf in den Arbeitskreislauf des kältegeführten Systems zurückzuführen ist und ein weiterer Teil der verflüssigten Luft, die während der Rückverstromung entsteht, zur Erhaltung des Beharrungszustands eines Organic- Rankine-Cycle - Prozesses nutzbar ist. Das erfindungsgemäße System ist auch, dem Bedarf angepaßt, einzeln als wärmegeführtes System, zu nutzen, in dem durch zusätzliche Wärmeenergie aus nachwachsenden Brennstoffen, die in einem Verdampfungsprozeß aufzubereiten sind, das Arbeitsmittel Luft zu erwärmen, in dem Expansionskreislauf in mehreren Stufen isentrop zu entspannen und die komplette Kälteleistung im Organic- Rankine- Cycle - Prozeß zu verbrauchen ist und daß unter Druck stehende, kalte verflüssigte Luft durch mehrere Kreisläufe eines Luftwärmetauschers zu leiten, dort zu erwärmen, zu vergasen und geregelt in den Verdampfungsprozeß zu leiten ist. Darüber hinaus kann auch zusätzlich aus einem Brennstofftank über eine Druckpumpe verdichteter flüssiger Brennstoff zugeführt werden und der feste Brennstoff erst vergast, danach verdichtet und danach in den Verdampfungsprozess geleitet werden.It is also important to emphasize the flexibility of the decentralized and adiabatic energy transformation system according to the invention, which is adapted to the needs, individually as a cold-led system, in which liquid working fluid from the storage process for mechanical energy is to be conducted into the refrigeration cycle in the refrigerated system. wherein thermal energy and pressure energy using the pressure gradient is to be supplied to an expansion circuit and to include a part of the mechanical energy and the cooling energy via the cooling water circuit of a compressor again in the storage process for mechanical energy and the heat of compression of the compressor from the waste heat of the cooling circuit a generator and a circulation pressure pump is fed, the own power consumption is low and the reconversion by the return of gaseous working fluid, its pressure energy and cold energy below the ambient temperature takes place from an expansion circuit and the integration and retrieval of mechanical energy from the expansion circuit, the irreversible expansion of a refrigerant evaporator during storage of the working fluid air and the precooling of the working fluid through the cooling circuit of the circulation pressure pump from a heat exchanger, wherein the generated energy in a partially closed loop is due to the work cycle of the refrigerated system and another part of the liquefied air, which arises during reconversion, to maintain the steady state of an Organic Rankine cycle process is available. The system according to the invention is also adapted to the need to use individually as a thermally-controlled system in which the working fluid is heated by additional heat energy from renewable fuels to be processed in an evaporation process, isentropically expanded in the expansion circuit in several stages, and the entire refrigeration capacity in the Organic Rankine cycle process is to be consumed and that pressurized, cold liquefied air is to be passed through several circuits of an air heat exchanger, where it is to be heated, gasified and regulated to be passed into the evaporation process. In addition, compressed fuel can also be fed from a fuel tank via a pressure pump and the solid fuel is first gasified, then compressed and then passed into the evaporation process.

Der Wirkungsgrad der Rückverstromung inklusive der Abdeckung des Bedarfs an Preßluft und technischen Gasen für eine Feuerung ist höher als bei einem kältegeführten System, es hat einen wesentlich geringeren Eigenbedarf an Strom für die Produktion und die Prozeßkühlung sowie einen sehr hohen Gesamtwirkungsgrad durch die Nutzung der Abwärme aus der Produktion. Für die Klimatisierung von Räumen steht der Kältemittelkreislauf im Verbraucher und die aus einem Wärmetauscher abgegebene Kälte sowie die erforderliche Kälte für den Organic- Rankine- Cycle - Prozeß zur Verfügung. Besonders hervorzuheben ist das stromgeführte System, dem Bedarf angepaßt, einzeln, zu nutzen, indem das stromgeführte System mit Fremdstrom oder unabhängig von diesem über mindestens einen mehrstufigen Expansionskreislauf aus mechanischer Energie zu laden ist und mit dem Arbeitsmittel Luft aus der im Expansionskreislauf gespeicherten mechanischen Energie oder mit dem Kältemittel aus dem Organic- Rankine-Cycle - Prozeß, zu versorgen ist, wobei diese Prozesse gleichzeitig parallel oder in Reihe zu fahren sind und das Arbeitsmittel Luft mit der Kompressionswärme aus dem Verdichtungskreislauf eines Basisverdichters, mit der Abwärme eines Produktionsprozesses oder mit Überschußwärme sowie aus gespeicherter thermischer Energie zu erhitzten ist, das Kühlmittel aus sauerstoffarmer flüssiger Luft, besonders aus flüssigem Stickstoff, aus einer stickstoffreichen Zone eines Druckkondensators aus dem Luftverflüssigungsprozeß nutzbar ist, das Kühlmittel in einem Arbeitsprozeß arbeitsleistend zu fahren ist, die Umweltwärme und Abwärme des Stromspeicherprozesses, aus dem Lade- und Entladevorgang, durch kurzzeitige Energieimpulse unendlich wiederholbar, aufnimmt, wodurch die erforderliche Sprungtemperatur des Speicherprozesses für Bewegungsenergie sicher zu halten und daß eine Druckpumpe den Betriebsdruck für einen mehrstufigen Expansionskreislauf erhöht, das Kältemittel den Verdampfer durchströmt und dabei zum gasförmigen Arbeitsmittel umzuwandeln ist und teilweise über einen Kälteverbraucher auf die Saugseite des Basisverdichters und so in den Arbeitskreislauf des Enegietransformations- Systems zurück zu führen ist und das Kältemittel ohne Nutzung eines Expansionskreislaufs direkt über ein Regel- oder Dreiwegeventil kalt und gasförmig auf die Saugseite des Basisverdichters führbar ist. Die Rückverstromung und Stromspeicherung im stromgeführten System erreichen einen erheblichen Wirtschaflichkeitsgrad.The efficiency of the reconversion, including the coverage of compressed air and industrial gas requirements for a furnace, is higher than that of a refrigerated system, it has a much lower own electricity and production cooling and process cooling, and a very high overall efficiency through the use of waste heat the production. For the air conditioning of rooms, the refrigerant circuit in the consumer and the cold discharged from a heat exchanger and the cold required for the Organic Rankine Cycle process are available. Particularly noteworthy is the current-guided system, adapted to the need to use individually, by the current-carrying system with external power or independently of this at least a multi-stage expansion circuit of mechanical energy to load and with the working fluid from the air stored in the expansion circuit mechanical energy or be supplied with the refrigerant from the Organic Rankine cycle process, these processes are simultaneously run in parallel or in series and the working medium air is heated with the heat of compression from the compression circuit of a base compressor to heat the waste heat of a production process or with excess heat and stored thermal energy, the refrigerant from oxygen-poor liquid air, especially liquid nitrogen, from a nitrogen-rich zone of a pressure condenser from the air liquefaction process usable, the refrigerant is to perform work in a working process, the environmental heat and waste heat of the power storage process, from the charging and discharging process, by short-term energy pulses infinitely repeatable, thereby keeping the required transition temperature of the storage process for kinetic energy safely and that a pressure pump increases the operating pressure for a multi-stage expansion cycle, the refrigerant flows through the evaporator and thereby convert it to gaseous working fluid and partly via a Kälteverb smoker on the suction side of the base compressor and so in the working circuit of the Enegietransformations- system is leading back and the refrigerant without use of an expansion circuit directly via a control or three-way valve cold and gaseous on the suction side of the base compressor is feasible. The reconversion and power storage in the power system reach a significant degree of efficiency.

Die Vorteile der bedarfsgerechten Nutzung von kältegeführten, wärmegeführten oder stromgeführten Systemen bestehen außerdem darin, daß das dezentrale und adiabate Energietransformations- System vor Ort bei einem Verbraucher und unter Berücksichtigung der individuellen Bedingungen sowie den vorhandenen und anfallenden Energieressourcen anzupassen ist, wobei unnötige Verfahrensabläufe von vorn herein ausgespart werden können, wenn sie nicht erforderlich sind. So wird das kältegeführte System eingesetzt bei einem Verbraucher der außer Strom einen hohen Bedarf an Kälte hat und wo die aus dem Herstellungsprozeß entstehende Wärmeenergie aufgenommen, umgewandelt und gespeichert wird. Das wärmegeführte System wird eingesetzt, wenn der Verbraucher neben Strom viel Wärme benötigt. Schließlich wird ein stromgeführtes System eingesetzt, wenn der Verbraucher viel Strom benötigt und Wärme und Kälte als regelbare Nebenprodukte wieder in Strom umgewandelt und gespeichert werden können.The benefits of using demand-controlled, heat-managed or power-guided systems as needed are also that the decentralized and adiabatic energy transformation system must be adapted locally to a consumer and taking into account the individual conditions as well as the existing and resulting energy resources, with unnecessary procedures from the outset can be left out if they are not required. Thus, the cold-run system is used by a consumer who has a high demand for cold save power and where the heat energy resulting from the manufacturing process is absorbed, converted and stored. The heat-driven system is used when the consumer needs a lot of heat in addition to electricity. Finally, a current-carrying system is used when the consumer needs a lot of electricity and heat and cold can be converted back into electricity as controllable by-products and stored.

Der Vorteil der angepaßten Verfahrensabläufe besteht weiterhin darin, daß aus dem Stand der Technik bereits bekannte Verfahrensabläufe und dazugehörige Anlagenkonzepte nur angepaßt erweitert und nicht neu entwickelt werden müssen. Durch die erfindungsgemäße Kopplung bekannter Verfahrensabläufe mit den neuen Speicher-, Umwandlungs- und Rückverstromungssystemen für alle Energieformen über neue ergänzende Verfahrensschritte werden die Leistungsmöglichkeiten der bekannten Verfahren erweitert und effektiver genutzt, Energie- und Exergieverluste weitestgehend eingeschränkt und die Umweltbelastung erheblich verringert.The advantage of the adapted process sequences continues to be that from the prior art already known processes and associated plant concepts only adapted extended and not newly developed. The inventive coupling of known processes with the new storage, conversion and reconversion systems for all forms of energy on new complementary process steps, the capabilities of the known methods are extended and used more effectively, energy and exergy losses largely limited and significantly reduces the environmental impact.

Schließlich ermöglicht das erfindungsgemäße dezentrale und adiabate Energietransformations- System in Spitzenlastzeiten Elektroenergie aus den individuellen Speicherprozessen abzurufen, bei hohem Überschuß an der Strombörse zu vermarkten und in Niederlastzeiten Elektroenergie aus den zentralen Netzen preisgünstig zu entnehmen und zu ergänzen.Finally, the decentralized and adiabatic energy transformation system according to the invention makes it possible to retrieve electric energy from the individual storage processes at peak load times, to market it at a high surplus on the power exchange, and to take electricity from the central networks inexpensively in low-load periods.

Die Erfindung soll nachstehend anhand eines Blockschaltbildes näher beschrieben werden. Dabei zeigt

  • Fig.1 ein Blockschaltbild des Energietransformations- Systems mit allen möglichen Verfahrensabläufen.
The invention will be described below with reference to a block diagram. It shows
  • Fig.1 a block diagram of the energy transformation system with all possible procedures.

Das Blockschaltbild, gemäß Fig.1 zeigt, daß das erfindungsgemäße dezentrale und adiabate Energietransformations- System im wesentlichen in drei grundsätzliche Verfahrensabläufe untergliedert ist. Es beinhaltet ein, den individuellen Anforderungen und Bedingungen angepaßtes Aufnahmeverfahren für alle Energieformen. Mit diesem Aufnahmeverfahren ist es in der Lage Prozeßabwärme, Umweltwärme, Stromüberschüsse aus dem Netz aus Windkraft- und Fotovoltaikanlagen, aus thermischen Kraftwerken mit Nachtmehrleistung, aus Oxydation von Biomassen, Wasserstoff und Biogasen aufzunehmen. Aus dem Aufnahmeverfahren leitet es die aufgenommenen Energieformen, je nach Art, entweder direkt in die drei möglichen Speicherungsprozesse für mechanische Energie, Bewegungsenergie und Strom oder in die Umwandlungs- und Rückverstromungsprozeße weiter.The block diagram, according to Fig.1 shows that the decentralized and adiabatic energy transformation system according to the invention is subdivided essentially into three basic process sequences. It includes a recording procedure adapted to individual requirements and conditions for all forms of energy. With this recording method, it is able to absorb process waste heat, environmental heat, electricity surplus from the grid of wind power and photovoltaic systems, from thermal power plants with night power, from oxidation of biomass, hydrogen and biogas. Depending on the type, from the recording process it passes on the absorbed energy forms either directly into the three possible storage processes for mechanical energy, kinetic energy and electricity or into the conversion and reconversion processes.

Aus dem Umwandlungs- und Rückverstromungsprozeß kann die umgewandelte und rückverstromte Energie in die Speicherungsprozesse geleitet werden. Von den Speicherungsprozessen und von den Umwandlungs- und Rückverstromungsprozessen können nach Bedarf die jeweils erforderlichen Mengen an den verschiedenen erzeugten und gespeicherten Energieformen entweder direkt in den vor Ort vorhandenen Herstellungsprozeß, oder in das Energietransformations- System zur Aufrechterhaltung von dessen inneren Arbeitsabläufen zurückgeführt werden oder zur Abnahme für weitere Verbraucher oder zum Verkauf an der Strombörse abgerufen werden. Die auf diese Weise herzustellenden, zurück zu führenden und abzunehmenden Energien sind Strom, flüssige Gase und Luft und aus diesen hergestellter Stickstoff und reiner Sauerstoff sowie Wärme, Kälte und Druckgas.From the conversion and reconversion process, the converted and recovered energy can be directed into the storage processes. Of the storage processes and of the conversion and Rückverstromungsprozessen can be returned as needed, the respective required amounts of the various generated and stored forms of energy either directly into the existing on-site manufacturing process, or in the energy transformation system to maintain its internal work processes or for purchase for other consumers or for sale at the Electricity exchange can be retrieved. The energy to be produced in this way, back to leading and to be taken away, are electricity, liquid gases and air and nitrogen produced therefrom and pure oxygen as well as heat, cold and pressurized gas.

Das beschriebene Energietransformations- System besteht aus einer Kombination aller möglichen Systeme, nämlich dem kältegeführten, dem wärmegeführten und dem stromgeführten System. Diese Prozesse können selbstverständlich auch einzeln genutzt oder nach Bedarf und Bedingungen unterschiedlich kombiniert werden.The energy transformation system described consists of a combination of all possible systems, namely the cold-guided, the heat-guided and the current-guided system. Of course, these processes can also be used individually or combined differently depending on requirements and conditions.

Sehr wichtig ist auch, daß dieses Energietransformations- System unabhängig von der Jahreszeit arbeiten kann, weil es in bestimmten Jahreszeiten vorhandenen Energieüberschuß und nicht vorhandenen Energiebedarf durch Energieabgabe an Dritte ausgleichen kann.It is also very important that this energy transformation system can work independently of the season, because it can compensate energy surpluses in certain seasons and energy requirements to third parties that are not available.

Claims (6)

  1. A method for the decentralized and individual capture, generation, conversion and continuous provision of electrical energy, wherein the method is a decentralized adiabatic energy transformation system for separately storing mechanical energy as needed and in individually required amounts at a consumer's location, re-electrifying process heat and cold, ambient heat, compression-decompression and heat and heat from fuels from regenerative sources or converting the same directly into mechanical energy and energy of motion, wherein the energy storage, energy conversion and back-electrification processes are interconnected such that the electrification, storage and back-electrification is carried out as a refrigeration-driven, heat-driven or electricity-driven system depending on the existing energy resources and requirements at the consumer's location, wherein the systems operate individually or in combination in steady state and are regulated as needed at the required power usage by way of a load management system, and are used to provide electrical energy on demand from the individual storage processes during peak load periods, and sell electrical energy to the energy markets during high excesses, and withdraw electrical energy from the central networks during low-load periods,
    - wherein in the refrigeration-driven system
    liquid working medium is routed from a storage process for mechanical energy to a refrigeration cycle, thermal energy and pressure energy are fed to an expansion cycle for utilizing the pressure gradient and a portion of the mechanical energy and the refrigeration energy is recaptured in the storage process for mechanical energy by way of a cooling water cycle of a compressor, and the heat of compression of the compressor from the waste heat of the cooling water cycle is fed to a generator and a circulating pressure pump, wherein the inherent power demand is low,
    the back-electrification is carried out by way of the return of gaseous working medium, the pressure energy thereof and by refrigeration energy below ambient temperature from an expansion cycle, and in-feeding and on demand use of mechanical energy recovered from the expansion cycle, the irreversible expansion of a refrigerant compressor during storage of air as the working medium and the pre-cooling of the working medium is achieved by the cooling circuit of the circulating pressure pump from a heat exchanger,
    - wherein in the heat-driven system,
    by way of additional thermal energy from renewable fuels prepared in an evaporation process, air as the working medium is heated and isentropically expanded in the expansion cycle in a plurality of steps and the entire refrigeration output is consumed in an Organic Rankine Cycle process, and cold liquefied air under pressure is routed through a plurality of cycles of an air heat exchanger, heated, gasified and routed to the evaporation process in a controlled fashion,
    - wherein the electricity-driven system
    is charged with outside power or independent thereof is charged with mechanical energy by way of at least one multi-staged expansion cycle and supplied with air as a working medium, from the stored mechanical energy in the expansion cycle, from the Organic Rankine Cycle process,
    utilizes coolant from low-oxygen liquefied air, especially from liquid nitrogen, from a nitrogen-rich zone of a pressure condenser from the air liquefaction process, the coolant captures the ambient heat and waste heat of the current accumulation process, from the charging and discharging process, through brief energy pulses,
    raises the operating pressure for a multi-stage expansion cycle by way of a pressure pump, the refrigerant passes through the evaporator, converts to - gaseous working medium in the process and is partially returned to the suction side of a base compressor via a refrigeration user, or the refrigerant is returned cold and gaseous directly to the suction side of the base compressor without utilizing the expansion cycle using a control valve or three-way valve, and thereby returning to the working circuit of the energy transformation system.
  2. The method according to claim 1, characterized in that in the refrigeration-driven system energy generated in the back-electrification is returned in a partially closed cycle to the working cycle of the refrigeration-driven system and another part of the liquefied air generated during the back-electrification is utilized to maintain steady state in the Organic Rankine Cycle process.
  3. The method according to claim 1, characterized in that the processes in the heat-driven system in which by additional heat energy from renewable fuels prepared in an evaporation process, the process heats air as a working medium, isentropically expands it in the expansion cycle in a plurality of stages and uses the entire cooling load in an Organic Rankine Cycle process.
  4. The method according to claim 1, characterized in that the processes in the electricity-driven system are run simultaneously in parallel or in series and the air as a working medium is heated using the heat of compression from the compression cycle of a base compressor, using the waste heat of a production process, the excess heat and using stored thermal energy.
  5. The method according to claim 1, characterized in that in the electricity-driven system the coolant is run in a working process to produce work, wherein the refrigerant captures the ambient heat and waste heat of the current accumulation process, from the charging and discharging process, through brief, continuously repeatable energy impulses is captured in order to safeguard the required transition temperature of the storage process for energy of motion.
  6. The method according to one of the previous claims, characterized in that in the refrigeration-driven, heat-driven or electricity-driven systems, electrical energy is used on demand from the individual storage processes during peak load times, sold to the energy markets at high excesses and withdrawn and supplemented cheaply from the central networks during low load periods.
EP12737198.7A 2012-06-11 2012-06-11 Energy transformation system Active EP2859196B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/002463 WO2013185783A1 (en) 2012-06-11 2012-06-11 Energy transformation system

Publications (2)

Publication Number Publication Date
EP2859196A1 EP2859196A1 (en) 2015-04-15
EP2859196B1 true EP2859196B1 (en) 2018-05-16

Family

ID=46545313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12737198.7A Active EP2859196B1 (en) 2012-06-11 2012-06-11 Energy transformation system

Country Status (2)

Country Link
EP (1) EP2859196B1 (en)
WO (1) WO2013185783A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005543B (en) * 2019-03-28 2023-07-25 浙江大学 Distributed combined power generation system based on heat pump electricity storage technology and method thereof
CN113346528B (en) * 2021-05-28 2022-09-30 北京能高自动化技术股份有限公司 Multi-energy combined supply type peak regulation station and peak regulation method based on hydrogen energy storage construction
CN113821004A (en) * 2021-08-23 2021-12-21 南方电网科学研究院有限责任公司 Optimization method, device and equipment for building energy management

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH276514A (en) * 1949-04-14 1951-07-15 Sulzer Ag Process for generating work from heat and thermal power plants for carrying out the process.
DE2434238A1 (en) 1974-07-16 1976-01-29 Linde Ag System to store and retrieve stored energy - has gas type auxiliary energy storage medium which is liquefied when energy requirements are low
DE3307181A1 (en) 1983-03-01 1984-09-06 Linde Ag, 6200 Wiesbaden Process and apparatus for the separation of air
AT387454B (en) 1986-05-14 1989-01-25 Voest Alpine Ag DEVICE FOR DISASSEMBLING AIR WITH STORAGE OF PRODUCT GAS IN LIQUID FORM
DE3739411A1 (en) 1987-11-20 1989-06-01 Heidelberg Motor Gmbh POWER STORAGE
DE19632019C1 (en) 1996-08-08 1997-11-20 Thomas Sturm Heat engine operation method
DE19843629A1 (en) 1998-09-23 2000-03-30 Linde Ag Process and liquefier for the production of liquid air
DE102006035764A1 (en) * 2006-08-01 2008-02-14 Palme, Klaus, Dipl.-Ing. Three-stage process to generate electricity from ambient power sources e.g. geothermal and solar energy
DE102010022088A1 (en) * 2010-05-31 2011-12-01 Peter Wolf Base load energy storage power plant with process water treatment
WO2011153971A1 (en) * 2010-06-07 2011-12-15 Johann Giritsch Combined heat and power plant
DE102010035229A1 (en) * 2010-08-24 2012-03-01 Linde Ag Method for producing hydrogen used in fuel cell, by electrolysis of water, involves storing waste heat generated during electrolysis of water and converting heat energy into electrical energy by steam turbine process
EP2441925A1 (en) * 2010-10-14 2012-04-18 ABB Research Ltd. Waste heat recovery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2013185783A1 (en) 2013-12-19
EP2859196A1 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
EP2900943B1 (en) Cogeneration power plant and method for operating a cogeneration power plant
DE102017003238B4 (en) Process and plant system for energy conversion by means of carbon dioxide
EP3129610A1 (en) Method and device for storing and recovering energy
EP2794068B1 (en) Method and device for refrigeration especially for recovering water from air
EP1987299A1 (en) Method for storing and recovering energy
AT12844U1 (en) Method for operating a stationary power plant with at least one internal combustion engine
DE102012206296A1 (en) Plant for storage and delivery of thermal energy and method of operation thereof
DE102014101263B3 (en) Apparatus and method for storing energy using supercritical carbon dioxide
DE2809425A1 (en) Multiple medium hot water and house heating system - has valves controlling flow through heat pump with electric and solar heating
DE202020105986U1 (en) Comprehensive energy system based on a reversible expander
EP2859196B1 (en) Energy transformation system
EP3006682A1 (en) Device and method for operating a heating distribution station
EP2803841B1 (en) Pressurised gas storage device
EP4139562B1 (en) System having a liquid air energy storage and power plant apparatus
WO2018029371A1 (en) Heat exchanger for use in a heating part of a liquid-air energy storage power plant, heating part, and method for operating such a heat exchanger in such a heating part
WO2015055294A1 (en) Storing energy using a thermal storage unit and an air turbine
DE102012222414A1 (en) Method and device for energy conversion and water extraction
DE102011014531A1 (en) Method for integration of renewable energy into power supply for, e.g. commercial application, involves receiving cooled warm water of heating and hot water supply system via water circulation channel by storage system from bottom side
AT12845U1 (en) Method for operating a stationary power plant with at least one internal combustion engine
EP2236822A1 (en) On-demand method for regulating and smoothing the electric output of an energy convertor and device for carrying out this method
AT519233B1 (en) supply container
DE3413772A1 (en) System for supplying energy to buildings utilising solar energy as the energy source
EP3327361A1 (en) Heat and power co-generation plant and method for operating same
AT506779A1 (en) Sink-float separation in rotary drum appts. - with mechanical discharge of sinks and floats from high density medium
DE102013016461A1 (en) Method for operating a low-temperature power plant, and low-temperature power plant itself

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012709

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 999776

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180516

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180817

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012709

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

26N No opposition filed

Effective date: 20190219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190613

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190612

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120611

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180916

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 999776

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230804

Year of fee payment: 12