EP2859196B1 - Système de transformation d'énergie - Google Patents

Système de transformation d'énergie Download PDF

Info

Publication number
EP2859196B1
EP2859196B1 EP12737198.7A EP12737198A EP2859196B1 EP 2859196 B1 EP2859196 B1 EP 2859196B1 EP 12737198 A EP12737198 A EP 12737198A EP 2859196 B1 EP2859196 B1 EP 2859196B1
Authority
EP
European Patent Office
Prior art keywords
energy
heat
cycle
storage
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12737198.7A
Other languages
German (de)
English (en)
Other versions
EP2859196A1 (fr
Inventor
Klaus Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arano-Trade Ltd
Original Assignee
Arano-Trade Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arano-Trade Ltd filed Critical Arano-Trade Ltd
Publication of EP2859196A1 publication Critical patent/EP2859196A1/fr
Application granted granted Critical
Publication of EP2859196B1 publication Critical patent/EP2859196B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • electric power is generated by various techniques, such as nuclear power plants, thermal power plants, renewable energy sources by chemical, thermal and mechanical conversion of nature's energy resources, such as wind, solar, biogas conversion, and liquefaction of air and its conversion to oxygen, nitrogen and other gases.
  • Regenerative energies can only be produced and stored sporatically, since they depend on the natural conditions of wind and heat from solar radiation and on the storage capacities of the central grids.
  • the existing power generation, conversion and reconversion plants either have too little or no storage. This has the consequence that the energy generated must be conducted mainly directly into the central power line networks.
  • the tanks in such plants are pure product stores and the products are used exclusively outside the plants.
  • the energies already mentioned, such as cold, heat and gases, which are generated by their manufacturing process are lost unused.
  • These air liquefaction plants are technologically costly, since the products they produce with special transporters to the user need to be transported, and low energy efficiency, due to the resulting energy losses in product production.
  • an air separation process in which oxygen and nitrogen and possibly natural gases are discharged separately via product gas lines, characterized in that at least one branch gas line is connected to a product gas line, which is guided via a heat exchanger that liquefied at least two memory for two different Gases are provided. Again, this is pure product memory.
  • the DE 2434238 provides a method for storing and recovering energy, wherein in times of low energy demand, a gaseous auxiliary energy carrier is liquefied and stored almost without pressure, while in times of greater energy demand, the gaseous auxiliary energy carrier is compressed, warmed and relaxed work. This storage method is based only on the storage of individual products.
  • ORC Organic Rankine Cycle
  • the ORC processes are broken down into different individual processes to regulate the resulting energies. It accounts for more than 90% of the electrical power consumption from the grid in the form of heat, which is passed into a cooling circuit and also goes unused about the water outlet temperatures. The plants generate process-related energies that are returned to the environment unused. Moreover, this method is not suitable in the known forms for reconversion.
  • a superconducting current storage is disclosed with a storage coil consisting of several sub-coils, these are characterized in that when charging a part or all sub-coils are connected in series and a part or all sub-coils are connected in parallel during discharging. Furthermore, separate discharge coils are provided, which are magnetically coupled to the sub-coils, wherein the number of sub-coils connected in parallel is adjustable during discharge. These plants are pure electricity storage and are only used as such.
  • the storage coil is constructed with a plurality of successive in the longitudinal direction of the storage coil segments, which are individually prefabricated and combined under electrical wiring to a storage coil.
  • the interconnections of the DE 3739411 C1 provided and a variety of materials for the superconductors and their various forms of construction disclosed, which can be produced in a simple manner and optionally storage coils with smaller and larger storage capacity. All of the above-described methods and installations are localized, since the energy resources used by them are only available on site. The energy that is generated must be transported via appropriate networks. The exergia produced in the manufacturing process are mostly not used and are lost to the environment unused.
  • the object of the invention is to increase the overall efficiency of industrial production by, for example, storing waste heat in a thermal energy store in order to generate electricity therefrom.
  • the invention seeks to increase the efficiency of the overall system by means of a waste heat recovery system.
  • a waste heat recovery circuit a storage medium from a continuous heat source, consisting of waste heat that otherwise escapes into the atmosphere and is wasted, is passed into a heat pump cycle in a heat recovery cycle.
  • the heat of the storage medium for example water
  • a working medium for example hydrocarbon
  • the temperature of the working medium can be increased step by step from 38 to 130 ° C via a returning heat pump process.
  • the storage medium water that heats the working fluid thus regenerates thermal energy or by expanding the working fluid mechanical energy.
  • a heat storage medium is heated from a low temperature to the heat recovery temperature.
  • the working medium is heated by cooling the heat storage medium and the heat recovery temperature is cooled, etc.
  • the described thermoelectric energy storage (0043) includes four modes that can be combined depending on the instantaneous availability of the waste heat. They require considerable electricity costs.
  • the heat recovery circuit will only work if the waste heat source is available (0045).
  • the four modes of operation in the invention relate to four different heat cycles.
  • the first operating mode is the Heat Recovery Heat Recovery Circuit (0048) - (0049), (0060).
  • a disadvantage of this described process is that the various heat pump circuits stage and thus slowly generates electricity. In this process, large amounts of heat are generated at the same time, especially in the summer, when the memory is full, evaporates without economic value.
  • the waste heat recovery works only when the waste heat source is available. Excess waste heat is then pumped into the water using a heat pump.
  • the second mode is the heat pump cycle where cheap electricity can be used.
  • This mode uses the electrical power proportional to the difference in temperature from heat sources of heat and from the desired temperature of the hot water tank.
  • the third operating mode is a heat engine cycle (0065), (0067), (0069) - (0071), which is operated at the highest electricity prices. To generate electricity from the heat currently generated, an additional heat engine must convert the waste heat into electricity.
  • the fourth operating mode is based on an additional heat engine cycle (0072) for continuous power generation. This mode can not be used if the electrical energy storage operation is used. It is described that all modes of operation can be used in parallel to the others. However, their function is linked to various conditions (0069) - (0073), which in turn is detrimental to a continuous process.
  • the method is a decentralized and adiabatic energy transformation system, with the mechanical energy from the air liquefaction and decomposition, kinetic energy, from kinetic and thermal energy sources, and electric energy from external power and independent of this from process waste heat from own plants, from mechanical energy, regenerative thermal energies, as well as energy from wind and solar plants need to be stored separately and in individually required quantities at the place of consumption, that with the decentralized adiabatic energy transformation system process heat and cold, Regenerating environmental heat, compression, decompression and fuel heat from regenerative sources, or directly converting it into mechanical and kinetic energy, is such that the energy storage, energy conversion and reconversion processes are interconnected, that the basic process steps, power generation, storage and reconversion, according to the respective existing energy resources and the energy requirements at a local consumer, are carried out as cold-led, heat-managed or current-carrying system and that the cold, heat and power systems individually or in Combination constantly working in a steady state and, if necessary, immediately
  • the energy transformation system has the advantage that it can be adapted independently of the location of the consumer to its individual energy requirements and the locally available energy resources. It can be used as a compact and specially adapted process system. It should be emphasized that the regenerative treatment of functionally incurred accrued previously unused exergy, for example, from compressed air systems, heating systems, air conditioning, freezer, air conditioning systems, emergency oxygen devices, etc., and their conversion is ensured in electricity. All energy flows and their manifestations can be used economically.
  • the decentralized and adiabatic energy transformation system works with heat of compression during storage and with cold during reconversion and ensures continuous operation in steady state. It keeps the operating state of the system between power generation, storage and reconversion constantly in equilibrium and thus in an economically advantageous area.
  • the system can be controlled immediately and, if necessary, on demand performance by load management.
  • the reverse power is first the environmental heat, then the process heat, then the power from the power storage, such as excess electricity from the grid and wind power and photovoltaic systems to be incorporated, from thermal power plants with night power and last from the oxidation of biomass, hydrogen and biogas and the Used fuel heat.
  • the basic supply of the consumer and the constant operation of the system in steady state can be secured. Due to the three different storage systems, which complement each other, the system is also able to provide island supply without external power. Expansion circuits also load the kinetic energy storage systems and the electricity storage systems.
  • the charging and discharging as well as the continuous power supply are regulated as required by the consumer via the load management.
  • the efficiency of the reconversion in the combined or individual systems depends on the on-site energy resources and their own energy needs.
  • the consumer is protected and external power must be removed only at low-load times from the central networks, which in turn saves costs and helps to relieve the networks.
  • the consumer can decide for himself when he wants to remove what amounts of energy from the network and what energies he wants to take inexpensively from cheaper resources, self-generated energy or surplus energy of his own production from their own power storage.
  • thermal energy and pressure energy using the pressure gradient is to be supplied to an expansion circuit and to include a part of the mechanical energy and the cooling energy via the cooling water circuit of a compressor again in the storage process for mechanical energy and the heat of compression of the compressor from the waste heat of the cooling circuit a generator and a circulation pressure pump is fed, the own power consumption is low and the reconversion by the return of gaseous working fluid, its pressure energy and cold energy below the ambient temperature takes place from an expansion circuit and the integration and retrieval of mechanical energy from the expansion circuit, the irreversible expansion of a refrigerant evaporator during storage of the working fluid air and the precooling of the working fluid through the cooling circuit of the circulation pressure pump from a heat exchanger, wherein the generated energy in a partially closed loop is due to the work cycle of the refrigerated system and another part of the liquefied air, which arises during reconversion, to maintain the steady state of an Organic Rankine cycle process is available.
  • the system according to the invention is also adapted to the need to use individually as a thermally-controlled system in which the working fluid is heated by additional heat energy from renewable fuels to be processed in an evaporation process, isentropically expanded in the expansion circuit in several stages, and the entire refrigeration capacity in the Organic Rankine cycle process is to be consumed and that pressurized, cold liquefied air is to be passed through several circuits of an air heat exchanger, where it is to be heated, gasified and regulated to be passed into the evaporation process.
  • compressed fuel can also be fed from a fuel tank via a pressure pump and the solid fuel is first gasified, then compressed and then passed into the evaporation process.
  • the efficiency of the reconversion including the coverage of compressed air and industrial gas requirements for a furnace, is higher than that of a refrigerated system, it has a much lower own electricity and production cooling and process cooling, and a very high overall efficiency through the use of waste heat the production.
  • the refrigerant circuit in the consumer and the cold discharged from a heat exchanger and the cold required for the Organic Rankine Cycle process are available.
  • the current-guided system adapted to the need to use individually, by the current-carrying system with external power or independently of this at least a multi-stage expansion circuit of mechanical energy to load and with the working fluid from the air stored in the expansion circuit mechanical energy or be supplied with the refrigerant from the Organic Rankine cycle process, these processes are simultaneously run in parallel or in series and the working medium air is heated with the heat of compression from the compression circuit of a base compressor to heat the waste heat of a production process or with excess heat and stored thermal energy, the refrigerant from oxygen-poor liquid air, especially liquid nitrogen, from a nitrogen-rich zone of a pressure condenser from the air liquefaction process usable, the refrigerant is to perform work in a working process, the environmental heat and waste heat of the power storage process, from the charging and discharging process, by short-term energy pulses infinitely repeatable, thereby keeping the required transition temperature of the storage process for kinetic energy safely and that a pressure pump increases the operating pressure for a multi-stage
  • the decentralized and adiabatic energy transformation system must be adapted locally to a consumer and taking into account the individual conditions as well as the existing and resulting energy resources, with unnecessary procedures from the outset can be left out if they are not required.
  • the cold-run system is used by a consumer who has a high demand for cold save power and where the heat energy resulting from the manufacturing process is absorbed, converted and stored.
  • the heat-driven system is used when the consumer needs a lot of heat in addition to electricity.
  • a current-carrying system is used when the consumer needs a lot of electricity and heat and cold can be converted back into electricity as controllable by-products and stored.
  • the decentralized and adiabatic energy transformation system makes it possible to retrieve electric energy from the individual storage processes at peak load times, to market it at a high surplus on the power exchange, and to take electricity from the central networks inexpensively in low-load periods.
  • the block diagram, according to Fig.1 shows that the decentralized and adiabatic energy transformation system according to the invention is subdivided essentially into three basic process sequences. It includes a recording procedure adapted to individual requirements and conditions for all forms of energy. With this recording method, it is able to absorb process waste heat, environmental heat, electricity surplus from the grid of wind power and photovoltaic systems, from thermal power plants with night power, from oxidation of biomass, hydrogen and biogas. Depending on the type, from the recording process it passes on the absorbed energy forms either directly into the three possible storage processes for mechanical energy, kinetic energy and electricity or into the conversion and reconversion processes.
  • the converted and recovered energy can be directed into the storage processes.
  • the storage processes and of the conversion and gearing processes can be returned as needed, the respective required amounts of the various generated and stored forms of energy either directly into the existing on-site manufacturing process, or in the energy transformation system to maintain its internal work processes or for purchase for other consumers or for sale at the Electricity exchange can be retrieved.
  • the energy to be produced in this way, back to leading and to be taken away, are electricity, liquid gases and air and nitrogen produced therefrom and pure oxygen as well as heat, cold and pressurized gas.
  • the energy transformation system described consists of a combination of all possible systems, namely the cold-guided, the heat-guided and the current-guided system.
  • these processes can also be used individually or combined differently depending on requirements and conditions.
  • this energy transformation system can work independently of the season, because it can compensate energy surpluses in certain seasons and energy requirements to third parties that are not available.

Claims (6)

  1. Procédé d'absorption, de production, de conversion décentralisées et individuelles et de fourniture continue d'énergie électrique, dans lequel le procédé est un système de transformation d'énergie adiabatique décentralisé par le biais duquel de l'énergie mécanique est stockée séparément, en fonction des besoins et dans des quantités individuellement nécessaires, à l'emplacement d'un consommateur, la chaleur et le froid de processus, la chaleur ambiante, la chaleur de compression, de décompression et de combustible provenant de sources régénératives sont reconverties en courant ou transformées directement en énergie mécanique et en énergie cinétique, dans lequel les processus d'accumulation d'énergie, de conversion d'énergie et de reconversion en courant sont reliés les uns aux autres de telle sorte que la production d'électricité, l'accumulation et la reconversion en courant sont mises en oeuvre en fonction des ressources énergétiques présentes et des exigences chez le consommateur sur place, en formant un système basé sur la production de froid, sur la production de chaleur ou sur la production de courant, dans lequel les systèmes travaillent individuellement ou en combinaison dans un état d'inertie et, si besoin est, sont réglés par une gestion de charge en fonction du débit à la demande nécessaire, et par l'intermédiaire desquels de l'énergie électrique est appelée à partir des processus d'accumulation individuels durant les temps de pic de charge et est commercialisée à la bourse d'énergie dans le cas d'un surplus important, et, durant les temps de charge basse, de l'énergie électrique est prélevée dans les réseaux centraux,
    - dans lequel, dans le système basé sur la production de froid,
    du milieu liquide de travail provenant d'un processus d'accumulation d'énergie mécanique est amené à un cycle frigorifique, de l'énergie thermique et de l'énergie de pression sont amenées à un cycle d'expansion en utilisant le gradient de pression, et une partie de l'énergie mécanique et de l'énergie frigorifique est à nouveau reçue dans le processus d'accumulation d'énergie mécanique via un cycle d'eau de refroidissement d'un compresseur, et la chaleur de compression du compresseur provenant de la chaleur perdue du cycle d'eau de refroidissement est amenée à un générateur et à une pompe de refoulement de cycle, le propre besoin en courant étant faible,
    se fait la reconversion en courant par recyclage de milieu gazeux de travail, de son énergie de pression et d'énergie frigorifique au-dessous de la température ambiante à partir d'un cycle d'expansion, et se fait l'intégration et l'appel de la production d'énergie mécanique à partir du cycle d'expansion, l'expansion irréversible d'un évaporateur d'agent réfrigérant durant l'accumulation du milieu de travail qui est de l'air, ainsi que le pré-refroidissement du milieu de travail par le cycle frigorifique de la pompe de refoulement de cycle à partir d'un échangeur de chaleur,
    - dans lequel, dans le système basé sur la production de chaleur,
    le milieu de travail qui est de l'air est chauffé par de l'énergie thermique supplémentaire provenant de combustibles renouvelables qui sont traités dans un processus d'évaporation, est détendu de manière isentropique en plusieurs étapes dans le cycle d'expansion, et la puissance frigorifique complète est consommée dans un processus de cycle organique Rankine, et de l'air froid liquéfié sous pression est guidé à travers une pluralité de cycles d'un échangeur de chaleur à air, est chauffé, gazéifié et mené de manière réglée dans le processus d'évaporation,
    - dans lequel le système basé sur la production de courant est chargé de courant étranger ou, indépendamment de celui-ci, d'énergie mécanique via au moins un cycle d'expansion à plusieurs étages, est alimenté en ledit milieu de travail qui est de l'air provenant de l'énergie mécanique accumulée dans le cycle d'expansion, à partir du processus de cycle organique Rankine,
    utilise de l'agent réfrigérant d'air liquide pauvre en oxygène, en particulier d'azote liquide, d'une zone riche en azote d'un condenseur de pression du processus de liquéfaction d'air, ledit agent réfrigérant absorbe la chaleur ambiante et la chaleur perdue du processus d'accumulation de courant, à partir de l'opération de charge et de décharge, par de courtes impulsions d'énergie,
    augmente la pression de service pour un cycle d'expansion à plusieurs étages par l'intermédiaire d'une pompe de refoulement, l'agent réfrigérant traverse l'évaporateur tout en étant transformé en milieu gazeux de travail et est ramené en partie, via un consommateur frigorifique, au côté aspiration d'un compresseur de base, ou l'agent réfrigérant est ramené froid et gazeux au côté aspiration du compresseur de base, sans l'utilisation du cycle d'expansion, directement par une soupape de réglage ou à trois voies, et
    est ainsi ramené dans le cycle de travail du système de transformation d'énergie.
  2. Procédé selon la revendication 1, caractérisé par le fait que, dans le système basé sur la production de froid, l'énergie générée lors de la reconversion en courant est à ramener à l'intérieur d'un cycle en partie fermé dans le cycle de travail du - système basé sur la production de froid, et une autre partie de l'air liquéfié produit lors de la reconversion en courant est utilisée pour maintenir l'état d'inertie du processus de cycle organique Rankine.
  3. Procédé selon la revendication 1, caractérisé par le fait que, dans le système basé sur la production de chaleur, le milieu de travail qui est de l'air est chauffé par de l'énergie thermique supplémentaire provenant de combustibles renouvelables qui sont traités dans un processus d'évaporation, est détendu de manière isentropique en plusieurs étapes dans le cycle d'expansion, et la puissance frigorifique complète est à consommer dans un processus de cycle organique Rankine.
  4. Procédé selon la revendication 1, caractérisé par le fait que les processus dans le système basé sur la production de courant sont à mettre en oeuvre en même temps parallèlement ou en série, et le milieu de travail qui est de l'air est à chauffer avec la chaleur de compression provenant du cycle de compression d'un compresseur de base, avec la chaleur perdue d'un processus de production, avec de la chaleur excédentaire ainsi qu'avec de l'énergie thermique accumulée.
  5. Procédé selon la revendication 1, caractérisé par le fait que, dans le système basé sur la production de courant, l'agent réfrigérant est à mettre en oeuvre de manière à fournir du travail dans un processus de travail, dans lequel l'agent réfrigérant absorbe la chaleur ambiante et la chaleur perdue du processus d'accumulation de courant, de l'opération de charge et de décharge, répétable de manière infinie par de courtes impulsions d'énergie, afin de maintenir d'une manière sûre la température nécessaire de transition du processus d'accumulation d'énergie cinétique.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que, dans le système basé sur la production de froid, basé sur la production de chaleur ou basé sur la production de courant, de l'énergie électrique est à appeler à partir des processus d'accumulation individuels durant les temps de pic de charge et est à commercialiser à la bourse d'énergie dans le cas d'un surplus important, et, durant les temps de charge basse, de l'énergie électrique est à prélever à un prix intéressant dans les réseaux centraux et est à compléter.
EP12737198.7A 2012-06-11 2012-06-11 Système de transformation d'énergie Active EP2859196B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/002463 WO2013185783A1 (fr) 2012-06-11 2012-06-11 Système de transformation d'énergie

Publications (2)

Publication Number Publication Date
EP2859196A1 EP2859196A1 (fr) 2015-04-15
EP2859196B1 true EP2859196B1 (fr) 2018-05-16

Family

ID=46545313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12737198.7A Active EP2859196B1 (fr) 2012-06-11 2012-06-11 Système de transformation d'énergie

Country Status (2)

Country Link
EP (1) EP2859196B1 (fr)
WO (1) WO2013185783A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005543B (zh) * 2019-03-28 2023-07-25 浙江大学 一种基于热泵储电技术的分布式联合发电系统及其方法
CN113346528B (zh) * 2021-05-28 2022-09-30 北京能高自动化技术股份有限公司 一种基于氢储能构建的多能联供式调峰站及调峰方法
CN113821004A (zh) * 2021-08-23 2021-12-21 南方电网科学研究院有限责任公司 建筑能量管理的优化方法、装置及设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH276514A (de) * 1949-04-14 1951-07-15 Sulzer Ag Verfahren zum Erzeugen von Arbeit aus Wärme und Wärme-Kraft-Anlage zur Durchführung des Verfahrens.
DE2434238A1 (de) 1974-07-16 1976-01-29 Linde Ag Verfahren zur speicherung und rueckgewinnung von energie
DE3307181A1 (de) 1983-03-01 1984-09-06 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur zerlegung von luft
AT387454B (de) 1986-05-14 1989-01-25 Voest Alpine Ag Einrichtung zum zerlegen von luft mit speicherung von produktgas in fluessiger form
DE3739411A1 (de) 1987-11-20 1989-06-01 Heidelberg Motor Gmbh Stromspeicher
DE19632019C1 (de) 1996-08-08 1997-11-20 Thomas Sturm Verfahren zum Betreiben einer Vorrichtung mit einer Wärmekraftmaschine
DE19843629A1 (de) 1998-09-23 2000-03-30 Linde Ag Verfahren und Verflüssiger zur Erzeugung von flüssiger Luft
DE102006035764A1 (de) * 2006-08-01 2008-02-14 Palme, Klaus, Dipl.-Ing. Verfahren für ein Kraftwerk mit Energielieferung aus der Umwelt
DE102010022088A1 (de) * 2010-05-31 2011-12-01 Peter Wolf Grundlastfähiges Energiespeicherkraftwerk mit Brauchwasseraufbereitung
WO2011153971A1 (fr) * 2010-06-07 2011-12-15 Johann Giritsch Installation de cogénération
DE102010035229A1 (de) * 2010-08-24 2012-03-01 Linde Ag Verfahren und Vorrichtung zur Erzeugung von Wasserstoff
EP2441925A1 (fr) * 2010-10-14 2012-04-18 ABB Research Ltd. Système de récupération de chaleur résiduelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2859196A1 (fr) 2015-04-15
WO2013185783A1 (fr) 2013-12-19

Similar Documents

Publication Publication Date Title
EP2900943B1 (fr) Centrale de cogénération et procédé de fonctionnement d'une centrale de cogénération
DE102017003238B4 (de) Verfahren und Anlagensystem zur Energieumwandlung mittels Kohlendioxid
WO2015154894A1 (fr) Procédé et dispositif d'accumulation et de récupération d'énergie
EP2794068B1 (fr) Procédé et dispositif de production de froid, en particulier pour la récupération d'eau à partir de l'air
WO2007093277A1 (fr) Procédé d'accumulation et de récupération d'énergie
AT12844U1 (de) Verfahren zum Betreiben einer stationären Kraftanlage mit wenigstens einer Brennkraftmaschine
DE102012206296A1 (de) Anlage zur Speicherung und Abgabe thermischer Energie und Verfahren zu deren Betrieb
DE102014101263B3 (de) Vorrichtung und Verfahren zum Speichern von Energie mit Hilfe von überkritischem Kohlendioxid
DE2809425A1 (de) Einrichtung zur deckung des waermebedarfs der waermeverbraucher eines gebaeudes
DE202020105986U1 (de) Auf einem reversiblen Expander basiertes umfassendes Energiesystem
EP2859196B1 (fr) Système de transformation d'énergie
EP3006682A1 (fr) Dispositif et procédé de fonctionnement d'une station de transmission thermique
EP2803841B1 (fr) Dispositif de stockage de gaz comprimé
EP2574738A1 (fr) Installation de stockage d'énergie thermique
EP4139562B1 (fr) Système comprenant un dispositif de production d'électricité et de stockage d'énergie à air liquide
WO2018029371A1 (fr) Échangeur de chaleur destiné à être utilisé dans une partie chaude d'une centrale de stockage d'énergie par air liquide, partie chaude et procédé permettant de faire fonctionner ledit échangeur de chaleur dans ladite partie chaude
WO2015055294A1 (fr) Stockage d'électricité par accumulateur thermique et turbine à air
DE102011014531A1 (de) Verfahren zur Integration von solar-regenerativer Energie in die Energieversorgung
AT12845U1 (de) Verfahren zum Betreiben einer stationären Kraftanlage mit wenigstens einer Brennkraftmaschine
EP2236822A1 (fr) Procédé de réglage et de lissage en fonction du besoin de la performance de sortie électrique d'un convertisseur d'énergie et dispositif d'exécution de ce procédé
DE102020000131A1 (de) Verfahren zur CO2-Verflüssigung und -Speicherung in einem CO2-Kraftwerk
AT519233B1 (de) Versorgungscontainer
DE3413772A1 (de) Einrichtung zur energieversorgung von gebaeuden unter nutzung der sonnenergie als energiequelle
EP3327361A1 (fr) Centrale de cogénération et son procédé de fonctionnement
AT506779A1 (de) Verfahren zur bedarfsabhängigen regelung und glättung der elektrischen ausgangsleistung eines energiewandlers sowie vorrichtung zur durchführung dieses verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012709

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 999776

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180516

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180817

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012709

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

26N No opposition filed

Effective date: 20190219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190613

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190612

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120611

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180916

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 999776

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230804

Year of fee payment: 12