EP2576648A1 - Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper - Google Patents

Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper

Info

Publication number
EP2576648A1
EP2576648A1 EP11719016.5A EP11719016A EP2576648A1 EP 2576648 A1 EP2576648 A1 EP 2576648A1 EP 11719016 A EP11719016 A EP 11719016A EP 2576648 A1 EP2576648 A1 EP 2576648A1
Authority
EP
European Patent Office
Prior art keywords
prepregs
fiber
reactive
uretdione
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11719016.5A
Other languages
English (en)
French (fr)
Inventor
Friedrich Georg Schmidt
Werner Grenda
Emmanouil Spyrou
Holger Loesch
Christoph Lammers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of EP2576648A1 publication Critical patent/EP2576648A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1875Catalysts containing secondary or tertiary amines or salts thereof containing ammonium salts or mixtures of secondary of tertiary amines and acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/798Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing urethdione groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2861Coated or impregnated synthetic organic fiber fabric
    • Y10T442/2893Coated or impregnated polyamide fiber fabric
    • Y10T442/2902Aromatic polyamide fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2984Coated or impregnated carbon or carbonaceous fiber fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2992Coated or impregnated glass fiber fabric

Definitions

  • the invention relates to a process for the preparation of storage-stable polyurethane prepregs and molded articles (composite components) produced therefrom, obtainable by a direct melt impregnation process of fiber-reinforced materials, such as woven fabrics and loops, using reactive polyurethane compositions.
  • the reaction transfer molding (RTM) process involves incorporating the reinforcing fibers into a mold, closing the mold, placing the crosslinkable resin formulation in the mold, and
  • Fiber reinforced prepreg materials are already being used in many industrial applications because of their ease of handling and increased processing efficiency compared to the alternative wet-lay-up technology.
  • Polyurethane composites also have superior toughness over vinyl esters, unsaturated polyester resins (UPE) or UPE-urethane hybrid resins.
  • Prepregs and epoxy-based composites made therefrom are described, for example, in WO 98/5021 1, US 4,992,228, US 5,080,857, US 5,427,725, GB 2007676, GB 2182074, EP 309,221, EP 297,674, WO 89/04335 , US 5,532,296 and US 4,377,657, US 4,757,120.
  • prepregs based on powdered thermoplastics are known as matrix.
  • Polyphenylsulfone PPS
  • polyimide PI
  • polyamide PA
  • polycarbonate PC
  • thermoplastic prepreg textiles made therefrom exhibit inherent toughness, good viscoelastic damping behavior, unlimited shelf life, good
  • Particle / gas mixture are applied in a defined velocity profile.
  • the powders consist of ceramic or thermoplastic materials, including thermoplastic polyurethane.
  • WO 99/64216 describes prepregs and composites and a method for their use
  • the polymers of the particles have a viscosity of at least 5,000 centipoise and are either thermoplastics or crosslinking polyurethane polymers.
  • thermoplastic polyurethanes Pultrusion process with thermoplastic polyurethanes, called TPU, in Coatings & Composite Materials, No.19, p37 - 39, 1997.
  • thermoplastic polyurethane prepreg Ma, C.C.M., Chiang, C.L. Annual Technical Conference -Society of Plastics Engineers (1991), 49th 2065-9.
  • TPU Thermoplastic polyurethane
  • 2-component polyurethanes 2-K-PUR
  • the category of 2-component PU essentially comprises the classic reactive polyurethane resin systems. In principle, it is a system of two separate components. While the relevant constituent of one component is always a polyisocyanate, in the case of the second polyols or in the case of more recent developments, these are also amino or amine-polyol mixtures. Both parts are mixed together just before processing. Thereafter, the chemical curing is carried out by polyadition to form a network of polyurethane or polyurea. 2-component systems have a limited pot life after blending both ingredients
  • WO 2005/049301 discloses a catalytically activated 2-component PUR system, wherein the polyisocyanate component and the polyol are mixed and processed by pultrusion into a composite.
  • WO 2005/106155 discloses fiber-reinforced composites for the construction industry, which are produced by means of the long fiber injection (LFI) technology with 2-polyurethane systems.
  • LFI long fiber injection
  • JP 2004196851 composites which consist of carbon fibers and organic fibers, such as. B. hemp, using a matrix of 2-K-PUR based on polymeric methylene diphenyl diisocyanate (MDI) and special OH-containing compounds.
  • MDI polymeric methylene diphenyl diisocyanate
  • EP 1 319 503 describes polyurethane composites wherein special polyurethane cover layers for a fiber-impregnated with a 2-component PUR resin fiber laminate, a
  • Core layer (eg., A paper honeycomb) wrapped, can be used.
  • the 2K PUR resin consists z. B. from MDI and a mixture of polypropylene triols and diols of ethylene oxide-propylene oxide copolymers.
  • WO 2003/101719 describes polyurethane-based composites and the methods for their preparation. These are 2-component polyurethane resins with defined
  • moisture-curing paints correspond largely to analog 2K systems, both in their composition and in their properties. In principle, the same solvents, pigments, fillers and auxiliaries are used. Unlike 2K paints, these systems tolerate before theirs
  • Urethanes of diols and diisocyanates preferably MDI, TDI, HDI and IPDI.
  • Such thermoplastic systems generally have very high viscosities and thus also very high processing temperatures. This considerably impedes the use for prepregs.
  • the use of powders in reactive systems is rather uncommon and has hitherto been limited to a few fields of application.
  • Probably the most common method for bringing a powder onto a fiber surface is fluidized bed impregnation. By an upward flow powder particles are placed in a state in which they have fluid-like properties. This method is used in EP 590,702.
  • the strands of individual fiber bundles are braided apart and coated in a fluidized bed with the powder.
  • the powder consists of a mixture of reactive and thermoplastic powder in order to optimize the properties of the matrix. Individual rovings (fiber bundles) are finally folded together and several layers pressed at a pressure of 16 bar for about 20 minutes. The temperatures vary between 250 and 350 ° C. Frequently, however, in the fluidized bed process, irregular coating occurs, especially if the strands are not pulled apart.
  • Another application WO 2006/043019 describes the use of epoxy- and amino-terminated resins in powder form.
  • the powders are mixed and added to the fibers. Subsequently, the particles are sintered.
  • the particle size is between 1 and 3000 ⁇ , but preferably between 1 and 150 ⁇ .
  • thermoset systems Pultrusion process has already been carried out with thermoset systems, so far mostly only thermoplastic systems are used in this process.
  • the object was to find a simpler process for the preparation of easily handled, that is non-toxic, polyurethane-based prepreg systems based on polyurethane compositions.
  • Another object of this invention was to find prepregs with polyurethane matrix material which can be made by a simple process, with a focus on the handling and shelf life of the prepregs.
  • the viscosity of the uncrosslinked matrix materials is low enough to ensure in the production of the composite component wetting of the fiber-shaped carrier, wherein a thixotropy may be advantageous so that a flow of the resin into vertical component segments can be prevented.
  • Polyurethane composition is possible without previously being a powder
  • Polyurethane compositions are environmentally friendly, inexpensive, have good mechanical properties, can be easily processed and are characterized by good weather resistance after hardening as well as a balance between hardness and flexibility.
  • the invention relates to a direct melt impregnation method for producing prepregs
  • polyurethane compositions essentially comprising mixtures of a polymer having isocyanate-reactive functional groups b) as binder and internally blocked and / or blocked with blocking agents di- or polyisocyanate as hardener a), I. by preparation of the reactive polyurethane composition B) in the melt, and
  • the principle of the direct melt impregnation method of the prepregs is that a reactive polyurethane composition B) is first prepared from their individual components. This melt of the reactive polyurethane composition B) is then applied directly to the fiber-shaped carrier A), that is, there is a
  • Polyurethane compositions wet the fiber of the carrier very well, whereby the thermal stress on the polyurethane composition resulting from an initial melt homogenization can be avoided, and the process steps of milling and sieving into individual particle size fractions fall away, so that a higher yield of impregnated fiber is formed Carrier is achieved.
  • Polyurethane composition B) for preparing the prepregs may be in suitable
  • Aggregates such. B. heated stirred tanks, kneaders, or extruders, carried out, with upper temperature limits of 120 ° C should not be exceeded.
  • the mixture of the individual components is preferably carried out in an extruder at temperatures of 80 to 100 ° C, which are indeed above the melting ranges of the individual components, but below the temperature at which the crosslinking reaction starts.
  • the resulting masses are not allowed to solidify and then ground, in order to be processed in a powder impregnation process with the support to prepreg, but immediately after the homogenization step in the molten state with the fiber shaped carrier brought together and to prepregs with the desired
  • Fiber volume fraction further processed.
  • the preparation of the prepregs by the direct melt impregnation method can be carried out in principle by any desired methods and by means of the known systems and apparatuses directly from the melt.
  • Filament yarns are heated by the thermoplastic melt in a heated nozzle in the pultrusion process.
  • the filament yarn is fanned out in the melt so that the filaments are evenly wetted with the melt.
  • the melt is extruded onto the semi-finished product, which is then consolidated in a heated double belt press, so that the filaments are continuously wetted with the melt.
  • the melt can also be used up in a roll mill or by means of a hot doctor blade.
  • the melt impregnation is especially for semi-crystalline thermoplastics with both low melt viscosity such. As PP and PA, as well as high melt viscosity such. B. PET and PEEK used.
  • the melt viscosity and the high processing temperature of the thermoplastic materials is very disadvantageous and requires a constant
  • Temperatures of 80 to 120 ° C are applicable to the direct melt impregnation method according to the invention. Temperatures of 80 to 120 ° C for variant I and 80 - 100 ° C for variant II should not be exceeded in order to prevent the reactive matrix material from reacting.
  • the prepregs produced in this way can be combined and cut to different shapes as needed.
  • the prepregs are cut, optionally sewn or otherwise fixed and pressed in a suitable mold under pressure and, if appropriate, by applying a vacuum.
  • this process of producing the composites from the prepregs takes place depending on the curing time at temperatures above about 160 ° C when using reactive matrix materials (variant I), or in with
  • the corresponding catalysts provided highly reactive matrix materials (variant II) at temperatures above 120 ° C. After cooling to room temperature, the prepregs produced according to the invention have a very high storage stability at room temperature as soon as the matrix material has a Tg of at least 40 ° C. This is depending on the contained reactive
  • Polyurethane composition at least a few days at room temperature, but usually the prepregs are storage stable for several weeks at 40 ° C and below.
  • the prepregs produced in this way are not sticky and therefore very easy to handle and continue to process.
  • polyurethane compositions have very good adhesion and distribution on the fiber-shaped carrier.
  • Polyurethane composition and optionally added catalysts both the speed of the crosslinking reaction in the production of the composite components and the properties of the matrix can be varied within wide ranges.
  • the reactive or highly reactive polyurethane composition used for the preparation of the prepregs is defined as the matrix material, and in the description of the prepregs, the more reactive or highly reactive ones applied to the fiber by the direct melt impregnation method according to the invention
  • the matrix is defined as the composite crosslinked matrix materials from the reactive or highly reactive polyurethane compositions.
  • the fiber-shaped carrier in the present invention consists of fiber-shaped material (also often called reinforcing fibers).
  • any material that makes up the fibers is suitable, but is preferably fiber material made of glass, carbon, plastics, such.
  • polyamide (aramid) or polyester natural fibers or mineral fiber materials such as basalt fibers or ceramic fibers (oxide fibers based on aluminum oxides and / or silicon oxides).
  • mixtures of fiber types such as. B. fabric combinations of aramid and glass fibers, or
  • Carbon and glass fibers can be used. Likewise, hybrid composite components with prepregs of different fiber-shaped carriers can be produced.
  • Glass fibers are the most commonly used fiber types mainly because of their relatively low price. In principle, here are all types of glass-based
  • Reinforcing fibers suitable E-glass, S-glass, R-glass, M-glass, C-glass, ECR-glass, D-glass, AR-glass, or hollow glass fibers.
  • Carbon fibers are generally used in high performance composites, where lower density relative to glass fiber and high strength are also important factors.
  • Carbon fibers also carbon fibers
  • isotropic fibers have only low strengths and lower technical
  • Natural fibers are here all textile fibers and fiber materials, which are derived from vegetable and animal material (eg., Wood, cellulose, cotton, hemp, jute, linen, sisal, bamboo fibers).
  • Aramid fibers have a negative, similar to carbon fibers
  • Thermal expansion coefficients so become shorter when heated. Their specific strength and elastic modulus are significantly lower than that of carbon fibers. In conjunction with the positive expansion coefficient of the matrix resin can be manufactured dimensionally stable components. Compared to carbon fiber reinforced plastics, the compressive strength of aramid fiber composites is significantly lower.
  • aramid fibers are Nomex® and Kevlar® from DuPont, or Teijinconex®, Twaron® and Technora® from Teijin. Particularly suitable and preferred are carriers made of glass fibers, carbon fibers, aramid fibers or ceramic fibers.
  • the fiber-shaped material is a textile fabric. Suitable fabrics are nonwoven fabrics, as well as so-called knits, such as knitted fabrics and knits, but also non-meshed containers such as fabrics, scrims or braids.
  • a distinction long fiber and short fiber materials as a carrier. Also
  • Suitable according to the invention are rovings and yarns. All materials mentioned are suitable in the context of the invention as a fiber-shaped carrier.
  • Polyurethane compositions are suitable as matrix materials.
  • suitable urethane compositions are suitable as matrix materials.
  • polyurethane compositions consist of mixtures of a functional group-reactive with respect to NCO-containing polymers b) (binder), also referred to as resin, and temporarily deactivated, ie internally blocked, and / or blocked with blocking agents, di- or polyisocyanates, also as Hardener a) (component a)).
  • Suitable functional groups of the polymers b) (binders) are hydroxyl groups, amino groups and thiol groups which react with the free isocyanate groups with addition and thus crosslink and harden the polyurethane composition.
  • Binder components must have a solid resin character (glass transition temperature greater than room temperature). Suitable binders are polyesters, polyethers, polyacrylates, polycarbonates and polyurethanes having an OH number of 20 to 500 mg KOH / gram and an average molecular weight of 250 to 6000 g / mol. Particularly preferred
  • hydroxyl-containing polyesters or polyacrylates having an OH number of 20 to 150 mg KOH / gram and an average molecular weight of 500 to 6000 g / mol.
  • the amount of the functional group-containing polymer b) is selected so that each functional group of component b) 0.6 to 2 NCO equivalents or 0.3 to 1, 0 uretdione groups of component a) is omitted.
  • hardener component a blocked or internally blocked (uretdione) di- and polyisocyanates are used with blocking agents.
  • the diisocyanates and polyisocyanates used according to the invention can consist of any desired aromatic, aliphatic, cycloaliphatic and / or (cyclo) aliphatic di- and / or polyisocyanates.
  • aromatic di- or polyisocyanates in principle, all known aromatic compounds are suitable. Particularly suitable are 1, 3 and 1, 4-phenylene diisocyanate, 1, 5-naphthylene diisocyanate, tolidine diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate (2,4-TDI), 2,4'-diphenylmethane diisocyanate ( 2,4'-MDI), 4,4'-diphenylmethane diisocyanate, the mixtures of monomeric diphenylmethane diisocyanates (MDI) and oligomers
  • Diphenylmethane diisocyanates (polymer-MDI), xylylene diisocyanate,
  • Tetramethylxylylene diisocyanate and triisocyanatotoluene Tetramethylxylylene diisocyanate and triisocyanatotoluene.
  • Suitable aliphatic di- or polyisocyanates advantageously have 3 to 16
  • Carbon atoms, preferably 4 to 12 carbon atoms, in the linear or branched alkylene radical and suitable cycloaliphatic or (cyclo) aliphatic diisocyanates advantageously 4 to 18 carbon atoms, preferably 6 to 15 carbon atoms, in the cycloalkylene radical.
  • (cyclo) aliphatic diisocyanates the skilled worker understands at the same time cyclic and aliphatic bound NCO groups, as z.
  • B. isophorone diisocyanate is the case.
  • Examples are cyclohexane diisocyanate, methylcyclohexane diisocyanate,
  • Methyldiethylcyclohexane diisocyanate propane diisocyanate, butane diisocyanate,
  • Nonane diisocyanate, nonane triisocyanate such as 4-isocyanatomethyl-1, 8-octane diisocyanate (TIN), decane and triisocyanate, undecanediol and triisocyanate, dodecanedi and triisocyanates.
  • TIN 4-isocyanatomethyl-1, 8-octane diisocyanate
  • decane and triisocyanate undecanediol and triisocyanate
  • dodecanedi and triisocyanates dodecanedi and triisocyanates.
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • H12MDI Diisocyanatodicyclohexylmethane
  • MPDI 2-methylpentane diisocyanate
  • TMDI 2,2,4-trimethylhexamethylene diisocyanate / 2,4,4-trimethylhexamethylene diisocyanate
  • NBDI norbornane diisocyanate
  • mixtures of di- and polyisocyanates can be used.
  • oligoisocyanates or polyisocyanates which are prepared from the abovementioned diisocyanates or polyisocyanates or mixtures thereof by linking by means of urethane, allophanate, urea, biuret, uretdione, amide, isocyanurate, carbodiimide, uretonimine , Oxadiazinetrione or iminooxadiazinedione structures.
  • isocyanurates especially from IPDI and HDI.
  • the polyisocyanates used in the invention are blocked. In question come to external blocking agents such. Ethyl acetoacetate, diisopropylamine, Methyl ethyl ketoxime, diethyl malonate, ⁇ -caprolactam, 1, 2,4-triazole, phenol or substituted phenols and 3,5-dimethylpyrazole.
  • the preferred hardener components are IPDI adducts containing isocyanurate moieties and ⁇ -caprolactam blocked isocyanate structures.
  • An internal blocking is possible and this is preferably used.
  • the internal blocking takes place via a dimer formation via uretdione structures which, at elevated temperature, split back into the originally present isocyanate structures and thus initiate crosslinking with the binder.
  • the reactive polyurethane compositions may contain additional catalysts.
  • organometallic catalysts such as. B.
  • Dibutyltin dilaurate DBTL
  • Zinnoctoat bismuth neodecanoate
  • tertiary amines such as. B. 1, 4-diazabicyclo [2.2.2.] Octane, in amounts of 0.001 - 1 wt .-%.
  • reactive polyurethane compositions are used under normal conditions, for. B. with DBTL catalysis, from 160 ° C, usually cured from about 180 ° C and designated as.
  • additives such as leveling agents, for.
  • leveling agents for.
  • polysilicone or acrylates light stabilizers z.
  • sterically hindered amines, or other auxiliaries such as.
  • Fillers and pigments such. Titanium dioxide may be added in an amount of up to 30% by weight of the total composition.
  • reactive means that the reactive polyurethane compositions used according to the invention, as described above, cure at temperatures of from 160 ° C., depending on the nature of the carrier.
  • the reactive polyurethane compositions used in the invention are used under normal conditions, for. B. with DBTL catalysis, from 160 ° C, usually from about 180 ° C cured.
  • Polyurethane composition is usually within 5 to 60 minutes.
  • a matrix material B) consisting essentially of polyurethane compositions B) containing reactive uretdione groups a) at least one hardening agent containing uretdione groups, based on
  • % and a uretdione content of 3 - 25 wt .-% b) at least one hydroxyl-containing polymer which is below 40 ° C in solid form and above 125 ° C in liquid form and an OH number between 20 and 200 mg KOH / gram, c) optionally at least one catalyst, d) optionally known from polyurethane chemistry auxiliaries and additives, so that the two components a) and b) are present in the ratio that each hydroxyl group of component b) from 0.3 to 1 uretdione group of component a) is omitted, preferably 0.45 to 0.55.
  • the latter corresponds to an NCO / OH ratio of 0.9 to 1, 1 to 1.
  • Dimerization catalysts such as dialkylaminopyridines, trialkylphosphines,
  • IPDI Isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • H 12 MDI Diisocyanatodicyclohexylmethane
  • MPDI 2-methylpentane diisocyanate
  • TMDI 2,2,4-trimethylhexamethylene diisocyanate / 2,4,4-trimethylhexamethylene diisocyanate
  • NBDI Norbornane diisocyanate
  • IPDI and HDI are used for the matrix material.
  • reaction of these polyisocyanates containing uretdione groups to hardeners containing uretdione groups a) involves the reaction of the free NCO groups with
  • polyesters polythioethers, polyethers, polycaprolactams, polyepoxides, polyester amides, polyurethanes or low molecular weight di-, tri- and / or tetra alcohols as chain extenders and optionally monoamines and / or monoalcohols as chain terminators and has been frequently described (EP 669 353, EP 669 354 DE 30 30 572, EP 639 598 or EP 803 524).
  • Preferred uretdione hardeners a) have a free NCO content of less than 5% by weight and a content of uretdione groups of 3 to 25% by weight, preferably 6 to 18% by weight (calculated as C2N2O2, molecular weight 84) , Preference is given to polyesters and monomeric dialcohols. Besides the uretdione groups, the hardeners can also be used.
  • polyesters, polyethers, polyacrylates, polyurethanes and / or polycarbonates having an OH number of 20-200 in mg KOH / gram.
  • Binders have been described, for example, in EP 669 354 and EP 254 152.
  • additional catalysts c) may be present.
  • organometallic catalysts such as. As dibutyltin dilaurate, zinc octoate, bismuth neodecanoate, or tertiary amines, such as. B. 1, 4-diazabicyclo [2.2.2.] Octane, in amounts of 0.001 - 1 wt .-%.
  • These reactive polyurethane compositions used in this invention are used under normal conditions, for. B. with DBTL catalysis, from 160 ° C, usually cured from about 180 ° C and designated as variant I.
  • the customary in the powder coating technology additives d) as leveling agents for.
  • Fillers and pigments such. Titanium dioxide may be added in an amount of up to 30% by weight of the total composition.
  • the reactive polyurethane compositions used in the invention are used under normal conditions, for. B. with DBTL catalysis, from 160 ° C, usually from about 180 ° C cured.
  • the reactive polyurethane compositions used according to the invention provide a very good flow and thus a good impregnating ability and in the
  • aliphatic crosslinkers eg IPDI or H 12 MDI
  • a matrix material is used
  • Ammonium acetylacetonate and / or quaternary phosphonium acetylacetonate e) optionally known from polyurethane chemistry auxiliaries and additives.
  • a matrix material B) is used B) at least one highly reactive powdery uretdione-containing polyurethane composition as matrix material, essentially containing a) at least one uretdione-containing hardener, based on
  • cycloaliphatic uretdione groups contained polyisocyanates and
  • hydroxyl-containing compounds wherein the hardener is below 40 ° C. in solid form and above 125 ° C. in liquid form and has a free NCO content of less than 5% by weight and a uretdione content of 3 to 25% by weight, b) at least one hydroxyl-containing polymer which is in liquid form below 40 ° C in solid form and above 125 ° C and an OH number between 20 and 200 mg KOH / gram;
  • Ammonium acetylacetonate and / or quaternary phosphonium acetylacetonate e) optionally known auxiliaries and additives from polyurethane chemistry, so that the two components a) and b) are present in the ratio that 0.3 to 1 uretdione group of component a) is required for each hydroxyl group of component b), preferably 0, 6 to 0.9.
  • suitable highly reactive Uredion-containing polyurethane compositions comprise mixtures of temporarily deactivated, ie uretdione-containing (internally blocked) di- or polyisocyanates, also referred to as hardeners a), and the catalysts c) and d) present in the invention and optionally additionally
  • the catalysts ensure curing of the Uredion phenomenon termed polyurethane compositions at low temperature.
  • the Uredion phenomenon-containing polyurethane compositions are thus highly reactive.
  • component a) and b) are used as described above.
  • Tetralkylammonium salts and / or quaternary phosphonium salts with halogens Tetralkylammonium salts and / or quaternary phosphonium salts with halogens
  • Hydroxides, alcoholates or organic or inorganic acid anions as counterion used are:
  • Tetramethylammonium propionate tetramethylammonium butyrate, tetramethylammonium benzoate, tetraethylammonium formate, tetraethylammonium acetate,
  • Tetrapropylammonium benzoate tetrabutylammonium formate, tetrabutylammonium acetate, tetrabutylammonium propionate, tetrabutylammonium butyrate and
  • Trihexyltetradecylphosphonium decanoate methyltributylammonium hydroxide
  • Methyltriethylammonium hydroxide tetramethylammonium hydroxide
  • Tetraethylammonium hydroxide Tetrapropylammonium hydroxide
  • Tetrahexylammonium hydroxide Tetrahexylammonium hydroxide, tetraoctylammonium hydroxide,
  • Tetradecylammonium hydroxide Tetradecylammonium hydroxide, tetradecyltrihexylammonium hydroxide,
  • Tetraoctadecylammonium hydroxide Tetraoctadecylammonium hydroxide, benzyltrimethylammonium hydroxide,
  • Triethylmethylammonium hydroxide tri-methylvinylammonium hydroxide
  • Methyltributylammonium methoxide methyltriethylammonium methoxide
  • Tetrapentylammonium methoxide Tetrapentylammonium methoxide, tetrahexylammonium methoxide,
  • Methyltriethylammoniumethanolat Tetramethylammoniumethanolat
  • Triethylmethylammoniumethanolate tri-methylvinylammoniumethanolate
  • Methyltributylammonium chloride methyltripropylammonium chloride
  • Methyltriethylammonium chloride methyltriphenylammonium chloride
  • Methyltripropylammonium bromide methyltriethylammonium bromide
  • Methyltriphenylammonium bromide phenyltrimethylammonium bromide
  • Benzyltripropylammonium iodide benzyltributylammonium iodide, methyltributylammonium iodide, methyltripropylammonium iodide, methyltriethylammonium iodide,
  • Methyltributylammonium hydroxide methyltriethylammonium hydroxide, Tetramethylammonium hydroxide, tetraethylammonium hydroxide,
  • Tetrapropylammonium hydroxide Tetrabutylammonium hydroxide
  • Tetrapentylammonium hydroxide Tetrapentylammonium hydroxide, tetrahexylammonium hydroxide,
  • Tetradecyltrihexylammonium hydroxide Tetradecyltrihexylammonium hydroxide, tetraoctadecylammonium hydroxide,
  • Trimethylphenylammonium hydroxide triethylmethylammonium hydroxide
  • Trimethylvinylammonium hydroxide Trimethylvinylammonium hydroxide, tetramethylammonium fluoride,
  • Tetraethylammonium fluoride Tetraethylammonium fluoride, tetrabutylammonium fluoride, tetraoctylammonium fluoride and benzyltrimethylammonium fluoride. These catalysts may be added alone or in mixtures. Preference is given to tetraethylammonium benzoate and
  • Tetrabutylammonium hydroxide used.
  • the proportion of catalysts c) may be 0.1 to 5 wt .-%, preferably from 0.3 to 2 wt .-%, based on the total formulation of the matrix material.
  • a variant according to the invention includes the attachment of such catalysts c) to the functional groups of the polymers b).
  • these catalysts may be surrounded with an inert shell and encapsulated with it.
  • Glycidyl ethers and glycidyl esters aliphatic epoxides, diglycidyl ethers based on bisphenol A and glycidyl methacrylates.
  • epoxides are triglycidyl isocyanurate (TGIC, trade name ARALDIT 810, Huntsman), mixtures of terephthalic acid diglycidyl ester and trimellitic triglycidyl ester (trade name ARALDIT PT 910 and 912, Huntsman),
  • Versatic acid glycidyl ester (trade name KARDURA E10, Shell), 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate (ECC), diglycidyl ether based on bisphenol A (trade name EPIKOTE 828, Shell) ethylhexyl glycidyl ether, butyl glycidyl ether, pentaerythritol tetraglycidyl ether, (trade name POLYPOX R 16, UPPC AG) as well as other polypoctypes with free epoxy groups. It can also be used mixtures. Preference is given to using ARALDIT PT 910 and 912 used.
  • Suitable cocatalysts d2) are metal acetylacetonates. Examples of these are zinc acetylacetonate, lithium acetylacetonate and tin acetylacetonate, alone or in
  • Zinc acetylacetonate is preferably used.
  • catalysts examples include tetramethylammonium acetylacetonate,
  • Tetraethylammoniumacetylacetonat and tetrabutylammonium acetylacetonate used. Of course, mixtures of such catalysts can be used.
  • the proportion of cocatalysts d1) and / or d2) can be from 0.1 to 5% by weight, preferably from 0.3 to 2% by weight, based on the total formulation of the matrix material.
  • Curing temperature not only saves energy and curing time, but it can also use many temperature-sensitive carrier.
  • Highly reactive (variant II) in the context of this invention means that the uretdione group-containing polyurethane compositions used according to the invention cure at temperatures of 100 to 160 ° C, depending on the nature of the carrier. This curing temperature is preferably from 120 to 150.degree. C., more preferably from 130 to 140.degree. The time for curing the polyurethane composition used according to the invention is within 5 to 60 minutes.
  • Polyurethane compositions offer a very good flow and thus a good impregnation and in the cured state an excellent
  • Polyurethane compositions essentially consist of a mixture of a reactive resin and a hardener. This mixture has a Tg of at least 40 ° C after melt homogenization and usually reacts only above 160 ° C, in the reactive polyurethane compositions or above 100 ° C, in the highly reactive Polyurethane compositions to a crosslinked polyurethane and thus forms the matrix of the composite.
  • the prepregs according to the invention after their preparation, are composed of the carrier and the applied reactive polyurethane composition as matrix material, which is present in uncrosslinked, but reactive form.
  • the prepregs are thus stable in storage, usually several days and even weeks and can thus be further processed into composites at any time. This is the essential difference to the two-component systems already described above, which are reactive and not storage-stable, since they immediately begin to react and crosslink after application to polyurethanes.
  • the process according to the invention can be carried out by means of the known plants and apparatuses according to Reaction Injection Molding (RIM), Reinforced Reaction Injection Molding (RRIM), pultrusin process or others.
  • RIM Reaction Injection Molding
  • RRIM Reinforced Reaction Injection Molding
  • pultrusin process or others.
  • the melt can also be used up in a roll mill or by means of a hot doctor blade.
  • the invention also provides the use of the prepregs prepared by the novel process, in particular with fiber-shaped carriers made of glass, carbon or aramid fibers.
  • the invention also relates to the use of the prepregs produced according to the invention,
  • Power generation plants eg. B. for rotor blades in wind turbines.
  • the invention also provides the prepregs produced by the process according to the invention.
  • the invention also relates to the composite components produced from the prepregs produced according to the invention.
  • Type I is a canvas E-glass fabric 281 L, article No. 3103 of the company "Schlösser &Cramer"
  • the fabric has a basis weight of 280 g / m 2 .
  • the type II GBX 600 item number 1023 is a sewn biaxial E-glass scrim (-45 / + 45) from the company "Schlösser &Cramer", which refers to two layers of fiber bundles that lie one above the other and This structure is held together by other fibers which, however, are not made of glass
  • the surface of the glass fibers is equipped with a standard sizing which is modified with aminosilane
  • the scrim has a basis weight of 600 g / m 2 .
  • a reactive polyurethane composition having the following formulation was used to make the prepregs and composites.
  • the comminuted feedstocks from the table are intimately mixed in a premixer and then homogenized in the extruder to a maximum of 130 ° C.
  • a coating unit is flanged, are guided by the fiberglass cloth tapes and simultaneously impregnated.
  • a highly reactive polyurethane composition having the following formulation was used to make the prepregs and composites.
  • the comminuted feedstocks from the table are intimately mixed in a pre-mixer and then homogenized in the extruder to a maximum of 1 10 ° C.
  • a coating unit is flanged, are guided by the glass fiber fabric tapes and simultaneously impregnated.
  • the storage stability of the prepregs was determined on the basis of the glass transition temperatures and the reaction enthalpies of the crosslinking reaction by means of DSC investigations.
  • the cross-linking ability of the PU prepregs is not affected by storage at room temperature for a period of 7 weeks.
  • the composite components are produced by means of a pressing technique known to the person skilled in the art on a composite press.
  • the homogeneous prepregs produced by means of direct impregnation were pressed on a tabletop press into composite materials.
  • This tabletop press is the Polystat 200 T from Schwabenthan, which presses the prepregs at temperatures between 120 and 200 ° C into the appropriate composite plates. The pressure is varied between normal pressure and 450 bar.
  • Viscosity adjustment at the processing temperature for the wetting of the fibers prove to be advantageous.
  • the temperature of the press is increased from 90 ° C during the Aufschmelzphase to 1 10 ° C, the pressure is increased after a melting phase of 3 minutes to 440 bar and then dynamically (7 times with each 1 minute duration) between 150 and 440 bar varies, the temperature is continuously increased to 140 ° C. Subsequently, the temperature is raised to 170 ° C and at the same time the pressure at 350 bar until removal of the composite component from the press after 30 minutes height, is held.
  • the hard, stiff, chemical-resistant and impact-resistant composite components (Sheet material) with a fiber volume fraction of> 50% are examined for the degree of cure (determined by DSC). The determination of
  • Glass transition temperature of the cured matrix shows the progress of crosslinking at different curing temperatures.
  • Polyurethane composition is complete after about 25 minutes, the crosslinking, in which case no reaction enthalpy for the crosslinking reaction is more detectable.
  • Two composites are produced under exactly the same conditions and then their properties determined and compared. The good reproducibility of the
  • ILSF interlaminar shear strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper und daraus hergestellte Formkörper (Composite-Bauteile), erhältlich durch ein Direkt-Schmelze-Imprägnierverfahren von Geweben und Gelegen unter Verwendung von reaktiven Polyurethan-Zusammensetzungen.

Description

Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper
Die Erfindung betrifft ein Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper (Composite-Bauteile), erhältlich durch ein Direkt- Schmelze-Imprägnierverfahren von Faser verstärkten Materialien wie Geweben und Gelegen unter Verwendung von reaktiven Polyurethanzusammensetzungen.
Verschiedene Formgebungsprozesse, wie z. B. das Reaction-Transfer-Moulding-(RTM)- Verfahren beinhalten die Einbringung der Verstärkungsfasern in eine Form, das Schließen der Form, das Einbringen der vernetzbaren Harzformulierung in die Form und die
anschließende Vernetzung des Harzes, typischerweise durch Wärmezufuhr.
Eine der Beschränkungen eines solchen Prozesses ist das relativ schwierige Einlegen der Verstärkungsfasern in die Form. Die einzelnen Lagen des Gewebes oder Geleges müssen zugeschnitten und den unterschiedlichen Formgeometrien angepasst werden. Das kann sowohl zeitintensiv wie auch kompliziert sein, insbesondere wenn die Formkörper auch Schaum- oder andere Kerne enthalten sollen. Vorformbare Faserverstärkungen mit einfachem Handling und bestehenden Umformmöglichkeiten wären hier wünschenswert.
Faserverstärkte Materialien in Form von Prepregs werden bereits in vielen industriellen Anwendungen wegen ihrer bequemen Handhabung und der erhöhten Effizienz bei der Verarbeitung im Vergleich zu der alternativen wet-lay-up Technologie eingesetzt.
Industrielle Anwender solcher Systeme verlangen neben schnelleren Zykluszeiten und höheren Lagerstabilitäten auch bei Raumtemperatur auch eine Möglichkeit die Prepregs zuzuschneiden, ohne dass bei automatisiertem Zuschnitt und Lay-up der einzelnen Prepreg- Lagen die Schneidwerkzeuge mit der häufig klebrigen Matrixmaterial verunreinigt werden.
Neben Polyestern, Vinylestern und Epoxy-Systemen gibt es eine Reihe spezialisierter Harze im Bereich der vernetzenden Matrix-Systeme. Dazu zählen auch Polyurethan-Harze, die wegen ihrer Zähigkeit, Schadenstoleranz und die Festigkeit insbesondere zur Herstellung von Composite-Profilen über Pultrusionsverfahren eingesetzt werden. Als Nachteil wird häufig die Toxizität der verwendeten Isocyanate genannt.
Polyurethan-Composites weisen auch gegenüber Vinylestern, ungesättigten Polyesterharzen (UPE) oder UPE-Urethan-Hybrid-Harzen eine überlegene Zähigkeit auf. Prepregs und daraus hergestellte Composites auf der Basis von Epoxy-Systemen werden zum Beispiel beschrieben in WO 98/5021 1 , US 4,992,228, US 5,080,857, US 5,427,725, GB 2007676, GB 2182074, EP 309 221 , EP 297 674, WO 89/04335, US 5,532,296 und US 4,377,657, US 4,757,120.
In der WO 2006/043019 wird ein Verfahren zur Herstellung von Prepregs auf der Basis von Epoxidharz-Polyurethanpulvern beschrieben.
Des Weiteren sind Prepregs auf der Basis von pulverförmigen Thermoplasten als Matrix bekannt.
In der US 2004/0231598 wird eine Methode beschrieben, bei der die Partikel über eine spezielle Beschleunigungskammer mit elektrostatischer Aufladung geführt werden. Diese Apparatur dient zur Beschichtung von Glas-, Aramid- oder Kohlefaser-Substraten für die Herstellung von Prepregs aus thermoplastischen Harzen. Als Harze werden Polyethylen (PE), Polypropylen (PP), Polyetheretherketon (PEEK), Polyethersulfon (PES),
Polyphenylsulfon (PPS), Polyimid (PI), Polyamid (PA), Polycarbonat (PC),
Polyethylenterephthalat (PET), Polyurethan (PU), Polyester und Fluorpolymere genannt. Die daraus hergestellten thermoplastischen Prepreg-Textilien zeigen inherente Zähigkeit, ein gutes viscoelastische Dämpfungsverhalten, eine unbegrenzte Lagerfähigkeit, gute
Chemikalienbeständigkeit und Recyclierbarkeit.
In der WO 98/31535 wird eine Methode zur Pulverimprägnierung beschrieben, bei der die zu imprägnierenden Glas- oder Kohlefaserstränge mit einer Partikel/Flüssigkeits- bzw.
Partikel/Gas-Mischung in einem definierten Geschwindigkeitsprofil beaufschlagt werden. Dabei bestehen die Pulver aus keramischen bzw. thermoplastischen Materialien, unter anderem thermoplastisches Polyurethan.
In der WO 99/64216 werden Prepregs und Composite und eine Methode zu deren
Herstellung beschrieben, bei der Emulsionen mit so kleinen Polymerpartikeln verwendet werden, dass eine Einzelfaserumhüllung ermöglicht wird. Die Polymere der Partikel haben eine Viskosität von mindestens 5000 centipoise und sind entweder Thermoplaste oder vernetzende Polyurethan-Polymere.
In der EP 0590702 werden Pulverimprägnierungen zur Herstellung von Prepregs beschrieben, bei denen das Pulver aus einem Gemisch aus einem Themoplasten und einem reaktiven Monomer bzw. Prepolymeren besteht. Die WO 2005/091715 beschreibt ebenfalls die Verwendung von Thermoplasten zur Herstellung von Prepregs.
Michaeli et al. beschreibt die Entwicklung einer Pulvertechnologie für einen
Pultrusionsprozess mit Thermoplastischen Polyurethanen, TPU genannt, in Coatings & Composite Materials, Nr.19, p37 - 39, 1997.
Weiterhin werden in dem Artikel Processing and properties of thermoplastic polyurethane prepreg. (Ma, C. C. M.; Chiang, C. L. Annual Technical Conference -Society of Plastics Engineers (1991 ), 49th 2065-9.) Thermoplastische Polyurethan (TPU) Prepregs auf Basis von Lösemitteln und Wasser enthaltenden TPU-Systemen offenbart.
Prepregs mit einer Matrix auf der Basis von 2-Komponenten-Polyurethanen (2-K-PUR) sind bekannt. Die Kategorie der 2-K-PUR umfasst im Wesentlichen die klassischen reaktiven Polyurethan-Harz-Systeme. Prinzipiell handelt es sich um ein System aus zwei getrennten Komponenten. Während der maßgebende Bestandteil der einen Komponente immer ein Polyisocyanat ist, sind dies bei der zweiten Polyole bzw. bei neueren Entwicklungen auch Amino- oder Amin-Polyol-Gemische. Beide Teile werden erst kurz vor der Verarbeitung miteinander vermischt. Danach erfolgt die chemische Aushärtung durch Polyadition unter Bildung eines Netzwerkes aus Polyurethan bzw. Polyharnstoff. 2-Komponenten-Systeme haben nach dem Vermischen beider Bestandteile eine begrenzte Verarbeitungszeit
(Standzeit, Potlife), da die einsetzende Reaktion zur allmählichen Viskositätserhöhung und schließlich zur Gelierung des Systems führt. Zahlreiche Einflussgrößen bestimmen dabei die effektive Zeit seiner Verarbeitbarkeit: Reaktivität der Reaktionspartner, Katalysierung, Konzentration, Löslichkeit, Feuchtegehalt, NCO/OH-Verhältnis und Umgebungstemperatur sind die wichtigsten [Lackharze, Stoye/Freitag, Hauser-Verlag 1996, Seiten 210/212]. Der Nachteil der Prepregs auf der Basis derartiger 2-K-PUR-Systeme ist, dass nur eine kurze Zeit zur Verarbeitung des Prepreg zu einem Composite zur Verfügung steht. Deshalb sind derartige Prepregs nicht über mehrere Stunden geschweige denn Tage lagerstabil.
Im Folgenden folgt eine Beschreibung der Polyurethan-Prepregs bzw. -Composite auf der Basis von 2-K-PUR-Systemen. In dem Artikel von K. Recker wird über die Entwicklung eines 2-KPolyurethansystems für das Harzmattenverfahren unter besonderer Berücksichtigung der Verarbeitungseigenschaften für SMC-Bauteile berichtet. (Baypreg - ein neuer
POLYURETHAN-Werkstoff für das Harzmattenverfahren, Recker, Klaus, Kunststoffe-Plastics 8,1981 ). Die WO 2005/049301 offenbart ein katalytisch aktiviertes 2-K-PUR-System, wobei die Polyisocyanat-Komponente und das Polyol gemischt werden und mittels Pultrusion zu einem Composite verarbeitet werden.
In der WO 2005/106155 werden faserverstärkte Composites für die Bau-Industrie offenbart, die mittels der Long-Fiber-Injection (LFI) Technologie mit 2-KPolyurethan-Systemen hergestellt werden.
In der JP 2004196851 werden Composites beschrieben, die aus Carbonfasern und organischen Fasern, wie z. B. Hanf, unter Verwendung einer Matrix aus 2-K-PUR auf der Basis von polymeren Methylendiphenyldiisocyanat (MDI) und speziellen OH-Gruppen haltigen Verbindungen hergestellt werden.
Die EP 1 319 503 beschreibt Polyurethan-Composites, wobei spezielle Polyurethan- Deckschichten für ein mit einem 2K-PUR-Harz getränktes Faser-Laminat, das eine
Kernschicht (z. B. eine Papierwabe) umhüllt, verwendet werden. Das 2K-PUR-Harz besteht z. B. aus MDI und einer Mischung aus Polypropylentriolen und Diolen von Ethylenoxid- Propylenoxid-Copolymeren.
In der WO 2003/101719 werden Polyurethanbasierte Composites und die Methoden zur Herstellung beschrieben. Es handelt sich um 2-K-Polyurethanharze mit definierten
Viskositäten und bestimmten Gelzeiten.
2-K-PUR-Systeme werden ebenfalls abgehandelt in:„Fiber reinforced polyurethane composites: shock tolerant components with particular emphasis on armor plating" (Ratcliffe, Colin P.; Crane, Roger M.; Santiago, Armando L, AMD (1995), 21 1 (Innovative Processing and Characterization of Composite Materials), 29-37.) und in Fiber-reinforced polyurethane composites. I. Process feasibility and morphology. (Ma, Chen Chi M.; Chen, Chin Hsing. International SAMPE Symposium and Exhibition (1992), 37 (Mater. Work. You 21 st Century), 1062-74.)
Von der unterschiedlichen Bindemittelbasis abgesehen entsprechen feuchtigkeitshärtende Lacke sowohl in ihrer Zusammensetzung als auch in ihren Eigenschaften weitgehend analogen 2K-Systemen. Es werden im Prinzip die gleichen Lösemittel, Pigmente, Füllstoffe und Hilfsmittel verwendet. Anders als 2K-Lacke tolerieren diese Systeme vor ihrer
Applikation aus Stabilitätsgründen keinerlei Feuchtigkeit. Bekannt sind auch physikalisch trocknende Systeme auf der Basis von nichtreaktiven PUR- Elastomeren. Es handelt sich hierbei um höhermolekulare, lineare, thermoplastische
Urethane aus Diolen und Diisocyanaten, vorzugsweise MDI, TDI, HDI und IPDI. Solche thermoplastischen Systeme weisen in der Regel sehr hohe Viskositäten und damit auch sehr hohe Verarbeitungstemperaturen auf. Dies erschwert den Einsatz für Prepregs maßgeblich. Bei der Herstellung von Prepregs mit Faserverbunden ist der Einsatz von Pulvern bei reaktiven Systemen eher unüblich und beschränkt sich bislang auf wenige Einsatzgebiete. Das wohl gängigste Verfahren, um ein Pulver auf eine Faseroberfläche zu bringen, ist das Wirbel bettverfahren (fluidized bed impregnation). Durch eine aufwärts gerichtete Strömung werden Pulverpartikel in einen Zustand versetzt, in dem sie fluid-ähnliche Eigenschaften aufweisen. Dieses Verfahren wird in der EP 590 702 angewandt. Dabei werden die Stränge einzelner Faserbündel auseinander geflochten und im Wirbelbett mit dem Pulver beschichtet. Das Pulver besteht dabei aus einer Mischung aus reaktivem und thermoplastischem Pulver, um so die Eigenschaften der Matrix zu optimieren. Einzelne Rovings (Faserbündel) werden schließlich zusammengelegt und mehrere Lagen bei einem Druck von 16 bar für etwa 20 Minuten verpresst. Die Temperaturen variieren zwischen 250 und 350 °C. Häufig kommt es allerdings beim Wirbelbettverfahren zu unregelmäßiger Beschichtung, insbesondere wenn die Stränge nicht auseinander gezogen werden.
Diesbezüglich wird in der US 20040231598 eine Methode vorgestellt, die ähnlich dem Wirbel bettverfahren funktioniert. Dabei transportiert ein Luftstrom die Partikel zum Substrat und es erfolgt durch einen speziellen Aufbau eine gleichmäßige Abscheidung des Pulvers.
Ein weiteres Verfahren beschreibt die, US 20050215148. Dort werden mit der eben erwähnten Vorrichtung gleichmäßige Verteilungen des Pulvers auf der Faser erreicht. Die Partikelgröße reicht dabei von 1 bis 2000 μηη. Beschichtet wird bei mehreren Versuchen von einer oder von zwei Seiten. Durch die gleichmäßige Aufbringung des Pulvers werden nach einem anschließenden Verpressen der Prepregs Laminate ohne Lufteinschlüsse erzeugt.
Eine weitere Anmeldung, WO 2006/043019 beschreibt die Anwendung von epoxy- und amino-terminierten Harzen in Pulverform. Dabei werden die Pulver vermischt und auf die Fasern gegeben. Anschließend werden die Partikel angesintert. Die Partikelgröße liegt zwischen 1 und 3000 μηη, vorzugsweise aber zwischen 1 und 150 μηη.
Diese Einschränkung der Partikelgröße auf eher kleine Durchmesser wird auch in einer Studie der Michigan State University empfohlen. Dabei ist die Theorie, dass Partikel mit kleinen Durchmessern eher in Hohlräume zwischen einzelnen Filamenten eindringen können als Partikel mit großen Durchmessern (S. Padaki, LT. Drzal: a Simulation study on the effects of particle size on the consolidation of polymer powder impregnated tapes,
Department of Chemical Engineering, Michigan State University, Composites: Part A (1999), pp. 325-337).
Neben der Prepregtechnik werden auch in anderen klassischen Verfahren reaktive Pulver- Systeme eingesetzt, so beispielsweise in der Wickeltechnik [M.N. Ghasemi Nejhad, K.M. Ikeda: Design, manufacture and characterization of composites using on-line recycled thermoplastic powder impregnation of fibres and in-situ filament winding, Department of Mechanical Engineering, University of Hawaii at Manoa, Journal of Thermoplastic Composite Materials, Vol 1 1 , pp. 533-572, November 1998] oder beim Pultrusionsverfahren. Für das Pultrusionsverfahren werden beispielsweise Faserseile (Towpregs) mit dem Pulver beschichtet und zunächst als sogenannte Towpregs aufgewickelt und gelagert. Eine
Möglichkeit zur Herstellung ist in einem Artikel des SAMPE Journal's beschrieben [R.E. Allred, S. P. Wesson, D. A. Babow: powder impregnation studies for high temperature towpregs, Adherent Technologies, SAMPE Journal, Vol. 40, No. 6, pp. 40-48, November/ December 2004]. In einer weiteren Untersuchung wurden solche Towpregs durch das Pultrusionsverfahren zusammen gepresst und ausgehärtet zu Werkstoffbauteilen [N.C. Parasnis, K. Ramani, H.M. Borgaonkar: Ribbonizing of electrostatic powder spray impregnated thermoplastic tows by pultrusion, School of Mechanical Engineering, Purdue University, composites, Part A, Applied science and manufacturing, Vol. 27, pp. 567-574, 1996]. Obwohl die Herstellung von Towpregs und anschließende Verpressung im
Pultrusionsverfahren bereits mit duroplastischen Systemen durchgeführt wurde, werden bei diesem Verfahren bislang größtenteils nur thermoplastische Systeme eingesetzt.
In DE 102009001793.3 und DE 102009001806.9 wird ein Verfahren zur Herstellung von lagerstabilen Prepregs, im Wesentlichen aufgebaut aus A) mindestens einem Faser förmigen Träger und B) mindestens einer reaktiven pulverförmigen Polyurethanzusammensetzung als Matrixmaterial beschrieben.
Die Aufgabe war es, ein einfacheres Verfahren zur Herstellung von problemlos zu handhabenden, das heißt nicht toxischen, polyurethanbasierenden Prepreg-Systemen auf der Basis von Polyurethanzusammensetzungen zu finden. Weitere Aufgabe dieser Erfindung war es, Prepregs mit Polyurethan-Matrixmaterial zu finden, welche mit einem einfachen Verfahren hergestellt werden können, wobei das Hauptaugenmerk auf das Handling und die Lagerungsfähigkeit der Prepregs gelegt werden sollte. Für die Prepregs wäre es vorteilhaft, wenn die Viskosität der unvernetzten Matrixmaterialien gering genug ist, um bei der Herstellung des Composite-Bauteils eine Benetzung des Faser förmigen Trägers zu gewährleisten, wobei auch eine Thixotropie vorteilhaft sein kann, damit ein Abfließen des Harzes in senkrechten Bauteilsegmenten verhindert werden kann.
Durch die Wahl geeigneter Ausgangsstoffe zu Herstellung der Matrixmaterialien sollte eine genügend lange Verarbeitungszeit (abhängig von der jeweiligen Anwendung bei der Herstellung der Composite) zwischen dem Aufschmelzen der nicht ausreagierten
Matrixmaterial und der Vollendung der Reaktion gewährleistet werden.
Überraschend wurde nun gefunden, dass die Herstellung von lagerstabilen, aber noch reaktiven und somit bei der Composite-Bauteil-Herstellung vernetzbaren Polyurethan basierende Prepregs durch eine Direktimprägnierung mit einer
Polyurethanzusammensetzung beim ersten homogenisierenden Aufschmelzen
Polyurethanzusammensetzung möglich ist, ohne dass zuvor ein pulverförmiger
Aggregatzustand der in Schmelzehomogenisierten reaktiven Polyurethanzusammensetzung durchschritten werden muss. Man erhält so Prepregs mit zumindest gleichen aber auch verbesserten wie in DE 102009001793 bzw. DE 102009001806 beschriebenen
Verarbeitungseigenschaften, die für die Herstellung leistungsfähiger Composite für verschiedenste Anwendungen im Bereich der Bau-, der Automobil-, der Luft- und Raumfahrt- Industrie, der Energietechnik (Windkraftanlagen) und im Boots- und Schiffbau eingesetzt werden können. Die erfindungsgemäß verwendbaren reaktiven
Polyurethanzusammensetzungen sind umweltfreundlich, kostengünstig, weisen gute mechanische Eigenschaften auf, lassen sich einfach verarbeiten und zeichnen sich nach Härtung durch eine gute Wetterbeständigkeit wie durch ein ausgewogenes Verhältnis zwischen Härte und Flexibilität aus.
Gegenstand der Erfindung ist ein Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs,
im Wesentlichen aufgebaut aus
A) mindestens einem Faser förmigen Träger
und
B) mindestens einer reaktiven Polyurethanzusammensetzung als Matrixmaterial,
wobei die Polyurethanzusammensetzungen im Wesentlichen Mischungen aus einem gegenüber Isocyanaten reaktive funktionelle Gruppen aufweisenden Polymeren b) als Binder und intern blockierten und/oder mit Blockierungsmitteln blockierten Di- oder Polyisocyanat als Härter a) enthalten, I. durch Herstellung der reaktiven Polyurethanzusammensetzung B) in der Schmelze, und
II. direkte Imprägnierung des Faser förmigen Trägers A) mit der Schmelze aus B).
Das Prinzip des Direkt-Schmelze-Impregnierverfahren der Prepregs besteht darin, dass zunächst eine reaktive Polyurethanzusammensetzung B) aus deren einzelnen Komponenten hergestellt wird. Diese Schmelze der reaktiven Polyurethanzusammensetzung B) wird dann direkt auf den Faser förmigen Träger A) aufgebracht, dass heißt es erfolgt eine
Imprägnierung des Faser förmigen Trägers A) mit der Schmelze aus B). Danach können die abgekühlten lagerfähigen Prepregs zu einem späteren Zeitpunkt zu Composites
weiterverarbeitet werden. Durch dass erfindungsgemäße Direkt-Schmelze- Impregnierverfahren erfolgt eine sehr gute Imprägnierung des Faser förmigen Trägers, dadurch bedingt, dass die dabei flüssig niedrig viskosen reaktiven
Polyurethanzusammensetzungen die Faser des Trägers sehr gut benetzen, wobei die zu einer beginnenden Vernetzungsreaktion führen könnende thermische Belastung der Polyurethanzusammensetzung durch eine vorherige Schmelzehomogenisierung vermieden wird, des weiteren fallen die Prozessschritte der Vermahlung und Siebung in einzelne Partikelgrößenfraktionen weg, sodass eine höhere Ausbeute an imprägniertem Faser förmigen Träger erzielt wird.
Die Homogenisierung aller Bestandteile zur Herstellung der Schmelze der
Polyurethanzusammensetzung B) zur Herstellung der Prepregs kann in geeigneten
Aggregaten, wie z. B. beheizbaren Rührkesseln, Knetern, oder auch Extrudern, erfolgen, wobei Temperaturobergrenzen von 120 °C nicht überschritten werden sollten. Die Mischung der einzelnen Komponenten erfolgt bevorzugt in einem Extruder bei Temperaturen von 80 bis 100 °C, die zwar oberhalb der Schmelzbereiche der einzelnen Komponenten liegen, aber unterhalb der Temperatur, bei der die Vernetzungsreaktion startet.
Im Gegensatz zu DE 102009001793.3 und DE 102009001806.9 werden erfindungsgemäß die entstandenen Massen nicht erstarren lassen und anschließend vermählen, um dann in einem Pulverimprägnier-Verfahren mit dem Träger zum Prepreg verarbeitet zu werden, sondern sofort nach dem Homogenisier-Schritt noch im geschmolzenen Zustand mit dem Faser förmigen Träger zusammengebracht und zu Prepregs mit dem gewünschten
Faservolumenanteil weiterverarbeitet. Die Herstellung der Prepregs nach dem Direkt-Schmelze-Imprägnierverfahren kann erfindungsgemäß im Prinzip nach beliebigen Methoden und mittels der bekannten Anlagen und Apparaturen direkt aus der Schmelze erfolgen.
Bei der Schmelze- bzw. Direktimprägnierung können unterschiedliche Varianten angewendet werden. Filamentgarne werden im Pultrusionsverfahren durch die Thermoplastschmelze in einer beheizten Düse aufgeheizt. Dabei wird das Filamentgarn in der Schmelze aufgefächert, so dass die Filamente gleichmäßig mit der Schmelze benetzt werden. Bei flächigen
Faserhalbzeugen wird die Schmelze auf das Halbzeug extrudiert, welches anschließend in einer beheizten Doppelbandpresse konsolidiert wird, so dass die Filamente kontinuierlich mit der Schmelze benetzt werden. Außerdem kann die Schmelze auch in einem Walzenstuhl oder mittels eines heissen Rakels aufgebraucht werden.
Die Schmelzimprägnierung wird vor allem für teilkristalline Thermoplaste mit sowohl niedriger Schmelzeviskosität wie z. B. PP und PA, als auch hoher Schmelzeviskosität wie z. B. PET und PEEK eingesetzt. Die Schmelzeviskosität und die hohe Verarbeitungstemperatur der Thermoplastmaterialien ist sehr wohl nachteilig und erfordert eine konstante
Verarbeitungsgeschwindigkeit und setzen hohe Anforderungen an die Anlage [„Composites Technologien, Paolo Ermanni (Version 4), Script zur Vorlesung ETH Zürich, August 2007, Kapitel 9.3.1 .2"]. Reaktive Polyurethanzusammensetzungen werden dort aber nicht genannt.
Diese hohen Temperaturen sind bei dem erfindungsgemäßen Verfahren nicht erforderlich. Temperaturen von 80 bis 120 °C sind bei dem erfindungsgemäßen Direkt-Schmelze- Imprägnierverfahren anwendbar. Temperaturen von 80 bis 120 °C bei Variante I und 80 - 100 °C bei Variante II, sollten nicht überschritten werden, um ein Anreagieren des reaktiven Matrixmaterials zu verhindern.
Die so hergestellten Prepregs können je nach Bedarf zu unterschiedlichen Formen kombiniert und zugeschnitten werden.
Zur Konsolidierung der Prepregs zu einem einzigen Composite und zur Vernetzung des Matrixmaterials zur Matrix werden die Prepregs zugeschnitten, gegebenenfalls vernäht oder anderweitig fixiert und in einer geeigneten Form unter Druck und gegebenenfalls Anlegen von Vakuum verpresst. Im Rahmen dieser Erfindung erfolgt dieser Vorgang der Herstellung der Composites aus den Prepregs je nach Aushärtungszeit bei Temperaturen von oberhalb etwa 160 °C bei Einsatz von reaktiven Matrixmaterialien (Variante I), oder bei mit
entsprechenden Katalysatoren versehenen hochreaktiven Matrixmaterialien (Variante II) bei Temperaturen von über 120 °C. Die erfindungsgemäß hergestellten Prepregs weisen nach Abkühlung auf Raumtemperatur eine sehr hohe Lagerstabilität bei Raumtemperatur auf, sobald das Matrixmaterial einen Tg von mindestens 40 °C aufweist. Diese beträgt je nach enthaltener reaktiver
Polyurethanzusammensetzung mindestens einige Tage bei Raumtemperatur, aber in der Regel sind die Prepregs mehrere Wochen bei 40 °C und darunter lagerstabil. Die so hergestellten Prepregs sind nicht klebrig und daher sehr gut zu handhaben und weiter zu verarbeiten. Die erfindungsgemäß eingesetzten reaktiven oder hochreaktiven
Polyurethanzusammensetzungen weisen demnach eine sehr gute Haftung und Verteilung auf dem Faser förmigen Träger auf.
Während der Weiterverarbeitung der Prepregs zu Composites (Verbundwerkstoffen) z. B. durch Verpressen bei erhöhten Temperaturen, erfolgt eine sehr gute Imprägnierung des Faser förmigen Trägers, dadurch bedingt, dass die dabei flüssig niedrig viskosen reaktiven oder hochreaktiven Polyurethanzusammensetzungen vor der Vernetzungsreaktion die Faser des Trägers sehr gut benetzen, bevor durch die Vernetzungsreaktion der reaktiven oder hochreaktiven Polyurethanzusammensetzung bei erhöhten Temperaturen eine Vergelung eintritt beziehungsweise die komplette Polyurethanmatrix durchhärtet.
Je nach Zusammensetzung der verwendeten reaktiven oder hochreaktiven
Polyurethanzusammensetzung und gegebenenfalls zugesetzten Katalysatoren können sowohl die Geschwindigkeit der Vernetzungsreaktion bei der Herstellung der Composite- Bauteile als auch die Eigenschaften der Matrix in weiten Bereichen variiert werden.
Als Matrixmaterial wird im Rahmen der Erfindung die zur Herstellung der Prepregs eingesetzte reaktive oder hochreaktive Polyurethanzusammensetzung definiert und bei der Beschreibung der Prepregs die auf der Faser durch das erfindungsgemäße Direkt- Schmelze-Impregnierverfahren aufgebrachte noch reaktive oder hochreaktive
Polyurethanzusammensetzung.
Die Matrix ist definiert als die im Composite vernetzten Matrixmaterialien aus den reaktiven oder hochreaktiven Polyurethanzusammensetzungen.
Träger
Der Faser förmige Träger in der vorliegenden Erfindung besteht aus Faser förmigem Material (auch häufig Verstärkungsfasern genannt). Im Allgemeinen ist jegliches Material, aus dem die Fasern bestehen, geeignet, bevorzugt wird jedoch Faser förmiges Material aus Glas, Kohlenstoff, Kunststoffen, wie z. B. Polyamid (Aramid) oder Polyester, Naturfasern oder mineralischen Fasermaterialien wie Basaltfasern oder keramische Fasern (Oxidische Fasern auf Basis von Aluminiumoxiden und/oder Siliciumoxiden) verwendet. Auch Mischungen von Fasertypen, wie z. B. Gewebe-Kombinationen aus Aramid- und Glasfasern, oder
Kohlenstoff- und Glasfasern, können verwendet werden. Ebenso sind Hybrid-Composite- Bauteile mit Prepregs aus unterschiedlichen Faser förmigen Trägern herstellbar.
Glasfasern sind hauptsächlich wegen ihres relativ geringen Preises die am häufigsten verwendeten Fasertypen. Prinzipiell sind hier alle Arten von glasbasierenden
Verstärkungsfasern geeignet (E-Glas-, S-Glas-, R-Glas-, M-Glas-, C-Glas-, ECR-Glas-, D- Glas-, AR-Glas-, oder Hohlglasfasern).
Kohlenstofffasern kommen im Allgemeinen in Hochleistungsverbundverstoffen zum Einsatz, wo auch die im Verhältnis zur Glasfaser niedrigere Dichte bei gleichzeitig hoher Festigkeit ein wichtiger Faktor ist. Kohlenstofffasern (auch Carbonfasern) sind industriell hergestellte Fasern aus kohlenstoffhaltigen Ausgangsmaterialien, die durch Pyrolyse in graphitartig angeordneten Kohlenstoff umgewandelt werden. Man unterscheidet isotrope und anisotrope Typen: isotrope Fasern besitzen nur geringe Festigkeiten und geringere technische
Bedeutung, anisotrope Fasern zeigen hohe Festigkeiten und Steifigkeiten bei gleichzeitig geringer Bruchdehnung.
Als Naturfasern werden hier alle Textilfasern und Faserwerkstoffe bezeichnet, die aus pflanzlichem und tierischem Material gewonnen werden (z. B. Holz-, Zellulose-, Baumwoll-, Hanf-, Jute-, Leinen-, Sisal-, Bambusfasern).
Aramid-Fasern weisen, ähnlich wie auch Kohlenstofffasern, einen negativen
Wärmeausdehnungs-koeffizienten auf, werden also bei Erwärmung kürzer. Ihre spezifische Festigkeit und ihr Elastizitätsmodul ist deutlich niedriger als jene von Kohlenstofffasern. In Verbindung mit dem positiven Ausdehnungskoeffizienten des Matrixharzes lassen sich hoch maßhaltige Bauteile fertigen. Gegenüber Kohlenstofffaser verstärkten Kunststoffen ist die Druckfestigkeit von Aramidfaser-Verbundwerkstoffen deutlich geringer. Bekannte
Markennamen für Aramidfasern sind Nomex® und Kevlar® von DuPont, oder Teijinconex®, Twaron® und Technora® von Teijin. Besonders geeignet und bevorzugt sind Träger aus Glasfasern, Kohlenstofffasern, Aramidfasern oder keramische Fasern. Bei dem Faser förmigen Material handelt es sich um ein textiles Flächengebilde. Geeignet sind textile Flächengebilde aus Vlies, ebenso sogenannte Maschenware, wie Gewirke und Gestricke, aber auch nicht maschige Gebinde wie Gewebe, Gelege oder Geflechte. Außerdem unterscheidet man Langfaser- und Kurzfasermaterialien als Träger. Ebenfalls
erfindungsgemäß geeignet sind Rovings und Garne. Alle genannten Materialien sind im Rahmen der Erfindung als Faser förmiger Träger geeignet.
Einen Überblick über Verstärkungsfasern enthält„Composites Technologien, Paolo Ermanni (Version 4), Script zur Vorlesung ETH Zürich, August 2007, Kapitel 7". Matrixmaterial
Prinzipiell sind alle, auch sonstige zu bei Raumtemperatur lagerstabilen reaktiven
Polyurethanzusammensetzungen als Matrixmaterialen geeignet. Geeignete
Polyurethanzusammensetzungen bestehen erfindungsgemäß aus Mischungen aus einem funktionellen Gruppen - reaktiv gegenüber NCO-Gruppen - aufweisenden Polymeren b) (Binder), auch als Harz bezeichnet, und temporär deaktivierte, das heißt intern blockierte und/oder mit Blockierungsmitteln blockierte Di- oder Polyisocyanate, auch als Härter a) (Komponente a)) bezeichnet.
Als funktionelle Gruppen der Polymeren b) (Binder) sind Hydroxylgruppen, Aminogruppen und Thiolgruppen geeignet, welche mit den freien Isocyanatgruppen unter Addition reagieren und somit die Polyurethanzusammensetzung vernetzen und aushärten. Die
Binderkomponenten müssen einen Festharzcharakter (Glastemperatur größer als die Raumtemperatur) haben. Als Binder kommen in Frage Polyester, Polyether, Polyacrylate, Polycarbonate und Polyurethane mit einer OH-Zahl von 20 bis 500 mg KOH/Gramm und einer mittleren Molmasse von 250 bis 6000 g/Mol. Besonders bevorzugt werden
hydroxylgruppenhaltige Polyester oder Polyacrylate mit einer OH-Zahl von 20 bis 150 mg KOH/Gramm und einem mittleren Molekulargewicht von 500 bis 6000 g/mol.
Selbstverständlich können auch Mischungen solcher Polymere eingesetzt werden. Die Menge an den funktionelle Gruppen aufweisenden Polymeren b) wird so gewählt, dass auf jede funktionelle Gruppe der Komponente b) 0,6 bis 2 NCO- Äquivalente oder 0,3 bis 1 ,0 Uretdiongruppen der Komponente a) entfällt.
Als Härterkomponente a) werden mit Blockierungsmitteln blockierte oder intern blockierte (Uretdion) Di- und Polyisocyanate eingesetzt.
Die erfindungsgemäß eingesetzten Di- und Polyisocyanate können aus beliebigen aromatischen, aliphatischen, cycloaliphatischen und/oder (cyclo)aliphatischen Di- und/oder Polyisocyanaten bestehen.
Als aromatische Di- oder Polyisocyanate sind prinzipiell alle bekannten aromatischen Verbindungen geeignet. Besonders geeignet sind 1 ,3- und 1 ,4-Phenylendiisocyanat, 1 ,5- Naphthylen-diisocyanat, Tolidindiisocyanat, 2,6-Toluylendiisocyanat, 2,4-Toluylendiisocyanat (2,4-TDI), 2,4'-Diphenylmethandiisocyanat (2,4'-MDI), 4,4'-Diphenylmethandiisocyanat, die Mischungen aus monomeren Diphenylmethandiisocyanaten (MDI) und oligomeren
Diphenylmethandiisocyanaten (Polymer-MDI), Xylylendiisocyanat,
Tetramethylxylylendiisocyanat und Triisocyanatotoluol. Geeignete aliphatische Di- oder Polyisocyanate besitzen vorteilhafterweise 3 bis 16
Kohlenstoffatome, vorzugsweise 4 bis 12 Kohlenstoffatome, im linearen oder verzweigten Alkylenrest und geeignete cycloaliphatische oder (cyclo)aliphatische Diisocyanate vorteilhafterweise 4 bis 18 Kohlenstoffatome, vorzugsweise 6 bis 15 Kohlenstoffatome, im Cycloalkylenrest. Unter (cyclo)aliphatischen Diisocyanaten versteht der Fachmann hinlänglich gleichzeitig cyclisch und aliphatisch gebundene NCO-Gruppen, wie es z. B. beim Isophorondiisocyanat der Fall ist. Demgegenüber versteht man unter cycloaliphatischen Diisocyanaten solche, die nur direkt am cycloaliphatischen Ring gebundene NCO-Gruppen aufweisen, z. B. H12MDI.
Beispiele sind Cyclohexandiisocyanat, Methylcyclohexandiisocyanat,
Ethylcyclohexandiisocyanat, Propylcyclohexandiisocyanat,
Methyldiethylcyclohexandiisocyanat, Propandiisocyanat, Butandiisocyanat,
Pentandiisocyanat, Hexandiisocyanat, Heptandiisocyanat, Octandiisocyanat,
Nonandiisocyanat, Nonantriisocyanat, wie 4-lsocyanatomethyl-1 ,8-octandiisocyanat (TIN), Dekandi- und triisocyanat, Undekandi- und -triisocyanat, Dodecandi- und -triisocyanate.
Bevorzugt werden Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI),
Diisocyanatodicyclohexylmethan (H12MDI), 2-Methylpentandiisocyanat (MPDI), 2,2,4- Trimethylhexamethylendiisocyanat/2,4,4-Trimethylhexamethylendiisocyanat (TMDI), Norbornandiisocyanat (NBDI). Ganz besonders bevorzugt werden IPDI, HDI, TMDI und H12MDI eingesetzt, wobei auch die Isocyanurate einsetzbar sind.
Ebenfalls geeignet sind 4-Methyl-cyclohexan-1 ,3-diisocyanat, 2-Butyl-2-ethylpentamethylen- diisocyanat, 3(4)-lsocyanatomethyl-1 -methylcyclohexylisocyanat, 2- Isocyanatopropylcyclohexyl-isocyanat, 2,4'-Methylenbis(cyclohexyl)diisocyanat, 1 ,4- Diisocyanato-4-methyl-pentan.
Selbstverständlich können auch Gemische der Di- und Polyisocyanate eingesetzt werden.
Weiterhin werden vorzugsweise Oligo- oder Polyisocyanate verwendet, die sich aus den genannte Di- oder Polyisocyanaten oder deren Mischungen durch Verknüpfung mittels Urethan-, Allophanat-, Harnstoff-, Biuret-, Uretdion-, Amid-, Isocyanurat-, Carbodiimid-, Uretonimin-, Oxadiazintrion- oder Iminooxadiazindion-Strukturen herstellen lassen.
Besonders geeignet sind Isocyanurate, insbesondere aus IPDI und HDI.
Die erfindungsgemäß verwendeten Polyisocyanate sind blockiert. In Frage kommen dazu externe Blockierungsmittel, wie z. B. Acetessigsäureethylester, Diisopropylamin, Methylethylketoxim, Malonsäurediethylester, ε-Caprolactam, 1 ,2,4-Triazol, Phenol bzw. substituierte Phenole und 3,5-Dimethylpyrazol.
Die bevorzugt verwendeten Härterkomponente sind IPDI-Addukte, die Isocyanurat- Gruppierungen und ε-Caprolactam blockierte Isocyanatstrukturen enthalten.
Auch eine interne Blockierung ist möglich und diese wird bevorzugt verwendet. Die interne Blockierung erfolgt über eine Dimerbildung über Uretdion-Strukturen, die bei erhöhter Temperatur wieder in die ursprünglich vorhandenen Isocyanat-Strukturen zurückspalten und damit die Vernetzung mit dem Binder in Gang setzen.
Optional können die reaktiven Polyurethanzusammensetzungen zusätzliche Katalysatoren enthalten. Es handelt sich hierbei um metallorganischen Katalysatoren, wie z. B.
Dibutylzinndilaurat (DBTL), Zinnoctoat, Bismuthneodecanoat, oder aber tertiäre Amine, wie z. B. 1 ,4-Diazabicylco[2.2.2.]octan, in Mengen von 0,001 - 1 Gew.-%. Diese
erfindungsgemäß eingesetzten reaktiven Polyurethanzusammensetzungen werden bei normalen Bedingungen, z. B. mit DBTL-Katalyse, ab 160 °C, üblicherweise ab ca. 180 °C ausgehärtet und als bezeichnet.
Für die Herstellung der reaktiven Polyurethanzusammensetzungen können die in der Pulverlacktechnologie üblichen Zusatzstoffe, wie Verlaufsmittel, z. B. Polysilicone oder Acrylate, Lichtschutzmittel z. B. sterisch gehinderte Amine, oder andere Hilfsmittel, wie sie z. B. in EP 669 353 beschrieben wurden, in einer Gesamtmenge von 0,05 bis 5 Gew.-% zugesetzt werden. Füllstoffe und Pigmente wie z. B. Titandioxid können in einer Menge bis zu 30 Gew.-% der Gesamtzusammensetzung zugesetzt werden.
Reaktiv (Variante I) bedeutet im Rahmen dieser Erfindung, dass die erfindungsgemäß eingesetzten reaktiven Polyurethanzusammensetzungen wie oben beschrieben bei Temperaturen ab 160 °C, und zwar je nach Art des Trägers aushärten.
Die erfindungsgemäß eingesetzten reaktiven Polyurethanzusammensetzungen werden bei normalen Bedingungen, z. B. mit DBTL-Katalyse, ab 160 °C, üblicherweise ab ca. 180 °C ausgehärtet. Die Zeit zur Aushärtung der erfindungsgemäß eingesetzten
Polyurethanzusammensetzung liegt in der Regel innerhalb von 5 bis 60 Minuten.
Bevorzugt wird bei der vorliegenden Erfindung ein Matrixmaterial B) eingesetzt, aus einer reaktiven Uretdiongruppen haltigen Polyurethanzusammensetzungen B), im Wesentlichen enthaltend a) mindestens einen Uretdiongruppen haltigen Härter, basierend auf
Polyadditionsverbindungen aus aliphatischen, (cyclo)aliphatischen oder cycloaliphatischen Uretdiongruppen enthaltende Polyisocyanaten und hydroxylgruppenhaltigen Verbindungen, wobei der Härter unterhalb von 40 °C in fester Form und oberhalb von 125 °C in flüssiger Form vorliegt und einen freien NCO-Gehalt von kleiner 5 Gew.-% und einem Uretdiongehalt von 3 - 25 Gew.-% aufweist, b) mindestens ein hydroxylgruppenhaltiges Polymer, das unterhalb von 40 °C in fester Form und oberhalb von 125 °C in flüssiger Form vorliegt und einer OH-Zahl zwischen 20 und 200 mg KOH / Gramm, c) gegebenenfalls mindestens einen Katalysator, d) gegebenenfalls aus der Polyurethanchemie bekannte Hilfs- und Zusatzstoffe, so dass die beiden Komponenten a) und b) in dem Verhältnis vorliegen, dass auf jede Hydroxylgruppe der Komponente b) 0,3 bis 1 Uretdiongruppe der Komponente a) entfällt, bevorzugt 0,45 bis 0,55. Letzteres entspricht einem NCO/OH-Verhältnis von 0,9 bis 1 ,1 zu 1 .
Uretdiongruppen enthaltende Polyisocyanate sind wohlbekannt und werden beispielsweise in US 4,476,054, US 4,912,210, US 4,929,724 sowie EP 417 603 beschrieben. Ein umfassender Überblick über industriell relevante Verfahren zur Dimerisierung von
Isocyanaten zu Uretdionen liefert das J. Prakt. Chem. 336 (1994) 185-200. Im Allgemeinen erfolgt die Umsetzung von Isocyanaten zu Uretdionen in Gegenwart löslicher
Dimerisierungs-katalysatoren wie z. B. Dialkylaminopyridinen, Trialkylphosphinen,
Phosphorigsäure-triamiden oder Imdidazolen. Die Reaktion - optional in Lösemitteln, bevorzugt aber in Abwesenheit von Lösemitteln durchgeführt - wird bei Erreichen eines gewünschten Umsatzes durch Zusatz von Katalysatorgiften abgestoppt. Überschüssiges monomeres Isocyanat wird im Anschluss durch Kurzwegverdampfung abgetrennt. Ist der Katalysator flüchtig genug, kann das Reaktionsgemisch im Zuge der Monomerabtrennung vom Katalysator befreit werden. Auf den Zusatz von Katalysatorgiften kann in diesem Fall verzichtet werden. Grundsätzlich ist zur Herstellung von Uretdiongruppen enthaltenden Polyisocyanaten eine breite Palette von Isocyanaten geeignet. Es können die oben genannten Di- und Polyisocyanate verwendet werden. Bevorzugt sind aber Di- und
Polyisocyanate aus beliebigen aliphatischen, cycloaliphatischen und/oder
(cyclo)aliphatischen Di- und/oder Polyisocyanaten. Erfindungsgemäß werden
Isophorondiisocyanat (IPDI), Hexamethylendiisocyanat (HDI), Diisocyanatodicyclohexylmethan (H12MDI), 2-Methylpentandiisocyanat (MPDI), 2,2,4- Trimethylhexamethylendiisocyanat/2,4,4-Trimethylhexamethylendiisocyan (TMDI),
Norbornandiisocyanat (NBDI) verwendet. Ganz besonders bevorzugt werden IPDI, HDI, TMDI und H12MDI eingesetzt, wobei auch die Isocyanurate einsetzbar sind.
Ganz besonders bevorzugt wird für das Matrixmaterial IPDI und HDI verwendet.
Die Umsetzung dieser Uretdiongruppen enthaltenden Polyisocyanate zu Uretdiongruppen haltigen Härtern a) beinhaltet die Reaktion der freien NCO-Gruppen mit
hydroxylgruppenhaltigen Monomeren oder Polymeren, wie z. B. Polyestern, Polythioethern, Polyethern, Polycaprolactamen, Polyepoxiden, Polyesteramiden, Polyurethanen oder niedermolekularen Di-, Tri- und/oder Tetraalkoholen als Kettenverlängerer und gegebenenfalls Monoaminen und/oder Monoalkoholen als Kettenabbrecher und wurde schon häufig beschrieben (EP 669 353, EP 669 354, DE 30 30 572, EP 639 598 oder EP 803 524).
Bevorzugte Uretdiongruppen aufweisende Härter a) haben einen freien NCO-Gehalt von weniger als 5 Gew.-% und einen Gehalt an Uretdiongruppen von 3 bis 25 Gew.-%, bevorzugt 6 bis 18 Gew.-% (berechnet als C2N2O2, Molekulargewicht 84). Bevorzugt werden Polyester und monomere Dialkohole. Außer den Uretdiongruppen können die Härter auch
Isocyanurat-, Biuret-, Allophanat-, Urethan- und/oder Harnstoff-Strukturen aufweisen.
Bei den hydroxylgruppenhaltigen Polymeren b) werden bevorzugt Polyester, Polyether, Polyacrylate, Polyurethane und/oder Polycarbonate mit einer OH-Zahl von 20 - 200 in mg KOH/Gramm eingesetzt. Besonders bevorzugt werden Polyester mit einer OH-Zahl von 30 - 150, einem mittleren Molekular-gewicht von 500 - 6000 g/mol, die unterhalb von 40 °C in fester Form und oberhalb von 125 °C in flüssiger Form vorliegen, verwendet. Solche
Bindemittel sind beispielsweise in EP 669 354 und EP 254 152 beschrieben worden.
Selbstverständlich können auch Mischungen solcher Polymere eingesetzt werden. Die Menge an den hydroxylgruppenhaltigen Polymeren b) wird so gewählt, dass auf jede
Hydroxylgruppe der Komponente b) 0,3 bis 0,1 Uretdiongruppe der Komponente a), bevorzugt 0,45 bis 0,55, entfällt.
Optional können in den erfindungsgemäßen reaktiven Polyurethanzusammensetzungen B) zusätzliche Katalysatoren c) enthalten sein. Es handelt sich hierbei um metallorganischen Katalysatoren, wie z. B. Dibutylzinndilaurat, Zinkoctoat, Bismuthneodecanoat, oder aber tertiäre Amine, wie z. B. 1 ,4-Diazabicylco[2.2.2.]octan, in Mengen von 0,001 - 1 Gew.-%. Diese erfindungsgemäß eingesetzten reaktiven Polyurethanzusammensetzungen werden bei normalen Bedingungen, z. B. mit DBTL-Katalyse, ab 160 °C, üblicherweise ab ca. 180 °C ausgehärtet und als Variante I bezeichnet. Für die Herstellung der erfindungsgemäßen reaktiven Polyurethanzusammensetzungen können die in der Pulverlacktechnologie üblichen Zusatzstoffe d) wie Verlaufsmittel, z. B. Polysilicone oder Acrylate, Lichtschutzmittel z. B. sterisch gehinderte Amine, oder andere Hilfsmittel, wie sie z. B. in EP 669 353 beschrieben wurden, in einer Gesamtmenge von 0,05 bis 5 Gew.-% zugesetzt werden. Füllstoffe und Pigmente wie z. B. Titandioxid können in einer Menge bis zu 30 Gew.-% der Gesamtzusammensetzung zugesetzt werden.
Die erfindungsgemäß eingesetzten reaktiven Polyurethanzusammensetzungen werden bei normalen Bedingungen, z. B. mit DBTL-Katalyse, ab 160 °C, üblicherweise ab ca. 180 °C ausgehärtet. Die erfindungsgemäß eingesetzten reaktiven Polyurethanzusammensetzungen bieten einen sehr guten Verlauf und damit eine gute Imprägnierfähigkeit und im
ausgehärteten Zustand eine ausgezeichnete Chemikalienbeständigkeit. Bei Verwendung von aliphatischen Vernetzern (z. B. IPDI oder H12MDI) wird zusätzlich noch eine gute
Witterungsbeständigkeit erreicht.
Besonders bevorzugt wird bei der Erfindung ein Matrixmaterial eingesetzt
aus
B) mindestens einer hochreaktiven Uretdiongruppen haltigen
Polyurethanzusammensetzung, im Wesentlichen enthaltend
a) mindestens einen Uretdiongruppen haltigen Härter
und
b) optional mindestens ein Polymer mit gegenüber NCO-Gruppen reaktiven
funktionellen Gruppen;
c) 0,1 bis 5 Gew.-% mindestens einen Katalysator ausgewählt aus quarternären
Ammoniumsalzen und/oder quarternären Phosphoniumsalzen mit Halogenen, Hydroxiden, Alkoholaten oder organischen oder anorganischen Säureanionen als Gegenion;
und
d) 0,1 bis 5 Gew.-% mindestens einen Co-Katalysator, ausgewählt aus
d1 ) mindestens einem Epoxid
und/oder
d2) mindestens einem Metallacetylacetonat und/oder quarternären
Ammoniumacetylacetonat und/oder quarternären Phosphoniumacetylacetonat; e) gegebenenfalls aus der Polyurethanchemie bekannte Hilfs- und Zusatzstoffe.
Ganz besonders wird ein Matrixmaterial B) eingesetzt aus B) mindestens einer hochreaktiven pulverförmigen Uretdiongruppen haltigen Polyurethanzusammensetzung als Matrixmaterial, im Wesentlichen enthaltend a) mindestens einen Uretdiongruppen haltigen Härter, basierend auf
Polyadditionsverbindungen aus aliphatischen, (cyclo)aliphatischen oder
cycloaliphatischen Uretdiongruppen enthaltenen Polyisocyanaten und
hydroxylgruppenhaltigen Verbindungen, wobei der Härter unterhalb von 40 °C in fester Form und oberhalb von 125 °C in flüssiger Form vorliegt und einen freien NCO- Gehalt von kleiner 5 Gew.-% und einem Uretdiongehalt von 3 - 25 Gew.-% aufweist, b) mindestens ein hydroxylgruppenhaltiges Polymer, das unterhalb von 40 °C in fester Form und oberhalb von 125 °C in flüssiger Form vorliegt und einer OH-Zahl zwischen 20 und 200 mg KOH / Gramm;
c) 0,1 bis 5 Gew.-% mindestens einen Katalysator ausgewählt aus quarternären
Ammoniumsalzen und/oder quarternären Phosphoniumsalzen mit Halogenen, Hydroxiden, Alkoholaten oder organischen oder anorganischen Säureanionen als Gegenion;
und
d) 0,1 bis 5 Gew.-% mindestens einen Co-Katalysator, ausgewählt aus
d1 ) mindestens einem Epoxid
und/oder
d2) mindestens einem Metallacetylacetonat und/oder quarternären
Ammoniumacetylacetonat und/oder quarternären Phosphoniumacetylacetonat; e) gegebenenfalls aus der Polyurethanchemie bekannte Hilfs- und Zusatzstoffe, so dass die beiden Komponenten a) und b) in dem Verhältnis vorliegen, dass auf jede Hydroxylgruppe der Komponente b) 0,3 bis 1 Uretdiongruppe der Komponente a) entfällt, bevorzugt 0,6 bis 0,9.
Letzteres entspricht einem NCO/OH-Verhältnis von 0,6 bis 2 zu 1 bzw. 1 ,2 bis 1 ,8 zu 1. Diese erfindungsgemäß eingesetzten hochreaktiven Polyurethanzusammensetzungen werden Temperaturen von 100 bis 160 °C ausgehärtet und als Variante II bezeichnet.
Geeignete hochreaktive Urediongruppen haltige Polyurethanzusammensetzungen enthalten erfindungsgemäß Mischungen aus temporär deaktivierten, das heißt Uretdiongruppen haltigen (intern blockierte) Di- oder Polyisocyanaten, auch als Härter a) bezeichnet, und den erfindungsgemäß enthaltenen Katalysatoren c) und d) und optional zusätzlich ein
funktionelle Gruppen - reaktiv gegenüber NCO-Gruppen - aufweisendes Polymer (Binder), auch als Harz b) bezeichnet. Die Katalysatoren gewährleisten eine Aushärtung der Urediongruppen haltigen Polyurethanzusammensetzungen bei Niedrigtemperatur. Die Urediongruppen haltigen Polyurethanzusammensetzungen sind somit hochreaktiv.
Als Komponente a) und b) werden solche wie oben beschrieben eingesetzt.
Als Katalysatoren unter c) werden quarternäre Ammoniumsalze, bevorzugt
Tetralkylammoniumsalze und/oder quarternäre Phosphoniumsalze mit Halogenen,
Hydroxiden, Alkoholaten oder organischen oder anorganischen Saureanionen als Gegenion, eingesetzt. Beispiele dafür sind:
Tetramethylammoniumformiat, Tetramethylammoniumacetat,
Tetramethylammoniumpropionat, Tetramethylammoniumbutyrat, Tetramethylammonium- benzoat, Tetraethylammoniumformiat, Tetraethylammoniumacetat,
Tetraethylammoniumpropionat, Tetraethylammoniumbutyrat, Tetraethylammoniumbenzoat, Tetrapropylammoniumformiat, Tetrapropylammoniumacetat,
Tetrapropylammoniumpropionat, Tetrapropylammoniumbutyrat,
Tetrapropylammoniumbenzoat, Tetrabutylammoniumformiat, Tetrabutylammoniumacetat, Tetrabutylammoniumpropionat, Tetrabutylammoniumbutyrat und
Tetrabutylammoniumbenzoat und Tetrabutylphosphoniumacetat,
Tetrabutylphosphoniumformiat und Ethyltriphenylphosphoniumacetat,
Tetrabutylphosphoniumbenzotriazolat, Tetraphenylphosphoniumphenolat und
Trihexyltetradecylphosphoniumdecanoat, Methyltributylammoniumhydroxid,
Methyltriethylammoniumhydroxid, Tetramethylammoniumhydroxid,
Tetraethylammoniumhydroxid, Tetrapropylammoniumhydroxid,
Tetrabutylammoniumhydroxid, Tetrapentylammoniumhydroxid,
Tetrahexylammoniumhydroxid, Tetraoctylammoniumhydroxid,
Tetradecylammoniumhydroxid, Tetradecyltrihexylammoniumhydroxid,
Tetraoctadecylammoniumhydroxid, Benzyltrimethylammoniumhydroxid,
Benzyltriethylammoniumhydroxid, Tri-methylphenylammoniumhydroxid,
Triethylmethylammoniumhydroxid, Tri-methylvinylammoniumhydroxid,
Methyltributylammoniummethanolat, Methyltriethylammoniummethanolat,
Tetramethylammoniummethanolat, Tetraethylammoniummethanolat,
Tetrapropylammoniummethanolat, Tetrabutylammoniummethanolat,
Tetrapentylammoniummethanolat, Tetrahexylammoniummethanolat,
Tetraoctylammoniummethanolat, Tetradecylammoniummethanolat,
Tetradecyltrihexylammoniummethanolat, Tetraoctadecylammoniummethanolat,
Benzyltrimethylammoniummethanolat, Benzyltriethylammoniummethanolat,
Trimethylphenylammoniummethanolat, Triethylmethylammoniummethanolat, Trimethylvinylammoniummethanolat, Methyltributylammoniumethanolat,
Methyltriethylammoniumethanolat, Tetramethylammoniumethanolat,
Tetraethylammoniumethanolat, Tetrapropylammoniumethanolat,
Tetrabutylammoniumethanolat, Tetrapentylammoniumethanolat,
Tetrahexylammoniumethanolat, Tetraoctylammoniummethanolat,
Tetradecylammoniumethanolat, Tetradecyltrihexylammoniumethanolat,
Tetraoctadecylammoniumethanolat, Benzyltrimethylammoniumethanolat,
Benzyltriethylammoniumethanolat, Tri-methylphenylammoniumethanolat,
Triethylmethylammoniumethanolat, Tri-methylvinylammoniumethanolat,
Methyltributylammoniumbenzylat, Methyltriethylammoniumbenzylat,
Tetramethylammoniumbenzylat, Tetraethylammoniumbenzylat,
Tetrapropylammoniumbenzylat, Tetrabutylammoniumbenzylat,
Tetrapentylammoniumbenzylat, Tetrahexylammoniumbenzylat,
Tetraoctylammoniumbenzylat, Tetradecylammoniumbenzylat,
Tetradecyltrihexylammoniumbenzylat, Tetraoctadecylammoniumbenzylat,
Benzyltrimethylammoniumbenzylat, Benzyltriethylammoniumbenzylat, Tri- methylphenylammoniumbenzylat, Triethylmethylammoniumbenzylat, Tri- methylvinylammoniumbenzylat, Tetramethylammoniumfluorid, Tetraethylammoniumfluorid, Tetrabutylammoniumfluorid, Tetraoctylammoniumfluorid, Benzyltrimethylammoniumfluorid, Tetrabutylphosphoniumhydroxid, Tetrabutylphosphoniumfluorid, Tetrabutylammoniumchlorid, Tetrabutylammoniumbromid, Tetrabutylammoniumiodid, Tetraethylammoniumchlorid, Tetraethylammoniumbromid, Tetraethylammoniumiodid, Tetramethylammoniumchlorid, Tetramethylammoniumbromid, Tetramethylammoniumiodid,
Benzyltrimethylammoniumchlorid, Benzyltriethylammoniumchlorid,
Benzyltripropylammoniumchlorid, Benzyltributylammoniumchlorid,
Methyltributylammoniumchlorid, Methyltripropylammoniumchlorid,
Methyltriethylammoniumchlorid, Methyltriphenylammoniumchlorid,
Phenyltrimethylammoniumchlorid, Benzyltrimethylammoniumbromid,
Benzyltriethylammoniumbromid, Benzyltripropylammoniumbromid,
Benzyltributylammoniumbromid, Methyltributylammoniumbromid,
Methyltripropylammoniumbromid, Methyltriethylammoniumbromid,
Methyltriphenylammoniumbromid, Phenyltrimethylammoniumbromid,
Benzyltrimethylammoniumiodid, Benzyltriethylammoniumiodid,
Benzyltripropylammoniumiodid, Benzyltributylammoniumiodid, Methyltributylammoniumiodid, Methyltripropylammoniumiodid, Methyltriethylammoniumiodid,
Methyltriphenylammoniumiodid und Phenyltrimethylammoniumiodid,
Methyltributylammoniumhydroxid, Methyltriethylammoniumhydroxid, Tetramethylammoniumhydroxid, Tetraethylammoniumhydroxid,
Tetrapropylammoniumhydroxid, Tetrabutylammoniumhydroxid,
Tetrapentylammoniumhydroxid, Tetrahexylammoniumhydroxid,
Tetraoctylammoniumhydroxid, Tetradecylammoniumhydroxid,
Tetradecyltrihexylammoniumhydroxid, Tetraoctadecylammoniumhydroxid,
Benzyltrimethylammoniumhydroxid, Benzyltriethylammoniumhydroxid,
Trimethylphenylammoniumhydroxid, Triethylmethylammoniumhydroxid,
Trimethylvinylammoniumhydroxid, Tetramethylammoniumfluorid,
Tetraethylammoniumfluorid, Tetrabutylammoniumfluorid, Tetraoctylammoniumfluorid und Benzyltrimethylammoniumfluorid. Diese Katalysatoren können allein oder in Mischungen zugesetzt werden. Bevorzugt werden Tetraethylammoniumbenzoat und
Tetrabutylammoniumhydroxid verwendet.
Der Anteil an Katalysatoren c) kann 0,1 bis 5 Gew.-% betragen, bevorzugt von 0,3 bis 2 Gew.-%, bezogen auf die Gesamtformulierung des Matrixmaterials.
Eine erfindungsgemäße Variante schließt die Anbindung solcher Katalysatoren c) an die funktionellen Gruppen der Polymere b) mit ein. Außerdem können diese Katalysatoren mit einer inerten Hülle umgeben und damit verkapselt sein.
Als Co-Katalysatoren d1 ) werden Epoxide eingesetzt. In Frage kommen dabei z. B.
Glycidylether und Glycidylester, aliphatische Epoxide, Diglycidylether auf Basis Bisphenol A und Glycidylmethacrylate. Beispiele für solche Epoxide sind Triglycidylisocyanurat (TGIC, Handelsname ARALDIT 810, Huntsman), Gemische aus Terephthalsaurediglycidylester und Trimelitsäuretriglycidylester (Handelsname ARALDIT PT 910 und 912, Huntsman),
Glycidylester der Versatiesäure (Handelsname KARDURA E10, Shell), 3,4- Epoxycyclohexylmethyl-3',4'-epoxycyclohexancarboxylat (ECC), Diglycidylether auf Basis Bisphenol A (Handelsname EPIKOTE 828, Shell) Ethylhexylglycidylether, Butylglycidylether, Pentaerythrittetraglycidylether, (Handelsname POLYPOX R 16, UPPC AG) sowie andere Polypoxtypen mit freien Epoxygruppen. Es können auch Mischungen eingesetzt werden. Bevorzugt werden verwendet ARALDIT PT 910 und 912 eingesetzt.
Als Co-Katalysatoren d2) kommen Metallacetylacetonate in Frage. Beispiele dafür sind Zinkacetylacetonat, Lithiumacetylacetonat und Zinnacetylacetonat, allein oder in
Mischungen. Bevorzugt wird Zinkacetylacetonat eingesetzt.
Als Co-Katalysatoren d2) kommen ausserdem quarternäre Ammoniumacetylacetonate oder quarternäre Phosphoniumacetylacetonate in Frage.
Beispiele für solche Katalysatoren sind Tetramethylammoniumacetylacetonat,
Tetraethylammoniumacetylacetonat, Tetrapropylammoniumacetylacetonat,
Tetrabutylammoniumacetylacetonat, Benzyltrimethylammoniumacetylacetonat,
Benzyltriethylammoniumacetylacetonat, Tetramethylphosphoniumacetylacetonat,
Tetraethylphosphoniumacetylacetonat, Tetrapropylphosphoniumacetylacetonat,
Tetrabutylphosphoniumacetylacetonat, Benzyltrimethylphosphoniumacetylacetonat,
Benzyltriethylphosphoniumacetylacetonat. Besonders bevorzugt werden
Tetraethylammoniumacetylacetonat und Tetrabutylammoniumacetylacetonat eingesetzt. Selbstverständlich können auch Mischungen solcher Katalysatoren verwendet werden.
Der Anteil an Co-Katalysatoren d1 ) und/oder d2) kann von 0,1 bis 5 Gew.-% betragen, bevorzugt von 0,3 bis 2 Gew.-%, bezogen auf die Gesamtformulierung des Matrixmaterials.
Mit Hilfe der erfindungsgemäß eingesetzten hochreaktiven und somit bei Niedrigtemperatur härtenden Polyurethanzusammensetzungen B) kann bei 100 bis 160 °C
Aushärtungstemperatur nicht nur Energie und Aushärtungszeit gespart werden, sondern es lassen sich auch viele Temperatur sensible Träger verwenden.
Hochreaktiv (Variante II) bedeutet im Rahmen dieser Erfindung, dass die erfindungsgemäß eingesetzten Uretdiongruppen haltigen Polyurethanzusammensetzungen bei Temperaturen von 100 bis 160 °C, und zwar je nach Art des Trägers aushärten. Bevorzugt beträgt diese Aushärtungstemperatur 120 bis 150 °C, besonders bevorzugt von 130 bis 140 °C. Die Zeit zur Aushärtung der erfindungsgemäß eingesetzten Polyurethanzusammensetzung liegt innerhalb von 5 bis 60 Minuten.
Die erfindungsgemäß eingesetzten hochreaktiven Urediongruppen haltigen
Polyurethanzusammensetzungen bieten einen sehr guten Verlauf und damit eine gute Imprägnierfähigkeit und im ausgehärteten Zustand eine ausgezeichnete
Chemikalienbeständigkeit. Bei Verwendung von aliphatischen Vernetzern (z. B. IPDI oder H12MDI) wird zusätzlich noch eine gute Witterungsbeständigkeit erreicht.
Die erfindungsgemäß als Matrixmaterial verwendeten reaktiven oder hochreaktiven
Polyurethanzusammensetzungen bestehen im Wesentlichen aus einer Mischung aus einem reaktiven Harz und einem Härter. Diese Mischung hat nach einer Schmelzehomogenisierung einen Tg von mindestens 40 °C und reagiert in der Regel erst oberhalb von 160 °C, bei den reaktiven Polyurethanzusammensetzungen oder oberhalb von 100 °C, bei den hochreaktiven Polyurethanzusammensetzungen zu einem vernetzten Polyurethan und bildet somit die Matrix des Composites. Das bedeutet, dass die erfindungsgemäßen Prepregs nach ihrer Herstellung aus dem Träger und der applizierten reaktiven Polyurethanzusammensetzung als Matrixmaterial, welche in unvernetzter, aber reaktiven Form vorliegt, aufgebaut sind.
Die Prepregs sind also lagerstabil, in der Regel mehrere Tage und sogar Wochen und können somit jederzeit zu Composites weiterverarbeitet werden. Dies ist der wesentliche Unterschied zu den bereits oben beschriebenen 2-Komponenten-Systemen, die reaktiv und nicht lagerstabil sind, da diese nach dem Aufbringen sofort beginnen zu Polyurethanen zu reagieren und vernetzen.
Das erfindungsgemäße Verfahren kann mittels der bekannten Anlagen und Apparaturen gemäß Reaction Injection Moulding (RIM), Reinforced Reaction Injection Moulding (RRIM), Pultrusinsverfahren, oder weitere durchgeführt werden. Außerdem kann die Schmelze auch in einem Walzenstuhl oder mittels eines heissen Rakels aufgebraucht werden.
Gegenstand der Erfindung ist auch die Verwendung der Prepregs hergestellt nach dem erfindungsgemäßen Verfahren insbesondere mit Faser förmigen Trägern aus Glas-, Kohleoder Aramid-Fasern.
Gegenstand der Erfindung ist auch die Verwendung der erfindungsgemäß hergestellten Prepregs,
zur Herstellung von Composites im Boots- und Schiffbau, in der Luft- und Raumfahrtechnik, im Automobilbau, für Zweiräder, bevorzugt Motorräder und Fahrräder, in den Bereichen Automotive, Construction, Medizintechnik, Sport, Elektro- und Elektronik-Industrie,
Energieerzeugungsanlagen, z. B. für Rotorblätter bei Windkraftanlagen.
Gegenstand der Erfindung sind auch die nach dem erfindungsgemäßen Verfahren hergestellten Prepregs.
Gegenstand der Erfindung sind auch die aus den erfindungsgemäß hergestellten Prepregs hergestellten Composite-Bauteile.
Nachfolgend wird die Erfindung durch Beispiele erläutert.
Beispiele Verwendete Glasfasergelege und Glasfasergewebe:
Folgende Glasfasergelege und Glasfasergewebe wurden in den Beispielen verwendet, nachfolgend mit Typ I und Typ II bezeichnet.
Bei Typ I handelt es sich um ein Leinwand-E-Glas-Gewebe 281 L Art. Nr. 3103 der Firma „Schlösser & Cramer". Das Gewebe hat ein Flächengewicht von 280 g/m2.
Beim Typ II GBX 600 Art. Nr. 1023 handelt es sich um ein vernähtes biaxiales E-Glas-Gelege (-45/+45) der Firma„Schlösser & Cramer". Darunter sind zwei Lagen von Faserbündeln zu verstehen, die übereinander liegen und zueinander in einem Winkel von 90 Grad versetzt sind. Dieser Aufbau wird von weiteren Fasern zusammen gehalten, die allerdings nicht aus Glas bestehen. Die Oberfläche der Glasfasern ist mit einer Standardschlichte ausgestattet, die aminosilanmodifiziert ist. Das Gelege hat ein Flächengewicht von 600 g/m2.
DSC-Messungen
Die DSC-Untersuchungen (Glasübergangstemperatur-Bestimmungen und
Reaktionsenthalpie-Messungen) werden mit einem Mettler Toledo DSC 821 e nach
DIN 53765 durchgeführt.
Reaktive Polyurethanzusammensetzung
Es wurde eine reaktive Polyurethanzusammensetzung mit der folgenden Rezeptur zur Herstellung der Prepregs und der Composites verwendet.
Die zerkleinerten Einsatzstoffe aus der Tabelle werden in einem Vormischer innig vermischt und anschließend im Extruder bis maximal 130 °C homogenisiert. Am Auslauf des Extruders ist eine Beschichtungseinheit angeflanscht, durch die Glasfasergewebe-Bänder geführt und simultan imprägniert werden.
Hochreaktive Polyurethanzusammensetzung
Es wurde eine hochreaktive Polyurethanzusammensetzung mit der folgenden Rezeptur zur Herstellung der Prepregs und der Composites verwendet.
Die zerkleinerten Einsatzstoffe aus der Tabelle werden in einem Vormischer innig vermischt und anschließend im Extruder bis maximal 1 10 °C homogenisiert. Am Auslauf des Extruders ist eine Beschichtungseinheit angeflanscht, durch die Glasfasergewebe-Bänder geführt und simultan imprägniert werden.
Lagerstabilität der Prepregs Die Lagerstabilität der Prepregs wurde anhand der Glasübergangstemperaturen und der Reaktionsenthalpien der Vernetzungsreaktion mittels DSC-Untersuchungen bestimmt. Die Vernetzungsfähigkeit der PU-Prepregs wird durch die Lagerung bei Raumtemperatur über einen Zeitraum von 7 Wochen nicht beeinträchtigt.
Composite-Bauteil-Herstellung
Die Composite-Bauteile werden über eine dem Fachmann bekannte Presstechnik auf einer Composite-Presse hergestellt. Die mittels Direktimprägnierung hergestellten, homogenen Prepregs wurden an einer Tischpresse zu Verbundwerkstoffen verpresst. Bei dieser Tischpresse handelt es sich um die Polystat 200 T der Firma Schwabenthan, mit der die Prepregs bei Temperaturen zwischen 120 und 200 °C zu den entsprechenden Composite- Platten verpresst werden. Der Druck wird zwischen Normaldruck und 450 bar variiert.
Dynamische Verpressungen, d. h. wechselnde Druckbeaufschlagungen können sich je nach Bauteil-Größe, -Dicke und Polyurethanzusammensetzung und damit der
Viskositätseinstellung bei der Verarbeitungstemperatur für die Benetzung der Fasern als vorteilhaft erweisen.
In einem Beispiel wird die Temperatur der Presse von 90 °C während der Aufschmelzphase auf 1 10 °C erhöht, der Druck wird nach einer Aufschmelzphase von 3 Minuten auf 440 bar erhöht und anschließend dynamisch (7 mal mit jeweils 1 Minute Dauer) zwischen 150 und 440 bar variiert, wobei die Temperatur kontinuierlich auf 140 °C erhöht wird. Anschließend wird die Temperatur auf 170 °C angehoben und gleichzeitig der Druck bei 350 bar bis zur Entnahme des Composite-Bauteils aus der Presse nach 30 Minuten Höhe, gehalten wird. Die harten, steifen, chemikalienbeständigen und schlagzähen Composite-Bauteile (Plattenware) mit einem Faservolumenanteil von > 50 % werden hinsichtlich des Aushärtungsgrades (Bestimmung über DSC) untersucht. Die Bestimmung der
Glastemperatur der ausgehärteten Matrix zeigt den Fortschritt der Vernetzung bei unterschiedlichen Härtungstemperaturen. Bei der verwendeten
Polyurethanzusammensetzung ist nach ca. 25 Minuten die Vernetzung vollständig, wobei dann auch keine Reaktionsenthalpie für die Vernetzungsreaktion mehr detektierbar ist. Zwei Verbundwerkstoffe werden bei exakt gleichen Bedingungen hergestellt und anschließend deren Eigenschaften bestimmt und verglichen. Die gute Reproduzierbarkeit der
Eigenschaften kann auch bei der Bestimmung der interlaminaren Scherfestigkeit (ILSF) bestätigt werden. Hier wird eine gemittelte ILSF von ca. 41 N/mm2 erreicht.

Claims

Patentansprüche:
1 . Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs
im Wesentlichen aufgebaut aus
A) mindestens einem Faser förmigen Träger
und
B) mindestens einer reaktiven Polyurethanzusammensetzung als Matrixmaterial, wobei die Polyurethanzusammensetzungen im Wesentlichen Mischungen aus einem gegenüber Isocyanaten reaktive funktionelle Gruppen aufweisenden Polymeren b) als Binder und intern blockierten und/oder mit Blockierungsmitteln blockierten Di- oder Polyisocyanat als Härter a) enthalten,
I. durch Herstellung der reaktiven Polyurethanzusammensetzung B) in der Schmelze,
und
II. direkte Imprägnierung des Faser förmigen Trägers A) mit der Schmelze aus B).
2. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach Anspruch 1 , wobei das Matrixmaterial einen Tg von mindestens 40 °C aufweist.
3. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
dass Faser förmiges Material aus Glas, Kohlenstoff, Kunststoffen, wie Polyamid (Aramid) oder Polyester, Naturfasern, oder mineralischen Fasermaterialien wie Basaltfasern oder keramische Fasern enthalten ist.
4. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
dass als Faser förmiger Träger textile Flächengebilde aus Vlies, Maschenware, Gewirke und Gestricke, nicht maschige Gebinde wie Gewebe, Gelege oder Geflechte, als Langfaser- und Kurzfasermaterialien, enthalten sind.
5. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche, dadurch gekennzeichnet,
dass Verfahren bei einer Temperaturobergrenze von 80 bis 120 °C, bevorzugt bei Temperaturen von 80 bis 100 °C, durchgeführt wird.
6. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
dass Polymere b) mit Hydroxylgruppen, Aminogruppen und Thiolgruppen, insbesondere Polyester, Polyether, Polyacrylate, Polycarbonate und Polyurethane mit einer OH-Zahl von 20 bis 500 mg KOH/Gramm und einer mittleren Molmasse von 250 bis 6000 g/Mol, eingesetzt werden.
7. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
dass Di- oder Polyisocyanate, ausgewählt aus Isophorondiisocyanat (IPDI),
Hexamethylendiisocyanat (HDI), Diisocyanatodicyclohexylmethan (H 12MDI), 2- Methylpentandiisocyanat (MPDI), 2,2,4-Trimethylhexamethylendiisocyanat/2,4,4- Trimethylhexamethylendiisocyanat (TMDI) und/oder Norbornandiisocyanat (NBDI), besonders bevorzugt IPDI, HDI, TMDI und H12MDI, wobei auch die Isocyanurate einsetzbar sind, als Ausgangsverbindungen für Komponente a) eingesetzt werden.
8. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
dass externe Blockierungsmittel, ausgewählt aus Acetessigsäureethylester,
Diisopropylamin, Methylethylketoxim, Malonsäurediethylester, ε-Caprolactam, 1 ,2,4- Triazol, Phenol oder substituierte Phenole und/oder 3, 5-Dimethylpyrazol, zur
Blockierung von a) eingesetzt werden.
9. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
dass IPDI-Addukte, die Isocyanurat-Gruppierungen und ε-Caprolactam blockierte Isocyanatstrukturen, als Komponente a) eingesetzt werden.
10. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche,
dadurch gekennzeichnet,
dass die reaktiven Polyurethanzusammensetzungen B) zusätzliche Katalysatoren enthalten, bevorzugt Dibutylzinndilaurat, Zinkoctoat, Bismuthneodecanoat, und/oder tertiäre Amine, bevorzugt 1 ,4-Diazabicylco[2.2.2.]octan, in Mengen von 0,001 - 1 Gew.-%.
1 1 . Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche,
mit einem Matrixmaterial aus mindestens einer reaktiven Uretdiongruppen haltigen Polyurethanzusammensetzungen B), im Wesentlichen enthaltend
a) mindestens einen Uretdiongruppen haltigen Härter, basierend auf
Polyadditionsverbindungen aus aliphatischen, (cyclo)aliphatischen oder
cycloaliphatischen Uretdiongruppen enthaltende Polyisocyanaten und
hydroxylgruppenhaltigen Verbindungen, wobei der Härter unterhalb von 40 °C in fester Form und oberhalb von 125 °C in flüssiger Form vorliegt, einen freien NCO- Gehalt von kleiner 5 Gew.-% und einem Uretdiongehalt von 3 - 25 Gew.-% aufweist,
b) mindestens ein hydroxylgruppenhaltiges Polymer, das unterhalb von 40 °C in fester Form und oberhalb von 125 °C in flüssiger Form vorliegt und einer OH-Zahl zwischen 20 und 200 mg KOH / Gramm,
c) gegebenenfalls mindestens einen Katalysator,
d) gegebenenfalls aus der Polyurethanchemie bekannte Hilfs- und Zusatzstoffe, so dass die beiden Komponenten a) und b) in dem Verhältnis vorliegen, dass auf jede Hydroxylgruppe der Komponente b) 0,3 bis 1 Uretdiongruppe der Komponente a) entfällt, bevorzugt 0,45 bis 0,55.
12. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs, nach mindestens einem der Ansprüche 1 bis 9, mit mindestens einer hochreaktiven Uretdiongruppen haltigen Polyurethanzusammensetzung B) als Matrixmaterial, im Wesentlichen enthaltend
a) mindestens einen Uretdiongruppen haltigen Härter
und
b) optional mindestens ein Polymer mit gegenüber NCO-Gruppen reaktiven
funktionellen Gruppen; c) 0,1 bis 5 Gew.-% mindestens einen Katalysator ausgewählt aus quarternären Ammoniumsalzen und/oder quarternären Phosphoniumsalzen mit Halogenen, Hydroxiden, Alkoholaten oder organischen oder anorganischen Säureanionen als Gegenion;
und
d) 0,1 bis 5 Gew.-% mindestens einen Co-Katalysator, ausgewählt aus
d1 ) mindestens einem Epoxid
und/oder
d2) mindestens einem Metallacetylacetonat und/oder quarternären
Ammoniumacetylacetonat und/oder quarternären
Phosphoniumacetylacetonat;
e) gegebenenfalls aus der Polyurethanchemie bekannte Hilfs- und Zusatzstoffe.
13. Direkt-Schmelze-Imprägnierverfahren zur Herstellung von Prepregs nach mindestens einem der vorherigen Ansprüche 1 bis 9 oder 12 mit mindestens einer hochreaktiven pulverförmigen Uretdiongruppen haltigen Polyurethanzusammensetzung B) als Matrixmaterial, im Wesentlichen enthaltend
a) mindestens einen Uretdiongruppen haltigen Härter, basierend auf
Polyadditionsverbindungen aus aliphatischen, (cyclo)aliphatischen oder
cycloaliphatischen Uretdiongruppen enthaltende Polyisocyanaten und
hydroxylgruppenhaltigen Verbindungen, wobei der Härter unterhalb von 40 °C in fester Form und oberhalb von 125 °C in flüssiger Form vorliegt und einen freien NCO-Gehalt von kleiner 5 Gew.-% und einem Uretdiongehalt von 3 - 25 Gew.-% aufweist,
b) mindestens ein hydroxylgruppenhaltiges Polymer, das unterhalb von 40 °C in fester Form und oberhalb von 125 °C in flüssiger Form vorliegt und einer OH-Zahl zwischen 20 und 200 mg KOH / Gramm;
c) 0,1 bis 5 Gew.-% mindestens einen Katalysator ausgewählt aus quarternären
Ammoniumsalzen und/oder quarternären Phosphoniumsalzen mit Halogenen, Hydroxiden, Alkoholaten oder organischen oder anorganischen Säureanionen als Gegenion;
und
d) 0,1 bis 5 Gew.-% mindestens einen Co-Katalysator, ausgewählt aus
d1 ) mindestens einem Epoxid
und/oder d2) mindestens einem Metallacetylacetonat und/oder quarternären Ammoniumacetylacetonat und/oder quarternären
Phosphoniumacetylacetonat;
e) gegebenenfalls aus der Polyurethanchemie bekannte Hilfs- und Zusatzstoffe, so dass die beiden Komponenten a) und b) in dem Verhältnis vorliegen, dass auf jede Hydroxylgruppe der Komponente b) 0,3 bis 1 Uretdiongruppe der Komponente a) entfällt, bevorzugt 0,6 bis 0,9.
14. Verwendung der Prepregs hergestellt nach mindestens einem der vorherigen
Ansprüche 1 bis 13, insbesondere mit Faser förmigen Trägern aus Glas-, Kohle- oder Aramid-Fasern.
15. Verwendung der Prepregs hergestellt nach mindestens einem der Ansprüche 1 bis 13, im Wesentlichen aufgebaut aus
A) mindestens einem Faser förmigen Träger
und
B) mindestens einer reaktiven oder hochreaktiven Polyurethanzusammensetzung als Matrixmaterial,
zur Herstellung von Composites im Boots- und Schiffbau, in der Luft- und
Raumfahrtechnik, im Automobilbau, für Zweiräder, bevorzugt Motorräder und
Fahrräder, in den Bereichen Automotive, Construction, Medizintechnik, Sport, Elektro- und Elektronik-Industrie, Energieerzeugungsanlagen, wie für Rotorblätter bei
Windkraftanlagen.
16. Composite-Bauteile, hergestellt nach mindestens einem der Ansprüche 1 bis 13,
aufgebaut aus A) mindestens einem Faser förmigen Träger und B) mindestens einer vernetzten Polyurethanzusammensetzung, bevorzugt einer vernetzten
Uretdiongruppen haltigen Polyurethanzusammensetzung, als Matrix.
17. Prepregs, hergestellt nach einem Verfahren der Ansprüche 1 bis 13.
18. Prepregs, hergestellt nach einem Verfahren der Ansprüche 1 bis 13, durch Reaction Injection Moulding (RIM), Reinforced Reaction Injection Moulding (RRIM),
Pultrusionsverfahren, durch Aufbringen der Schmelze in einem Walzenstuhl oder mittels eines heißen Rakels.
EP11719016.5A 2010-05-27 2011-05-12 Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper Withdrawn EP2576648A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010029355 DE102010029355A1 (de) 2010-05-27 2010-05-27 Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper
PCT/EP2011/057658 WO2011147688A1 (de) 2010-05-27 2011-05-12 Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper

Publications (1)

Publication Number Publication Date
EP2576648A1 true EP2576648A1 (de) 2013-04-10

Family

ID=44276197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11719016.5A Withdrawn EP2576648A1 (de) 2010-05-27 2011-05-12 Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper

Country Status (13)

Country Link
US (1) US20130045652A1 (de)
EP (1) EP2576648A1 (de)
JP (1) JP2013527293A (de)
KR (1) KR20130080010A (de)
CN (1) CN102906140B (de)
AU (1) AU2011257484B2 (de)
BR (1) BR112012030085A2 (de)
CA (1) CA2796799A1 (de)
DE (1) DE102010029355A1 (de)
MX (1) MX2012013546A (de)
RU (1) RU2012157000A (de)
TW (1) TW201213372A (de)
WO (1) WO2011147688A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3560971A1 (de) 2018-04-27 2019-10-30 Evonik Degussa GmbH Zweikomponentige hybrid-matrix-system aus polyurethanen und polymethacrylaten zur herstellung von kurzfaserverstärkten halbzeugen

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041239A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der Basis lagerstabiler reaktiven oder hochreaktiven Polyurethanzusammensetzung
DE102010041256A1 (de) * 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der Basis lagerstabiler reaktiven oder hochreaktiven Polyurethanzusammensetzung mit fixierter Folie sowie die daraus hergestellten Composite-Bauteil
DE102010041247A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung in Lösung
DE102010041243A1 (de) 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der Basis lagerstabiler reaktiven oder hochreaktiven Polyurethanzusammensetzung
DE102010053170A1 (de) * 2010-12-03 2012-06-06 Bergolin Gmbh & Co. Kg Verfahren zur Herstellung einer Kantenschutzbeschichtung für Rotorblätter einer Windenergieanlage und entsprechende Kantenschutzbeschichtung
BR112013017258A2 (pt) 2011-01-04 2016-10-25 Evonik Degussa Gmbh produtos semiacabados compósitos e peças moldadas produzidas dos mesmos, bem como peças moldadas produzidas diretamente à base de (met) acrilatos hidroxi funcionalizados, que são reticulados por meio de uretodionas de maneira termofixa
DE102011006163A1 (de) 2011-03-25 2012-09-27 Evonik Degussa Gmbh Lagerstabile Polyurethan-Prepregs und daraus hergestellte Formkörper aus Polyurethanzusammensetzung mit flüssigen Harzkomponenten
DK2828051T3 (en) * 2012-03-20 2016-03-29 Covestro Deutschland Ag STOCK STABLE RESINFILM AND FIBER COMPOSITION MANUFACTURED PARTS
CA2867689A1 (en) 2012-03-20 2013-09-26 Bayer Intellectual Property Gmbh Storage-stable polyurethane-prepregs and fibre composite components produced therefrom
DE102012219324A1 (de) 2012-10-23 2014-04-24 Evonik Industries Ag Zusammensetzungen umfassend alkoxysilanhaltige Isocyanateund saure Stabilisatoren
US8910780B2 (en) * 2013-02-27 2014-12-16 Veyance Technologies, Inc. Conveyor belt
DE102013204124A1 (de) 2013-03-11 2014-09-11 Evonik Industries Ag Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen die mittels Strahlung duroplastisch vernetzt werden
RU2656051C2 (ru) * 2013-04-19 2018-05-30 Ковестро Дойчланд Аг Полиуретановые препреги и изготавливаемые из них волокнистые композитные элементы
WO2015074887A1 (de) 2013-11-19 2015-05-28 Evonik Industries Ag Formteile auf basis von dien-funktionalisierten (meth)acrylaten und (hetero-)diels-alder-dienophilen, mit reversibler vernetzung
US11548245B2 (en) * 2013-11-22 2023-01-10 Johns Manville Fiber-containing prepregs and methods and systems of making
DE102014207785A1 (de) 2014-04-25 2015-10-29 Evonik Degussa Gmbh Verfahren zur Herstellung von lagerstabilen Epoxy-Prepregs und daraus hergestellte Composites auf Basis von radikalisch polymerisierbaren Säuren und Epoxiden
EP2979851A1 (de) 2014-07-28 2016-02-03 Evonik Degussa GmbH Effiziente Herstellung von Composite-Halbzeugen und -Bauteilen im Nasspressverfahren unter Einsatz von hydroxyfunktionalisierten (Meth) Acrylaten, die mittels Isocyanaten oder Uretdionen duroplastisch vernetzt werden
EP2993202A1 (de) 2014-09-08 2016-03-09 Evonik Degussa GmbH Composite-Halbzeuge und daraus hergestellte Formteile sowie direkt hergestellte Formteile auf Basis von hydroxyfunktionalisierten (Meth)Acrylaten und Uretdionen, die duroplastisch vernetzt werden
EP3026072A1 (de) * 2014-11-28 2016-06-01 Evonik Degussa GmbH Verfahren zur Herstellung von Composites
US9969137B2 (en) 2016-04-29 2018-05-15 Contitech Transportbandsysteme Gmbh Multi ply thermoplastic conveyor belt
CN106221191A (zh) * 2016-07-01 2016-12-14 中国科学院山西煤炭化学研究所 一种用于风机叶片的碳纤维/聚氨酯复合材料的合成方法
ES2880621T3 (es) 2016-12-02 2021-11-25 Evonik Degussa Gmbh Productos preimpregnados de poliuretano 1K estables al almacenamiento y cuerpos moldeados a partir de la composición de poliuretano producidos a partir de estos
EP3418322A1 (de) * 2017-06-21 2018-12-26 Nolax AG Flächiges halbfertigprodukt mit einer kunststoffmatrix
JP7359520B2 (ja) 2018-02-22 2023-10-11 ビーエーエスエフ ソシエタス・ヨーロピア 優れた熱変形耐性および引裂伸びを有するポリウレタンベースのポリマー材料
EP3572446A1 (de) 2018-05-24 2019-11-27 Evonik Degussa GmbH Reaktive mischung von uretdionen und katalysatoren
WO2020132509A1 (en) * 2018-12-20 2020-06-25 Cytec Industries Inc. Surface treatment to enhance bonding of composite materials
CN111154062B (zh) * 2020-01-06 2022-08-05 万华化学集团股份有限公司 用于聚氨酯-纤维复合材料的异氰酸酯预聚体及其制备方法与用途
CN111910438B (zh) * 2020-08-17 2023-01-10 美瑞新材料股份有限公司 一种pur包芯纱及其制备方法
CN111826963B (zh) * 2020-08-17 2023-01-10 美瑞新材料股份有限公司 一种表面涂覆pur的芳纶纤维及其制备方法

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE264381C (de) *
BE793041A (fr) * 1971-12-23 1973-06-20 Bayer Ag Resines de polyurethanes dures renforcees et aptes au formage reversible a la chaleur
YU257278A (en) 1977-11-08 1984-02-29 Genentech Inc Process for obtaining a recombinat clone carrier
US4351932A (en) 1980-03-27 1982-09-28 Hitco Bis-maleimide/divinyl aryl crosslinking agent resin system
JPS57131219A (en) * 1981-02-06 1982-08-14 Sumitomo Bakelite Co Ltd Thermosetting resin composition
DE3030572A1 (de) 1980-08-13 1982-03-18 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung von uretdiongruppenhaltigen polyadditionsprodukten sowie die danach hergestellten produkte
DE3030513A1 (de) 1980-08-13 1982-03-18 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung eines isocyanuratfreien uretdions aus isophorondiisocyanat sowie das danach hergestellte uretdion
DE3242089A1 (de) * 1982-11-13 1984-05-17 Basf Ag Verfahren zur kontinuierlichen herstellung von halbzeug aus faserverstaerkten, thermoplastischen polyurethanen
FR2544322B1 (fr) * 1983-04-13 1986-07-25 Stevens Genin Tissus de verre et analogues preimpregnes par un polyurethanne-uree, melanges reactifs stables correspondants, procede de fabrication et application
DE3437635A1 (de) 1984-10-13 1986-04-17 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von uretdiongruppen aufweisenden verbindungen, die nach diesem verfahren erhaeltlichen verbindungen und ihre verwendung bei der herstellung von polyurethankunststoffen
JPS62101633A (ja) 1985-10-25 1987-05-12 旭化成株式会社 シングルトウプリプレグ用組成物
DE3624775A1 (de) 1986-07-22 1988-01-28 Bayer Ag Pulverlack und seine verwendung zur beschichtung von hitzeresistenten substraten
US4757120A (en) 1986-10-03 1988-07-12 Ici Americas Inc. Polyimide/aromatic sulfone resin blends and prepegs coated therewith
US4749760A (en) 1987-06-30 1988-06-07 Shell Oil Company Curable resin compositions
US4812521A (en) 1987-09-21 1989-03-14 Eagle-Picher Industries, Inc. Epoxy resins modified with N-R-[(oxy or thio)methyl]acrylamide terpolymers
US4798761A (en) 1987-11-03 1989-01-17 The Dow Chemical Company Epoxy resin compositions for use in low temperature curing applications
DE3739549C2 (de) 1987-11-21 1994-10-27 Huels Chemische Werke Ag Verfahren zur Herstellung (cyclo)aliphatischer Uretdione
DE3930669A1 (de) 1989-09-14 1991-03-28 Basf Ag Verfahren zur herstellung von uretdiongruppen aufweisenden polyisocyanaten
US5080857A (en) 1989-09-19 1992-01-14 General Electric Company Passive lower drywell flooder
US4992228A (en) 1989-09-28 1991-02-12 The Dow Chemical Company Method for preparing preforms for molding processes
US5371152A (en) * 1990-12-28 1994-12-06 Toho Rayon Co., Ltd. Resin composition and process for producing the composition
US5532296A (en) 1991-07-30 1996-07-02 Cytec Technology Corp. Bismaleimide resin systems toughened by addition of preformed functionalized low Tg elastomer particles
DE4207851A1 (de) * 1992-03-12 1993-09-16 Bayer Ag Mittel und verfahren zur ausruestung von textilien
IT1256080B (it) 1992-07-31 1995-11-27 Enichem Materiale composito a matrice mista, termoplastica e termoindurente, rinforzato con fibre continue.
DE4231622C2 (de) * 1992-09-22 1996-09-05 Bakelite Ag Verfahren zur Herstellung von Metallneutralkomplexen mit hoher Koordinationszahl und deren Verwendung
US5427725A (en) 1993-05-07 1995-06-27 The Dow Chemical Company Process for resin transfer molding and preform used in the process
DE4327573A1 (de) 1993-08-17 1995-02-23 Bayer Ag Uretdion-Pulverlackvernetzer mit niedriger Schmelzviskosität
DE4406445C2 (de) 1994-02-28 2002-10-31 Degussa Verfahren zur Herstellung von uretdiongruppenhaltigen Polyadditionsprodukten und deren Verwendung in Polyurethan-Lacksystemen
DE4406444A1 (de) 1994-02-28 1995-08-31 Huels Chemische Werke Ag Hydroxyl- und uretdiongruppenhaltige Polyadditionsprodukte und Verfahren zu ihrer Herstellung sowie deren Verwendung zur Herstellung abspaltfreier Polyurethan-Pulverlacke hoher Reaktivität und die danach hergestellten Polyurethan-Pulverlacke
DE4441765A1 (de) * 1994-11-24 1996-05-30 Teodur Nv Bindemittelzusammensetzung zur Herstellung von Faservliesen und Verfahren zur Herstellung von Faservlies-Formteilen
US5756206A (en) * 1995-03-15 1998-05-26 Custom Composite Materials, Inc. Flexible low bulk pre-impregnated tow
DE19616496A1 (de) 1996-04-25 1997-10-30 Bayer Ag Abspaltfreier Polyurethan-Pulverlack mit niedriger Einbrenntemperatur
NL1004796C1 (nl) 1996-12-16 1997-02-27 Beleggingsmaatschappij Oeab Ov Werkwijze en inrichting voor het behandelen van draden met poedervormig materiaal.
GB9709166D0 (en) 1997-05-06 1997-06-25 Cytec Ind Inc Preforms for moulding process and resins therefor
DE69907907T2 (de) 1998-06-08 2004-03-11 Complastik Corp., Lowell Verbundgegenstände insbesondere prepregs, vorformlinge, laminate und sandwich formteile, und verfahren zu deren herstellung
DE10107494A1 (de) * 2001-02-15 2002-08-22 Basf Ag Wäßrige Polyurethandispersion
IL145464A0 (en) 2001-09-16 2002-06-30 Pc Composites Ltd Electrostatic coater and method for forming prepregs therewith
DE10159768A1 (de) * 2001-12-05 2003-06-26 Degussa Verwendung von Polyurethan-Pulverlacken
DE20211026U1 (de) 2001-12-17 2002-10-02 Bayer Ag, 51373 Leverkusen Verbundteile aus Deckschichten und Polyurethan-Sandwichmaterialien
AU2003240480A1 (en) 2002-05-31 2003-12-19 Alive Surftec Polyurethane spread-laminated composites and methods of manufacture
JP2004196851A (ja) 2002-12-16 2004-07-15 Sumika Bayer Urethane Kk 軽量の複合構造材
CA2544326A1 (en) 2003-11-17 2005-06-02 Huntsman International Llc Pultrusion systems and process
US20050215148A1 (en) 2004-03-25 2005-09-29 Pc Composites Ltd. Pre-impregnated materials
WO2005091715A2 (en) 2004-03-25 2005-10-06 Pc Composites Ltd. Improved pre-impregnated materials and apparatus and methods for manufacture thereof
US20050266222A1 (en) 2004-04-21 2005-12-01 Clark Randy J Fiber-reinforced composites and building structures comprising fiber-reinforced composites
GB0423349D0 (en) 2004-10-21 2004-11-24 Hexcel Composites Ltd Fibre reinforced assembly
DE102005013401A1 (de) * 2005-03-23 2006-09-28 Degussa Ag Niedrigviskose uretdiongruppenhaltige Polyadditionsverbindungen, Verfahren zur Herstellung und Verwendung
US20080265201A1 (en) * 2007-04-26 2008-10-30 Degussa Gmbh Low-temperature-curable polyurethane compositions with uretdione groups, containing polymers based on polyols that carry secondary oh groups
US7790284B2 (en) * 2008-09-24 2010-09-07 Davies Robert M Flexible composite prepreg materials
DE102009001793A1 (de) * 2009-03-24 2010-10-07 Evonik Degussa Gmbh Prepregs und daraus hergestellte Formkörper
DE102009001806A1 (de) * 2009-03-24 2010-09-30 Evonik Degussa Gmbh Prepregs und daraus bei niedriger Temperatur hergestellte Formkörper

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011147688A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3560971A1 (de) 2018-04-27 2019-10-30 Evonik Degussa GmbH Zweikomponentige hybrid-matrix-system aus polyurethanen und polymethacrylaten zur herstellung von kurzfaserverstärkten halbzeugen

Also Published As

Publication number Publication date
WO2011147688A1 (de) 2011-12-01
KR20130080010A (ko) 2013-07-11
CN102906140A (zh) 2013-01-30
BR112012030085A2 (pt) 2019-09-24
AU2011257484A1 (en) 2012-11-22
RU2012157000A (ru) 2014-07-10
MX2012013546A (es) 2013-01-24
CN102906140B (zh) 2015-11-25
JP2013527293A (ja) 2013-06-27
DE102010029355A1 (de) 2011-12-01
AU2011257484B2 (en) 2014-01-23
TW201213372A (en) 2012-04-01
US20130045652A1 (en) 2013-02-21
CA2796799A1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
EP2411439B1 (de) Prepregs und daraus bei niedriger temperatur hergestellte formkörper
EP2411454B1 (de) Prepregs und daraus hergestellte formkörper
EP3330311B1 (de) Lagerstabile 1k-polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung
EP2688934B1 (de) Lagerstabile polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung mit flüssigen harzkomponenten
EP2576648A1 (de) Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper
EP2619242B1 (de) Verfahren zur herstellung von lagerstabilen polyurethan-prepregs und daraus hergestellte formkörper aus polyurethanzusammensetzung in lösung
EP2619257A1 (de) Prepregs auf der basis lagerstabiler reaktiven oder hochreaktiven polyurethanzusammensetzung mit fixierter folie sowie die daraus hergestellten composite-bauteil
WO2012038200A1 (de) Prepregs auf der basis lagerstabiler reaktiven oder hochreaktiven polyurethanzusammensetzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OPERATIONS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201201