EP2574587A1 - Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr und Containergeschirr - Google Patents

Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr und Containergeschirr Download PDF

Info

Publication number
EP2574587A1
EP2574587A1 EP11183486A EP11183486A EP2574587A1 EP 2574587 A1 EP2574587 A1 EP 2574587A1 EP 11183486 A EP11183486 A EP 11183486A EP 11183486 A EP11183486 A EP 11183486A EP 2574587 A1 EP2574587 A1 EP 2574587A1
Authority
EP
European Patent Office
Prior art keywords
container
laser
harness
crane
target position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11183486A
Other languages
English (en)
French (fr)
Other versions
EP2574587B1 (de
Inventor
Robert Fakkeldij
Michael Fiegert
Cäsar KLIMOWICZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44719619&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2574587(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11183486.7A priority Critical patent/EP2574587B1/de
Priority to CN201210369772.3A priority patent/CN103030063B/zh
Publication of EP2574587A1 publication Critical patent/EP2574587A1/de
Application granted granted Critical
Publication of EP2574587B1 publication Critical patent/EP2574587B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control

Definitions

  • Loading cranes are used on freight transhipment sites, storage areas, in assembly halls and shipyards as well as in track construction.
  • a loading crane for motor vehicles the floor is inclined relative to the loading crane, so that water can drain.
  • tracks for trucks are marked on the ground under the loading crane.
  • a loading crane is a gantry crane. This spans a loading and working area like a portal. As a rule, its sidewalls with wheels run on two parallel rails.
  • a trolley moves with a hoist.
  • a rail slewing crane can be mounted on the crane bridge.
  • a loading crane and a bridge crane, a half-gantry crane, a gantry crane and a portal crane into consideration.
  • a container harness (English term “spreader”) is a hoist, with which ISO-standardized containers can be taken. It is known both a rigid container dishes, which is intended only for a container size, as well as a telescoping container dishes whose several tons heavy telescopic frame can be flexibly adjusted to the length of different standardized containers (standard sizes 20'-45 '). For further consideration, the maximum height of a "high-cube" container of 2,896 m is especially relevant.
  • Gantry trucks, gantry forklifts, forklifts or cross-forklifts can also be equipped with a container harness.
  • the container harness is also here an attachment whose so-called twist locks engage in the four upper standardized corner fittings of a container or grab them from the side. In this case, an element of the twistlock is rotated by 90 °, whereby a positive connection is ensured for locking.
  • the size of the twistlocks is standardized and is about 104 mm in length and 56 mm in width.
  • Twistlocks are used again.
  • the standardized corner fittings of the container must be positioned exactly above the twistlocks of the truck or train wagon.
  • the required accuracy for the positioning can be estimated here with 25 mm, the height accuracy is less critical.
  • Container handlers available on the Internet at http://www.orlaco.com/container-handlers.htm on 29.09.2011 , is known to mount directly on the container harness cameras whose images facilitate a driver of a forklift to anchor the container harness to a container.
  • the object is to provide a method for determining a target position for a container harness and a container dishes, with which the frequent anchoring operations of containers are better supported.
  • This object is achieved by the method for determining a target position for a container harness, wherein at least one imaging sensor is mounted on the container harness and determines measured values from an environment of the container harness.
  • the method is characterized in that a computing unit forms three-dimensional data from the measured values, from which it determines anchoring positions, in particular positions of twistlocks or corner fittings, and the arithmetic unit calculates the target position for the container harness from the anchoring positions.
  • the container harness is equipped with at least one imaging sensor which is mounted on the container harness and adapted to determine measurements from an environment of the container harness. It is characterized in that the imaging sensor is suitable and arranged for determining measured values from which three-dimensional data can be calculated, from which in turn anchoring positions, in particular positions of twistlocks or corner fittings, can be determined.
  • the method as well as the container harness provide a reliable solution for the automated positioning of the container harness.
  • the accuracy is so high due to the three-dimensional data processing, that after successful Positioning twistlocks can be automatically locked in corner fittings of a container.
  • This allows the automated loading of trucks for road traffic or rail cars, in which the container to be transported must be secured with twist locks on the bed.
  • the positioning of the imaging sensor on the container dishes achieved due to the proximity to the objects to be detected high accuracy and consequently high reliability in positioning. The latter is essential to avoid property damage and personal injury. This makes it possible for the first time to automate the loading and unloading of vehicles with twistlock protection.
  • the at least one imaging sensor is a 2D laser scanner, a 3D laser scanner, a 3D camera or a fringe projection sensor or comprises a plurality of these sensors.
  • the three-dimensional data is obtained by pivoting a 2D laser scanner.
  • the at least one imaging sensor is a camera.
  • the container harness is additionally equipped with at least one laser.
  • the arithmetic unit extracts points, lines or patterns from the measured values, which the laser projects onto a twistlock or corner fitting.
  • the arithmetic unit determines the anchoring positions from a geometry of the points, lines or patterns.
  • This embodiment has the advantage that the dots, lines or patterns which the laser projects onto the twistlock or corner fitting also produce an adequate contrast in the open air in the event of adverse weather conditions such as rain, direct tropical solar radiation or rust or oil contamination detected by the camera and the extraction of points, lines or patterns from the measured values. It is achieved a very robust position detection.
  • the use of a simple camera has the advantage that it can be selected in robust design, whereby the required in view of the violent vibrations on the crane and in particular on the container harness mechanical stability is ensured. Also can be expected in these simple and inexpensive components with a long life. This is advantageous because a frequent component change with recalibration in industrial use is out of the question.
  • the laser is a line laser, which is mounted at a defined distance from the at least one imaging sensor on the container harness and emits a laser line at a defined angle to a vertical.
  • the container harness is at least partially lowered via at least one twistlock or corner fitting, with the laser line sweeping over the twistlock or corner fitting.
  • the arithmetic unit continuously extracts the laser line from the measured values and determines a 3D contour from the geometry of the laser line as three-dimensional data. Based on the 3D contour, the arithmetic unit recognizes the twistlock or the corner fitting.
  • the arithmetic unit calculates a difference image, which consists of the difference of a camera image with the laser line, for extracting the laser line from the measured values is formed with a timely camera image without the laser line.
  • the calculation of a difference image offers the advantage that interference factors a priori unknown changes in the background due to changing lighting conditions, rust, contamination o.ä. can be turned off, whereby the robustness of the detection is significantly increased.
  • the camera is equipped with a bandpass filter adapted to a wavelength of the laser.
  • the bandpass filter increases the robustness of image recognition in sunlight, since all wavelengths of sunlight are filtered out of the wavelengths of the laser and thus turned off as disturbing factors in the camera image.
  • the container harness at the target position is fully automatically anchored to a container by twist locks of the container harness engage and lock in corner fittings of the container.
  • a container anchored to the container harness at the target position is fully automatically anchored to a cargo bed of a truck or railroad car by engaging twist locks of the truck or railcar in corner fittings of the container and locking.
  • the container harness is moved to the target position, wherein two movement sections are traversed.
  • the first movement section there is visual contact between at least one anchoring position and the imaging sensor.
  • a continuous recalculation of the target position takes place.
  • the second movement section there is no visual contact between the anchoring positions and the imaging sensor. Therefore, the last one becomes calculated target position in the second movement section controlled approached.
  • At least one stationary sensor determines orientation measured values of an environment of the container harness.
  • An arithmetic unit determines from the orientation measured values an orientation position for the container harness, which is located in the vicinity of the target position.
  • the container harness is maneuvered to the orienting position before the target position is determined. This embodiment speeds up the process by bringing the container harness using the stationary sensors in advance to save time in the orientation position.
  • the container harness is equipped with further sensors, in particular 2D laser scanners, 3D laser scanners, cameras, 3D cameras, strip projection sensors, distance sensors, proximity switches and / or pressure switches. This allows a further increase in the accuracy of the position determination and additional safety during operation.
  • a crane is designed as a loading crane, gantry crane, bridge crane, semi-portal crane, gantry crane or portal crane, and equipped with the container harness.
  • the crane is additionally equipped with stationary sensors, in particular cameras and / or laser scanners, which are mounted on the crane.
  • the stationary sensors serve to measure (or estimate) the position and position of moving objects, eg a container. Other uses include measuring the position and position of a vehicle or a movable component of the crane itself into consideration. In the context of a loading crane, stationary sensor measurements serve as a basis to signal truck drivers where to stop. Furthermore, due to such measurements, the crane itself can be controlled.
  • the stationary sensors may for example be composed of one or more of the following elements: a 3D laser scanner, a tiltable 2D laser scanner or a video camera. They are usually mounted in such a way in the structure of the crane that - in the case of a gantry crane - several tracks for trucks or tracks for railroad cars are covered.
  • the truck is designed as a straddle carrier, portal stacker, forklift or forklift truck and equipped with a container harness according to one of claims 11 to 16.
  • the computer-readable medium stores a computer program which executes the procedure when it is executed in a computer.
  • the computer program is processed in a computer and executes the procedure.
  • FIG. 1 shows a crane 10. On the crane 10 stationary sensors 6 are mounted. Also shown is a cargo 12, for example a container on a truck, which is detected by the stationary sensors 6. Also in FIG. 1 To see wheels 14, with which the crane 10 can be moved on rails. A floor 15 under the crane 10 is inclined, so that water can flow away. On the floor 15 lane markers 13 are attached, which mark tracks for vehicles. On a trolley 4, a container harness 1 is suspended movably. The container harness 1 has Twistlocks 2, which can be used to grip containers.
  • FIG. 2 shows a container harness 1 when approaching a container 10.
  • twist locks 2 of the container harness 1 must be accurately positioned on standard corner fittings 11 of the container 10.
  • FIG. 3 shows a container 10 when approaching a loading area 21 of a truck 20.
  • corner fittings 11 of the container 10 must be accurately positioned over twist locks 2 of the truck 20.
  • the container 10 is transported by means of a container harness 1 by a crane.
  • FIG. 4 shows a container tableware 1, which is equipped with imaging sensors 3.
  • the container harness 1 is deposited on a container 10.
  • Suitable imaging sensors 3 are all sensors from whose measured values three-dimensional image data can be generated, for example laser scanners or strip projection sensors.
  • An arithmetic unit forms three-dimensional image data from the measured values, from which position it determines anchoring positions, in particular positions of twistlocks or corner fittings.
  • the anchorage positions need not be identical to the positions of the twistlocks, but may also be positions of structures that are easy to detect and whose relative position to the twistlock is known.
  • the arithmetic unit calculates a target position for the container harness 1 from the anchoring positions. At the target position, the container harness 1 can, for example, pick up the container 10 or deposit it on a loading area of a truck or train wagon.
  • the twistlocks and corner fittings appear in the three-dimensional image data with a typical 3D contour. This applies to the twistlock in both extended and contracted states.
  • This type of position determination can take place once or continuously, as long as a Twistlock targeted by the imaging sensor 3 is not covered by the container 10. Under these conditions, the crane can be controlled in a control loop and move the container harness towards the target position. Once the sighted twistlock is obscured by the container 10, however, can The crane only the last piece to the target position controlled (blind) approach.
  • Stationary sensors mounted on a bridge or trolley of the crane such as high-hanging laser scanners or cameras, allow the approach to the target position to be accelerated by first moving the container harness to an appropriate coarse position or orientation position near the target position the imaging sensor 3 can detect a twistlock at the target position in its local field of view.
  • this local field of view may be 0.5m x 0.5m so that the orientation position determined by the stationary sensors must approach the target position with that accuracy.
  • the stationary sensors and possibly further distance sensors of the container harness 1 have to ensure that there is no collision when approaching the orientation position.
  • FIG. 5 shows mounting positions of imaging sensors 3 on a container tableware 1 from different perspectives. Partly also Twistlocks 2 of the container harness 1 are visible.
  • FIG. 6 1 shows a determination of measured values from an environment of a container harness 1.
  • a container harness 1 On the left is a frontal view of the container harness 1 and a container 10 suspended thereon, and on the right a side view.
  • a loading area 21 of a truck or train wagon is shown with a twistlock 2, which is located 4 m or 5 m below the container harness 1.
  • An imaging sensor 3, here a simple camera, is mounted with 180mm or 150mm overhang against the container 10 on the container dishes 1.
  • FIG. 6 It can be seen that the imaging sensor 3 can detect the twistlock 2 at 4 m or 5 m distance just in its field of view before the twistlock 2 is completely covered by the container 10.
  • the height of the container 10 is assumed to be 2.960m.
  • a line laser 30 is mounted on the front of the container harness 1 and illuminates the loading surface 21 at a known fixed angle to the vertical (the solder through the container harness 1) or to the loading surface 21 with a single laser line.
  • the mounting position on the front of the container harness 1 makes the process independent of size changes of a telescopic frame of the container harness. From the illuminated by the laser line section through the camera image of the imaging sensor 3 three-dimensional data are calculated, for example, absolute metric three-dimensional data.
  • the container harness is lowered from 5 meters above the loading area 21 to 4 meters height, as in FIG. 6 shown, wherein the laser line sweeps over the loading surface 21.
  • the Twistlock 2 is also covered here. Consequently, a 3D contour of the twistlock 2 appears in the three-dimensional data. Based on the 3D contour, the twistlock 2 can be unambiguously identified independently of color, rust, rain, etc., since the 3D shape to be searched for is precisely known.
  • FIG. 7 shows a laser line 31, which runs next to a twistlock 2.
  • the laser line 31 is shown dotted for clarity, but can also be projected in reality as a solid line.
  • FIG. 8 shows accordingly a laser line 31, which passes over a twistlock 2, for example, as to figure 6 described the complete Twistlock 2 passes over.
  • the laser line 31 is shown dotted for clarity, but can also be projected in reality as a solid line.
  • the imaging sensor for detecting the laser line 31 is, for example, a common camera, but which is preferably equipped with a band-pass filter adapted to the wavelength of the laser used.
  • a band-pass filter adapted to the wavelength of the laser used.
  • a particularly narrow band in conjunction with an LED with a narrow spectrum or a monochromatic laser diode is advantageous here.
  • suitable lasers are corresponding LEDs or laser diodes, which in principle can emit other patterns than a line, for example a grating.
  • an infrared laser or a red laser can be used.
  • a good compromise for the observance of the laser protection determination with simultaneous high radiation density of the laser line 31 for the irradiation of the sunlight is achieved by a 20 ⁇ s line projection with a 1.35W laser diode.
  • laser power a range of 200mW - 300mW is recommended.
  • the imaging sensor in this case must be able to record images with an exposure time of only 20 ⁇ s. A black and white camera is sufficient for this. In pulsed operation, cooling for the laser may be omitted.
  • a 3D sensor is mounted directly on the spreader (the container harness) and scans twistlocks or corner fittings of containers in the vicinity of the spreader. From this, the positions of the twistlocks can be calculated, whereby containers can be deposited fully automatically on the loading areas of trucks or train wagons.
  • a particularly cost-effective and robust solution is the use of conventional cameras with a bandpass filter, which is tuned to the wavelength of a line laser and used to filter the sunlight from the camera image. As the spreader approaches, the line laser passes over the cargo bed, allowing the 3D contours of the twistlocks to be extracted from the camera image.
  • the problems of conventional image processing which are caused by different colors of twistlocks, pollution by rust and oil, weather, sunlight, etc., elegantly bypassed.
  • the solution is suitable for cranes at container handling sites, but also for straddle carriers, gantry forklifts or forklifts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Ein 3D-Sensor wird direkt am Spreader (1) (dem Containergeschirr) montiert und tastet Twistlocks (2) bzw. Eckbeschläge von Containern in der Umgebung des Spreaders (1) ab. Hieraus lassen sich die Positionen der Twistlocks (2) berechnen, wodurch sich Container vollautomatisch auf Ladeflächen von LKW oder Bahnwaggons absetzen lassen. Als besonders kostengünstige und robuste Lösung eignet sich der Einsatz herkömmlicher Kameras mit einem Bandpassfilter, welcher auf die Wellenlänge eines Linienlasers abgestimmt ist und zur Filterung der Sonneneinstrahlung aus dem Kamerabild dient. Der Linienlaser überstreicht bei der Annäherung des Spreaders (1) die Ladefläche, wodurch sich 3D-Konturen der Twistlocks (2) aus dem Kamerabild extrahieren lassen. Hierbei werden die Probleme herkömmlicher Bildverarbeitung, welche durch unterschiedliche Farben der Twistlocks (2), Verschmutzung durch Rost und Öl, Witterung, Sonneneinstrahlung etc. hervorgerufen werden, elegant umgangen. Die Lösung eignet sich für Kräne an Containerumschlagplätzen, aber auch für Portalhubwagen, Portalstapler oder Gabelstapler.

Description

  • Im wachsenden Welthandel leistet die Container-Logistik erhebliche Beiträge. Sie zeichnet sich durch ständig wachsende Effizienz durch immer weitergehende Automatisierung aus. Viele Container-Umschlagplätze sind mithilfe von Kränen stark automatisiert.
  • Ladekrane werden auf Güterumschlagplätzen, Lagerplätzen, in Montagehallen und Werften sowie beim Gleisbau eingesetzt. Bei einem Ladekran für Kraftfahrzeuge ist der Boden gegenüber dem Ladekran geneigt, damit Wasser abfließen kann. Weiterhin sind auf dem Boden unter dem Ladekran Spuren für Lastwagen markiert. Eine Ausführung eines Ladekrans ist ein Portalkran. Dieser überspannt einen Lade- und Arbeitsbereich wie ein Portal. In der Regel laufen seine Seitenwände mit Rädern auf zwei parallelen Schienen. Auf der Kranbrücke, dem horizontalen Teil des Portalkrans, bewegt sich eine Laufkatze mit einem Hubwerk. Alternativ kann auch ein Schienendrehkran auf der Kranbrücke montiert sein. Weiterhin kommen als Ladekran auch ein Brückenkran, ein Halbportalkran, ein Bockkran sowie ein Portaldrehkran in Betracht.
  • Ein Containergeschirr (engl. Bezeichnung "Spreader") ist ein Hebezeug, mit welchem ISO-genormte Container ergriffen werden können. Es ist sowohl ein starres Containergeschirr bekannt, welches nur für eine Containergröße bestimmt ist, als auch ein teleskopierendes Containergeschirr, dessen mehrere Tonnen schwerer Teleskoprahmen flexibel auf die Länge unterschiedlicher normierter Container (Normgrößen 20'-45') eingestellt werden kann. Für die weitere Betrachtung ist vor allem die maximale Höhe eines "Highcube-"Containers von 2,896 m relevant.
  • Auch Portalhubwagen, Portalstapler, Gabelstapler oder Quergabelstapler können mit einem Containergeschirr ausgerüstet werden. Das Containergeschirr ist auch hier ein Anbaugerät, dessen sogenannte Twistlocks in die vier oberen genormten Eckbeschläge eines Containers eingreifen oder die diesen von der Seite her greifen. Hierbei wird ein Element des Twistlocks um 90° rotiert, wodurch eine formschlüssige Verbindung zur Verriegelung gewährleistet ist. Die Größe der Twistlocks ist normiert und beträgt in etwa 104 mm in der Länge sowie 56 mm in der Breite.
  • Häufige Arbeitsvorgänge in der Container-Logistik sind das Verankern eines Containers am Containergeschirr, mit welchem der Container anschließend bewegt wird, sowie das Verankern der Container auf Bahnwaggons oder Ladeflächen von LKWs. Diese Aufgaben werden heute ausschließlich von Kranfahrern bewältigt, die teilweise an entfernten Stationen sitzen und unterschiedliche Kräne mithilfe von Videobildern bedienen.
  • Zur Verankerung eines Containers auf einer Ladefläche eines LKW oder Bahnwaggons kommen erneut Twistlocks zum Einsatz. Beim Aufsetzen des Containers müssen die genormten Eckbeschläge des Containers genau über den Twistlocks des LKW oder Bahnwaggons positioniert werden. Die erforderliche Genauigkeit für die Positionierung kann hierbei mit 25 mm abgeschätzt werden, wobei die Höhengenauigkeit weniger kritisch ist.
  • Aus dem Dokument "Kameragestützte Automatisierung von Containerkranen - Potentiale, Technologien, Rahmenbedingungen", Jörg Krüger und Mike Neuendorf, 19. Internationale Kran-Fachtagung 2011, ist eine kameragestützte, automatische Erkennung von Be- und Entladepositionen auf einem LKW bekannt. Diese Positionen werden aus den Bildern hochauflösender Kameras extrahiert, welche in großer Höhe an einer Laufkatze eines Containerkrans montiert sind. Hierbei werden in den Kamerabildern Eckbeschläge der Container sowie Twistlocks der LKW-Ladeflächen erkannt.
  • Aus dem Dokument "Container handlers" erhältlich im Internet unter http://www.orlaco.com/container-handlers.htm am 29.09.2011, ist bekannt, direkt am Containergeschirr Kameras zu montieren, deren Bilder einem Fahrer eines Gabelstaplers erleichtern, das Containergeschirr an einem Container zu verankern.
  • Es stellt sich die Aufgabe, ein Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr sowie ein Containergeschirr anzugeben, mit welchen die häufigen Verankerungsvorgänge von Containern besser unterstützt werden.
  • Diese Aufgabe wird durch das Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr gelöst, wobei mindestens ein bildgebender Sensor an dem Containergeschirr montiert ist und Messwerte von einer Umgebung des Containergeschirrs ermittelt. Das Verfahren ist dadurch gekennzeichnet, dass eine Recheneinheit aus den Messwerten dreidimensionale Daten bildet, aus welchen sie Verankerungs-Positionen, insbesondere Positionen von Twistlocks oder Eckbeschlägen, ermittelt, und die Recheneinheit aus den Verankerungs-Positionen die Zielposition für das Containergeschirr berechnet.
  • Das Containergeschirr ist mit mindestens einem bildgebenden Sensor ausgerüstet, welcher an dem Containergeschirr montiert und zur Ermittlung von Messwerten von einer Umgebung des Containergeschirrs eingerichtet ist. Es ist dadurch gekennzeichnet, dass der bildgebende Sensor zur Ermittlung von Messwerten geeignet und eingerichtet ist, aus welchen dreidimensionale Daten berechenbar sind, aus welchen wiederum Verankerungs-Positionen, insbesondere Positionen von Twistlocks oder Eckbeschlägen, ermittelbar sind.
  • Das Verfahren sowie das Containergeschirr stellen eine zuverlässige Lösung zur automatisierten Positionierung des Containergeschirrs bereit. Die Genauigkeit ist aufgrund der dreidimensionalen Datenverarbeitung so hoch, dass nach erfolgter Positionierung Twistlocks automatisch in Eckbeschlägen eines Container verriegelt werden können. Dies erlaubt das automatisierte Beladen von LKWs für den Straßenverkehr oder Bahnwaggons, bei denen die zu transportierenden Container mit Twistlocks auf der Ladefläche gesichert werden müssen. Die Positionierung des bildgebenden Sensors am Containergeschirr erzielt aufgrund der Nähe zu den zu erkennenden Objekten eine hohe Genauigkeit und in der Folge eine hohe Zuverlässigkeit bei der Positionierung. Letztere ist unerlässlich, um Sachund Personenschäden zu vermeiden. So wird es erstmals möglich, das Be- und Entladen von Fahrzeugen mit Twistlock-Sicherung zu automatisieren.
  • In einer Weiterbildung ist der mindestens eine bildgebende Sensor ein 2D-Laserscanner, ein 3D-Laserscanner, eine 3D-Kamera oder ein Streifenprojektionssensor oder umfasst mehrere dieser Sensoren. Dies hat den Vorteil, dass der bildgebende Sensor die dreidimensionalen Daten zur Erkennung der Twistlocks oder Eckbeschläge unmittelbar erstellen kann, wodurch eine zuverlässige Erkennung und Positionsbestimmung ermöglicht wird. Beispielsweise werden die dreidimensionalen Daten durch einen Schwenk eines 2D-Laserscanners gewonnen.
  • Gemäß einer Ausführungsform ist der mindestens eine bildgebende Sensor eine Kamera ist. Das Containergeschirr ist zusätzlich mit mindestens einem Laser ausgerüstet. Die Recheneinheit extrahiert aus den Messwerten Punkte, Linien oder Muster, welche der Laser auf ein Twistlock oder einen Eckbeschlag projiziert. Die Recheneinheit ermittelt aus einer Geometrie der Punkte, Linien oder Muster die Verankerungs-Positionen.
  • Diese Ausführungsform hat den Vorteil, dass die Punkte, Linien oder Muster, welche der Laser auf das Twistlock oder den Eckbeschlag projiziert, auch im Freien bei ungünstigen Witterungsbedingen wie Regen, direkter tropischer Sonneneinstrahlung oder Verschmutzung durch Rost oder Öl, einen hinreichenden Kontrast erzeugen, welcher durch die Kamera detektiert wird und die Extraktion der Punkte, Linien oder Muster aus den Messwerten gewährleistet. Es wird eine sehr robuste Positionserkennung erzielt.
  • Weiterhin bietet der Einsatz einer einfachen Kamera den Vorteil, dass diese in robuster Ausführung gewählt werden kann, wodurch die in anbetracht der heftigen Erschütterungen am Kran und insbesondere am Containergeschirr erforderliche mechanische Stabilität gewährleistet wird. Auch kann bei diesen einfachen und kostengünstigen Komponenten mit einer langen Lebensdauer gerechnet werden. Dies ist von Vorteil, da ein häufiger Komponentenwechsel mit Nachkalibrierung im industriellen Einsatz nicht in Frage kommt.
  • In einer Weiterbildung ist der Laser ein Linienlaser, welcher in einem definierten Abstand zu dem mindestens einen bildgebenden Sensor am Containergeschirr montiert ist und eine Laserlinie in einem definierten Winkel zu einer Senkrechten abstrahlt. Das Containergeschirr wird über mindestens einem Twistlock oder Eckbeschlag zumindest teilweise abgesenkt, wobei die Laserlinie das Twistlock oder den Eckbeschlag überstreicht. Die Recheneinheit extrahiert die Laserlinie fortlaufend aus den Messwerten und ermittelt aus der Geometrie der Laserlinie als dreidimensionale Daten eine 3D-Kontur. Anhand der 3D-Kontur erkennt die Recheneinheit das Twistlock oder den Eckbeschlag.
  • Diese Weiterbildung hat den Vorteil, dass der Linienlaser fest am Containergeschirr montiert wird und keine dreh- oder schwenkbare Aufhängung benötigt. Auch kann der Linienlaser selbst in robuster Ausführung gewählt werden. Beide Aspekte tragen den industriellen Anforderungen an die Robustheit der Sensorik Rechnung.
  • Gemäß einer Ausführungsform berechnet die Recheneinheit zur Extraktion der Laserlinie aus den Messwerten ein Differenzbild, welches aus der Differenz eines Kamerabilds mit der Laserlinie mit einem zeitnahen Kamerabild ohne die Laserlinie gebildet wird.
  • Die Berechnung eines Differenzbildes bietet den Vorteil, dass als Störfaktoren a priori unbekannte Veränderungen des Hintergrunds durch wechselnde Lichtverhältnisse, Rost, Verschmutzung o.ä. ausgeschaltet werden können, wodurch die Robustheit der Erkennung deutlich erhöht wird.
  • In einer Weiterbildung ist die Kamera mit einem an eine Wellenlänge des Lasers angepassten Bandpassfilter ausgerüstet. Der Bandpassfilter erhöht die Robustheit der Bilderkennung bei Sonnenlicht, da alle Wellenlängen des Sonnenlichts außerhalb der Wellenlängen des Lasers gefiltert und somit als Störfaktoren im Kamerabild ausgeschaltet werden.
  • Gemäß einer Ausführungsform wird das Containergeschirr an der Zielposition vollautomatisch an einem Container verankert, indem Twistlocks des Containergeschirrs in Eckbeschläge des Containers eingreifen und sich verriegeln.
  • Bei einer alternativen Ausführungsform wird ein an dem Containergeschirr verankerter Container an der Zielposition vollautomatisch auf einer Ladefläche eines LKW oder Bahnwaggons verankert wird, indem Twistlocks des LKW oder Bahnwaggons in Eckbeschläge des Containers eingreifen und sich verriegeln.
  • In einer Weiterbildung wird das Containergeschirr in die Zielposition bewegt, wobei zwei Bewegungsabschnitte durchlaufen werden. Im ersten Bewegungsabschnitt besteht ein Sichtkontakt zwischen mindestens einer Verankerungs-Position und dem bildgebenden Sensor besteht. Weiterhin erfolgt im ersten Bewegungsabschnitt in einer Regelschleife eine fortlaufende Neuberechnung der Zielposition. Im zweiten Bewegungsabschnitt besteht kein Sichtkontakt zwischen den Verankerungs-Positionen und dem bildgebenden Sensor. Daher wird die zuletzt berechnete Zielposition im zweiten Bewegungsabschnitt gesteuert angefahren.
  • Diese Weiterbildung trägt der Tatsache Rechnung, dass die Twistlocks im zweiten Bewegungsabschnitt durch den Container selbst verdeckt sein können. Durch die Weiterbildung kann die Zielposition auch in dieser Situation angenähert werden.
  • Gemäß einer Ausführungsform ermittelt mindestens ein stationärer Sensor Orientierungs-Messwerte von einer Umgebung des Containergeschirrs ermittelt. Eine Recheneinheit ermittelt aus den Orientierungs-Messwerten eine Orientierungs-Position für das Containergeschirr, welche sich in der Nähe der Zielposition befindet. Das Containergeschirr wird in die Orientierungs-Position manövriert, bevor die Zielposition bestimmt wird. Diese Ausführungsform beschleunigt den Vorgang, indem das Containergeschirr mithilfe der stationären Sensoren vorab zeitsparend in die Orientierungs-Position gebracht wird.
  • In einer Weiterbildung ist das Containergeschirr mit weiteren Sensoren, insbesondere 2D-Laserscannern, 3D-Laserscannern, Kameras, 3D-Kameras, Streifenprojektionssensoren, Abstandssensoren, Näherungsschaltern und/oder Druckschaltern ausgerüstet. Dies ermöglicht eine weitere Steigerung der Genauigkeit der Positionsbestimmung sowie zusätzliche Sicherheit im Betrieb.
  • Ein Kran ist ausgebildet als Ladekran, Portalkran, Brückenkran, Halbportalkran, Bockkran oder Portaldrehkran, und mit dem Containergeschirr ausgerüstet.
  • In einer Weiterbildung ist der Kran zusätzlich mit stationären Sensoren, insbesondere Kameras und/oder Laserscanner, welche am Kran montiert sind, ausgerüstet.
  • Die stationären Sensoren dienen zur Messung (bzw. Schätzung) der Position und Lage beweglicher Objekte, z.B. eines Containers. Als weitere Verwendungen kommen die Messung der Position und Lage eines Fahrzeugs oder eines beweglichen Bauteils des Krans selbst in Betracht. Im Kontext eines Ladekrans dienen die Messungen der stationären Sensoren als Grundlage, um LKW-Fahrern zu signalisieren, wo sie anzuhalten haben. Weiterhin kann aufgrund solcher Messungen der Kran selbst gesteuert werden.
  • Die stationären Sensoren können beispielsweise aus einem oder mehreren der folgenden Elemente zusammengesetzt sein: einem 3D-Laserscanner, einem schwenkbaren 2D-Laserscanner oder einer Videokamera. Sie werden üblicherweise derart im Tragwerk des Krans angebracht, dass - im Falle eines Portalkrans - mehrere Spuren für LKW oder Gleise für Eisenbahnwaggons überstrichen werden.
  • Das Flurförderzeug ist als Portalhubwagen, Portalstapler, Gabelstapler oder Quergabelstapler ausgeführt und mit einem Containergeschirr nach einem der Ansprüche 11 bis 16 ausgerüstet.
  • Auf dem computerlesbaren Datenträger ist ein Computerprogramm gespeichert, welches das Verfahren ausführt, wenn es in einem Computer abgearbeitet wird. Das Computerprogramm wird in einem Computer abgearbeitet und führt dabei das Verfahren aus.
  • Im Folgenden werden Ausführungsbeispiele der Erfindung anhand von Figuren näher erläutert. Es zeigen:
  • Figur 1
    einen Kran mit stationären Sensoren sowie ein Frachtgut unter dem Kran,
    Figur 2
    ein Containergeschirr bei der Annäherung an einen Container,
    Figur 3
    einen Container bei der Annäherung an einen LKW,
    Figur 4
    ein Containergeschirr, welches mit bildgebenden Sensoren ausgerüstet ist,
    Figur 5
    Montagepositionen der bildgebenden Sensoren,
    Figur 6
    eine Ermittlung von Messwerten von einer Umgebung eines Containergeschirrs,
    Figur 7
    eine Laserlinie, welche neben einem Twistlock verläuft, und
    Figur 8
    eine Laserlinie, welche über ein Twistlock verläuft.
  • Figur 1 zeigt einen Kran 10. An dem Kran 10 sind stationäre Sensoren 6 angebracht. Weiterhin gezeigt ist ein Frachtgut 12, beispielsweise ein Container auf einem LKW, welches durch die stationären Sensoren 6 erfasst wird. Ebenfalls in Figur 1 zu sehen sind Räder 14, mit denen der Kran 10 auf Schienen bewegt werden kann. Ein Boden 15 unter dem Kran 10 ist geneigt, so dass Wasser abfließen kann. Auf dem Boden 15 sind Spurmarkierungen 13 angebracht, welche Spuren für Fahrzeuge markieren. An einer Laufkatze 4 ist ein Containergeschirr 1 beweglich aufgehängt. Das Containergeschirr 1 verfügt über Twistlocks 2, mit denen Container gegriffen werden können.
  • Figur 2 zeigt ein Containergeschirr 1 bei der Annäherung an einen Container 10. Hierbei müssen Twistlocks 2 des Containergeschirrs 1 passgenau über genormten Eckbeschlägen 11 des Containers 10 positioniert werden.
  • Figur 3 zeigt einen Container 10 bei der Annäherung an eine Ladefläche 21 eines LKW 20. Hier müssen Eckbeschläge 11 des Containers 10 passgenau über Twistlocks 2 des LKW 20 positioniert werden. Der Container 10 wird mithilfe eines Containergeschirrs 1 durch einen Kran transportiert.
  • Figur 4 zeigt ein Containergeschirr 1, welches mit bildgebenden Sensoren 3 ausgerüstet ist. Das Containergeschirr 1 ist auf einem Container 10 abgesetzt.
  • Als bildgebende Sensoren 3 eignen sich alle Sensoren, aus deren Messwerten sich dreidimensionale Bilddaten erzeugen lassen, beispielsweise Laserscanner oder Streifenprojektionssensoren.
  • Werden als bildgebende Sensoren 3 lediglich einfache Kameras eingesetzt, so ist eine zuverlässige Erkennung der Twistlocks durch die Vielfalt der Erscheinungsformen von Ladeflächen und Twistlocks, welche sich durch Farbe, Rost, Dreck, Witterung etc. voneinander abweichen, allein anhand des Kamerabildes technologisch sehr schwierig. Diese Hürde wird durch die Erzeugung dreidimensionaler Bilddaten überwunden.
  • Eine Recheneinheit, beispielsweise ein Mikroprozessor, bildet aus den Messwerten dreidimensionale Bilddaten, aus welchen sie Verankerungs-Positionen, insbesondere Positionen von Twistlocks oder Eckbeschlägen, ermittelt. Die Verankerungs-Positionen müssen jedoch nicht mit den Positionen der Twistlocks identisch sein, sondern dürfen auch Positionen von Strukturen sein, die sich leicht ermitteln lassen und deren Relativposition zum Twistlock bekannt ist. Ferner berechnet die Recheneinheit aus den Verankerungs-Positionen eine Zielposition für das Containergeschirr 1. An der Zielposition kann das Containergeschirr 1 beispielsweise den Container 10 aufnehmen oder auf einer Ladefläche eines LKW oder Bahnwaggons absetzen. Die Twistlocks und Eckbeschläge erscheinen in den dreidimensionalen Bilddaten mit einer typischen 3D-Kontur. Dies gilt für das Twistlock sowohl im ausgefahrenen als auch im eingezogenen Zustand.
  • Diese Art der Positionsbestimmung kann einmalig oder auch fortlaufend erfolgen, solange ein durch den bildgebenden Sensor 3 anvisiertes Twistlock nicht vom Container 10 verdeckt wird. Unter diesen Voraussetzungen kann der Kran in einer Regelschleife angesteuert werden und das Containergeschirr in Richtung der Zielposition bewegen. Sobald das anvisierte Twistlock durch den Container 10 jedoch verdeckt wird, kann der Kran das letzte Stück bis zur Zielposition lediglich gesteuert (blind) anfahren.
  • Stationäre Sensoren, welche an einer Brücke oder Laufkatze des Krans montiert sind, beispielsweise hoch hängende Laserscanner oder Kameras, erlauben es, die Anfahrt der Zielposition zu beschleunigen, indem sie das Containergeschirr zunächst in eine geeignete Grobposition oder Orientierungsposition in der Nähe der Zielposition bringen, an der der bildgebenden Sensors 3 ein Twistlock an der Zielposition in seinem lokalen Blickfeld erfassen kann. Dieses lokale Blickfeld kann beispielsweise 0,5m x 0,5m betragen, sodass die Orientierungsposition, welche die stationären Sensoren bestimmen, die Zielposition mit dieser Genauigkeit annähern muss. Auch haben die stationären Sensoren sowie ggf. weitere Abstandssensoren des Containergeschirrs 1 dafür Sorge zu tragen, dass es bei der Anfahrt der Orientierungsposition zu keine Kollision kommt.
  • Um sicherzustellen, dass mindestens zwei Twistlocks visuell erfasst werden können, wenn die bildgebenden Sensoren 3 an allen vier Ecken des Containergeschirrs 1 angeordnet sind, empfiehlt es sich, die Orientierungsposition etwas dezentriert zur vermuteten Zielposition zu wählen.
  • Figur 5 zeigt Montagepositionen von bildgebenden Sensoren 3 an einem Containergeschirr 1 aus unterschiedlichen Perspektiven. Teilweise sind auch Twistlocks 2 des Containergeschirrs 1 sichtbar.
  • Figur 6 zeigt eine Ermittlung von Messwerten von einer Umgebung eines Containergeschirrs 1. Links ist eine Frontalansicht des Containergeschirrs 1 sowie eines daran aufgehängten Containers 10 dargestellt, rechts eine Seitenansicht. Unterhalb der jeweiligen Darstellung ist eine Ladefläche 21 eines LKW oder Bahnwaggons mit einem Twistlock 2 gezeigt, welche sich jeweils 4m bzw. 5m unterhalb des Containergeschirrs 1 befindet. Ein bildgebender Sensor 3, hier eine einfache Kamera, ist mit 180mm bzw. 150mm Überhang gegenüber dem Container 10 am Containergeschirr 1 montiert. Aus Figur 6 wird ersichtlich, dass der bildgebende Sensor 3 das Twistlock 2 in 4m bzw. 5m Entfernung gerade noch in seinem Sichtbereich erfassen kann, bevor das Twistlock 2 vollständig durch den Container 10 verdeckt wird. Die Höhe des Containers 10 wird hierbei mit 2,960m angenommen.
  • Im vorliegenden Ausführungsbeispiel ist ein Linienlaser 30 an der Front des Containergeschirrs 1 montiert und beleuchtet die Ladefläche 21 unter einem bekannten festen Winkel zur Senkrechten (dem Lot durch das Containergeschirr 1) bzw. zur Ladefläche 21 mit einer einzelnen Laserlinie. Die Montageposition an der Front des Containergeschirrs 1 macht das Verfahren unabhängig von Größenänderungen eines Teleskoprahmens des Containergeschirrs. Aus dem von der Laserlinie beleuchteten Schnitt durch das Kamerabild des bildgebenden Sensors 3 werden dreidimensionale Daten berechnet, beispielsweise absolute metrische dreidimensionale Daten.
  • Hierzu wird das Containergeschirr aus 5 Metern Höhe über der Ladefläche 21 auf 4 Meter Höhe abgesenkt, wie in Figur 6 gezeigt, wobei die Laserlinie die Ladefläche 21 überstreicht. Sofern das Containergeschirr 1 sich bereits in einer geeigneten Orientierungsposition befindet (vgl. Beschreibung der Figur 4), wird hierbei auch das Twistlock 2 überstrichen. Folglich erscheint in den dreidimensionalen Daten eine 3D-Kontur des Twistlocks 2. Anhand der 3D-Kontur lässt sich das Twistlock 2 unabhängig von Farbe, Rost, Regen etc. eindeutig identifizieren, da die zu suchende 3D-Form genau bekannt ist.
  • Figur 7 zeigt hierzu eine Laserlinie 31, welche neben einem Twistlock 2 verläuft. Die Laserlinie 31 ist zur Verdeutlichung gepunktet dargestellt, kann jedoch in der Realität auch als durchgehende Linie projiziert werden.
  • Figur 8 zeigt entsprechend eine Laserlinie 31, welche über ein Twistlock 2 verläuft, weil sie beispielsweise wie zu Figur 6 beschrieben das komplette Twistlock 2 überstreicht. Die Laserlinie 31 ist zur Verdeutlichung gepunktet dargestellt, kann jedoch in der Realität auch als durchgehende Linie projiziert werden.
  • Der bildgebende Sensor zur Erfassung der Laserlinie 31 ist beispielsweise eine gewöhnliche Kamera, welche jedoch vorzugsweise mit einem Bandpassfilter ausgerüstet ist, der an die Wellenlänge des verwendeten Lasers angepasst ist. Hierdurch wird die Robustheit der Bildverarbeitung gegenüber dem Störfaktor Sonnenlicht deutlich erhöht. Ein besonders schmales Band in Verbindung mit einer LED mit einem schmalen Spektrum oder einer monochromatischen Laserdiode ist hierbei von Vorteil. Als Laser eignen sich folglich entsprechende LEDs oder Laserdioden, die grundsätzlich auch andere Muster als eine Linie, beispielsweise ein Gitter abstrahlen können. Beispielsweise kann ein Infrarotlaser oder ein roter Laser verwendet werden. Zur Einhaltung der Laserschutzbestimmungen für das menschliche Auge empfiehlt es sich, die Bestrahlungszeiten des Lasers auf einen Bereich von jeweils einigen zehn Mikrosekunden zu reduzieren.
  • Ein guter Kompromiss zur Einhaltung der Laserschutzbestimmung bei gleichzeitig hoher Strahlungsdichte der Laserlinie 31 zur Überstrahlung des Sonnenlichts wird durch eine 20µs Linienprojektion mit einer 1,35W Laserdiode erzielt. Als Laserleistung empfiehlt sich ein Bereich von 200mW - 300mW. Der bildgebende Sensor muss in diesem Fall in der Lage sein, Bilder mit einer Belichtungszeit von lediglich 20µs aufzuzeichnen. Eine Schwarz-Weiß-Kamera ist hierzu ausreichend. Im Pulsbetrieb kann eine Kühlung für den Laser ggf. entfallen.
  • Zur Fokussierung der Laserlinie 31 bieten sich bei Verwendung einer Laserdiode Powell-Linsen oder Zylinderlinsen an, um eine möglichst schmale Laserlinie 31 zu erzielen, welche über einen relativ weiten Tiefenbereich von 0,5m - 1,2m scharf abgebildet wird.
  • Um einen ausreichenden Kontrast der Laserlinie 31 vor dem Bildhintergrund auch bei direktem Einfall von Sonnenlicht sicherzustellen, bietet es sich an, ein Differenzbild zu erzeugen. Hierzu werden von der zu vermessenden Oberfläche unmittelbar aufeinander folgend zwei Bilder erfasst, wobei das eine Bild mit und das andere Bild ohne die Laserlinie 31 aufgenommen wird. Die Differenz beider Bilder bringt die Laserlinie 31 besonders deutlich hervor, indem sie den Einfluss von Umgebungslicht und anderen störenden Strukturen im Bild beseitigt. Anschließend empfiehlt es sich, den Grauwertbereich des Bildes zu dehnen.
  • Ein 3D-Sensor wird direkt am Spreader (dem Containergeschirr) montiert und tastet Twistlocks bzw. Eckbeschläge von Containern in der Umgebung des Spreaders ab. Hieraus lassen sich die Positionen der Twistlocks berechnen, wodurch sich Container vollautomatisch auf Ladeflächen von LKW oder Bahnwaggons absetzen lassen. Als besonders kostengünstige und robuste Lösung eignet sich der Einsatz herkömmlicher Kameras mit einem Bandpassfilter, welcher auf die Wellenlänge eines Linienlasers abgestimmt ist und zur Filterung der Sonneneinstrahlung aus dem Kamerabild dient. Der Linienlaser überstreicht bei der Annäherung des Spreaders die Ladefläche, wodurch sich 3D-Konturen der Twistlocks aus dem Kamerabild extrahieren lassen. Hierbei werden die Probleme herkömmlicher Bildverarbeitung, welche durch unterschiedliche Farben der Twistlocks, Verschmutzung durch Rost und Öl, Witterung, Sonneneinstrahlung etc. hervorgerufen werden, elegant umgangen. Die Lösung eignet sich für Kräne an Containerumschlagplätzen, aber auch für Portalhubwagen, Portalstapler oder Gabelstapler.
  • Die beschriebenen Ausführungsbeispiele, Weiterbildungen und Ausführungformen lassen sich frei miteinander kombinieren.

Claims (20)

  1. Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr (1), wobei mindestens ein bildgebender Sensor (3) an dem Containergeschirr (1) montiert ist und Messwerte von einer Umgebung des Containergeschirrs (1) ermittelt,
    dadurch gekennzeichnet, dass
    - eine Recheneinheit aus den Messwerten dreidimensionale Daten bildet, aus welchen sie Verankerungs-Positionen, insbesondere Positionen von Twistlocks (2) oder Eckbeschlägen (11), ermittelt, und
    - die Recheneinheit aus den Verankerungs-Positionen die Zielposition für das Containergeschirr (1) berechnet.
  2. Verfahren nach Anspruch 1,
    - bei dem der mindestens eine bildgebende Sensor (3) ein 2D-Laserscanner, ein 3D-Laserscanner, eine 3D-Kamera oder ein Streifenprojektionssensor ist oder mehrere dieser Sensoren umfasst.
  3. Verfahren nach Anspruch 1,
    - bei dem der mindestens eine bildgebende Sensor (3) eine Kamera ist,
    - bei dem das Containergeschirr (1) zusätzlich mit mindestens einem Laser ausgerüstet ist,
    - bei dem die Recheneinheit aus den Messwerten Punkte, Linien oder Muster extrahiert, welche der Laser auf ein Twistlock (2) oder einen Eckbeschlag (11) projiziert, und
    - bei dem die Recheneinheit aus einer Geometrie der Punkte, Linien oder Muster die Verankerungs-Positionen ermittelt.
  4. Verfahren nach Anspruch 3,
    - bei dem der Laser ein Linienlaser (30) ist, welcher in einem definierten Abstand zu dem mindestens einen bildgebenden Sensor (3) am Containergeschirr (1) montiert ist und eine Laserlinie (31) in einem definierten Winkel zu einer Senkrechten abstrahlt,
    - bei dem das Containergeschirr (1) über mindestens einem Twistlock (2) oder Eckbeschlag (11) zumindest teilweise abgesenkt wird, wobei die Laserlinie (31) das Twistlock (2) oder den Eckbeschlag (11) überstreicht,
    - bei dem die Recheneinheit die Laserlinie (31) fortlaufend aus den Messwerten extrahiert und aus der Geometrie der Laserlinie (31) als dreidimensionale Daten eine 3D-Kontur ermittelt, und
    - bei dem die Recheneinheit anhand der 3D-Kontur das Twistlock (2) oder den Eckbeschlag (11) erkennt.
  5. Verfahren nach Anspruch 4,
    - bei dem die Recheneinheit zur Extraktion der Laserlinie (31) aus den Messwerten ein Differenzbild berechnet, welches aus der Differenz eines Kamerabilds mit der Laserlinie (31) mit einem zeitnahen Kamerabild ohne die Laserlinie (31) gebildet wird.
  6. Verfahren nach einem der vorangegangenen Ansprüche,
    - bei dem das Containergeschirr (1) an der Zielposition vollautomatisch an einem Container (10) verankert wird, indem Twistlocks (2) des Containergeschirrs (1) in Eckbeschläge (11) des Containers (10) eingreifen und sich verriegeln.
  7. Verfahren nach einem der Ansprüche 1 bis 5,
    - bei dem ein an dem Containergeschirr (1) verankerter Container (10) an der Zielposition vollautomatisch auf einer Ladefläche eines LKW (20) oder Bahnwaggons verankert wird, indem Twistlocks (2) des LKW (20) oder Bahnwaggons in Eckbeschläge (11) des Containers (10) eingreifen und sich verriegeln.
  8. Verfahren nach einem der vorangegangenen Ansprüche,
    - bei dem das Containergeschirr (1) in die Zielposition bewegt wird, wobei zwei Bewegungsabschnitte durchlaufen werden,
    - bei dem im ersten Bewegungsabschnitt ein Sichtkontakt zwischen mindestens einer Verankerungs-Position und dem bildgebenden Sensor (3) besteht,
    - bei dem im ersten Bewegungsabschnitt in einer Regelschleife eine fortlaufende Neuberechnung der Zielposition erfolgt,
    - bei dem im zweiten Bewegungsabschnitt kein Sichtkontakt zwischen den Verankerungs-Positionen und dem bildgebenden Sensor (3) besteht, und
    - bei dem im zweiten Bewegungsabschnitt die zuletzt berechnete Zielposition gesteuert angefahren wird.
  9. Verfahren nach einem der vorangegangenen Ansprüche, bei dem
    - mindestens ein stationärer Sensor (6) Orientierungs-Messwerte von einer Umgebung des Containergeschirrs (1) ermittelt,
    - eine Recheneinheit aus den Orientierungs-Messwerten eine Orientierungs-Position für das Containergeschirr (1) ermittelt, welche sich in der Nähe der Zielposition befindet, und
    - bei dem das Containergeschirr (1) in die OrientierungsPosition manövriert wird, bevor die Zielposition bestimmt wird.
  10. Containergeschirr (1),
    - ausgerüstet mit mindestens einem bildgebenden Sensor (3), welcher an dem Containergeschirr (1) montiert und zur Ermittlung von Messwerten von einer Umgebung des Containergeschirrs (1) eingerichtet ist,
    dadurch gekennzeichnet, dass
    - der bildgebende Sensor zur Ermittlung von Messwerten geeignet und eingerichtet ist, aus welchen dreidimensionale Daten berechenbar sind, aus welchen wiederum Verankerungs-Positionen, insbesondere Positionen von Twistlocks (2) oder Eckbeschlägen (11), ermittelbar sind.
  11. Containergeschirr (1) nach Anspruch 10,
    - bei dem der bildgebende Sensor (3) als 2D-Laserscanner, 3D-Laserscanner, 3D-Kamera oder Streifenprojektionssensor ausgebildet ist oder mehrere dieser Sensoren umfasst.
  12. Containergeschirr (1) nach Anspruch 10,
    - bei dem der mindestens eine bildgebende Sensor (3) eine Kamera ist,
    - zusätzlich ausgerüstet mit mindestens einem Laser.
  13. Containergeschirr (1) nach Anspruch 12,
    - bei dem der Laser ein Linienlaser (30) ist, welcher in einem definierten Abstand zu dem mindestens einen bildgebenden Sensor (3) am Containergeschirr (1) montiert ist und eine Laserlinie (31) in einem definierten Winkel zu einer Senkrechten abstrahlt.
  14. Containergeschirr (1) nach Anspruch 12 oder 13,
    - bei dem die Kamera mit einem an eine Wellenlänge des Lasers angepassten Bandpassfilter ausgerüstet ist.
  15. Containergeschirr (1) nach einem der Ansprüche 10 bis 14,
    - ausgerüstet mit weiteren Sensoren, insbesondere 2D-Laserscannern, 3D-Laserscannern, Kameras, 3D-Kameras, Streifenprojektionssensoren, Abstandssensoren, Näherungsschaltern und/oder Druckschaltern.
  16. Kran (5),
    - ausgebildet als Ladekran, Portalkran, Brückenkran, Halbportalkran, Bockkran oder Portaldrehkran, und
    - ausgerüstet mit einem Containergeschirr (1) nach einem der Ansprüche 10 bis 15.
  17. Kran (5) nach Anspruch 16,
    - zusätzlich ausgerüstet mit stationären Sensoren (6), insbesondere Kameras und/oder Laserscanner, welche am Kran (5) montiert sind.
  18. Flurförderzeug,
    - ausgeführt als Portalhubwagen, Portalstapler, Gabelstapler oder Quergabelstapler, und
    - ausgerüstet mit einem Containergeschirr (1) nach einem der Ansprüche 10 bis 15.
  19. Computerlesbarer Datenträger,
    - auf dem ein Computerprogramm gespeichert ist, welches das Verfahren nach einem der Ansprüche 1 bis 9 ausführt, wenn es in einem Computer abgearbeitet wird.
  20. Computerprogramm,
    - welches in einem Computer abgearbeitet wird und dabei das Verfahren nach einem der Ansprüche 1 bis 9 ausführt.
EP11183486.7A 2011-09-30 2011-09-30 Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr und Containergeschirr Active EP2574587B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11183486.7A EP2574587B1 (de) 2011-09-30 2011-09-30 Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr und Containergeschirr
CN201210369772.3A CN103030063B (zh) 2011-09-30 2012-09-29 用于确定集装箱吊架用的目标位置的方法和集装箱吊架

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11183486.7A EP2574587B1 (de) 2011-09-30 2011-09-30 Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr und Containergeschirr

Publications (2)

Publication Number Publication Date
EP2574587A1 true EP2574587A1 (de) 2013-04-03
EP2574587B1 EP2574587B1 (de) 2014-06-25

Family

ID=44719619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11183486.7A Active EP2574587B1 (de) 2011-09-30 2011-09-30 Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr und Containergeschirr

Country Status (2)

Country Link
EP (1) EP2574587B1 (de)
CN (1) CN103030063B (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2724972A1 (de) 2012-10-25 2014-04-30 Lase GmbH Industrielle Lasertechnik Verfahren zur Bestimmung der Position, in der ein ISO-Container auf ein Trägerfahrzeug aufzusetzen ist, sowie 3D-Laserscan-Messanlage dafür
DE102013011718A1 (de) 2013-07-15 2015-01-15 Isam Ag Verfahren zur Steuerung einer Containerbrücke zum Be- oder Entladen, insbesondere des Laderaumes, eines Schiffes bzw. Steuersystem zur Steuerung einer Containerbrücke bzw. Containerbrücke mit Steuersystem
EP3000762A1 (de) 2014-09-24 2016-03-30 Siemens Aktiengesellschaft Verfahren und System zur automatischen, optischen Bestimmung einer Zielposition für ein Containergeschirr
CN107416665A (zh) * 2017-04-11 2017-12-01 广州电力机车有限公司 一种货箱吊装方法
EP3160890A4 (de) * 2014-06-30 2018-02-28 Konecranes Global Corporation Lasttransport mittels einer lastaufnahmevorrichtung
CN110217254A (zh) * 2019-07-09 2019-09-10 中车长江车辆有限公司 一种空轨货运的集装箱防护装置、货运列车及其控制方法
US10584016B2 (en) 2015-04-01 2020-03-10 Konecranes Global Corporation Method, load handling device, computer program and computer program product for positioning gripping means
WO2020098933A1 (en) * 2018-11-14 2020-05-22 Abb Schweiz Ag System and method to load a container on a landing target
DE102020208109A1 (de) 2020-06-30 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Steuerung eines Fördermittels zur Aufnahme eines Containers
EP4159661A1 (de) * 2021-09-30 2023-04-05 Fud Technologies Sp. z o.o. Verfahren zum führen der seilscheibe insbesondere eines freikrans

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613015B (zh) * 2013-11-26 2015-08-26 中联重科股份有限公司 安全吊载控制方法、装置、系统及起重机
CN105512607B (zh) * 2015-11-25 2019-01-15 浙江工业大学 一种集卡锁头位置识别方法
CN105480848A (zh) * 2015-12-21 2016-04-13 上海新时达电气股份有限公司 一种港口吊车起重系统及其堆垛方法
TWI582036B (zh) * 2016-05-05 2017-05-11 中國鋼鐵股份有限公司 天車之儲位辨識系統及儲位辨識方法
CN105905809B (zh) * 2016-06-28 2017-06-30 浙江华叉搬运设备有限公司 一种集装箱搬运小车控制方法
JP6760030B2 (ja) * 2016-12-09 2020-09-23 株式会社タダノ クレーン
DE102017112661A1 (de) 2017-06-08 2018-12-13 Konecranes Global Corporation Automatisch geführtes Portalhubgerät für Container und Verfahren zum Betrieb eines solchen Portalhubgeräts
EP3713866A4 (de) 2017-11-24 2021-08-25 TMEIC Corporation Verfahren und systeme zur erzeugung von landelösungen für container auf landeflächen
KR101918498B1 (ko) * 2018-08-24 2018-11-15 부산신항만주식회사 컨테이너의 검사 시스템
CN112047241A (zh) * 2019-06-05 2020-12-08 亘冠智能技术(杭州)有限公司 一种辅助集装箱锁具啮合升降的三维扫描系统
CN111874796B (zh) * 2020-09-14 2023-02-07 中冶南方城市建设工程技术有限公司 一种多功能管道吊装定位辅助装置
CN112551373B (zh) * 2020-11-30 2024-04-09 三一海洋重工有限公司 集装箱轮廓的扫描系统和集装箱轮廓的扫描方法
CN114873469B (zh) * 2022-06-02 2023-01-24 宜昌精联电子科技有限公司 Ftr脱钩无源自动检测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440915A1 (de) * 1989-12-08 1991-08-14 KCI Konecranes International Corporation Verfahren und Vorrichtung zum Lokalisieren eines zu hebenden Containers
EP0477101A1 (de) * 1990-09-21 1992-03-25 Ppm Societe Anonyme: Mobiles Transportgerät, wie z.B. ein Gerät zum Umschlagen von Containern
US6124932A (en) * 1996-04-10 2000-09-26 Tax; Hans Method for target-path correction of a load carrier and target-detection device and directional beam-emitting unit for performance of said method
JP2001097670A (ja) * 1999-09-28 2001-04-10 Mitsubishi Heavy Ind Ltd コンテナ位置検出装置
US20020024598A1 (en) * 2000-07-25 2002-02-28 Satoshi Kunimitsu Detecting system for container's location

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596330B1 (de) * 1992-11-03 1997-05-28 Siemens Aktiengesellschaft Anordnung zum messtechnischen Erfassen von Lastpendelungen bei Kranen
DE19632181C1 (de) * 1996-08-09 1997-09-18 Dieter Gloos Spreader mit Twistlocks für Container mit Eckbeschlägen
JP4282863B2 (ja) * 2000-02-03 2009-06-24 三井造船株式会社 クレーンの吊り荷位置検出装置
JP2006273532A (ja) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd コンテナ荷役用クレーン
KR100641029B1 (ko) * 2005-04-01 2006-11-06 정경자 컨테이너의 이적재 방법 및 장치
CN100537402C (zh) * 2006-06-28 2009-09-09 上海振华港口机械(集团)股份有限公司 集装箱起重机的集卡车对位系统和方法
CN201161875Y (zh) * 2007-11-13 2008-12-10 上海明路绳网索具有限公司 桥吊下集卡激光对位及吊具控制装置
EP2157041B1 (de) * 2008-08-20 2013-06-12 Siemens Aktiengesellschaft Verfahren und System zur Ermittlung einer Position eines Objekts in einer Containerkrananlage und Steuerungsprogramm für eine Meßvorrichtung
DE102009060513B4 (de) * 2009-12-23 2013-11-14 Siemens Aktiengesellschaft Verfahren zur Ausrichtung eines Zugfahrzeugs, Steuerungsprogramm und Zielführungssystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440915A1 (de) * 1989-12-08 1991-08-14 KCI Konecranes International Corporation Verfahren und Vorrichtung zum Lokalisieren eines zu hebenden Containers
EP0477101A1 (de) * 1990-09-21 1992-03-25 Ppm Societe Anonyme: Mobiles Transportgerät, wie z.B. ein Gerät zum Umschlagen von Containern
US6124932A (en) * 1996-04-10 2000-09-26 Tax; Hans Method for target-path correction of a load carrier and target-detection device and directional beam-emitting unit for performance of said method
JP2001097670A (ja) * 1999-09-28 2001-04-10 Mitsubishi Heavy Ind Ltd コンテナ位置検出装置
US20020024598A1 (en) * 2000-07-25 2002-02-28 Satoshi Kunimitsu Detecting system for container's location

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012020953A1 (de) * 2012-10-25 2014-04-30 LASE Industrielle Lasertechnik GmbH Verfahren zur Bestimmung der Position, in der ein ISO-Container auf ein Trägerfahrzeug aufzusetzen ist, sowie 3D-Laserscan-Messanlage dafür
DE102012020953B4 (de) * 2012-10-25 2016-03-10 LASE Industrielle Lasertechnik GmbH 3D-Laserscan-Messanlage zur Bestimmung der Position, in der ein ISO-Container auf ein Trägerfahrzeug aufzusetzen ist
EP2724972A1 (de) 2012-10-25 2014-04-30 Lase GmbH Industrielle Lasertechnik Verfahren zur Bestimmung der Position, in der ein ISO-Container auf ein Trägerfahrzeug aufzusetzen ist, sowie 3D-Laserscan-Messanlage dafür
DE102013011718A1 (de) 2013-07-15 2015-01-15 Isam Ag Verfahren zur Steuerung einer Containerbrücke zum Be- oder Entladen, insbesondere des Laderaumes, eines Schiffes bzw. Steuersystem zur Steuerung einer Containerbrücke bzw. Containerbrücke mit Steuersystem
EP3160890A4 (de) * 2014-06-30 2018-02-28 Konecranes Global Corporation Lasttransport mittels einer lastaufnahmevorrichtung
US10421646B2 (en) 2014-06-30 2019-09-24 Konecranes Global Corporation Load transport by means of load handling equipment
EP3000762A1 (de) 2014-09-24 2016-03-30 Siemens Aktiengesellschaft Verfahren und System zur automatischen, optischen Bestimmung einer Zielposition für ein Containergeschirr
US10584016B2 (en) 2015-04-01 2020-03-10 Konecranes Global Corporation Method, load handling device, computer program and computer program product for positioning gripping means
CN107416665A (zh) * 2017-04-11 2017-12-01 广州电力机车有限公司 一种货箱吊装方法
CN107416665B (zh) * 2017-04-11 2018-10-30 广州电力机车有限公司 一种货箱吊装方法
CN113165853A (zh) * 2018-11-14 2021-07-23 Abb瑞士股份有限公司 将集装箱装载在着落目标上的系统和方法
WO2020098933A1 (en) * 2018-11-14 2020-05-22 Abb Schweiz Ag System and method to load a container on a landing target
CN113165853B (zh) * 2018-11-14 2024-03-01 Abb瑞士股份有限公司 将集装箱装载在着落目标上的系统和方法
CN110217254A (zh) * 2019-07-09 2019-09-10 中车长江车辆有限公司 一种空轨货运的集装箱防护装置、货运列车及其控制方法
DE102020208109A1 (de) 2020-06-30 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Steuerung eines Fördermittels zur Aufnahme eines Containers
EP4159661A1 (de) * 2021-09-30 2023-04-05 Fud Technologies Sp. z o.o. Verfahren zum führen der seilscheibe insbesondere eines freikrans

Also Published As

Publication number Publication date
CN103030063B (zh) 2016-09-14
EP2574587B1 (de) 2014-06-25
CN103030063A (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
EP2574587B1 (de) Verfahren zur Bestimmung einer Zielposition für ein Containergeschirr und Containergeschirr
EP3000762B1 (de) Verfahren zur automatischen, optischen Bestimmung einer Zielposition für ein Containergeschirr
EP2724972B1 (de) Verfahren zur Bestimmung der Position, in der ein ISO-Container auf ein Trägerfahrzeug aufzusetzen ist, sowie 3D-Laserscan-Messanlage dafür
EP3587220B1 (de) Fahrzeug mit rangiersystem
EP3177889B1 (de) Vorrichtung und verfahren zur volumenbestimmung eines durch ein flurförderzeug bewegten objekts
EP2910512B1 (de) Verfahren zum Kalibrieren von Laserscannern an einem Containerumschlagkran
EP2850384B1 (de) Verfahren und system zum automatischen optischen inspizieren eines laufflächenprofils wenigstens eines rades eines fahrzeuges
EP1641704A1 (de) Bewegliche sensoreinrichtung am lastmittel eines gabelstaplers
DE102007021693A1 (de) Hilfssystem zur Lagebestimmung eines Fahrzeugs
EP3475210B1 (de) Detektion von verriegelungsvorrichtungen
DE102008019373A1 (de) Messvorrichtung und Verfahren zum Kalibrieren einer Messvorrichtung eines Krans
EP2385014B1 (de) Flurförderzeug mit einer Einrichtung zur Identifizierung eines geladenen Transportgutes, und Verfahren zur Identifizierung eines geladenen Transportgutes eines Flurförderzeugs
WO2009043789A1 (de) Verfahren zur kalibrierung einer sensoranordnung und sensoranordnung
EP2107336B1 (de) Verfahren und Vorrichtung zur Bilderkennung von bewegten Objekten, wie etwa in Förderanlagen
WO2018224408A1 (de) Automatisch geführtes portalhubgerät für container und verfahren zum betrieb eines solchen portalhubgeräts
EP3529194A1 (de) Anordnung eines portalhubgeräts und einer reihe von beabstandeten markierungselementen
WO2018073168A1 (de) Verfahren zum automatischen positionieren eines portalhubstaplers für container und portalhubstapler dafür
EP3792720A1 (de) Fahrzeug mit umfeldüberwachungseinrichtung
DE102012003650B4 (de) Verfahren und Vorrichtung zum überwachten vertikalen Anheben eines Normcontainers
DE102007060856A1 (de) Verfahren und Sensoranordnung zur Ermittlung von Fahrspuren
EP3224686B1 (de) Fördereinheit und fördersystem zum fördern von ladungsträgern
EP3894349B1 (de) Container-verladeanlage und verfahren zur betriebsüberwachung darin
DE10202399A1 (de) Einrichtung und Verfahren zur Positionierung von Transportfahrzeugen
EP3103757A1 (de) Verfahren und system zur detektion einer anhebung eines containerfahrzeuges
DE102012107815A1 (de) Verfahren und System zum berührungslosen Kontrollieren von Containern, insbesondere ISO-Containern, innerhalb einer Umschlaganlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131002

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B66C 13/46 20060101AFI20131113BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 674537

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003531

Country of ref document: DE

Effective date: 20140814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140926

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140925

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140625

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011003531

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: TEREX MHPS GMBH

Effective date: 20150323

Opponent name: KONECRANES OYJ

Effective date: 20150324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011003531

Country of ref document: DE

Effective date: 20150323

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502011003531

Country of ref document: DE

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

R26 Opposition filed (corrected)

Opponent name: KONECRANES GLOBAL OY

Effective date: 20170124

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 674537

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160930

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20170324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231120

Year of fee payment: 13