EP2571925A1 - Polyamid-verbundartikel - Google Patents

Polyamid-verbundartikel

Info

Publication number
EP2571925A1
EP2571925A1 EP11723366A EP11723366A EP2571925A1 EP 2571925 A1 EP2571925 A1 EP 2571925A1 EP 11723366 A EP11723366 A EP 11723366A EP 11723366 A EP11723366 A EP 11723366A EP 2571925 A1 EP2571925 A1 EP 2571925A1
Authority
EP
European Patent Office
Prior art keywords
polyamide
acid
monomers
hydroxyaromatic
polyamides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11723366A
Other languages
English (en)
French (fr)
Inventor
Franck Touraud
Gilles Orange
Stéphane JEOL
Roland Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Operations SAS
Original Assignee
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS filed Critical Rhodia Operations SAS
Publication of EP2571925A1 publication Critical patent/EP2571925A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/125Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer

Definitions

  • the present invention relates to the use of polyamide modified with hydroxyaromatic compounds for impregnating reinforcing materials in the form of fabric of industrial fabrics for the manufacture of composite materials.
  • the field of the invention is that of composite materials and their manufacturing processes.
  • the invention also relates to a method of manufacturing a composite article comprising at least:
  • thermosetting resins In the field of high-performance materials, composites have taken a prominent place, due to their performance and the weight gains they allow.
  • the best known high-performance composites to date are obtained from thermosetting resins, the use of which is limited to low to medium series applications, mainly in aeronautics, motor sports, and in the best cases, presenting manufacturing times of about fifteen minutes, for example, during the manufacture of skis.
  • the cost of these materials, and / or the manufacturing time make them difficult to compatible with mass use.
  • the use of thermosetting resins often involves the presence of solvents and monomers. Finally, these composites are difficult to recycle.
  • Thermoplastic polymers are generally known for their high viscosity, which is a drag on the impregnation of materials reinforcement, generally composed of very dense multifilamentary bundles. It results from the use of thermoplastic matrices available on the market, a difficulty of impregnation requiring either prolonged impregnation times or significant application pressures. In most cases, the composite materials obtained from these matrices may have microvoids and non-impregnated areas. These microvids cause mechanical properties to drop, premature aging of the material and problems of delamination when the material consists of several layers of reinforcements. This phenomenon of loss of mechanical properties is also accentuated when the cycle times for the manufacture of composite articles decrease.
  • Another problem frequently encountered with polymer matrix composite materials is their resistance to aging, and more particularly to hygrothermal aging.
  • the diffusion of water within the composite materials causes a significant change in certain physical characteristics such as, for example, the glass transition temperature or swelling of the matrix.
  • a modification at the matrix / fiber interfaces can also be observed, generally with an irreversible character.
  • This aging is manifested by a degradation of the mechanical performances, in particular the resistance to breakage. It is then necessary to oversize the parts, which leads to an increase in weight and significant additional cost.
  • the objective of the present invention is therefore to remedy these drawbacks by proposing a composite article that can be manufactured with short cycle times while having good use properties, such as good mechanical properties and good resistance to wear. hygrothermal aging.
  • polyamide resin modified with hydroxyaromatic compounds for the manufacture of composite articles made it possible to obtain articles having not only good mechanical properties, such as in particular rigidity, breaking strength, impact resistance, and fatigue behavior, even when manufactured with shorter cycle times than those usually used, and without any other treatment, but also good resistance to hygrothermal aging.
  • This makes it possible to provide a composite material which has both the advantage of reducing manufacturing costs, the use of tools implementing shortened cycle times, and also sufficient durability for structural applications.
  • Composite articles according to the present invention also exhibit low water uptake and good dimensional stability.
  • These composite articles have in particular a very good maintenance of mechanical properties after hygrothermal aging, particularly compared to conventional composite polyamide articles.
  • the articles according to the invention have in particular the advantages of rigidity, lightness, and recyclability, and a good surface appearance. These articles also have good fireproofing properties.
  • the invention firstly relates to a method of manufacturing a composite article comprising at least:
  • the present invention also relates to a composite article comprising at least one reinforcing fabric and a modified polyamide containing patterns. hydroxyaromatic chemically bonded to the polyamide chain, and a novolac resin.
  • fabric is meant a textile surface of yarns or fibers possibly joined together by any method, such as, in particular, gluing, felting, braiding, weaving or knitting. These fabrics are also referred to as fibrous or filamentary networks.
  • wire is meant a monofilament, a continuous multifilament yarn, a spun yarn, obtained from a single type of fiber or several types of fibers in intimate mixture. The continuous wire can also be obtained by assembling several multifilament yarns.
  • fiber is meant a filament or a set of cut, cracked or converted filaments.
  • the yarns and / or reinforcing fibers according to the invention are preferably chosen from yarns and / or fibers of carbon, glass, aramids, polyimides, flax, hemp, sisal, coir and jute. , kenaf and / or their mixture. More preferably, the reinforcement fabrics consist solely of yarns and / or reinforcing fibers chosen from among the yarns and / or the fibers of carbon, glass, aramids, polyimides, flax, hemp, sisal, coir, jute, kenaf and / or their mixture.
  • These fabrics are preferably a grammage, that is to say the weight per square meter, between 100 and 1000 g / m 2 .
  • Their structure can be random, unidirectional (1D), or multidirectional (2D, 2,5D, 3D or other).
  • a composite article according to the invention may comprise several reinforcing fabrics of different nature or not.
  • the fabrics may optionally be coated or sized, in particular to provide special features.
  • the polyamide according to the invention advantageously has a melt viscosity ⁇ less than 250 Pa.s, preferably between 1 and 50 Pa.s. This viscosity can be measured using a planar planar rheometer with a diameter of 50 mm, under a shear streaking sweep ranging from 1 to 160 s-1.
  • the polymer is in the form of a film with a thickness of 150 ⁇ , granules or powder. The polymer is brought to a temperature of 25 to 30 ° C above its melting point, and the measurement is then carried out.
  • the number-average molecular weight (Mn) of the polyamides is preferably greater than 6000 g / mol, more preferably between 8000 g / mol and 20000 g / mol, having sufficient mechanical properties and a certain resistance during the various methods of setting up. form.
  • Semi-crystalline polyamides are particularly preferred.
  • the present invention relates in particular to a polyamide modified with a compound containing at least one aromatic hydroxyl group chemically bonded to the polymer chain, this polyamide being obtainable by polymerization, in addition to the monomers of the polyamide, of a hydroxyaromatic compound or by melt-phase mixing of a polyamide partially or totally formed with a hydroxyaromatic compound, in particular during a reactive extrusion.
  • the modified polyamide according to the invention can also be obtained by solid phase polycondensation or solvent phase for certain polyamides.
  • the monomers of the polyamides may in particular be diacid monomers, in particular aliphatic, cycloaliphatic, arylaliphatic or aromatic monomers, diamine monomers, in particular aliphatic monomers, and / or amino acids or lactams.
  • diacid monomers in particular aliphatic, cycloaliphatic, arylaliphatic or aromatic monomers
  • diamine monomers in particular aliphatic monomers
  • / or amino acids or lactams are generally the monomers conventionally used for the production of semi-crystalline polyamides, such as aliphatic polyamides, semi-aromatic polyamides and, more generally, linear polyamides obtained by polycondensation between a saturated diacid aliphatic or aromatic, and a primary saturated aromatic or aliphatic diamine, the polyamides obtained by condensation of a lactam, an amino acid or linear polyamides obtained by condensation of a mixture of these different monomers.
  • these copolyamides may be, for example, hexamethylene polyadipamide, polyphthalamides obtained from terephthalic and / or isophthalic acid, copolyamides obtained from adipic acid, hexamethylenediamine and caprolactam.
  • the monomers of the polyamides may optionally contain unsaturations or heteroatoms such as oxygen, sulfur or nitrogen.
  • polyamides chosen from the group comprising polyamide 6, polyamide 66, polyamide 6.10, polyamide 11, polyamide 12, polyamide 6.12, poly (meta-xylylene adipamide) (MXD6), polyamide may be used.
  • the composition of the invention may also comprise copolyamides derived in particular from the above polyamides, or mixtures of these polyamides or copolyamides.
  • the preferred polyamides are polyhexamethylene adipamide, polycaprolactam, or copolymers and blends between polyhexamethylene adipamide and polycaprolactam.
  • the dicarboxylic acids may also be chosen from glutaric acid, adipic acid, pimellic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid; 1,2-or 1,3-cyclohexane dicarboxylic acid; 1,2-or 1,3-phenylene diacetic acid; 1, 2-or 1,3-cyclohexane diacetic acid; isophthalic acid; terephthalic acid; 4,4'-benzophenone dicarboxylic acid; 2,5-naphthalene dicarboxylic acid; and pt-butyl isophthalic acid.
  • the preferred dicarboxylic acid is adipic acid.
  • the diamines may for example be chosen from hexamethylenediamine; butane diamine; pentane diamine; 2-methyl pentamethylene diamine; 2-methyl hexamethylenediamine; 3-methyl hexamethylene diamine; 2,5-dimethyl hexamethylenediamine; 2,2-dimethylpentamethylenediamine; nonane diamine; decanediamine; 5-methylnonanediamine; dodecamethylene diamine; 2,2,4- and 2,4,4-trimethyl hexamethylenediamine; 2,2,7,7-tetramethyl octamethylene diamine; isophorone diamine; diaminodicyclohexyl methane and C2-C16 aliphatic diamines which may be substituted by one or more alkyl groups.
  • the preferred diamine is hexamethylenediamine.
  • the modified polyamide of the invention can be obtained from, in particular, a lactam monomer or an amino acid, preferably an aliphatic one.
  • lactams or amino acids mention may be made of caprolactam, 6-aminohexanoic acid, 5-aminopentanoic acid, 7-aminoheptanoic acid, 11-aminoundecanoic acid and dodecanolactam.
  • polyamides may in particular be modified with difunctional or monofunctional monomers, such as especially diacids or diamines, monoacids or monoamines.
  • Polyfunctional molecules at least trifunctional, may also be used to provide branches or connections to the polyamide.
  • bishexamethylenetriamine is mentioned.
  • Polyamides according to the invention may also be obtained by mixing, in particular melt, polyamides with chain length-changing monomers, such as in particular diamines, dicarboxylic acids, monoamines and / or mono carboxylic acids.
  • the composition of the invention may also comprise copolyamides derived in particular from the above polyamides, or mixtures of these polyamides or (co) polyamides. It is also possible to use, as high-flow polyamide, a star polyamide comprising star macromolecular chains and, where appropriate, linear macromolecular chains.
  • the star-shaped polyamide is a polymer comprising star macromolecular chains, and optionally linear macromolecular chains, the polymers comprising such star macromolecular chains are for example described in the documents FR2743077, FR2779730, EP0682057 and EP0832149. These compounds are known to exhibit improved fluidity over linear polyamides.
  • the star macromolecular chains comprise a core and at least three branches of polyamide.
  • the branches are linked to the heart by a covalent bond, via an amide group or a group of another nature.
  • the core is an organic or organometallic chemical compound, preferably a hydrocarbon compound optionally comprising heteroatoms and to which the branches are connected.
  • the branches are polyamide chains.
  • the polyamide chains constituting the branches are preferably of the type obtained by polymerization of lactams or amino acids, for example of the polyamide 6 type.
  • the polyamide star structure according to the invention optionally comprises, in addition to star chains, linear polyamide chains.
  • the ratio by weight between the quantity of star chains and the sum of the quantities of star and linear chains is between 0.5 and 1 inclusive. It is preferably between 0.6 and 0.9.
  • carboxylic acid means carboxylic acids and their derivatives, such as acid anhydrides, acid chlorides, amides or esters. Processes for obtaining these star polyamides are described in documents FR2743077 and FR2779730. These processes lead to the formation of star macromolecular chains, in mixture with possibly linear macromolecular chains.
  • the composition according to the invention preferably has from 30 to 75% by volume of polyamide, relative to the total weight of the composition, preferably from 35 to 60% by volume.
  • the hydroxyaromatic compound is a compound carrying at least one, in particular one or two, functions capable of reacting with the amine or acid functional groups of the polyamide or of the monomers of the polyamide.
  • aromatic hydroxyl group is meant a hydroxyl function attached to a carbon atom forming part of an aromatic ring.
  • hydroxyaromatic compound is meant an organic compound having at least one aromatic hydroxyl group.
  • chemically linked is meant bound by a covalent bond. Once chemically bonded to the polyamide chain, the hydroxyaromatic compound becomes a hydroxyaromatic unit and the modified polyamide of the invention is a polyamide containing hydroxyaromatic units.
  • the functions of the hydroxyaromatic compound that can react with the functions of the polyamide include the acid, ketone, amine and aldehyde functions.
  • acid function is meant a carboxylic acid or derivative function, such as acid chloride, acid anhydride, amide, ester.
  • the aromatic hydroxyl groups of the invention are not considered to be functions reactive with acid functions.
  • the hydroxyl group of the monomer is not congested, that is to say for example that the carbon atoms located at a of the hydroxyl function are preferably not substituted by bulky substituents, such as branched alkyls.
  • the hydroxyaromatic compound may for example be represented by the following formula (I):
  • Z is a multivalent aromatic or arylaliphatic hydrocarbon radical (at least divalent)
  • x is from 1 to 10;
  • F is an acid, aldehyde, amine, ketone function capable of binding to an acid or amine function of the monomers of the polyamide, and
  • n is between 1 and 5.
  • Z may for example be selected from the group consisting of: benzene, methyl benzene, naphthalene, biphenyl, diphenyl ether, diphenyl sulfide, diphenyl sulfone, ditolyl ether, xylylene, diethyl benzene, or pyridine .
  • arylaliphatic radical is meant a radical according to which at least one F function of the compound of formula (I) is not attached to this radical by a carbon atom forming part of an aromatic ring.
  • Advantageously Z has between 6 and 18 carbon atoms.
  • a hydroxyaromatic compound can perfectly contain several types of F functions of different nature.
  • This compound is preferably selected from the group consisting of: 2-hydroxyterephthalic acid, 5-hydroxyisophthalic acid, 4- hydroxyisophthalic acid, 2,5-dihydroxyterephthalic acid, 4-hydroxyphenylacetic acid or gallic acid, L-Tyrosine, 4-hydroxyphenylacetic acid, 3,5-diaminophenol, 5-hydroxy-m-xylylene diamine 3-Anninophenol, 3-amino-4-methylphenol, and 3-hydroxy-5-amino benzoic acid.
  • the molar proportion of hydroxyaromatic compound relative to all the monomers constituting the polyamide is generally between 0.1 and 100%, preferably between 1 and 70. %, more preferably between 0.5 and 60%, more preferably between 2.5 and 50%.
  • the polyamide of the invention is especially obtained by a melt polymerization process of the various monomers described above, these monomers being present in whole or in part.
  • melt polymerization it is meant that the polymerization is carried out in the liquid state, and that the polymerization medium contains no solvent other than water, possibly.
  • the polymerization medium may for example be an aqueous solution comprising the monomers, or a liquid comprising the monomers.
  • the polymerization medium comprises water as a solvent. This facilitates the agitation of the medium, and therefore its homogeneity.
  • the polymerization medium may also include additives such as chain limiters.
  • the modified polyamide of the invention is generally obtained by polycondensation between the various monomers, present in whole or in part, to form polyamide chains, with formation of the elimination product, in particular water, a part of which can vaporize .
  • the modified polyamide of the invention is generally obtained by heating at high temperature and pressure, for example an aqueous solution comprising the monomers, or a liquid comprising the monomers, to evaporate the elimination product, in particular water (initially present in the polymerization medium and / or or formed during the polycondensation) while avoiding any formation of solid phase to avoid caking.
  • the polycondensation reaction is generally carried out at a pressure of about 0.5-3.5 MPa (0.5-2.5 MPa) at a temperature of about 100-320 ° C (180-300 ° C).
  • the polycondensation is generally continued in the melt phase at atmospheric pressure or reduced so as to reach the desired degree of advancement.
  • the polycondensation product is a molten polymer or prepolymer. It may comprise a vapor phase consisting essentially of vapor of the elimination product, in particular water, which may have been formed and / or vaporized.
  • This product can be subjected to vapor phase separation and finishing steps to achieve the desired degree of polycondensation.
  • the separation of the vapor phase may for example be carried out in a cyclone device. Such devices are known.
  • the finish consists in maintaining the polycondensation product in the molten state, at a pressure close to atmospheric pressure or under reduced pressure, for a time sufficient to reach the desired degree of advancement. Such an operation is known to those skilled in the art.
  • the temperature of the finishing step is advantageously greater than or equal to 100 ° C. and in all cases greater than the solidification temperature of the polymer.
  • the residence time in the finishing device is preferably greater than or equal to 5 minutes.
  • the polycondensation product can also undergo a solid phase postcondensation step. This step is known to those skilled in the art and makes it possible to increase the degree of polycondensation to a desired value.
  • the process of the invention is similar in its conditions to the conventional method for preparing polyamide of the type of those obtained from dicarboxylic acids and diamines, in particular the process for producing polyamide 66 from adipic acid and from hexamethylene diamine.
  • This method of manufacturing polyamide 66 is known to those skilled in the art.
  • the process for producing polyamide of the type of those obtained from dicarboxylic acids and diamines generally uses as raw material, a salt obtained by a mixture in stoichiometric quantity, generally in a solvent such as water, a diacid with a diamine.
  • adipic acid is mixed with hexamethylene diamine generally in water to obtain hexamethylene diammonium adipate better known as nylon salt or " Salt N ".
  • these compounds can be introduced, at least in part, in the form of a salt.
  • the diacid is adipic acid and diamine hexamethylenediamine
  • these compounds can be introduced at least partly in the form of N salt. This makes it possible to have a stoichiometric equilibrium.
  • the hydroxyaromatic compound is a diacid or a diamine, it is also possible to introduce it in the form of salts, with a diamine or a diacid.
  • the process of the invention generally leads to a random polymer when the hydroxyaromatic compound is polyfunctional, especially at least difunctional, and to a polyamide having partially or completely hydroxyaromatic terminations, when the hydroxyaromatic compound is monofunctional.
  • the modified polyamide obtained at the end of the finishing step can be cooled and granulated.
  • the modified polyamide obtained by the process of the invention in molten form can be directly shaped or extruded and granulated, for subsequent shaping after melting.
  • the modified polyamide according to the invention can be used as a matrix, alone or in combination with other thermoplastic polymers, in particular polyamides, polyesters, or polyolefins.
  • the polyamide composition according to the invention is especially used as a matrix, in particular by granulation, calendering, extrusion in the form of a film, grinding, injection, molding, injection molding, pressing, and others.
  • the impregnation step of the polyamide composition of the invention and the reinforcing fabric can be carried out in various ways, according to various possible methods. It is perfectly possible to impregnate one or more reinforcing fabric.
  • the melt polyamide composition may be injected into a molding chamber comprising at least one or more reinforcing fabrics.
  • the inside of the molding chamber is at a temperature of plus or minus 50 ° C with respect to the melting temperature of said polyamide. It is then possible to cool the molding chamber and the article obtained to finally recover said article.
  • This process is also known as the thermoset resin transfer molding process (RTM), which consists in injecting resin into a closed mold in which reinforcement fibers have been previously placed. This process can be carried out under pressure.
  • a composite article according to the invention by a "film stacking" method which consists in a temperature compression of a stack of reinforcement fabrics and polyamide films.
  • one or more reinforcing fabrics and one or more films are brought into contact with one another. of polyamide modified with hydroxyaromatic compounds and impregnation of the fabrics by melting the polyamide.
  • the necessary pressures for a good assembly are generally higher than 30 bar.
  • the composite article according to the invention may also be produced by bringing one or more reinforcing fabrics into contact with the powder of a polyamide as defined above, in particular of the fine powder, and the said impregnation is carried out. by melting the polyamide at a temperature equal to or greater than that of the melting point of the polyamide, optionally under pressure.
  • the composite article of the invention can also be made by pultrusion. This technique generally involves drawing through a heated die one or more continuous yarns and fibers so as to impregnate it with a molten thermoplastic resin to obtain a rod or finished or semi-finished article.
  • the article After impregnation of the reinforcing fabric with the polyamide, the article is obtained by solidification of the matrix.
  • the cooling can advantageously be carried out rapidly so as to avoid significant crystallization of the polyamide, in particular to maintain the properties of the article.
  • the cooling can in particular be carried out in less than 5 minutes, more preferably in less than one minute.
  • the mold may for example be cooled by a cold fluid circuit. It is also possible to transfer the composite article to a cold mold, possibly under pressure.
  • the polyamide composition and / or the composite article according to the invention may also comprise all the additives normally used in polyamide-based compositions used for the manufacture of articles.
  • additives include thermal stabilizers, UV stabilizers, antioxidants, lubricants, pigments, dyes, plasticizers, reinforcing fillers, impact modifiers, and coupling agents.
  • additives to improve the quality of the polyamide reinforcing fabric interfaces can also be used. These additives may for example be incorporated into the polyamide composition, incorporated into the threads and / or fibers of the reinforcing fabric, present on the threads and / or fibers of said fabric, or else deposited on the reinforcing fabric.
  • additives may be coupling agents such as those of aminosilane or chlorosilane type, or fluidizing or wetting agents, or their combination.
  • Reinforcing fillers may be incorporated in the polyamide composition. These fillers may be chosen from fibrous fillers, such as short glass fibers, for example, or non-fibrous fillers such as kaolin, talc, silica, mica or wollastonite. Their size is generally between 1 and 25 ⁇ . Sub-micron or even nanometric charges may also be used, alone or in addition to other charges.
  • the polyamide composition comprises a novolac resin. It may comprise one or more types of different novolac resin.
  • novolac resin is generally understood to mean a phenolic resin whose formaldehyde / phenol ratio is less than 1 and which therefore remains normally thermoplastic until it is heated with an appropriate quantity of a compound, for example formaldehyde or hexamethylenetetramine, which may give additional bonds, thus giving an infusible product.
  • Novolak resins are generally condensation products of phenolic compounds with aldehydes or ketones. These condensation reactions are generally catalyzed by an acid or a base.
  • the novolak resins generally have a degree of condensation of between 2 and 15.
  • the phenolic compounds can be chosen alone or as a mixture from phenol, cresol, xylenol, naphthol, alkylphenols, such as butyl phenol, terbutylphenol, isooctylphenol, nitrophenol, phenylphenol, resorcinol or biphenol A; or any other substituted phenol.
  • aldehyde The most frequently used aldehyde is formaldehyde. However, others may be used, such as acetaldehyde, paraformaldehyde, butyraldehyde, crotonaldehyde, glyoxal, and furfural.
  • ketone it is possible to use acetone, methyl ethyl ketone or acetophenone.
  • the aldehyde and / or the ketone may optionally carry another functional group, such as, for example, a carboxylic acid function. For example, glyoxylic acid or levulinic acid may be mentioned.
  • the novolak resin is a condensation product of phenol and formaldehyde.
  • the novolak resins used advantageously have a molecular weight of between 500 and 3000 g / mol, preferably between 800 and 2000 g / mol.
  • the composition according to the invention may comprise from 1 to 20% by weight of novolac resin, especially from 1 to 10% by weight, relative to the total weight of the composition.
  • the present invention relates to an article obtainable by the method of the invention.
  • the article may in particular be a polyamide-based composite article comprising a reinforcing fabric, in which the polyamide has a melt viscosity ⁇ of between 1 and 50 Pa.s.
  • the articles according to the invention preferably comprise between 25 and 80% by volume of reinforcing fabric with respect to the total weight.
  • the articles of the invention may be finished or semi-finished articles which may also be called prepregs. For example, it is possible to thermoform composite articles in the form of plates to give them a defined shape after cooling.
  • the invention thus relates to composite articles or preforms that can be obtained by the method according to the present invention.
  • the articles of the invention may also be sandwich type structures having a core inserted between two skins.
  • the composites of the invention can be used to form the outer layers, by associating them with a core type honeycomb or foam type.
  • the layers can be assembled by chemical or thermal bonding.
  • Composite structures according to the invention can be used in many fields such as aeronautics, automotive, energy, electrical industry, sports and leisure industry. These structures can be used to make sports articles such as skis or to achieve various surfaces such as special floors, partitions, vehicle bodies, or billboards. In aeronautics these structures are used in particular at fairings (fuselage, wing, empennage). In the automobile, they are used for example at floors, supports such as rear shelves, or at the level of structural parts.
  • a specific language is used in the description so as to facilitate understanding of the principle of the invention. It should nevertheless be understood that no limitation of the scope of the invention is envisaged by the use of this specific language. In particular, modifications, improvements and improvements may be considered by a person familiar with the technical field concerned on the basis of his own general knowledge.
  • the term and / or includes the meanings and, or, as well as all other possible combinations of elements connected to this term.
  • Acid end group (GTC) and amine (GTA) endpoints assayed by potentiometry, expressed in meq / kg.
  • the phenol GTP terminal group contents (for the monofunctional hydroxyaromatic compounds) are determined from the initial amounts of reagents introduced into the synthesis reactor.
  • T f Melting temperature
  • T c cooling crystallization temperature
  • T g Glass transition temperature
  • These polyamides were characterized by melt viscosity measurements made on an Ares (Rheometrics) plane-plane rheometer at 280 ° C.
  • the viscosity curves as a function of the shear rate show that the polymers under consideration have a Newtonian behavior in the shear rate range between 1 and 150 s-1: the viscosity retained is the plateau value (between 1 and 150 s -1). 1).
  • the reinforcements used in the examples are in the form of glass fabric preforms, cut to the dimensions required for the manufacture of the plates, that is to say 150 ⁇ 150 mm or 200 ⁇ 300 mm.
  • the reinforcing fabric used is a fiberglass fabric (0 ° -90 °) of Synteen & Luckenhaus origin from a roving of 1200 tex, having a basis weight of 600 g / m 2 .
  • the comparative polyamide C1 used in the examples is a high fluidity polyamide 6.6 having an IV viscosity index of 97 mL / g, a melt viscosity ⁇ of 30 Pa.s and a Mn of 1100 g / mol.
  • the polymer obtained is cast in the form of rod, cooled and granulated by cutting rushes.
  • the copolyamide has a higher Tg of 6.2 ° C than that of PA 66.
  • the polymer obtained is cast in the form of rod, cooled and granulated by cutting rushes.
  • the copolyamide has a higher Tg of 15.2 ° C than that of PA 66.
  • This copolyamide has a melt viscosity ⁇ of 37 Pa.s.
  • Example 3 Preparation of a PA 6HIA Polyamide and of PA 66 / PA 6HIA 85/15 by Weight
  • a 51% by weight 6HIA salt in water is made by mixing a stoichiometric amount of hexamethylene diamine and 5-hydroxyisophthalic acid in water.
  • 5623 g of 51% 6HIA salt, 12.1 g of 99.5% 5-hydroxyisophthalic acid, 105 g of water and 3.3 g of antifoaming agent are then introduced into a polymerization reactor.
  • Polyamide PA 6HIA is manufactured according to a standard polyamide 66 polymerization process, with 30 minutes of finishing.
  • the polymer obtained is cast in the form of rod, cooled and granulated by cutting rushes.
  • the PA 66 and the PA 6HIA thus prepared are mixed in a proportion of 85/15 by weight in the melt in a DSM MIDI 2000 micro-compounder ("micro-compounder”) (15 cm 3 ) at a temperature of 275 ° C.
  • This mixture has a melt viscosity ⁇ of 35 Pa.s.
  • the polyamide is manufactured according to a standard polyamide 66 polymerization process with 30 minutes of finishing.
  • the polymer obtained is cast in the form of rod, cooled and granulated by cutting rushes.
  • GTC 103.3 meq / kg
  • GTA 29.4 meq / kg
  • the theoretical amount of phenol functions at the GTP chain end is calculated from the initial amounts introduced into the reactor.
  • GTP 437 meq / kg.
  • the various polymers considered are used in powder form for the most fluid, if not in film form.
  • the powders are obtained by cryogenic grinding, either in dry ice or in liquid nitrogen.
  • the films are made by extrusion of granules on a Leistritz twin-screw extruder 34 and L / D 34 equipped with a flat die and a film-forming machine (extruder flow rate 10 Kg / h, screw speed 250 rpm; temperature of 270 ° C).
  • the spacing of the lips of the die is about 300 ⁇ for a width of 30 cm with a call speed of 3.2 m / min on rolls regulated at 1 15 ° C: the films obtained have a thickness that varies between 160 and 180 ⁇ (coils of width 300 mm).
  • the polymer films are cut into sheets of 150x150 mm or 200x300 mm, from the previously obtained coils. It is the same for reinforcement fabrics.
  • Composite parts are produced using a Schwabenthan (Polystat 300A) temperature-controlled dual-plate hydraulic press: hot plates (heating resistors) and cooled trays (water circulation).
  • a metal mold with a print size of 150 mm x 150 mm or 200x300 mm is used.
  • a preform consisting of an alternating stack comprising 6 sheets of glass fabric and between each is a polymer sheet, or evenly distributed powder, the two outer layers being sheets of glass fabrics.
  • the temperature of the platens of the press is previously raised to 290 ° C before the introduction of the preform. At this temperature, the pressure is applied between 1 and 50 bar and maintained at this value; degassing is done quickly.
  • the assembly is maintained at the same temperature and pressure, without degassing. Again, it is then carried out a series of degassing, then a maintenance always at the same temperature and pressure.
  • the mold is then transferred to the cooled platen device and maintained at a pressure of between 1 and 50 bar.
  • the composite parts thus obtained have a dimension of 150 ⁇ 150 mm or 200 ⁇ 300 mm and a thickness of about 2 mm.
  • the sheets 150x150 mm or 200x300 mm are cut to obtain samples of dimensions 150x20x2 mm.
  • a first series of samples are characterized just after manufacture (sample placed in a sealed envelope, in order to keep them in a dry state RHO).
  • a conditioning treatment can also be carried out according to the ISO1 1 10 standard "plastic / polyamide / accelerated conditioning of specimens": state said RH50.
  • the equilibrium water content is obtained by conditioning the composite parts with a cycle of 14 days, at 70 ° C. under a residual humidity RH of 62%.
  • the 3-point bending tests at room temperature are carried out on parallepipedic specimens (150x20x2 mm), according to ISO standard No. 14125, on a ZWICK 1478 machine: 64 mm center distance, 5 mm / min crosshead speed. Young's elastic modulus E (GPa) and maximum stress ⁇ max (MPa) values are measured and calculated. Direct tensile tests at room temperature are carried out on parallelepipedal specimens (250x25x2mm), according to ASTM D3039 / D3039M on a ZWICK 1478 machine: crosshead speed of 1 to 5 mm / min. The elastic modulus values of Young E (GPa) and amax peak stress (MPa) are measured and calculated.
  • Constraint Module Constraint Module
  • PA 2 RHO 28 590 - - In the case of a 5 minute manufacturing cycle under average pressure, the mechanical performances obtained are high: max stress (peak) in bending of 550 to 650 MPa, for modulus values between 27 to 29 GPa.
  • max stress (peak) in bending of 550 to 650 MPa For the modified polyamides containing 6HIA hydroxyaromatic units, there is a slight improvement in performance at the breaking stress.
  • the tensile failure mode is significantly more abrupt than in the case of unmodified polyamides.
  • the samples prepared according to Example 6 were subjected to hygrothermal aging. Accelerated type aging was performed by immersing the samples in water at 80 ° C. for 8 days (accelerated test).
  • test pieces were either tested as is, or reconditioned by removal of the adsorbed water: treatment at 80 ° C under vacuum for 24 hours (dry state: RHO).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
EP11723366A 2010-05-17 2011-05-17 Polyamid-verbundartikel Withdrawn EP2571925A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1053779A FR2959995A1 (fr) 2010-05-17 2010-05-17 Article polyamide composite
PCT/EP2011/057934 WO2011144592A1 (fr) 2010-05-17 2011-05-17 Article polyamide composite

Publications (1)

Publication Number Publication Date
EP2571925A1 true EP2571925A1 (de) 2013-03-27

Family

ID=43446733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11723366A Withdrawn EP2571925A1 (de) 2010-05-17 2011-05-17 Polyamid-verbundartikel

Country Status (5)

Country Link
US (1) US20130115836A1 (de)
EP (1) EP2571925A1 (de)
CN (1) CN102892810A (de)
FR (1) FR2959995A1 (de)
WO (1) WO2011144592A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997953B1 (fr) * 2012-11-14 2016-01-08 Rhodia Operations Co-polyamide aliphatique/semi-aromatique bloc
CN103320902B (zh) * 2013-05-29 2016-06-08 金骄特种新材料(集团)有限公司 一种生物基活性碳纤维过滤材料及其制备方法
FR3020819B1 (fr) * 2014-05-12 2020-02-14 Arkema France Procede d'impregnation de fibres naturelles par un polymere en dispersion aqueuse et utilisation desdites fibres dans les materiaux composites.
FR3020813B1 (fr) * 2014-05-12 2017-10-13 Arkema France Utilisation d'une dispersion aqueuse fine de polymere pour l'impregnation de fibres naturelles.
CN107250215B (zh) * 2015-02-20 2020-02-28 沙特基础工业全球技术有限公司 聚(酰胺酸)合成及至高分子量聚酰亚胺的转化
CA2978556C (en) * 2015-03-02 2022-02-15 Graphene 3D Lab Inc. Thermoplastic composites comprising water-soluble peo graft polymers useful for 3-dimensional additive manufacturing
FR3054567B1 (fr) * 2016-07-29 2019-08-23 Mdb Texinov Grille d'armature pour structures composites
ES2892285T3 (es) 2018-05-24 2022-02-03 Rhodia Operations Procedimiento para fabricar artículos compuestos
WO2020038584A1 (en) 2018-08-23 2020-02-27 Rhodia Operations Composites with flow enhancing structures and process for their manufacture
CN113454164B (zh) * 2019-02-28 2023-07-28 三菱瓦斯化学株式会社 纤维增强树脂材料、卷取体、成型品和纤维增强树脂材料的制造方法
CN113527875B (zh) * 2021-08-23 2022-05-13 安徽农业大学 一种生物基尼龙复合材料及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978733A (en) * 1989-03-09 1990-12-18 Hoechst Celanese Corp. Polyamide-polyamide-polyimide and polybenzoxazole-polyamide-polyimide polymer having at least one fluorine-containing linking group
DE3934710A1 (de) * 1989-10-18 1991-04-25 Bayer Ag Verbessertes verfahren zur herstellung von halbzeugen/verbundwerkstoffen
EP0682057A1 (de) 1994-05-09 1995-11-15 Dsm N.V. Verfahren zur Verbesserung der Verarbeitungscharacteristika von Polymerzusammensetzungen und dadurch erhaltene Polymerzusammensetzungen
EP0832149B1 (de) 1995-05-03 2000-07-19 Dsm N.V. Verzweigtes sternförmiges polyamid
FR2743077B1 (fr) 1995-12-29 1998-02-20 Nyltech Italia Polyamide et un procede de fabrication de celui-ci, et des compositions le contenant
FR2779730B1 (fr) 1998-06-11 2004-07-16 Nyltech Italia Polyamides a fluidite elevee, son procede de fabrication, compositions comprenant ce copolyamide
JP2001031784A (ja) * 1999-07-19 2001-02-06 Nippon Kayaku Co Ltd プリプレグ及びプリント配線基板の製造方法
JP2002284872A (ja) * 2001-03-27 2002-10-03 Toray Ind Inc ポリアミド樹脂
US20050014035A1 (en) * 2003-07-16 2005-01-20 Matsushita Electric Industrial Co., Ltd. Prepreg for printed wiring board, printed wiring board using the prepreg and method for manufacturing the printed wiring board, and multilayer printed wiring board and method for manufacturing the multilayer printed wiring board
WO2007052523A1 (ja) * 2005-10-31 2007-05-10 Nippon Kayaku Kabushiki Kaisha ゴム変性ポリアミド樹脂、エポキシ樹脂組成物、およびその硬化物
DE602008004514D1 (de) * 2007-06-20 2011-02-24 Rhodia Operations Polyamid-verbundartikel
FR2921069B1 (fr) * 2007-09-18 2010-07-30 Rhodia Operations Composition polyamide
FR2947823B1 (fr) * 2009-07-09 2012-12-28 Rhodia Operations Article polyamide composite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011144592A1 *

Also Published As

Publication number Publication date
WO2011144592A1 (fr) 2011-11-24
US20130115836A1 (en) 2013-05-09
CN102892810A (zh) 2013-01-23
FR2959995A1 (fr) 2011-11-18

Similar Documents

Publication Publication Date Title
WO2011003787A1 (fr) Article polyamide composite
WO2011144592A1 (fr) Article polyamide composite
EP2155474B1 (de) Polyamid-verbundartikel
EP2326487B1 (de) Polyamid-verbundartikel
WO2011003786A1 (fr) Article polyamide composite
EP2512785B1 (de) Verfahren zur herstellung von polyamidverbundartikeln
EP2513203B1 (de) Artikel mit niedermolekularen polyamidharzen
AU2015371082B2 (en) Polyamide mixture having improved fluidity
EP3237544B1 (de) Thermoplastische zusammensetzung mit hoher fliessfähigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140404

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140815