EP2571290A1 - Lokale Schallfeldsynthese durch einen virtuellen Streukörper - Google Patents

Lokale Schallfeldsynthese durch einen virtuellen Streukörper Download PDF

Info

Publication number
EP2571290A1
EP2571290A1 EP11181445A EP11181445A EP2571290A1 EP 2571290 A1 EP2571290 A1 EP 2571290A1 EP 11181445 A EP11181445 A EP 11181445A EP 11181445 A EP11181445 A EP 11181445A EP 2571290 A1 EP2571290 A1 EP 2571290A1
Authority
EP
European Patent Office
Prior art keywords
sound field
virtual
area
speakers
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11181445A
Other languages
English (en)
French (fr)
Other versions
EP2571290B1 (de
Inventor
Jens Ahrens
Karim Helwani
Sascha Spors
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Telekom AG
Original Assignee
Technische Universitaet Berlin
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Berlin, Deutsche Telekom AG filed Critical Technische Universitaet Berlin
Priority to ES11181445.5T priority Critical patent/ES2480284T3/es
Priority to EP20110181445 priority patent/EP2571290B1/de
Publication of EP2571290A1 publication Critical patent/EP2571290A1/de
Application granted granted Critical
Publication of EP2571290B1 publication Critical patent/EP2571290B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/13Application of wave-field synthesis in stereophonic audio systems

Definitions

  • the present invention relates to the reproduction or synthesis of a sound field in a limited audience area, in particular the sound field synthesis by scattering on a virtual scattering body and subsequent time reversal.
  • stereophonic techniques of audio reproduction with the help of two or more speakers by level differences or differences in transit time creates a spatial sound impression in natural hearing.
  • the desired spatial hearing impression arises only within a limited range of the so-called "sweet spot".
  • a number of methods have been presented which deal with the tracking or enlargement of the sweet spot in stereophonic (illusory) playback. Exemplary here on the pamphlets DE-A-102005052904 . DE-A-10125229 or US-B-6633648 directed.
  • stereophonic sound can only convey the impression of a sound source that is at least as far away from the nearest speakers as possible.
  • no physical synthesis of a desired complex sound field can be achieved.
  • Wave field synthesis allows the physical synthesis of a sound field over a broad range.
  • WFS Wave field synthesis
  • a description of the wave field syn thesis can be found in the documents AJ Berkhout, D. de Vries, and P. Vogel. Acoustic control by wave field synthesis. Journal of the Acoustical Society of America, Volume 93 (5): 2764-2778, May 1993 or S. Spors, R. Rabenstein, and J. Ahrens. The Theory of Wave Field Synthesis Revisited. In proceedings of 124th Convention of the Audio Engineering Society, May 17-20, Amsterdam, The Netherlands, 2008 be removed. It can be used arbitrarily shaped convex or straight speaker arrangements, which need not necessarily be closed.
  • the loudspeaker drive signals can be calculated analytically.
  • Ambisonics Another family of methods for sound field reconstruction in which the drive signal can be analytically calculated is called Ambisonics.
  • the traditional formulation of Ambisonics (see eg J. Daniel, Representative Office for Acoustics, Application on the Transmission and Playback of Matters in Multimedia, PhD thesis, elle Paris 6, 2001 ) requires circular or spherical arrangements of loudspeakers. With the help of numerical algorithms, the loudspeaker signals are generated, which lead to the reproduction of the desired sound field.
  • the limitation of the spatial bandwidth of the drive function necessary in the calculation path has the effect that the reconstruction of the desired sound field in the center of the loudspeaker arrangement is most accurate (“sweet spot"). The further the considered place is from the center, the larger the deviations become.
  • the formulation of the underlying physical problem in the form of the synthesis equation provides insight into the required mechanisms for the synthesis of a sound field.
  • the acoustic boundary conditions for the solution of the synthesis equation correspond to those of a scattering body with homogeneous Dirichlet boundary conditions. It can be directly deduced from this that the external sound field of a system for sound field synthesis corresponds to the scattering of the desired sound field at the contour of the system. The boundary conditions at the scattering body then correspond to homogeneous Dirichlet boundary conditions, ie the system for sound field synthesis behaves like a soft-sound scattering body.
  • the required difference in the sound velocity in the normal direction can be obtained from the scattering of the virtual sound field at a scattering body with the equivalent geometry as the synthesis system.
  • the outer sound field then corresponds again to the scattering of the virtual sound field at the equivalent scattering body.
  • the in the EP-A-2182744 proposed invention allows the free placement of the sweet spot or the sweet area within a closed speaker assembly at Ambisonics.
  • the loudspeaker drive signals can be calculated analytically.
  • the method is significantly more efficient than other approaches, but limited to closed (eg, circular and spherical) arrangements.
  • the DE-A-10 2007 032 272 and DE-A-10 2005 003 431 describe the technical realization of a virtual headphone.
  • one or more virtual sound sources are generated in the vicinity of the ears of the listener to simulate a headphone.
  • These virtual sound sources are realized by acoustic focusing.
  • These Virtual sound sources are operated by means of a so-called crosstalk compensation, which compensates for the crosstalk of the signals to the opposite ears out. This is a common technique when playing binaural signals through speakers.
  • the virtual sources are tracked the head movement, thereby the crosstalk compensation can be kept constant during head movements. This is a significant advantage of this invention.
  • the synthesis of outer ear transfer functions to realize other properties than exist in the database is not considered.
  • the sound field synthesis in the method is only used for generating the sources for the virtual headphone and not for the synthesis of a sound field in a local area.
  • the lossless acoustic wave equation contains only temporal and spatial derivatives of second degree (see eg Didier Cassereau and Mathias Fink, Time-Reversal of Ultrasonic Fields Part III: Theory of the Closed-Time Reversal Cavitv, IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 39, NO. SEPTEMBER 1992 ). From this, the interesting property of the wave equation implies that in a known solution of the wave equation, this solution also represents a solution of the wave equation in a reversal of time. Practically, this principle is used to focus sound energy on a point or an object.
  • a sound source is placed at the desired focus point in a first step and the sound pressure is recorded at the later source positions by means of microphones.
  • the microphones are replaced by sound sources that are driven by the time-reversed pre-recorded signal.
  • the sound source in the desired focus point and the microphones can also be virtual.
  • the present invention is intended to provide an improved and, in particular, a simplified method for reconstructing a sound field in a locally limited listening area.
  • the present invention is based on the basic idea to combine the findings about the external sound field of a system for sound field synthesis with the time-reversal acoustics for the local synthesis of a sound field.
  • the listener area is surrounded by a virtual scattering body.
  • This scattering body can be up to the maximum Range speakers and / or be arbitrarily small.
  • the external sound field is now given by the scattering of the desired virtual sound field at a diffuser whose geometry is equivalent to the geometry of the audience area.
  • the principles of time-reversal acoustics are used for this purpose.
  • the field outside the local listener area can be interpreted as the time-reversed field created by a virtual scatterer at the position of the listener area.
  • This external field can be synthesized by applying time reversal through loudspeakers outside the local listener area. This creates the field of the desired virtual source within the local listener area.
  • the present invention provides a method for determining driving signals for reproducing a desired sound field within a local listening area by means of a plurality of loudspeakers at positions outside the local listener area, comprising the steps of: first, determining a virtual sound field outside the local listener area; Scattering of the desired sound field is created on a virtual diffuser with a geometry that corresponds to the geometry of the local listener area, and the signals of this virtual sound field at the positions of the speakers are determined.
  • the driving signals for the loudspeakers are determined by time-reversing the signals of the virtual sound field at the corresponding loudspeaker positions.
  • the loudspeakers to be used are preferably selected from among the plurality of loudspeakers and these are driven by the time-reversed signals.
  • the field within the scattered body corresponds to the incident field. It is further believed that this field can propagate outward from the scatterer. However, these portions of the sound field should preferably not be taken into account in the control of the speakers. Furthermore, the theory of time-reversal acoustics does not take into account the propagation direction of the wave fronts. However, this is crucial for a listener, for example, in the localization of sound sources. Both can be done by a spatial fenestration (selection) in the selection of the used, ie the active speakers.
  • the loudspeakers are preferably arranged in a circular or linear or rectangular or oval or spherical form.
  • amplitudes of the loudspeaker signals are corrected, as will also be briefly explained below.
  • the virtual scattering body can have sound-soft or reverberant or mixed boundary conditions.
  • the virtual sound field is described as generated by a virtual source.
  • the virtual source is a point source or a plane wave.
  • the virtual source is a complex directional source.
  • the method comprises the step of selecting speakers to be used from the plurality of speakers. It can be selected speakers that are not in the propagation direction of the virtual sound field. It is also possible, when selecting the loudspeakers, to select loudspeakers whose propagation direction with respect to the local listener zone coincides with the propagation direction of the virtual sound field.
  • the virtual sound field is determined with the 2.5-dimensional wave field synthesis.
  • the listener area be placed dynamically within the speaker assembly.
  • the listener area can be adapted to the position of a moving listener.
  • the virtual sound field is preferably a sound field measured by means of microphones outside the audience area.
  • impulse responses can also be calculated.
  • the signal of the virtual source can then be folded to produce the desired virtual sound field within the local zones.
  • the incident sound field of the virtual source is calculated as a source signal for a temporal (Dirac) pulse. That is, in this case, the space-time impulse response from the virtual scatterer to the loudspeaker positions is then calculated. This must be taken into account when applying the time reversal and possibly also when selecting the loudspeakers.
  • the method according to the invention can also be applied to measured sound fields.
  • the sound field must be measured with a microphone array, which is located outside the virtual scattering body. From the analysis of the sound field, the incident sound field on the virtual scattering body and thus the scattered field at the loudspeaker positions can be calculated.
  • the boundary conditions for the virtual scattering body can be set as sound-soft according to the above statements, or alternatively as reverberant.
  • the 2.5-dimensional synthesis uses secondary sources at the boundary of the (planar) listening area. If point sound sources are used as secondary sources, this is referred to as a 2.5-dimensional synthesis.
  • the 2.5-dimensional synthesis suffers from the occurrence of artifacts, in particular amplitude deviations between the desired virtual sources and the synthesized sound field. This is taken into account by correcting the amplitudes of the loudspeaker signals.
  • the virtual source can also be modeled as a source with complex directionality.
  • the combination with the local sound field synthesis according to the invention provides a significant advantage, since the desired directional characteristic is not distorted by the artifacts of spatial sampling.
  • the inventive method also allows the synthesis of quiet zones within a system for sound field synthesis by the superposition of a synthesized throughout the field sound field and a local sound field. If the sound field within the local listener area has a reversed phase with respect to the global sound field, there is cancellation of the global sound field within the local listener area, and a quiet zone within the local listener area is formed.
  • the invention provides a method for creating a quiet zone or zone of reduced sound pressure within a sound field, comprising the steps of: a) determining first drive signals for reproducing the desired sound field within the loudspeaker listening area according to the method of the invention; b) determining second drive signals for reproducing the desired sound field within the area covered by the speakers; c) driving the speakers with the time-reversed signals; and d) phase-reversed superimposition of the drive signals according to step c) with drive signals for the loudspeakers according to step b).
  • step b) is performed by wave field synthesis or near-field compensated higher-order ambisonics.
  • the method according to the invention is independent of the technique used for the calculation of the scattered sound field of the virtual scattering body.
  • the scattering of the virtual sound field to a body can, for example, by means of in NA Gumerov and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, 2004 or by means of numerical methods such as, for example, the 'boundary element method (BEM)' or 'finite element method' (FEM).
  • the method according to the present invention enables the synthesis of a sound field in a local listener zone, wherein within the local zone with a given number of loudspeakers a higher accuracy is achieved.
  • the desired local playback area can be placed dynamically and freely in front of the loudspeaker arrangement and so e.g. be adapted dynamically to the listener position, in particular by a suitable choice of the position and the geometry of the virtual scattering body.
  • the method can also be used as a substitute for another method of local synthesis in the extrapolation or synthesis of outer ear transfer functions. Furthermore, the generation of quiet zones or zones with reduced sound pressure or reduced energy within the synthesized sound field is possible.
  • the local synthesis is considered within a 3 meter diameter circular array consisting of 60 loudspeakers.
  • the local listener zone is circular with a diameter of 60 cm and is located in the center of the speaker assembly.
  • FIG. 2 (a) shows the sound field in the synthesis of a monofrequency plane wave with a frequency of 1 kHz by means of traditional wave field synthesis.
  • FIG. 2 (b) shows the same scenario, for a frequency of 5 kHz. Due to the higher frequency and the finite loudspeaker spacing, significant artifacts of the spatial sampling in the synthesized sound field can be observed.
  • FIG. 3 shows the application of the described method to local synthesis. As a virtual scattering body, a sphere with sound-soft boundary conditions was assumed. The ball is also shown in the figures.
  • FIG. 3 clearly shows that at a frequency of the plane wave of 5 kHz an accurate synthesis within the local listener range is possible. Outside the local listening area, artifacts are created.
  • FIG. 4 (a) shows the synthesis of a monofrequency plane wave with a frequency of 1 kHz.
  • FIG. 4 (b) the same scenario with a frequency of 4 kHz. Again, there are clear artifacts of spatial sampling within the entire listening area.
  • FIG. 5 shows the application of the described method for local synthesis for the synthesis of a plane wave with a frequency of 4 kHz. The improvement in the local listener area, as opposed to FIG. 4 (b) , is clearly visible.
  • the synthesis of a sound field is considered, within which forms a quiet zone.
  • the geometry corresponds to the first example.
  • FIG. 6 shows the synthesis of a monofrequency plane wave with a frequency of 1 kHz using traditional wave field synthesis.
  • FIG. 7 shows the formation of a quiet zone in the center of the loudspeaker arrangement. This was realized by phase-reversed superimposition of the control signals of the traditional wave field synthesis and the proposed local synthesis.
  • the invention also includes individual features in the figures, even if they are shown there in connection with other features and / or not mentioned above.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic System (AREA)

Abstract

Mit der Erfindung wird ein Verfahren zur Bestimmung von Ansteuerungssignalen zur Wiedergabe eines gewünschten Schallfelds innerhalb eines lokalen Zuhörerbereichs mittels mehrerer Lautsprecher an Positionen außerhalb des Zuhörerbereichs bereitgestellt. Ein virtuelles Schallfeld außerhalb des Zuhörerbereichs wird bestimmt, das durch Streuung des gewünschten Schallfelds an einem virtuellen Streukörper mit einer Geometrie, die der Geometrie des Zuhörerbereichs äquivalent ist, entsteht. Die Signale des virtuellen Schallfelds an den Positionen der Lautsprecher werden bestimmt und diese Signale des virtuellen Schallfelds werden zeitumgekehrt. In einem Verfahren zur Wiedergabe des gewünschten Schallfelds werden diese zeitumgekehrten Signale den Lautsprechern zugeführt.

Description

  • Die vorliegende Erfindung betrifft die Wiedergabe bzw. Synthese eines Schallfeldes in einem begrenzten Zuhörerbereich, insbesondere die Schallfeldsynthese durch Streuung an einem virtuellen Streukörper und anschließende Zeitumkehr.
  • Es sind zahlreiche Verfahren zur Audiowiedergabe oder zur physikalischen Synthese eines Schallfeldes bekannt.
  • So wird bei stereophonischen Techniken der Audiowiedergabe mit Hilfe von zwei oder mehr Lautsprechern durch Pegeldifferenzen oder Laufzeitdifferenzen ein räumlicher Schalleindruck beim natürlichen Hören erzeugt. Der gewünschte räumliche Höreindruck entsteht dabei nur innerhalb eines begrenzten Bereichs dem sogenannten "sweet spot". Es wurden in der Vergangenheit eine Reihe von Verfahren vorgestellt, welche sich mit der Nachführung bzw. Vergrößerung des Sweet Spot bei stereophonischer (illusatorischer) Wiedergabe befassen. Beispielhaft wird hier auf die Druckschriften DE-A-102005052904 , DE-A-10125229 oder US-B-6633648 verwiesen.
  • Mit der Stereophonie kann im Allgemeinen nur der Eindruck einer Schallquelle, die mindestens den Abstand zu den nächst gelegenen Lautsprechern hat, vermittelt werden. Es kann aber keine physikalische Synthese eines gewünschten komplexen Schallfeldes erzielt werden.
  • Dagegen ermöglicht die Wellenfeldsynthese (WFS) die physikalische Synthese eines Schallfeldes über einen ausgedehnten Bereich. Eine Beschreibung der Wellenfeldsynsthese kann beispielsweise den Dokumenten A.J. Berkhout, D. de Vries, and P. Vogel. Acoustic control by wave field synthesis. Journal of the Acoustical Society of America, Volume 93(5):2764-2778, May 1993 oder S. Spors, R. Rabenstein, and J. Ahrens. The Theory of Wave Field Synthesis Revisited. In proceedings of 124th Convention of the Audio Engineering Society, May 17-20, Amsterdam, The Netherlands, 2008 entnommen werden. Es können beliebig geformte konvexe oder gerade Lautsprecheranordnungen verwendet werden, die nicht zwingend geschlossen sein müssen. Die Lautsprecheransteuerungssignale können analytisch berechnet werden. In dem potentiellen Hörbereich, z.B. innerhalb einer Lautsprecheranordnung, gibt es keinen ausgeprägten "Sweet Spot" wo die Rekonstruktion des gewünschten Schallfeldes signifikant genauer ist als im Rest des Hörbereiches. Aufgrund des endlichen Lautsprecherabstandes sind bei praktischen Realisierungen große Abweichungen vom gewünschten Schallfeld über den gesamten potentiellen Hörerbereich vorhanden (Aliasing).
  • Eine weitere Familie von Verfahren zur Schallfeldrekonstruktion, bei denen das Ansteuerungssignal analytisch berechnet werden kann, wird mit Ambisonics bezeichnet. Die traditionelle Formulierung von Ambisonics (siehe z.B. J. Daniel, Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimedia, PhD thesis, Université Paris 6, 2001) erfordert kreisförmige bzw. kugelförmige Anordnungen von Lautsprechern. Mit Hilfe von numerischen Algorithmen werden die Lautsprechersignale generiert, die zur Wiedergabe des gewünschten Schallfeldes führen. Die im Rechenweg notwendige Beschränkung der räumlichen Bandbreite der Ansteuerungsfunktion bewirkt, dass die Rekonstruktion des gewünschten Schallfeldes im Zentrum der Lautsprecheranordnung am genauesten ist ("Sweet Spot"). Je weiter der betrachtete Ort von Zentrum entfernt ist, desto größer werden die Abweichungen.
  • Erweiterungen der traditionellen Formulierung von Ambisonics (siehe z.B. J. Ahrens and S. Spors. Analytical driving functions for higher order Ambisonics. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, Nevada, March 30th-April 4th 2008) ermöglichen die analytische Berechnung der Lautsprecheransteuerungssignale, die um ein Vielfaches effizienter ist als numerische Verfahren. Jedoch besteht weiterhin die Restriktion, dass der "Sweet Spot" sich im Zentrum der Lautsprecheranordnung befindet, und dass lediglich kreisförmige oder kugelförmige Lautsprecheraufbauten verwendet werden können.
  • Neben diesen etablierten Verfahren wurde in den letzten Jahren eine Reihe von verallgemeinerten Verfahren zur Synthese eines Schallfeldes entwickelt. Diese basieren auf der expliziten Lösung der Synthesegleichung. Diese beschreibt den mathematischen Zusammenhang zwischen dem synthetisierten Schallfeld in einem Zielbeschallungsbereich und den Ansteuerungssignalen einer kontinuierlichen Verteilung von Schallquellen durch eine Integralgleichung. Diese kann durch Anwendung von Operatortheorie gelöst werden, wie in F.M. Fazi, P.A. Nelson and R. Potthast, Analogies and Differences between three Methods for Sound Field Reproduction, Ambisonics Symposium, June 2009, Graz, Austria beschrieben. Dazu werden die beteiligten Schallfeldgrößen in orthogonale Basisfunktionen zerlegt. Die konkrete Formulierung dieser Basisfunktionen hängt von der zugrundeliegenden Geometrie ab. Im Allgemeinen ist diese Methode numerisch aufwendig und schlecht konditioniert. Dies macht Ihre Anwendung in der Praxis komplex. Allerdings bietet die Formulierung des zugrundeliegenden physikalischen Problems in Form der Synthesegleichung Einblick in die benötigten Mechanismen zur Synthese eines Schallfeldes. In der oben genannten Veröffentlichung von F.M. Fazi et al. wurde aufgezeigt das die akustischen Randbedingungen zur Lösung der Synthesegleichung denen eines Streukörpers mit homogenen Dirichlet Randbedingungen entsprechen. Daraus kann direkt gefolgert werden, dass das äußere Schallfeld eines Systems zur Schallfeldsynthese der Streuung des gewünschten Schallfeldes an der Kontur der Systems entspricht. Die Randbedingungen an dem Streukörper entsprechen dann homogenen Dirichlet Randbedingungen, d.h. das System zur Schallfeldsynthese verhält sich wie ein schallweicher Streukörper.
  • Weiterhin wird in E.G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, Academic Press, 1999 ein Verfahren zur Synthese bzw. Extrapolation eines Schallfeldes durch eine kontinuierliche Verteilung von Schallquellen mit Monopolcharakteristik beschrieben. Dabei wird ausgehend vom Kirchhoff-Helmholtz Integral gezeigt dass die Monopole durch die Differenz der Schallschnellen von innen und außen jeweils in Normalenrichtung zur Oberfläche angesteuert werden müssen. Das heißt, es wird keine explizite Lösung der Synthesegleichung benötigt. Hierzu wurde wiederum in der oben bereits angesprochenen Veröffentlichung von F.M. Fazi et al. gezeigt, dass die zugrundeliegende Forderung nach einem kontinuierlichen Schalldruck und einer diskontinuierlichen Schallschnelle über den Rand der Verteilung von Sekundärquellen hinweg den Randbedingungen eines schallweichen Streukörpers entspricht. Das heißt, die benötigte Differenz der Schallschnellen in Normalenrichtung kann aus der Streuung des virtuellen Schallfeldes an einem Streukörper mit der äquivalenten Geometrie wie das Synthesesystem gewonnen werden. Das äußere Schallfeld entspricht dann wieder der Streuung des virtuellen Schallfeldes an dem äquivalenten Streukörper.
  • Beide Verfahren, die Wellenfeldsynthese und erweitertes Ambisonics, streben die physikalisch akkurate Wiedergabe in einem möglichst großen Zuhörerbereich an. In der praktischen Realisierung beider Verfahren ist der erreichbaren Genauigkeit allerdings Grenzen gesetzt. Die endliche Anzahl von Lautsprechern führt zu einer Reihe von Artefakten, die zum Teil im gesamten Zuhörerbereich auftreten. Dies hat zu der Entwicklung einer Reihe von Ansätzen geführt, die eine höhere Genauigkeit in einem begrenzten Zuhörerbereich ermöglichen als Wellenfeldsynthese oder Ambisonics.
  • Die in der EP-A-2182744 vorgeschlagene Erfindung erlaubt die freie Platzierung des Sweet Spots bzw. der Sweet Area innerhalb einer geschlossenen Lautsprecheranordnung bei Ambisonics. Die Lautsprecheransteuerungssignale können analytisch berechnet werden. Das Verfahren ist signifikant effizienter als andere Ansätze aber limitiert auf geschlossene (z.B. kreis- und kugelförmige) Anordnungen.
  • Der in S. Spors and J. Ahrens. Local sound reproduction by virtual secondary sources, veröffentlicht in AES 40th International Conference on Spatial Audio, Tokyo, Japan, October 2010 vorgestellte Ansatz basiert auf dem Konzept räumlich dicht angeordneter virtueller Sekundärquellen um die Genauigkeit der Synthese zu Verbessern. Die virtuellen Quellen werden dabei durch fokussierte Schallquellen realisiert. Dieser Ansatz lässt sich besonders Effizient durch die Wellenfeldsynthese realisieren.
  • Der in J. Ahrens, "The single-layer potential approach applied on sound field synthesis and its extension to nonenclosing distributions of secondary sources," Ph.D. dissertation, Technische Universität Berlin, 2010 vorgestellte Ansatz beruht wiederum auf einer räumlichen Bandbegrenzung der Ansteuerungssignale der Lautsprecher. Damit wird ein begrenzter Bereich mit erhöhter Genauigkeit der Synthese erreicht, der frei im Hörerbereich platziert werden kann. Es können sowohl umschließende als auch gerade Lautsprecheranordnungen verwendet werden.
  • Die DE-A-10 2007 032 272 und DE-A-10 2005 003 431 beschreiben die technische Realisierung eines virtuellen Kopfhörers. Dabei werden jeweils eine oder mehrere virtuelle Schallquellen in der Nähe der Ohren des Hörers erzeugt, um einen Kopfhörer zu simulieren. Diese virtuellen Schallquellen werden durch akustische Fokussierung realisiert. Diese virtuellen Schallquellen werden mittels einer so genannten Übersprechkompensation betrieben, die das Übersprechen der Signale zu den abgewandten Ohren hin kompensiert. Dies ist eine übliche Technik bei der Wiedergabe von binauralen Signalen über Lautsprecher. Die virtuellen Quellen werden der Kopfbewegung nachgeführt, dadurch kann die Übersprechkompensation bei Kopfbewegungen konstant gehalten werden. Dies ist ein wesentlicher Vorteil dieser Erfindung. Die Synthese von Außenohrübertragungsfunktionen, um andere Eigenschaften zu realisieren als in der Datenbank vorhanden sind, wird nicht betrachtet. Weiterhin wird die Schallfeldsynthese in dem Verfahren nur zur Erzeugung der Quellen für den virtuellen Kopfhörer genutzt und nicht für die Synthese eines Schallfeldes in einem lokalen Bereich.
  • Ein weiteres Verfahren ist die sogenannte Zeitumkehr-Akustik. Die verlustlose akustische Wellengleichung enthält nur zeitliche und räumliche Ableitungen zweiten Grades (siehe z.B. Didier Cassereau and Mathias Fink, Time-Reversal of Ultrasonic Fields-Part III: Theory of the Closed Time-Reversal Cavitv, IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 39, NO. S. SEPTEMBER 1992). Daraus folgert die interessante Eigenschaft der Wellengleichung, dass bei einer bekannten Lösung der Wellengleichung diese Lösung bei einer Umkehrung der Zeit auch eine Lösung der Wellengleichung darstellt. Praktisch wird dieses Prinzip zur Fokussierung von Schallenergie auf einen Punkt bzw. ein Objekt angewendet. Hierzu wird in einem ersten Schritt am gewünschten Fokuspunkt eine Schallquelle platziert und der Schalldruck an den späteren Quellenpositionen mittels Mikrophonen aufgezeichnet. In einem zweiten Schritt werden die Mikrophone durch Schallquellen ersetzt die mit dem zeitumgekehrten vorher aufgezeichneten Signal angesteuert werden. Die Schallquelle im gewünschten Fokuspunkt sowie die Mikrofone können auch virtuell sein. Die oben genannte Veröffentlichung von Cassereau und Fink nennt Anwendungen der Zeitumkehr-Akustik, zum Beispiel bei der Zerstörung von Nierensteinen durch Ultraschall.
  • Die vorliegende Erfindung soll ein verbessertes und insbesondere ein vereinfachtes Verfahren zu Rekonstruktion eines Schallfelds in einem lokal begrenzten Zuhörerbereich bereitstellen.
  • Die vorliegende Erfindung beruht auf der Grundidee, zur lokalen Synthese eines Schallfelds die Erkenntnisse über das äußere Schallfeld eines Systems zur Schallfeldsynthese mit der Zeitumkehr-Akustik zu kombinieren. Hierzu wird angenommen, dass der Zuhörerbereich von einem virtuellen Streukörper umhüllt ist. Dieser Streukörper kann maximal bis zu den Lautsprechern reichen und/oder beliebig klein sein. Das externe Schallfeld ist nun durch die Streuung des gewünschten virtuellen Schallfeldes an einem Streukörper gegeben, dessen Geometrie zu der Geometrie des Zuhörerbereichs äquivalent ist.
  • Die entsprechenden akustischen Randbedingungen müssen nun am Rand des lokalen Zuhörerbereiches synthetisiert werden. Dies könnte zum Beispiel - ähnlich dem Verfahren aus der oben bereits angesprochenen Veröffentlichung von F.M. Fazi et al. - durch eine explizite Lösung der zugrundeliegenden Integralgleichungen erfolgen. Hierfür sind aber komplexe mathematische Berechnungen nötig.
  • Gemäß der vorliegenden Erfindung werden hierzu die Prinzipien aus der Zeitumkehr-Akustik angewendet. Das Feld außerhalb des lokalen Zuhörerbereichs kann als das zeitumgekehrte Feld interpretiert werden, welches durch einen virtuellen Streukörper an der Position des Zuhörerbereiches entstanden ist. Dieses äußere Feld kann durch die Anwendung der Zeitumkehr durch Lautsprecher außerhalb des lokalen Zuhörerbereichs synthetisiert werden. Dadurch entsteht innerhalb des lokalen Zuhörerbereichs das Feld der gewünschten virtuellen Quelle.
  • Dementsprechend stellt die vorliegende Erfindung ein Verfahren zur Bestimmung von Ansteuerungssignalen zur Wiedergabe eines gewünschten Schallfelds innerhalb eines lokalen Zuhörerbereichs mittels mehrerer Lautsprecher an Positionen außerhalb des lokalen Zuhörerbereichs bereit, das die folgenden Schritte aufweist: Zunächst wird ein virtuelles Schallfeld außerhalb des lokalen Zuhörerbereichs bestimmt, das durch Streuung des gewünschten Schallfelds an einem virtuellen Streukörper mit einer Geometrie entsteht, die der Geometrie des lokalen Zuhörerbereichs entspricht, und die Signale dieses virtuellen Schallfeldes an den Positionen der Lautsprecher werden bestimmt. Die Ansteuerungssignale für die Lautsprecher werden durch Zeitumkehren der Signale des virtuellen Schallfelds an den entsprechenden Lautsprecherpositionen bestimmt. Zur Wiedergabe des gewünschten Schallfelds innerhalb des lokalen Zuhörerbereichs werden nach Bestimmen der Ansteuerungssignalen für die Lautsprecher vorzugsweise die zu verwendenden Lautsprecher unter den mehreren Lautsprecher ausgewählt und diese werden mit den zeitumgekehrten Signalen angesteuert.
  • Bei der Berechnung des gestreuten Feldes wird in der Regel davon ausgegangen, dass das Feld innerhalb des Streukörpers dem einfallenden Feld entspricht. Weiterhin wird angenommen, dass dieses Feld aus dem Streukörper nach außen propagieren kann. Diese Anteile des Schallfelds sollen aber vorzugsweise bei der Ansteuerung der Lautsprecher nicht berücksichtigt werden. Weiterhin wird bei der Theorie der Zeitumkehr-Akustik nicht die Ausbreitungsrichtung der Wellenfronten berücksichtigt. Diese ist aber für einen Zuhörer zum Beispiel bei der Lokalisation von Schallquellen ausschlaggebend. Beides kann durch eine räumliche Fensterung (Selektion) bei der Auswahl der zu verwendenden, also der aktiven Lautsprecher erfolgen.
  • Bei dem erfindungsgemäßen Verfahren sind die Lautsprecher vorzugsweise kreisförmig oder linear oder rechteckig oder oval oder kugelförmig angeordnet.
  • Es ist ferner bevorzugt, dass die Amplituden der Lautsprechersignale korrigiert werden, wie auch im Folgenden noch kurz erläutert wird.
  • Der virtuelle Streukörper kann schallweiche oder schallharte oder auch gemischte Randbedingungen haben.
  • Gemäß einer weiter bevorzugten Ausführungsform Wird das virtuelle Schallfeld als durch eine virtuelle Quelle erzeugt beschrieben. Vorzugsweise ist die virtuelle Quelle eine Punktquelle oder eine ebene Welle. Gemäß einer anderen Ausführungsform ist die virtuelle Quelle eine Quelle mit komplexer Richtcharakteristik.
  • Weiter bevorzugt weist das Verfahren den Schritt des Auswählens von zu benutzenden Lautsprechern aus den mehreren Lautsprechern auf. Dabei können Lautsprecher ausgewählt werden, die sich nicht in der Ausbreitungsrichtung des virtuellen Schallfelds befinden. Es ist auch möglich, bei der Auswahl der Lautsprecher Lautsprecher auszuwählen, deren Ausbreitungsrichtung bezogen auf die lokale Zuhörerzone mit der Ausbreitungsrichtung des virtuellen Schallfelds übereinstimmen.
  • Bevorzugt wird das virtuelle Schallfeld mit der 2,5-dimensionalen Wellenfeldsynthese bestimmt.
  • Es ist ferner bevorzugt, dass der Zuhörerbereich dynamisch innerhalb der Lautsprecheranordnung platziert wird. Dabei kann der Zuhörerbereich an die Position eines bewegten Zuhörers angepasst werden.
  • Das virtuelle Schallfeld ist vorzugsweise ein mittels Mikrophonen außerhalb des Zuhörerbereichs gemessenes Schallfeld.
  • Mit dem Berechnungsverfahren gemäß der Erfindung für die Ansteuerungssignale können auch Impulsantworten berechnet werden. Mit diesen kann dann das Signal der virtuellen Quelle gefaltet werden, um das gewünschte virtuelle Schallfeld innerhalb der lokalen Zonen zu erzeugen. Dazu muss bei der Berechnung des Schallfeldes, welches vom virtuellen Streukörper gestreut wird, angenommen werden, dass das einfallende Schallfeld der virtuellen Quelle für einen zeitlichen (Dirac) Impuls als Quellensignal berechnet wird. Das heißt, in diesem Fall wird dann die raum-zeitliche Impulsantwort vom virtuellen Streukörper zu den Lautsprecherpositionen berechnet. Diese muss bei der Anwendung der Zeitumkehr und gegebenenfalls auch bei der Auswahl der Lautsprecher berücksichtigt werden.
  • Das erfindungsgemäße Verfahren kann auch auf gemessene Schallfelder angewendet werden. Hierzu muss das Schallfeld mit einem Mikrophonarray vermessen werden, welches sich außerhalb des virtuellen Streukörpers befindet. Aus der analyse des Schallfeldes kann das einfallende Schallfeld auf dem virtuellen Streukörper und damit das gestreute Feld an den Lautsprecherpositionen berechnet werden.
  • Die Randbedingungen für den virtuellen Streukörper können gemäß den obigen Ausführungen als schallweich angesetzt werden, oder alternativ auch als schallhart.
  • Bei einer 2.5-dimensionalen Synthese mittels Wellenfeldsynthese kann eine Korrektur der Amplituden der Lautsprechersignale nötig werden. Im Vergleich zu einer dreidimensionalen Wellenfeldsynthese verwendet die 2,5-dimensionale Synthese Sekundärquellen an der Umgrenzung des (planaren) Hörbereichs. Werden dazu Punktschallquellen als Sekundärquellen verwendet, wird von einer 2,5-dimensionale Synthese gesprochen. Die 2,5-dimensionale Synthese leidet jedoch unter dem Auftreten von Artefakten, insbesondere Amplitudenabweichungen zwischen den gewünschten virtuelen Quellen und dem synthetisierten Schallfeld. Dies wird durch eine Korrektur der Amplituden der Lautsprechersignale berücksichtigt.
  • Aufgrund des typischerweise klein gewählten Zuhörerbereichs und der somit kleinen Apertur ist es oft nicht sinnvoll, das beschriebenen Verfahren zur lokalen Schallfeldsynthese bei tiefen Frequenzen zu nutzen. Für tiefe Frequenzen können die normalen Verfahren zur Schallfeldsynthese genutzt werden, da hier die typische physikalische Genauigkeit der herkömmlichen Verfahren ausreichend ist. Das Überblenden zwischen den beiden Verfahren kann durch eine Fensterfunktion im Frequenzbereich geschehen.
  • Die virtuelle Quelle kann neben dem typischen Punktquellenmodell auch als Quelle mit komplexer Richtcharateristik modelliert werden. Hierzu kann beispielsweise das in J. Ahrens and S. Spors. Implementation of directional sources in wave field synthesis. In IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, USA, October 2007 beschriebene Verfahren verwendet werden. Auch hier bietet die Kombination mit der lokalen Schallfeldsynthese gemäß der Erfindung einen wesentlichen Vorteil, da die gewünschte Richtcharakteristik nicht durch die Artefakte der räumlichen Abtastung verfälscht wird.
  • Das erfindungsgemäße Verfahren erlaubt auch die Synthese von Ruhezonen innerhalb eines Systems zur Schallfeldsynthese durch die Überlagerung eines im gesamten Bereich synthetisierten Schallfeldes und eines lokalen Schallfeldes. Falls das Schallfeld innerhalb des lokalen Zuhörerbereichs gegenüber dem globalen Schallfeld eine umgekehrte Phase aufweist, gibt es innerhalb des lokalen Zuhörerbereiches Auslöschung bzw. Dämpfung des globalen Schallfeldes, und es bildet sich eine Ruhezone innerhalb des lokalen Zuhörerbereiches aus.
  • Gemäß diesem Aspekt stellt die Erfindung ein Verfahren zur Erzeugung einer Ruhezone oder einer Zone mit vermindertem Schalldruck innerhalb eines Schallfeldes bereit, mit den Schritten: a) Bestimmen von ersten Ansteuerungssignalen zur Wiedergabe des gewünschten Schallfeldes innerhalb des Zuhörerbereichs für die Lautsprecher gemäß dem erfindungsgemäßen Verfahren; b) Bestimmen von zweiten Ansteuerungssignalen zur Wiedergabe des gewünschten Schallfeldes innerhalb des durch die Lautsprecher umfassten Bereiches; c) Ansteuern der Lautsprecher mit den zeitumgekehrten Signalen; und d) phasenumgekehrtes Überlagern der Ansteuerungssignale gemäß Schritt c) mit Ansteuersignalen für die Lautsprecher gemäß Schritt b).
  • Vorzugsweise erfolgt Schritt b) durch Wellenfeldsynthese oder near-field compensated higher-order Ambisonics.
  • Prinzipiell ist das erfindungsgemäße Verfahren unabhängig von der Technik, die für die Berechnung des gestreuten Schallfeldes des virtuellen Streukörpers verwendet wird. Die Streuung des virtuellen Schallfeldes an einen Körper kann zum Beispiel mittels der in N.A. Gumerov and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in three Dimensions, Elsevier, 2004 beschriebenen analytischen Berechnungsvorschriften erfolgen oder auch mittels numerischer Verfahren wie zum Beispiel der, boundary element method (BEM)' oder ,finite element method' (FEM).
  • Das Verfahren gemäß der vorliegenden ermöglicht die Synthese eines Schallfeldes in einer lokalen Zuhörerzone, wobei innerhalb der lokalen Zone mit einer gegebenen Anzahl von Lautsprechern eine höhere Genauigkeit erzielt wird. Der gewünschte lokale Wiedergabebereich kann dynamisch und frei innerhalb bzw. vor der Lautsprecheranordung platziert werden und so z.B. dynamisch an die Hörerposition angepasst werden, insbesondere durch eine geeignete Wahl der Position und der Geometrie des virtuellen Streukörpers. Das Verfahren kann auch als Ersatz für ein anderes Verfahren der lokalen Synthese bei der Extrapolation bzw. Synthese von Außenohrübertragungsfunktionen verwendet werden. Weiterhin ist auch die Erzeugung von Ruhezonen oder Zonen mit vermindertem Schalldruck bzw. verminderter Energie innerhalb des synthetisierten Schallfeldes möglich.
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen unter Verweis auf die beigefügten Figuren näher beschrieben.
    • Fig. 1 zeigt ein Beispiel eines von einem kugelförmigen Streukörper mit schallweichen Randbedingungen gestreuten Felds für eine ebene Welle als einfallendes Schallfeld;
    • Fig. 2 zeigt das Schallfeld bei der Synthese einer monofrequenten ebenen Welle mit einer Frequenz (a) von 1 kHz und (b) von 5 kHz mittels traditioneller Wellenfeldsynthese durch eine kreisförmige Lautsprecheranordnung;
    • Fig. 3 zeigt die Anwendung des erfindungsgemäßen Verfahrens auf das Szenario aus Fig. 2(b);
    • Fig. 4 zeigt das Schallfeld bei der Synthese einer monofrequenten ebenen Welle mit einer Frequenz (a) von 1 kHz und (b) von 4 kHz mittels traditioneller Wellenfeldsynthese durch eine lineare Lautsprecheranordnung;
    • Fig. 5 zeigt die Anwendung des beschriebenen Verfahrens zur lokalen Synthese für die Synthese einer ebenen Welle mit einer Frequenz von 4 kHz entsprechend dem in Fig. 4(b) gezeigten Aufbau;
    • Fig. 6 zeigt die Ausbildung einer Ruhezone in dem Aufbau gemäß Fig. 2 mittels traditioneller Wellenfeldsynthese und
    • Fig. 7 zeigt die Ausbildung einer Ruhezone im Aufbau nach Fig. 6 mittels der vorliegenden Erfindung.
  • Bei einem ersten Beispiel wird die lokale Synthese innerhalb einer kreisförmigen Anordnung mit einem Durchmesser von 3 m bestehend aus 60 Lautsprechern betrachtet. Die lokale Zuhörerzone ist kreisförmig mit einem Durchmesser von 60 cm und befindet sich im Zentrum der Lautsprecheranordnung. Figur 2(a) zeigt das Schallfeld bei der Synthese einer monofrequenten ebenen Welle mit einer Frequenz von 1 kHz mittels traditioneller Wellenfeldsynthese. Figur 2(b) zeigt das gleiche Szenario, für eine Frequenz von 5 kHz. Aufgrund der höheren Frequenz und des endlichen Lautsprecherabstandes sind deutliche Artefakte der räumlichen Abtastung im synthetisierten Schallfeld zu beobachten. Figur 3 zeigt die Anwendung des beschriebenen Verfahrens zu lokalen Synthese. Als virtueller Streukörper wurde eine Kugel mit schallweichen Randbedingungen angenommen. Die Kugel ist ebenfalls in den Figuren eingezeichnet. Figur 3 zeigt deutlich, dass bei einer Frequenz der ebenen Welle von 5 kHz eine akkurate Synthese innerhalb des lokalen Zuhörerbereiches möglich ist. Außerhalb des lokalen Zuhörerbereiches entstehen Artefakte.
  • Im zweiten Ausführungsbeispiel wird eine lineare Anordnung von insgesamt 60 Lautsprechern betrachtet, wobei der Abstand zwischen den Lautsprechern 15 cm beträgt. Figur 4(a) zeigt die Synthese einer monofrequenten ebenen Welle mit einer Frequenz von 1 kHz. Figur 4(b) das gleiche Szenario mit einer Frequenz von 4 kHz. Auch hier sind wieder deutliche Artefakte der räumlichen Abtastung innerhalb des gesamten Zuhörerbereiches zu beobachten. Figur 5 zeigt die Anwendung des beschriebenen Verfahrens zur lokalen Synthese für die Synthese einer ebenen Welle mit einer Frequenz von 4 kHz. Die Verbesserung in dem lokalen Zuhörerbereich, im Gegensatz zu Figur 4(b), ist deutlich ersichtlich.
  • Im dritten Ausführungsbeispiel wird die Synthese eines Schallfeldes betrachtet, innerhalb welchem sich eine Ruhezone ausbildet. Die Geometrie entspricht dem ersten Beispiel. Figur 6 zeigt die Synthese einer monofrequenten ebenen Welle mit einer Frequenz von 1 kHz bei Verwendung der traditionellen Wellenfeldsynthese. Figur 7 zeigt die Ausbildung einer Ruhezone im Zentrum der Lautsprecheranordnung. Dies wurde durch phasenumgekehrte Überlagerung der Ansteuerungssignale der traditionellen Wellenfeldsynthese und der vorgeschlagenen lokalen Synthese realisiert.
  • Obwohl die Erfindung mittels der Figuren und der zugehörigen Beschreibung dargestellt und detailliert beschrieben ist, sind diese Darstellung und diese detaillierte Beschreibung illustrativ und beispielhaft zu verstehen und nicht als die Erfindung einschränkend. Es versteht sich, dass Fachleute Änderungen und Abwandlungen machen können, ohne den Umfang der folgenden Ansprüche zu verlassen. Insbesondere umfasst die Erfindung ebenfalls Ausführungsformen mit jeglicher Kombination von Merkmalen, die vorstehend zu verschiedenen Aspekten und/oder Ausführungsformen genannt oder gezeigt sind.
  • Die Erfindung umfasst ebenfalls einzelne Merkmale in den Figuren auch wenn sie dort im Zusammenhang mit anderen Merkmalen gezeigt sind und/oder vorstehend nicht genannt sind.
  • Im Weiteren schließt der Ausdruck "umfassen" und Ableitungen davon andere Elemente oder Schritte nicht aus. Ebenfalls schließt der unbestimmte Artikel "ein" bzw. "eine" und Ableitungen davon eine Vielzahl nicht aus. Die Funktionen mehrerer in den Ansprüchen aufgeführter Merkmale können durch eine Einheit erfüllt sein. Die Begriffe "im Wesentlichen", "etwa", "ungefähr" und dergleichen in Verbindung mit einer Eigenschaft beziehungsweise einem Wert definieren insbesondere auch genau die Eigenschaft beziehungsweise genau den Wert. Alle Bezugszeichen in den Ansprüchen sind nicht als den Umfang der Ansprüche einschränkend zu verstehen.

Claims (17)

  1. Verfahren zur Bestimmung von Ansteuerungssignalen zur Wiedergabe eines gewünschten Schallfelds innerhalb eines lokalen Zuhörerbereichs mittels mehrerer Lautsprecher an Positionen außerhalb des Zuhörerbereichs, mit den Schritten:
    - Bestimmen eines virtuellen Schallfelds außerhalb des Zuhörerbereichs, das durch Streuung des gewünschten Schallfelds an einem virtuellen Streukörper mit einer Geometrie, die der Geometrie des Zuhörerbereichs äquivalent ist, entsteht,
    - Bestimmen der Signale des gestreuten virtuellen Schallfelds an den Positionen der Lautsprecher und
    - Zeitumkehren der Signale des virtuellen Schallfelds.
  2. Verfahren nach Anspruch 1, wobei die Lautsprecher kreisförmig oder linear oder rechteckig oder oval oder kugelförmig angeordnet sind.
  3. Verfahren nach Anspruch 1 oder 2, wobei die Amplituden der Lautsprechersignale korrigiert werden.
  4. Verfahren nach einem der vorstehenden Ansprüche, wobei der virtuelle Streukörper schallweiche/schallharte/gemischte Randbedingungen hat.
  5. Verfahren nach einem der vorstehenden Ansprüche, wobei das virtuelle Schallfeld als durch eine virtuelle Quelle erzeugt beschrieben wird.
  6. Verfahren nach Anspruch 5, wobei die virtuelle Quelle eine Punktquelle/ebene Welle ist.
  7. Verfahren nach Anspruch 5, wobei die virtuelle Quelle eine Quelle mit komplexer Richtcharakteristik ist.
  8. Verfahren nach einem der vorstehenden Ansprüche, ferner mit dem Schritt des Auswählens von zu benutzenden Lautsprechern aus den mehreren Lautsprechern.
  9. Verfahren nach Anspruch 8, wobei Lautsprecher ausgewählt werden, die sich nicht in der Ausbreitungsrichtung des virtuellen Schallfelds befinden.
  10. Verfahren nach Anspruch 8, wobei bei der Auswahl der Lautsprecher Lautsprecher ausgewählt werden, deren Ausbreitungsrichtung bezogen auf die lokale Zuhörerzone mit der Ausbreitungsrichtung des virtuellen Schallfelds übereinstimmen.
  11. Verfahren nach einem der vorstehenden Ansprüche, wobei das virtuelle Schallfeld mit einer 2,5-dimensionalen Wellenfeldsynthese bestimmt wird.
  12. Verfahren nach einem der vorstehenden Ansprüche, wobei der Zuhörerbereich dynamisch innerhalb der Lautsprecheranordnung platziert wird.
  13. Verfahren nach Anspruch 12, wobei der Zuhörerbereich an die Position eines bewegten Zuhörers angepasst wird.
  14. Verfahren nach einem der vorstehenden Ansprüche, wobei das virtuelle Schallfeld ein mittels Mikrophonen außerhalb des Zuhörerbereichs gemessenes Schallfeld ist.
  15. Verfahren zur Wiedergabe eines gewünschten Schallfelds innerhalb eines lokalen Zuhörerbereichs mittels mehrerer Lautsprecher an Positionen außerhalb des Zuhörerbereichs, mit den Schritten:
    - Bestimmen von Ansteuerungssignalen zur Wiedergabe des gewünschten Schallfeldes innerhalb des Zuhörerbereichs für die Lautsprecher gemäß dem Verfahren nach einem der Ansprüche 1 bis 14, und
    - Ansteuern der Lautsprecher mit den zeitumgekehrten Signalen.
  16. Verfahren zur Erzeugung einer Ruhezone oder einer Zone mit vermindertem Schalldruck innerhalb eines Schallfeldes, mit den Schritten:
    a) Bestimmen von ersten Ansteuerungssignalen zur Wiedergabe des gewünschten Schallfeldes innerhalb des Zuhörerbereichs für die Lautsprecher gemäß dem Verfahren nach einem der Ansprüche 1 bis 14;
    b) Bestimmen von zweiten Ansteuerungssignalen zur Wiedergabe des gewünschten Schallfeldes innerhalb des durch die Lautsprecher umfassten Bereiches;
    c) Ansteuern der Lautsprecher mit den zeitumgekehrten Signalen; und
    d) phasenumgekehrtes Überlagern der Ansteuerungssignale gemäß Schritt c) mit Ansteuersignalen für die Lautsprecher gemäß Schritt b).
  17. Verfahren nach Anspruch 16, wobei Schritt b) durch Wellenfeldsynthese oder near-field compensated higher-order Ambisonics erfolgt.
EP20110181445 2011-09-15 2011-09-15 Lokale Schallfeldsynthese durch einen virtuellen Streukörper Active EP2571290B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES11181445.5T ES2480284T3 (es) 2011-09-15 2011-09-15 Síntesis local de un campo acústico por medio de un cuerpo virtual de difusión
EP20110181445 EP2571290B1 (de) 2011-09-15 2011-09-15 Lokale Schallfeldsynthese durch einen virtuellen Streukörper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20110181445 EP2571290B1 (de) 2011-09-15 2011-09-15 Lokale Schallfeldsynthese durch einen virtuellen Streukörper

Publications (2)

Publication Number Publication Date
EP2571290A1 true EP2571290A1 (de) 2013-03-20
EP2571290B1 EP2571290B1 (de) 2014-04-30

Family

ID=45497714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110181445 Active EP2571290B1 (de) 2011-09-15 2011-09-15 Lokale Schallfeldsynthese durch einen virtuellen Streukörper

Country Status (2)

Country Link
EP (1) EP2571290B1 (de)
ES (1) ES2480284T3 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10125229A1 (de) 2001-05-22 2002-11-28 Thomson Brandt Gmbh Verfahren und Vorrichtung zur Wiedergabe von Mehrkanaltonsignalen
US6633648B1 (en) 1999-11-12 2003-10-14 Jerald L. Bauck Loudspeaker array for enlarged sweet spot
DE102005052904A1 (de) 2004-11-04 2006-06-29 Schlenker, Berthold, Dipl.-Ing. System zur Wiedergabe von Audiosignalen
DE102005003431A1 (de) 2005-01-25 2006-08-03 Institut für Rundfunktechnik GmbH Anordnung zum Wiedergeben von binauralen Signalen (Kunstkopfsignalen) durch mehrere Lautsprecher
DE102007032272A1 (de) 2007-07-11 2009-01-22 Institut für Rundfunktechnik GmbH Verfahren zur Simulation einer Kopfhörerwiedergabe von Audiosignalen durch mehrere fokussierte Schallquellen
EP2182744A1 (de) 2008-10-30 2010-05-05 Deutsche Telekom AG Wiedergabe eines Schallfeldes in einem Zielbeschallungsbereich

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633648B1 (en) 1999-11-12 2003-10-14 Jerald L. Bauck Loudspeaker array for enlarged sweet spot
DE10125229A1 (de) 2001-05-22 2002-11-28 Thomson Brandt Gmbh Verfahren und Vorrichtung zur Wiedergabe von Mehrkanaltonsignalen
DE102005052904A1 (de) 2004-11-04 2006-06-29 Schlenker, Berthold, Dipl.-Ing. System zur Wiedergabe von Audiosignalen
DE102005003431A1 (de) 2005-01-25 2006-08-03 Institut für Rundfunktechnik GmbH Anordnung zum Wiedergeben von binauralen Signalen (Kunstkopfsignalen) durch mehrere Lautsprecher
DE102007032272A1 (de) 2007-07-11 2009-01-22 Institut für Rundfunktechnik GmbH Verfahren zur Simulation einer Kopfhörerwiedergabe von Audiosignalen durch mehrere fokussierte Schallquellen
EP2182744A1 (de) 2008-10-30 2010-05-05 Deutsche Telekom AG Wiedergabe eines Schallfeldes in einem Zielbeschallungsbereich

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
A.J. BERKHOUT, D. DE VRIES, P. VOGEL: "Acoustic control by wave field synthesis", JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, vol. 93, no. 5, May 1993 (1993-05-01), pages 2764 - 2778, XP000361413, DOI: doi:10.1121/1.405852
DIDIER CASSEREAU, MATHIAS FINK: "Time-Reversal of Ultrasonic Fields-Part III: Theory of the Closed Time-Reversal Cavitv", IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol. 39, no. S, September 1992 (1992-09-01)
E.G. WILLIAMS: "Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography", 1999, ACADEMIC PRESS
F.M. FAZI, P.A. NELSON, R. POTTHAST: "Analogies and Differences between three Methods for Sound Field Reproduction", AMBISONICS SYMPOSIUM, June 2009 (2009-06-01)
J. AHRENS, S. SPORS: "Analytical driving functions for higher order Ambisonics", IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), LAS VEGAS, NEVADA, 30 March 2008 (2008-03-30)
J. AHRENS, S. SPORS: "Implementation of directional sources in wave field synthesis", IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS, October 2007 (2007-10-01)
J. AHRENS: "The single-layer potential approach applied on sound field synthesis and its extension to nonenclosing distributions of secondary sources", PH.D. DISSERTATION, 2010
J. DANIEL: "Representation de champs acoustiques, application ä la transmission et ä la reproduction de scenes sonores complexes dans un contexte multimedia", PHD THESIS, 2001
N.A. GUMEROV, R. DURAISWAMI: "Fast Multipole Methods for the Helmholtz Equation in three Dimensions", 2004, ELSEVIER
S. SPORS, J. AHRENS: "Local sound reproduction by virtual secondary sources", AES 40TH INTERNATIONAL CONFERENCE ON SPATIAL AUDIO, October 2010 (2010-10-01)
S. SPORS, R. RABENSTEIN, J. AHRENS: "The Theory of Wave Field Synthesis Revisited", PROCEEDINGS OF 124TH CONVENTION OF THE AUDIO ENGINEERING SOCIETY, 17 May 2008 (2008-05-17)

Also Published As

Publication number Publication date
EP2571290B1 (de) 2014-04-30
ES2480284T3 (es) 2014-07-25

Similar Documents

Publication Publication Date Title
EP1977626B1 (de) Verfahren zur aufnahme einer tonquelle mit zeitlich variabler richtcharakteristik und zur wiedergabe
EP3005732B1 (de) Vorrichtung und verfahren zur raumselektiven audiowiedergabe
EP1878308B1 (de) Vorrichtung und verfahren zur generierung und bearbeitung von toneffekten in räumlichen tonwiedergabesystemen mittels einer graphischen benutzerschnittstelle
EP1972181B1 (de) Vorrichtung und verfahren zur simulation von wfs-systemen und kompensation von klangbeeinflussenden wfs-eigenschaften
EP3044972B1 (de) Vorrichtung, verfahren und computerprogramm zur dekorrelation von lautsprechersignalen
EP3061271B1 (de) Wellenfeldsynthese-system
DE102005003431B4 (de) Anordnung zum Wiedergeben von binauralen Signalen (Kunstkopfsignalen) durch mehrere Lautsprecher
EP2754151B1 (de) Vorrichtung, verfahren und elektroakustisches system zur nachhallzeitverlängerung
DE102005001395B4 (de) Verfahren und Vorrichtung zur Transformation des frühen Schallfeldes
WO2015004526A2 (de) Variable vorrichtung zum ausrichten von schallwellenfronten
EP2373054B1 (de) Wiedergabe in einem beweglichen Zielbeschallungsbereich mittels virtueller Lautsprecher
EP2182744B1 (de) Wiedergabe eines Schallfeldes in einem Zielbeschallungsbereich
EP2571290B1 (de) Lokale Schallfeldsynthese durch einen virtuellen Streukörper
DE102019208631A1 (de) Vorrichtung und Verfahren zur Beschallung eines räumlichen Bereichs
EP2503799B1 (de) Verfahren und System zur Berechnung synthetischer Außenohrübertragungsfunktionen durch virtuelle lokale Schallfeldsynthese
DE102011108788B4 (de) Verfahren zur Verarbeitung eines Audiosignals, Audiowiedergabesystem und Verarbeitungseinheit zur Bearbeitung von Audiosignalen
EP2485504B1 (de) Erzeugung von stillen Gebieten innerhalb der Zuhörerzone vielkanaliger Wiedergabesysteme
AT523644B1 (de) Verfahren für die Erzeugung eines Konvertierungsfilters für ein Konvertieren eines multidimensionalen Ausgangs-Audiosignal in ein zweidimensionales Hör-Audiosignal
DE102018108852B3 (de) Verfahren zur Beeinflussung einer auditiven Richtungswahrnehmung eines Hörers
EP2487891B1 (de) Vermeiden eines akustischen Echos bei Vollduplexsystemen
WO2022183231A1 (de) Verfahren zur erzeugung von audiosignalfiltern für audiosignale zur erzeugung virtueller schallquellen
WO2015022578A1 (de) Zweidimensionale anordnung von schallwandlern für eventbeschallungen
DE102022129642A1 (de) Verfahren zur richtungsabhängigen Korrektur des Frequenzganges von Schallwellenfronten
DE102007026219A1 (de) Audiologische Messvorrichtung zur Erzeugung von akustischen Testsignalen für audiologische Messungen
DE1927401B2 (de) Verfahren zur hoerrichtigen aufnahme und wiedergabe von schallereignissen und vorrichtung zu seiner durchfuehrung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130918

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04S 3/00 20060101AFI20131119BHEP

INTG Intention to grant announced

Effective date: 20131205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE TELEKOM AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 665793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011002886

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2480284

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002886

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140915

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011002886

Country of ref document: DE

Effective date: 20150202

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110915

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 665793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R083

Ref document number: 502011002886

Country of ref document: DE

R26N No opposition filed (corrected)

Effective date: 20150202

RIN2 Information on inventor provided after grant (corrected)

Inventor name: AHRENS, JENS

Inventor name: HELWANI, KARIM

Inventor name: SPORS, SASCHA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 13

Ref country code: DE

Payment date: 20230919

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 13