EP2570754A2 - Mehrkanal-Verdampfersystem - Google Patents

Mehrkanal-Verdampfersystem Download PDF

Info

Publication number
EP2570754A2
EP2570754A2 EP12006499A EP12006499A EP2570754A2 EP 2570754 A2 EP2570754 A2 EP 2570754A2 EP 12006499 A EP12006499 A EP 12006499A EP 12006499 A EP12006499 A EP 12006499A EP 2570754 A2 EP2570754 A2 EP 2570754A2
Authority
EP
European Patent Office
Prior art keywords
evaporator
channels
refrigerant
channel
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12006499A
Other languages
English (en)
French (fr)
Other versions
EP2570754A3 (de
Inventor
Thomas Ertel
Thomas Gindele
Holger Jendrusch
Volker Friedmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundy Refrigeration GmbH
Liebherr Hausgeraete Ochsenhausen GmbH
Original Assignee
Bundy Refrigeration GmbH
Liebherr Hausgeraete Ochsenhausen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundy Refrigeration GmbH, Liebherr Hausgeraete Ochsenhausen GmbH filed Critical Bundy Refrigeration GmbH
Publication of EP2570754A2 publication Critical patent/EP2570754A2/de
Publication of EP2570754A3 publication Critical patent/EP2570754A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Definitions

  • the present invention relates to a multi-channel evaporator system having at least one multi-channel evaporator having a plurality of channels, which are flowed through by refrigerant in the operation of the evaporator, and with at least one capillary for supplying the refrigerant to the evaporator.
  • Cooling and / or freezing appliances known from the prior art generally have one or more refrigerant circuits, which comprise at least one evaporator, which is traversed by refrigerant during operation of the compressor and due to the evaporation of the refrigerant extracts heat from the compartment to be cooled.
  • the evaporators are known in numerous different embodiments.
  • One possible embodiment is multichannel evaporators or microchannel evaporators which, compared to other types of evaporators, have smaller channels for flowing through with refrigerant.
  • the channels of such multi-channel evaporators may be in the mm range or below. They have a comparatively large surface, with which the refrigerant comes into contact.
  • the present invention has the object of developing a multi-channel evaporator system to the effect that this has a particularly high efficiency.
  • the multi-channel evaporator system comprises at least one distribution means, wherein the distribution means is formed and arranged relative to the plurality of channels such that the introduced by means of the capillary refrigerant by the distribution means to at least two, preferably all of said Channels is distributed.
  • the distribution means may be directly or indirectly associated with the multi-channel evaporator (hereinafter called "evaporator").
  • the multichannel evaporator can have a plurality of channels arranged side by side and / or one above the other or otherwise arranged relative to one another, which are flowed through by refrigerant during the operation of the evaporator.
  • the channels are directly adjacent to each other, one above the other or otherwise arranged relative to each other and each separated by at least one wall.
  • the individual channels may have a diameter or a hydraulic diameter in the range of 0.1 mm to 5 mm, preferably> 1 mm.
  • the cross section of the individual channels can be in the range between 1 mm 2 and 30 mm 2 , preferably in the range between 4 mm 2 and 20 mm 2 .
  • the cross-sectional profile of the channels may be square, round, elliptical and preferably rectangular.
  • the channels have a greater width than their height, so that there are flat channels or the multi-channel evaporator is designed as a flat tube.
  • the height and the width of the channels is preferably in the range ⁇ 2 cm, preferably in the range ⁇ 1 cm.
  • the channels may have a size (height x width) in the range of 1 x 2 mm to 5 x 10 mm, i. the height preferably varies in the range between 1 mm and 5 mm and the width in the range between 2 mm and 10 mm.
  • Possible examples are channels with the dimensions (height x width) 2 x 3 mm and 2 x 10 mm.
  • Evaporators with one or more of the aforementioned properties are also referred to as microchannel evaporators within the scope of the invention.
  • the present invention is therefore based on the idea to achieve by at least one distribution means a distribution of the introduced refrigerant to a plurality and preferably to all channels of the evaporator.
  • the distribution means is preferably constructed such that a plurality of and preferably all channels are uniformly or substantially evenly supplied with refrigerant. This makes it possible to evaporate the injected refrigerant efficiently and thus to obtain a good cooling capacity of the evaporator.
  • the distribution means or the distribution means may be constructed and arranged such that the distribution of the refrigerant takes place in a state in which the refrigerant is in the liquid state during operation of the refrigerator and / or freezer. In this case, a distribution of the refrigerant takes place on the plurality and preferably all channels of the evaporator in the liquid state.
  • the invention also includes the case that the distribution of the refrigerant takes place in the gaseous state.
  • an evaporation of the refrigerant first takes place and only then a distribution to the plurality and preferably to all channels of the evaporator.
  • the distribution means are arranged so that a distribution of the refrigerant takes place in the two-phase state, i. in a state in which the refrigerant is partly in the gaseous and partly in the liquid state.
  • the distribution means may comprise or consist of at least one cap, the cap being in fluid communication with said at least one capillary on the one hand and with the channels on the other hand, preferably with an open end region of the channels. It is thus conceivable to introduce the refrigerant into the cap, in which an open end of the channels is located. In the cap, the refrigerant is distributed and flows from there through the interiors of the channels.
  • the cap may have a cavity in which the refrigerant is distributed. It is also conceivable that the cap comprises one or more channels, which in turn communicate with the channels of the evaporator, i. are in fluid communication, so that the refrigerant from the channels of the cap flows into the channels of the evaporator.
  • Said at least one capillary may terminate in or pass through the space surrounded by the cap.
  • the refrigerant enters the space of the cap, disperses there and then flows through the open ends of the channels.
  • the capillary penetrates the said space and does not end there, but only in the channels of the evaporator.
  • an embodiment could be configured such that the capillary has one or more branching points located in the space surrounded by the cap, with the ends of the branched capillaries in the channels. In this case, the refrigerant is introduced from the respective ends of the capillary directly into the channels.
  • the distribution means may comprise or consist of one or more branching points formed by a profile of the evaporator or this include or at which a capillary or a plurality of capillaries is divided into several or a larger number of capillaries. As stated above, it is thus conceivable to use a plurality of capillaries or one or more branches of a capillary as distribution means.
  • the capillary can run completely or only partially in the interior of the evaporator or in the interior of the suction line connected to the evaporator.
  • the at least one capillary is guided with the suction line and / or with another component of the refrigerant circuit, such as with the condenser in the heat exchange.
  • the injection of the refrigerant can take place only in one area, such as in the aforementioned cap or in several, and preferably in each channel individually.
  • the capillaries are arranged so that they end in more than one channel and preferably in all channels of the evaporator. In this case, an injection of the refrigerant into each individual channel of the evaporator is possible.
  • the evaporator is directly or indirectly connected to at least one suction line, wherein it is preferably provided that the suction line has at least one widening and is directly connected to the evaporator or that at least connecting element is provided on the one hand with the suction line and on the other hand with the evaporator in communication.
  • a conceivable possibility thus consists in that the suction line is widened compared to previously known configurations and is attached to the evaporator body in such a way that the widened side communicates with the ends of the evaporator channels, so that the refrigerant emerging from these ends enters the suction line.
  • a correspondingly designed connecting element can be provided, which is in flow connection on the one hand to the outlet of the evaporator channels and on the other hand to the suction line.
  • funnel-shaped design of the suction line or the connecting element wherein the broad side communicates with the ends of the channels of the evaporator and the narrow side suction side, i. is arranged towards the compressor.
  • the suction line is connected to the connecting element, e.g. can be made of metal, in particular Cu or Al, etc., is connected, on the one hand has a pipe connection side and on the other hand, an evaporator connection side.
  • the connecting element e.g. can be made of metal, in particular Cu or Al, etc.
  • the connecting element can represent or receive both the beginning and the end of the evaporator, wherein the connecting elements for both ends can be identical or different.
  • the connecting element may be formed hollow or have one or more channels, which correspond at least partially with the channels of the evaporator.
  • the connecting element may be formed as a solid body having one or more channels corresponding to the channels of the evaporator, i. in fluid communication.
  • the at least one capillary and / or the suction line or a part of the capillary and / or the suction line can be formed by one or more channels of the evaporator itself.
  • the at least one capillary can thus be formed by a tube or channel of the evaporator itself. This can be done by squeezing one or more channels accordingly, thereby creating a pressure drop, such as would otherwise occur with the capillary. In this case, it is possible to completely dispense with a capillary intended for this purpose, since in this case the capillary is formed by one or more tubes of the evaporator.
  • Conceivable would be an embodiment in which the flat tube of the evaporator is soldered to the condenser, squeezed from there and acts as a capillary until the tube is in the evaporator and there again has normal size and acts as an evaporator.
  • the advantage with this approach is that a joint, i. For example, a solder joint between the capillary and the evaporator is saved
  • the suction pipe i. the pipe leading to the compressor is formed by one or more pipes of the evaporator itself.
  • a connection point for example, a solder joint is saved, namely the solder joint between a separately provided suction line and the evaporator.
  • At least one channel can be connected to the capillary and thus serves as a continuation of the capillary. In this way, the flow can be adjusted: the farther the capillary is inserted, the greater the flow and vice versa.
  • the multichannel evaporator or the microchannel evaporator may have the form of a spiral, wherein it is preferably provided that a gap for the passage of air is provided at least between two superimposed planes of the spiral-shaped structure.
  • This embodiment of the invention allows a particularly good heat transfer, especially when the flow around with air on several sides, especially on the top and bottom of the evaporator.
  • the evaporator may have a first end piece and a second end piece preferably corresponding to the first end piece, between which the channels of the evaporator extend, it being preferably provided that the first end piece through the cap according to claim 3 and / or the second end piece through the connecting element or the suction line is designed according to claim 7.
  • the end pieces may have the task of supplying the refrigerant to the channels and on the other side to receive the refrigerant flowing out of the channels and then to lead into the suction line.
  • the distribution means by means of which the refrigerant is distributed to the channels is designed such that all or at least a plurality of channels are acted upon with liquid refrigerant. This can be done, for example, by arranging or placing at one or both ends of the multichannel evaporator a cap or other distribution means in which liquid refrigerant is present. It is conceivable to design this distribution means in such a way that in the upper region of the distribution means there is a gaseous phase and below that a liquid phase of the refrigerant.
  • the capillary may communicate with the portion of the distribution means in which the gaseous refrigerant is present.
  • the distribution means may in this case have the function of a separating means in which the liquid is separated from the gaseous refrigerant.
  • the present invention further relates to a refrigerator and / or freezer with at least one refrigerant circuit comprising at least one multi-channel evaporator system according to one of claims 1 to 10.
  • FIG. 1 shows by the reference numeral 10, a multi-channel evaporator.
  • This consists for example of aluminum or other metal and has a plurality of mutually parallel channels 20.
  • the multi-channel evaporator hereinafter referred to as "evaporator” may consist of a flat tube in which a plurality of channels 20 are arranged.
  • the channels 20 have a diameter in the range of 0.1 mm to 5 mm, preferably in the range ⁇ 1 mm or even ⁇ 1 mm.
  • the channels Preferably, have a rectangular cross-sectional profile, wherein the height of the profile is smaller than the width. Height and width of the channels are preferably in the range ⁇ 2 cm and preferably in the range ⁇ 1 cm. Examples of possible channel sizes are (height x width) 2 x 3 mm and 2 x 10 mm.
  • the illustrated evaporator 10 is located between the compressor of a refrigerator and / or freezer, not shown, and an in FIG. 1 also not shown condenser.
  • Reference numeral 30 designates a capillary, which communicates with the condenser and by means of which liquid refrigerant is supplied to the evaporator 10.
  • the evaporator 10 has a first end cap 12 and a second end cap 14. Both end caps 12, 14 may be hollow and thus used for distribution or collection of the refrigerant or as massive bodies, which in turn have channels.
  • the capillary 30 passes through the interior of the suction tube 40, then exits the suction tube 40 and enters the first end cap 12 shown on the right.
  • the capillary 30 terminates in the space surrounded by the first end cap 12, ie the refrigerant is injected in this space. It is distributed in the room and from there it reaches the open ends of the channels 20 which are in FIG. 1 are identified by the reference numeral 22.
  • the refrigerant is thus distributed through the first end cap 12.
  • the refrigerant When flowing through the channels 20, the refrigerant vaporizes and then enters the of the second end cap 14 surrounded space and from there into the leading to the compressor suction pipe 40, which is in communication with the second cap 14 or formed by the second cap 14 itself.
  • the embodiment according to FIG. 1b differs from the described embodiment in that the capillary 30 is split at the point 32 into a plurality of capillaries 300, each of which ends in a channel 20 of the evaporator 10, as is apparent from FIG. 1b evident.
  • the embodiments according to the Figures 1c to 1e are characterized in that the capillary 30 also passes through the suction tube 40, but this does not leave the outside, but then passes through a channel 20 of the evaporator 10 and then ends in the area surrounded by the first cap 12 space, as shown in the Figures 1c and 1d is visible or split at the location 32 into a plurality of capillaries 300, each terminating in a channel 20 of the evaporator 10.
  • FIG. 2 shows an embodiment in which the capillary 30 is passed through the suction tube 40 and ends in a central channel 20 of the evaporator 10. This means that the channel 20 of the evaporator 10 acts as a capillary through which the liquid refrigerant is injected.
  • FIG. 3 shows an embodiment in which the separation of the capillary differently than in the embodiments described above not in the two-phase region (ie before entering the evaporator) takes place, but in the liquid state of the refrigerant.
  • a separation of the coming of the condenser 50 capillary 30 into several capillaries 300 which are flowed through during operation of the device of liquid refrigerant at point 32.
  • the capillaries 300 may all be of the same length so that the position of the injection in the channels is identical.
  • the refrigerant is introduced through the capillaries 300 into the evaporator channels 20.
  • the capillary 30 does not extend through the suction line 40 or through the interior of one of the channels 20.
  • FIG. 4 finally shows the evaporator 10 in a schematic cross section.
  • the evaporator can basically consist of a flat tube in which a plurality of channels 20, preferably arranged side by side.
  • one of the outer channels 20 'does not serve to flow through with refrigerant, but rather to receive the capillary 30.
  • FIG. 5 shows by the reference numeral 30, the capillary, by means of which refrigerant is passed to the microchannel evaporator 10.
  • the evaporator 10 is also formed in this embodiment as a multi-channel or microchannel evaporator.
  • the ends of the channels 20 communicate with a distributor cap 100 having an upper portion A and a lower portion B.
  • a distributor cap 100 having an upper portion A and a lower portion B.
  • gaseous refrigerant in the area B is liquid refrigerant.
  • the ends of the channels 20 of the evaporator 10 are thus in communication with liquid refrigerant or are charged with liquid refrigerant.
  • liquid refrigerant enters the evaporator and flows through the channels of the evaporator.
  • FIG. 5 In the lower case, another embodiment of the evaporator 10 according to the invention is shown.
  • the region A in which gaseous refrigerant is present, communicates via a bypass line 200 with the suction line 40, which leads to the compressor, not shown.
  • the gaseous portion of the refrigerant from the region A can thus be introduced directly through the bypass around the evaporator 10 in the suction line or in the suction pipe 40, which leads to the compressor of the refrigerant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Mehrkanal-Verdampfersystem mit wenigstens einem Mehrkanal-Verdampfer mit einer Mehrzahl von Kanälen, die im Betrieb des Mehrkanal-Verdampfers von Kältemittel durchströmt werden, sowie mit wenigstens einer Kapillare zur Zufuhr des Kältemittels zum Mehrkanal-Verdampfer, wobei das Mehrkanal-Verdampfersystem wenigstens ein Verteilungsmittel aufweist oder mit wenigstens einem Verteilungsmittel unmittelbar oder mittelbar in Verbindung steht, wobei das Verteilungsmittel derart ausgebildet ist und relativ zu der Mehrzahl von Kanälen derart angeordnet ist, dass das mittels der Kapillare eingeführte Kältemittel durch das Verteilungsmittel auf wenigstens zwei, vorzugsweise auf alle der genannten Kanäle verteilt wird.

Description

  • Die vorliegende Erfindung betrifft ein Mehrkanal-Verdampfersystem mit wenigstens einem Mehrkanal-Verdampfer, der eine Mehrzahl von Kanälen aufweist, die im Betrieb des Verdampfers von Kältemittel durchströmt werden, sowie mit wenigstens einer Kapillare zur Zufuhr des Kältemittels zum Verdampfer.
  • Aus dem Stand der Technik bekannte Kühl- und/oder Gefriergeräte weisen im allgemeinen eine oder mehrere Kältemittelkreisläufe auf, die zumindest einen Verdampfer umfassen, der im Betrieb des Kompressors von Kältemittel durchströmt wird und aufgrund der Verdampfung des Kältemittels dem zu kühlenden Kompartiment Wärme entzieht. Die Verdampfer sind in zahlreichen unterschiedlichen Ausführungsformen bekannt. Eine mögliche Ausführungsform sind Mehrkanal-Verdampfer bzw. Microchannel-Verdampfer, die gegenüber anderen Verdampfertypen kleinere Kanäle zur Durchströmung mit Kältemittel aufweisen. Die Kanäle von derartigen Mehrkanal-Verdampfern können im mm-Bereich oder darunter liegen. Sie weisen eine vergleichsweise große Oberfläche auf, mit der das Kältemittel in Kontakt kommt.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Mehrkanal-Verdampfersystem dahingehend weiterzubilden, dass dieses eine besonders hohe Effizienz aufweist.
  • Diese Aufgabe wird durch ein Mehrkanal-Verdampfersystem mit den Merkmalen des Anspruchs 1 gelöst. Danach ist vorgesehen, dass das Mehrkanal-Verdampfersystem wenigstens ein Verteilungsmittel aufweist, wobei das Verteilungsmittel derart ausgebildet ist und relativ zu der Mehrzahl von Kanälen derart angeordnet ist, dass das mittels der Kapillare eingeführte Kältemittel durch das Verteilungsmittel auf wenigstens zwei, vorzugsweise auf alle der genannten Kanäle verteilt wird. Das Verteilungsmittel kann mittelbar oder unmittelbar mit dem Mehrkanal-Verdampfer (im Folgenden "Verdampfer" genannt) in Verbindung stehen.
  • Der Mehrkanal-Verdampfer kann eine Mehrzahl von nebeneinander und/oder übereinander angeordneten oder auch anderweitig relativ zueinander angeordneten Kanälen aufweisen, die im Betrieb des Verdampfers von Kältemittel durchströmt werden. Vorzugsweise sind die Kanäle unmittelbar nebeneinander, übereinander oder anderweitig relativ zueinander angeordnet und jeweils durch wenigstens eine Wandung voneinander getrennt.
  • Die einzelnen Kanäle können einen Durchmesser bzw. einen hydraulischen Durchmesser im Bereich von 0,1 mm bis 5 mm, vorzugsweise > 1 mm aufweisen. Der Querschnitt der einzelnen Kanäle kann im Bereich zwischen 1 mm2 und 30 mm2, vorzugsweise im Bereich zwischen 4 mm2 und 20 mm2 liegen.
  • Das Querschnittsprofil der Kanäle kann quadratisch, rund, elliptisch und vorzugsweise rechteckig sein.
  • Vorzugsweise weisen die Kanäle eine größere Breite als ihre Höhe auf, so dass sich flache Kanäle ergeben bzw. der Mehrkanal-Verdampfer als Flachrohr ausgebildet ist. Die Höhe und die Breite der Kanäle liegt vorzugsweise im Bereich < 2 cm, vorzugsweise im Bereich < 1 cm. Exemplarisch können die Kanäle eine Größe (Höhe x Breite) im Bereich von 1 x 2 mm bis 5 x 10 mm aufweisen, d.h. die Höhe variiert vorzugsweise im Bereich zwischen 1 mm und 5 mm und die Breite im Bereich zwischen 2 mm und 10 mm. Mögliche Beispiele sind Kanäle mit den Dimensionen (Höhe x Breite) 2 x 3 mm und 2 x 10 mm.
  • Verdampfer mit einer oder mehreren der vorgenannten Eigenschaften werden im Rahmen der Erfindung auch als Microchannel-Verdampfer bezeichnet.
  • Der vorliegenden Erfindung liegt somit der Gedanke zugrunde, durch wenigstens ein Verteilungsmittel eine Verteilung des eingeführten Kältemittels auf mehrere und vorzugsweise auf alle Kanäle des Verdampfers zu erreichen. Durch den Einsatz des Verteilungsmittels kann der Fall verhindert werden, dass das Kältemittel ggf. nur oder im wesentlichen nur einen Kanal des Verdampfers durchströmt. Das Verteilungsmittel ist vorzugsweise derart aufgebaut, dass mehrere und vorzugsweise alle Kanäle gleichmäßig oder im Wesentlichen gleichmäßig mit Kältemittel beaufschlagt werden. Dadurch ist es möglich, das eingespritzte Kältemittel effizient zu verdampfen und damit eine gute Kälteleistung des Verdampfers zu erhalten.
  • Das oder die Verteilungsmittel können derart aufgebaut und angeordnet sein, dass die Verteilung des Kältemittels in einem Zustand erfolgt, in dem das Kältemittel im Betrieb des Kühl- und/oder Gefriergerätes im flüssigen Zustand vorliegt. In diesem Fall erfolgt eine Verteilung des Kältemittels auf die mehreren und vorzugsweise auf alle Kanäle des Verdampfers im flüssigen Zustand.
  • Von der Erfindung ist auch der Fall umfaßt, dass die Verteilung des Kältemittels im gasförmigen Zustand erfolgt. In diesem Fall erfolgt somit zunächst eine Verdampfung des Kältemittels und erst anschließend eine Verteilung auf die mehreren und vorzugsweise auf alle Kanäle des Verdampfers.
  • Denkbar ist schließlich auch, dass die Verteilungsmittel so angeordnet sind, dass eine Verteilung des Kältemittels im Zwei-Phasen Zustand erfolgt, d.h. in einem Zustand, in dem das Kältemittel teils im gasförmigen und teils im flüssigen Zustand vorliegt.
  • Das Verteilungsmittel kann wenigstens eine Kappe umfassen oder aus dieser bestehen, wobei die Kappe einerseits mit der genannten wenigstens einen Kapillare und andererseits mit den Kanälen, vorzugsweise mit einem offenen Endbereich der Kanäle in Strömungsverbindung steht. Denkbar ist es somit, das Kältemittel in die Kappe einzuführen, in der ein offenes Ende der Kanäle liegt. In der Kappe verteilt sich das Kältemittel und strömt von dort aus durch die Innenräume der Kanäle.
  • Die Kappe kann einen Hohlraum aufweisen, in dem sich das Kältemittel verteilt. Denkbar ist es auch, dass die Kappe einen oder mehrere Kanäle umfaßt, die ihrerseits mit den Kanälen des Verdampfers kommunizieren, d.h. in Strömungsverbindung stehen, so dass das Kältemittel aus den Kanälen der Kappe in die Kanäle des Verdampfers einströmt.
  • Die genannte wenigstens eine Kapillare kann in dem von der Kappe umgebenen Raum enden oder durch diesen hindurch verlaufen. Endet die Kappe in dem Raum, tritt das Kältemittel in den Raum der Kappe ein, verteilt sich dort und strömt sodann durch die offenen Enden der Kanäle in diese ein. Auch ist es denkbar, dass die Kapillare den genannten Raum durchdringt und nicht darin, sondern erst in den Kanälen des Verdampfers endet. Eine Ausführungsform könnte beispielsweise derart ausgestaltet sein, dass die Kapillare eine oder mehrere Verzweigungsstellen aufweist, die in dem von der Kappe umgebenen Raum liegen, wobei die Enden der aufgezweigten Kapillare in den Kanälen liegen. In diesem Fall wird das Kältemittel aus den jeweiligen Enden der Kapillare direkt in die Kanäle eingeführt.
  • Das Verteilungsmittel kann eine oder mehrere Verzweigungsstellen aufweisen oder aus diesen bestehen, die durch ein Profil des Verdampfers gebildet werden oder dieses umfassen oder an denen sich eine Kapillare oder eine Mehrzahl von Kapillaren auf mehrere bzw. eine größere Anzahl von Kapillaren aufteilt. Wie oben ausgeführt, ist es somit denkbar, eine Mehrzahl von Kapillaren oder eine oder mehrere Verzweigungen einer Kapillare als Verteilungsmittel einzusetzen.
  • Denkbar ist es jedoch auch, als Verteilungsmittel ein Profil bzw. einen Bestandteil des Verdampfers selbst einzusetzen. So ist es möglich, ein Profilstück des Verdampfers so auszubilden, dass das durch die wenigstens eine Kapillare eingeführte Kältemittel durch dieses Verteilungsmittel auf mehrere und vorzugsweise auf alle Kanäle aufgeteilt wird.
  • Die Kapillare kann vollständig oder nur abschnittsweise im Inneren des Verdampfers bzw. im Inneren der mit dem Verdampfer in Verbindung stehenden Saugleitung verlaufen. So ist es denkbar, dass die wenigstens eine Kapillare mit der Saugleitung und/oder auch mit einem anderen Bestandteil des Kältemittelkreislaufes, wie beispielsweise mit dem Verflüssiger im Wärmetausch geführt wird.
  • Grundsätzlich kann die Einspritzung des Kältemittels nur in einen Bereich, wie beispielsweise in die genannte Kappe oder in mehrere und vorzugsweise in jeden Kanal einzeln erfolgen.
  • Denkbar ist es weiterhin, dass die Kapillaren derart angeordnet sind, dass sie in mehr als einem Kanal und vorzugsweise in allen Kanälen des Verdampfers enden. In diesem Fall ist eine Einspritzung des Kältemittels in jeden einzelnen Kanal des Verdampfers möglich.
  • In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass der Verdampfer mittelbar oder unmittelbar mit wenigstens einer Saugleitung in Verbindung steht, wobei vorzugsweise vorgesehen ist, dass die Saugleitung wenigstens eine Aufweitung aufweist und unmittelbar mit dem Verdampfer in Verbindung steht oder dass wenigstens Verbindungselement vorgesehen ist, dass einerseits mit der Saugleitung und andererseits mit dem Verdampfer in Verbindung steht.
  • Eine denkbare Möglichkeit besteht somit darin, dass die Saugleitung gegenüber vorbekannten Ausgestaltungen aufgeweitet wird und an den Verdampferkörper so angesetzt wird, dass die aufgeweitete Seite mit den Enden der Verdampferkanäle kommuniziert, so dass das aus diesen Enden austretende Kältemittel in die Saugleitung eintritt. Alternativ dazu kann ein entsprechend ausgebildetes Verbindungselement vorgesehen werden, das einerseits mit dem Ausgang der Verdampferkanäle und andererseits mit der Saugleitung in Strömungsverbindung steht.
  • Denkbar ist es somit, die Saugleitung oder das Verbindungselement beispielsweise trichterförmig auszugestalten, wobei die breite Seite mit den Enden der Kanäle des Verdampfers kommuniziert und die schmale Seite saugseitig, d.h. zum Kompressor hin angeordnet ist.
  • Denkbar ist es, dass die Saugleitung an das Verbindungselement, das z.B. aus Metall, insbesondere aus Cu oder Al etc. bestehen kann, angeschlossen ist, das einerseits eine Rohranschlussseite und andererseits eine Verdampfer-Anschlussseite aufweist.
  • Das Verbindungselement kann sowohl den Anfang als auch das Ende des Verdampfers darstellen bzw. aufnehmen, wobei die Verbindungselemente für beide Enden identisch oder unterschiedlich ausgebildet sein können.
  • Das Verbindungselement kann hohl ausgebildet sein oder einen oder mehrere Kanäle aufweisen, die zumindest teilweise mit den Kanälen des Verdampfers korrespondieren. Im zweiten Fall kann das Verbindungselement als massiver Körper ausgebildet sein, der einen oder mehrere Kanäle aufweist, die mit den Kanälen des Verdampfers korrespondieren, d.h. in Strömungsverbindung stehen.
  • Die wenigstens eine Kapillare und/oder die Saugleitung oder ein Teil der Kapillare und/oder der Saugleitung können durch einen oder mehrere Kanäle des Verdampfers selbst gebildet werden.
  • Die wenigstens eine Kapillare kann somit durch ein Rohr bzw. Kanal des Verdampfers selbst gebildet werden. Dies kann dadurch erfolgen, dass ein oder mehre Kanäle dementsprechend gequetscht werden, so dass dadurch ein Druckabfall entsteht, wie er sonst bei der Kapillare entsteht. In diesem Fall kann vollständig auf eine eigens vorgesehene Kapillare verzichtet werden, da die Kapillare in diesem Fall durch ein oder mehrere Rohre des Verdampfers gebildet wird.
  • Denkbar wäre eine Ausführungsform, bei der das Flachrohr des Verdampfers nach dem Verflüssiger angelötet wird, ab da gequetscht und als Kapillare fungiert, bis das Rohr im Verdampfer ist und dort wieder Normalgröße hat und als Verdampfer fungiert. Der Vorteil bei dieser Vorgehensweise besteht darin, dass eine Verbindungsstelle, d.h. beispielsweise eine Lötstelle zwischen der Kapillare und dem Verdampfer eingespart wird
  • Alternativ oder zusätzlich dazu kann vorgesehen sein, dass das Saugleitungsrohr, d.h. das zum Kompressor führende Rohr durch ein oder mehrere Rohre des Verdampfers selbst ausgebildet wird. Auch in diesem Fall wird eine Verbindungsstelle, beispielsweise eine Lötstelle eingespart, nämlich die Lötstelle zwischen einer separat vorgesehenen Saugleitung und dem Verdampfer.
  • Wenigstens ein Kanal kann mit der Kapillare verbunden werden und dient somit als Weiterführung der Kapillare. Auf diese Weise kann auch der Durchfluß angepaßt werden: je weiter die Kapillare eingeschoben wird, desto größer der Durchfluß und umgekehrt.
  • Der Mehrkanal-Verdampfer bzw. der Microchannelverdampfer kann die Form einer Spirale aufweisen, wobei vorzugsweise vorgesehen ist, dass wenigstens zwischen zwei übereinander liegenden Ebenen des spiralförmigen Gebildes ein Spalt zur Durchleitung von Luft vorgesehen ist. Diese Ausgestaltung der Erfindung ermöglicht einen besonders guten Wärmeübergang, insbesondere dann, wenn die Umströmung mit Luft auf mehreren Seiten, insbesondere auf der Ober- und Unterseite des Verdampfers erfolgt.
  • Der Verdampfer kann ein erstes Endstück und ein vorzugsweise dem ersten Endstück entsprechendes zweites Endstück aufweisen, zwischen denen sich die Kanäle des Verdampfers erstrecken, wobei vorzugsweise vorgesehen ist, dass das erste Endstück durch die Kappe gemäß Anspruch 3 und/oder das zweite Endstück durch das Verbindungselement oder die Saugleitung gemäß Anspruch 7 ausgebildet ist.
  • Die Endstücke können die Aufgabe haben, das Kältemittel den Kanälen zuzuführen und auf der anderen Seite das aus den Kanälen ausströmende Kältemittel aufzunehmen und dann in die Saugleitung zu leiten.
  • In weiterer Ausgestaltung der Erfindung ist vorgesehen, dass das Verteilungsmittel, mittels dessen das Kältemittel auf die Kanäle verteilt wird derart ausgebildet ist, dass alle oder zumindest mehrere Kanäle mit flüssigem Kältemittel beaufschlagt werden. Dies kann beispielsweise dadurch erfolgen, dass an einem oder beiden Enden des Mehrkanal-Verdampfers eine Kappe oder ein sonstiges Verteilungsmittel angeordnet bzw. aufgesetzt ist, in dem flüssiges Kältemittel steht. Denkbar ist es, dieses Verteilungsmittel so auszubilden, dass im oberen Bereich des Verteilungsmittels eine gasförmige Phase und darunter eine flüssige Phase des Kältemittels vorliegt. Die Kapillare kann mit dem Abschnitt des Verteilungsmittels in Verbindung stehen, in dem das gasförmige Kältemittel vorliegt.
  • Auf diese Weise ist sichergestellt, dass in alle oder zumindest in mehrere der Kanäle des Mehrkanal-Verdampfers bzw. des Mehrkanal-Verdampfersystems flüssiges Kältemittel eintritt. Das Verteilungsmittel kann in diesem Fall die Funktion eines Trennmittels aufweisen, in dem das flüssige vom gasförmigen Kältemittel getrennt wird.
  • Denkbar ist es, von dem Abschnitt bzw. Bereich des Verteilungsmittels, in dem das gasförmige Kältemittel vorliegt zu der Saugleitung, die zum Kompressor des Kältemittelkreislaufs führt, eine Bypass-Leitung vorzusehen. Durch diese Bypass-Leitung kann dann der gasförmige Anteil des Kältemittels abgeführt werden bzw. im Bypass um den Verdampfer geleitet werden, wohingegen der flüssige Anteil des Kältemittels durch den Verdampfer geleitet wird.
  • Die vorliegende Erfindung betrifft des Weiteren ein Kühl- und/oder Gefriergerät mit wenigstens einem Kältemittelkreislauf, der wenigstens ein Mehrkanal-Verdampfersystem gemäß einem der Ansprüche 1 bis 10 aufweist.
  • Weitere Einzelheiten und Vorteile der Erfindung werden anhand eines in der Zeichnung beschriebenen Ausführungsbeispiels näher erläutert. Es zeigen:
  • Figur 1:
    unterschiedliche Ausgestaltungen eines erfindungsgemäßen Saugrohrverdampfers mit Kapillare,
    Figur 2:
    eine Ausführungsform des Verdampfers, bei dem ein Kanal des Verdampfers als Kapillare ausgebildet ist,
    Figur 3:
    eine Ausführungsform des Verdampfers mit verzweigter Kapillare zur Zufuhr flüssigen Kältemittels,
    Figur 4:
    eine Ausführungsform des Verdampfers, bei dem die Kapillare in einen seitlich offenen Kanal eingesetzt ist und
    Figur 5:
    unterschiedliche Ausführungsformen eines Verdampfers mit einem Verteilungsmittel, mittels dessen flüssiges Kältemittel auf die Kanäle des Mehrkanal-Verdampfers verteilt wird.
  • Figur 1 zeigt mit dem Bezugszeichen 10 einen Mehrkanal-Verdampfer. Dieser besteht beispielsweise aus Aluminium oder aus einem sonstigen Metall und weist eine Mehrzahl parallel zueinander verlaufender Kanäle 20 auf. Der Mehrkanal-Verdampfer, im Folgenden als "Verdampfer" bezeichnet, kann aus einem Flachrohr bestehen, in dem mehrere Kanäle 20 angeordnet sind.
  • Die Kanäle 20 haben einen Durchmesser im Bereich von 0,1 mm bis 5 mm, vorzugsweise im Bereich < 1 mm oder auch ≥ 1 mm. Vorzugsweise weisen die Kanäle ein rechteckiges Querschnittsprofil auf, wobei die Höhe des Profils kleiner ist als die Breite. Höhe und Breite der Kanäle liegen vorzugsweise im Bereich < 2 cm und vorzugsweise im Bereich < 1 cm. Beispiele für mögliche Kanalgrößen sind (Höhe x Breite) 2 x 3 mm und 2 x 10 mm.
  • Der dargestellte Verdampfer 10 befindet sich zwischen dem nicht dargestellten Kompressor eines Kühl- und/oder Gefriergerätes und einem in Figur 1 ebenfalls nicht dargestellten Verflüssiger.
  • Mit dem Bezugszeichen 30 ist eine Kapillare gekennzeichnet, die mit dem Verflüssiger in Verbindung steht und mittels derer dem Verdampfer 10 flüssiges Kältemittel zugeführt wird.
  • Wie dies aus Figur 1 weiter hervorgeht, weist der Verdampfer 10 eine erste Endkappe 12 und eine zweite Endkappe 14 auf. Beide Endkappen 12, 14 können hohl ausgebildet sein und damit zur Verteilung bzw. Sammlung des Kältemittels dienen oder als massive Körper, die ihrerseits Kanäle aufweisen.
  • Bei dem Ausführungsbeispiel gemäß Figur 1 a verläuft die Kapillare 30 durch das Innere des Saugrohres 40, tritt dann aus dem Saugrohr 40 aus und tritt in die rechts dargestellte erste Endkappe 12 ein. Die Kapillare 30 endet in dem von der ersten Endkappe 12 umgebenen Raum, d.h. das Kältemittel wird in diesem Raum eingespritzt. Es verteilt sich in den Raum und gelangt von dort aus in die offenen Enden der Kanäle 20, die in Figur 1 mit den Bezugszeichen 22 gekennzeichnet sind.
  • Das Kältemittel wird somit durch die erste Endkappe 12 verteilt. Bei dem Durchströmen der Kanäle 20 verdampft das Kältemittel und gelangt dann in den von der zweiten Endkappe 14 umgebenen Raum und von dort aus in das zu dem Kompressor führende Saugrohr 40, das mit der zweiten Kappe 14 in Verbindung steht oder durch die zweite Kappe 14 selbst gebildet wird.
  • Die Ausführungsform gemäß Figur 1b unterscheidet sich von der beschriebenen Ausgestaltung dadurch, dass die Kapillare 30 an der Stelle 32 in mehrere Kapillaren 300 aufgeteilt wird, von denen jede in einem Kanal 20 des Verdampfers 10 endet, wie dies aus Figur 1b hervorgeht.
  • Die Ausführungsformen gemäß der Figuren 1c bis 1e sind dadurch gekennzeichnet, dass die Kapillare 30 ebenfalls durch das Saugrohr 40 läuft, dieses jedoch nicht nach außen verläßt, sondern sodann durch einen Kanal 20 des Verdampfers 10 verläuft und dann in dem von der ersten Kappe 12 umgebenen Raum endet, wie dies aus den Figuren 1c und 1d sichtbar ist, oder an der Stelle 32 in mehrere Kapillaren 300 aufgeteilt wird, von denen jede in einem Kanal 20 des Verdampfers 10 endet.
  • Figur 2 zeigt eine Ausführungsform, bei der die Kapillare 30 durch das Saugrohr 40 geführt wird und in einem mittleren Kanal 20 des Verdampfers 10 endet. Dies bedeutet, dass der Kanal 20 des Verdampfers 10 als Kapillare fungiert, durch die das flüssige Kältemittel eingespritzt wird.
  • Aus Figur 3 geht eine Ausführungsform hervor, bei der die Auftrennung der Kapillare anders als bei den oben beschriebenen Ausgestaltungen nicht im Zweiphasengebiet (d.h. vor dem Eintritt in den Verdampfer) erfolgt, sondern im flüssigen Zustand des Kältemittels. In diesem Fall erfolgt an der Stelle 32 eine Auftrennung der vom Verflüssiger 50 kommenden Kapillare 30 in mehrere Kapillaren 300, die im Betrieb des Gerätes von flüssigem Kältemittel durchströmt werden. Somit ergeben sich mehrere Einspritzstellen am Verdampfer 10, durch die das Kältemittel in die Kanäle 20 des Verdampfers 10 eingeführt wird. Die Kapillaren 300 können alle über dieselbe Länge verfügen, so dass die Position der Einspritzung in den Kanälen identisch ist.
  • Bei der Ausführungsform gemäß Figur 3 ist keine erste Endkappe vorgesehen. Statt dessen wird das Kältemittel durch die Kapillaren 300 in die Verdampferkanäle 20 eingeführt. In dem Ausführungsbeispiel gemäß Figur 3 ist des weiteren vorgesehen, dass die Kapillare 30 weder durch die Saugleitung 40 noch durch das Innere eines der Kanäle 20 verläuft.
  • Figur 4 zeigt schließlich den Verdampfer 10 in einem schematischen Querschnitt. Wie dies aus Figur 4 hervorgeht, kann der Verdampfer grundsätzlich aus einem Flachrohr bestehen, in dem mehrere Kanäle 20, vorzugsweise nebeneinander angeordnet sind.
  • In der Ausführungsform gemäß Figur 4 dient einer der außenliegenden Kanäle 20' nicht zur Durchströmung mit Kältemittel, sondern zur Aufnahme der Kapillare 30.
  • Figur 5 zeigt mit dem Bezugszeichen 30 die Kapillare, mittels derer Kältemittel zu dem Microchannel-Verdampfer 10 geleitet wird. Der Verdampfer 10 ist auch in dieser Ausführungsform als Mehrkanal- bzw. Microchannel-Verdampfer ausgebildet.
  • Die Enden der Kanäle 20 stehen mit einer Verteilerkappe 100 in Verbindung, die einen oberen Bereich A und einen unteren Bereich B aufweist. Wie dies aus Figur 5, obere Abbildung ersichtlich ist, endet die Kapillare in dem Bereich A der Verteilerkappe 100. In dem Bereich A liegt im Betrieb gasförmiges Kältemittel vor, in dem Bereich B liegt flüssiges Kältemittel vor.
  • Wie dies aus Figur 5, obere Darstellung hervorgeht, stehen die Enden der Kanäle 20 des Verdampfers 10 somit mit flüssigem Kältemittel in Verbindung bzw. werden mit flüssigem Kältemittel beaufschlagt. Gemäß dieser Ausführungsform tritt somit nur flüssiges Kältemittel in den Verdampfer ein und durchströmt die Kanäle des Verdampfers.
  • Figur 5, untere Darstellung stellt eine weitere Ausgestaltung des erfindungsgemäßen Verdampfers 10 dar. In diesem Fall steht der Bereich A, in dem gasförmiges Kältemittel vorliegt, über eine Bypass-Leitung 200 mit der Saugleitung 40 in Verbindung, die zum nicht dargestellten Kompressor führt. In diesem Fall kann der gasförmige Anteil des Kältemittels aus dem Bereich A somit unmittelbar durch den Bypass um den Verdampfer 10 in die Saugleitung bzw. in das Saugrohr 40 eingeleitet werden, die zum Kompressor des Kältemittel-Kreislaufs führt.

Claims (12)

  1. Mehrkanal-Verdampfersystem mit wenigstens einem Mehrkanal-Verdampfer mit einer Mehrzahl von Kanälen, die im Betrieb des Mehrkanal-Verdampfers von Kältemittel durchströmt werden, sowie mit wenigstens einer Kapillare zur Zufuhr des Kältemittels zum Mehrkanal-Verdampfer, dadurch gekennzeichnet, dass das Mehrkanal-Verdampfersystem wenigstens ein Verteilungsmittel aufweist oder mit wenigstens einem Verteilungsmittel unmittelbar oder mittelbar in Verbindung steht, wobei das Verteilungsmittel derart ausgebildet ist und relativ zu der Mehrzahl von Kanälen derart angeordnet ist, dass das mittels der Kapillare eingeführte Kältemittel durch das Verteilungsmittel auf wenigstens zwei, vorzugsweise auf alle der genannten Kanäle verteilt wird.
  2. Mehrkanal-Verdampfersystem nach Anspruch 1, dadurch gekennzeichnet, dass das Verteilungsmittel derart angeordnet ist, dass das mittels der Kapillare eingeführte Kältemittel gleichmäßig auf wenigstens zwei, vorzugsweise auf alle der genannten Kanäle verteilt wird.
  3. Mehrkanal-Verdampfersystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verteilungsmittel wenigstens eine Kappe umfaßt oder aus dieser besteht, die einerseits mit der genannten Kapillare und andererseits mit den Kanälen, vorzugsweise mit einem Endbereich der Kanäle in Strömungsverbindung steht.
  4. Mehrkanal-Verdampfersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mehrkanal-Verdampfer wenigstens eine Kappe aufweist und dass die Kapillare in dem von der Kappe umgebenen Raum endet oder durch diesen hindurch verläuft.
  5. Mehrkanal-Verdampfersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verteilungsmittel eine oder mehrere Verzweigungsstellen aufweist oder aus diesen besteht, die durch ein Profil des Mehrkanal-Verdampfers gebildet werden oder dieses umfassen, oder an denen sich eine Kapillare oder eine Mehrzahl von Kapillaren auf mehrere bzw. eine größere Anzahl von Kapillaren aufteilt.
  6. Mehrkanal-Verdampfersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kapillare vollständig oder nur abschnittsweise im Inneren des Mehrkanal-Verdampfers und/oder im Inneren wenigstens einer mit dem Mehrkanal-Verdampfer in Verbindung stehenden Saugleitung verläuft und/oder dass die Kapillaren derart angeordnet sind, dass sie in mehr als einem Kanal und vorzugsweise in allen Kanälen des Mehrkanal-Verdampfers enden.
  7. Mehrkanal-Verdampfersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mehrkanal-Verdampfer mittelbar oder unmittelbar mit wenigstens einer Saugleitung in Verbindung steht, wobei vorzugsweise vorgesehen ist, dass die Saugleitung eine Aufweitung aufweist oder dass wenigstens ein Verbindungselement vorgesehen ist, das einerseits mit der Saugleitung und andererseits mit dem Mehrkanal-Verdampfer in Verbindung steht, wobei die Saugleitung und/oder das Verbindungselement hohl ausgebildet sein kann oder einen oder mehrere Kanäle aufweisen kann, die zumindest teilweise mit den Kanälen des Mehrkanal-Verdampfers korrespondieren.
  8. Mehrkanal-Verdampfersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens eine Kapillare und/oder die Saugleitung oder ein Teil der Kapillare und/oder der Saugleitung durch einen oder mehrere Kanäle des Mehrkanal-Verdampfers selbst gebildet werden und/oder dass der Mehrkanal-Verdampfer die Form einer Spirale aufweist, wobei vorzugsweise vorgesehen ist, dass wenigstens zwischen zwei übereinander liegenden Ebenen des spiralförmigen Gebildes ein Spalt zur Durchleitung von Luft vorgesehen ist.
  9. Mehrkanal-Verdampfersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mehrkanal-Verdampfer ein erstes Endstück und ein vorzugsweise dem ersten Endstück entsprechendes zweites Endstück aufweist, zwischen denen sich die Kanäle des Mehrkanal-Verdampfers erstrecken, wobei vorzugsweise vorgesehen ist, dass das erste Endstück durch die Kappe gemäß Anspruch 3 und/oder das zweite Endstück durch das Verbindungselement oder die Saugleitung gemäß Anspruch 7 gebildet ist.
  10. Mehrkanal-Verdampfersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Mehrkanal-Verdampfer wenigstens ein Endstück aufweist, das mit mehreren, vorzugsweise mit allen Kanälen des Mehrkanal-Verdampfers in Verbindung steht und in dem im Betriebszustand des Verdampfers flüssiges Kältemittel vorliegt, so dass ein, einige oder alle Kanäle des Verdampfers im Betrieb mit flüssigem Kältemittel beaufschlagt werden, wobei vorzugsweise vorgesehen ist, dass sich in dem Bereich oberhalb des flüssigen Kältemittels ein Bereich gasförmigen Kältemittels befindet.
  11. Kühl- und/oder Gefriergerät mit wenigstens einem Kältemittelkreislauf, der wenigstens ein Mehrkanal-Verdampfersystem gemäß einem der Ansprüche 1 bis 10 aufweist.
  12. Verfahren zum Betrieb eines Mehrkanal-Verdampfersystems nach einem der Ansprüche 1 bis 10 und/oder eines Kühl- und/oder Gefriergerätes nach Anspruch 11, dadurch gekennzeichnet, dass das Kältemittel mittels des Verteilungsmittels auf wenigstens zwei, vorzugsweise auf alle der genannten Kanäle des Mehrkanal-Verdampfers verteilt werden.
EP12006499.3A 2011-09-19 2012-09-17 Mehrkanal-Verdampfersystem Withdrawn EP2570754A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011113761 2011-09-19
DE102011117928A DE102011117928A1 (de) 2011-09-19 2011-11-07 Mehrkanal-Verdampfersystem

Publications (2)

Publication Number Publication Date
EP2570754A2 true EP2570754A2 (de) 2013-03-20
EP2570754A3 EP2570754A3 (de) 2015-10-21

Family

ID=46939458

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12006499.3A Withdrawn EP2570754A3 (de) 2011-09-19 2012-09-17 Mehrkanal-Verdampfersystem

Country Status (2)

Country Link
EP (1) EP2570754A3 (de)
DE (1) DE102011117928A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014012B (zh) * 2017-04-14 2019-05-24 上海理工大学 微通道与膜技术结合的蒸发冷却装置
DE102017109065B4 (de) * 2017-04-27 2019-06-06 Miele & Cie. Kg Verbindungssystem zur gas- und fluiddichten Verbindung eines Verflüssigers einer Wärmepumpe mit einem Verdampfer der Wärmepumpe

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2489680A (en) * 1946-05-15 1949-11-29 Philco Corp Refrigerant circulating system
US2785540A (en) * 1953-09-30 1957-03-19 Westinghouse Electric Corp Heat pumps
US3120743A (en) * 1962-01-18 1964-02-11 Carrier Corp Refrigeration system including metering and distributing means
DE1909859A1 (de) * 1969-02-27 1970-09-10 Bauknecht Gmbh G Kaeltemaschinenaggregat
JPS53138564A (en) * 1977-05-10 1978-12-04 Hitachi Ltd Multitubular type evaporator of air conditioner
US4306421A (en) * 1980-03-31 1981-12-22 Carrier Corporation Heat exchanger capillary tube routing
GB2143014B (en) * 1983-05-16 1986-09-17 Hotpoint Ltd Refrigerator/freezer units
US5245843A (en) * 1991-01-31 1993-09-21 Nippondenso Co., Ltd. Evaporator
JP3210062B2 (ja) * 1992-03-23 2001-09-17 松下冷機株式会社 冷媒分流器
US7377126B2 (en) * 2004-07-14 2008-05-27 Carrier Corporation Refrigeration system
BRPI0606977A2 (pt) * 2005-02-02 2009-12-01 Carrier Corp sistema de trocador de calor
DE102007034294A1 (de) * 2007-07-24 2009-01-29 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät und Verdampfer dafür
DE102008006513A1 (de) * 2008-01-29 2009-07-30 BSH Bosch und Siemens Hausgeräte GmbH Wärmetauscher
EP2314957B1 (de) * 2009-05-14 2016-06-29 Hanon Systems Mehrfachverdampfungssystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
DE102011117928A1 (de) 2013-03-21
EP2570754A3 (de) 2015-10-21

Similar Documents

Publication Publication Date Title
EP2909563B1 (de) Kondensator
EP1459027B1 (de) Wärmeübertrager, insbesondere für ein kraftfahrzeug
WO1998050740A1 (de) Verteil-/sammel-kasten eines mindestens zweiflutigen verdampfers einer kraftfahrzeugklimaanlage
EP2997318B1 (de) Kondensator
DE102014011030A1 (de) Kühl- und/oder Gefriergerät
DE102013217287A1 (de) Innerer Wärmeübertrager für einen Kältemittelkreislauf, insbesondere für eine Klimaanlage eines Kraftfahrzeuges, und einen Kältemittelkreislauf mit einem Verdampfer
EP2926073B1 (de) Wärmeübertrager
DE4330214B4 (de) Wärmetauscher
EP2435776B1 (de) Plattenkühler für flüssigkeiten
EP2570754A2 (de) Mehrkanal-Verdampfersystem
EP1798505A2 (de) Wärmetauscher, insbesondere Verdampfer
DE102014222373A1 (de) Kondensator
EP1623167A1 (de) Vorrichtung zum kondensieren eines kältemittels
WO2005114065A1 (de) Kältegerät und verdampfer dafür
EP2711658A2 (de) Wärmeübertrager
WO2014095594A1 (de) Wärmeübertrager
WO2005017437A1 (de) Vorrichtung zum austausch von wärme
DE102012019512A1 (de) Kältemittelkreislauf sowie Trennvorrichtung und Verdampfer für einen Kältemittelkreislauf
EP2818817B1 (de) Kondensatorbaugruppe
DE112005000505T5 (de) Wärmetauscher
DE10349974A1 (de) Vorrichtung zum Austausch von Wärme
DE102011117967A1 (de) Mehrkanal-Verdampfer
EP2808624B1 (de) Wärmepumpenvorrichtung
EP2643881A1 (de) Vorrichtung zur kühlung einer wärmequelle eines kraftfahrzeugs
DE202007014077U1 (de) Kühl- und/oder Gefriergerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 39/02 20060101AFI20150915BHEP

17P Request for examination filed

Effective date: 20160420

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180802

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181213