WO2005114065A1 - Kältegerät und verdampfer dafür - Google Patents

Kältegerät und verdampfer dafür Download PDF

Info

Publication number
WO2005114065A1
WO2005114065A1 PCT/EP2005/005366 EP2005005366W WO2005114065A1 WO 2005114065 A1 WO2005114065 A1 WO 2005114065A1 EP 2005005366 W EP2005005366 W EP 2005005366W WO 2005114065 A1 WO2005114065 A1 WO 2005114065A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
line
evaporator
riser pipe
evaporator according
Prior art date
Application number
PCT/EP2005/005366
Other languages
English (en)
French (fr)
Inventor
Jürgen Eberle
Thomas Kranz
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Priority to EP05748016A priority Critical patent/EP1751475A1/de
Publication of WO2005114065A1 publication Critical patent/WO2005114065A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/02Charging, supporting, and discharging the articles to be cooled by shelves
    • F25D25/028Cooled supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions

Definitions

  • the present invention relates to a refrigerator, in particular a freezer, and an evaporator therefor.
  • Conventional evaporators for a freezer include a plurality of plate-shaped heat exchanger elements which are arranged horizontally in the interior of the freezer and divide it into a plurality of compartments.
  • the individual heat exchanger elements of the evaporator are connected to one another in series, so that a refrigerant flow flows through them one after the other.
  • the refrigerant warms up on its way through the evaporator.
  • the path of the refrigerant runs from top to bottom through the heat exchanger elements, so that the top element is the coldest and the bottom element the warmest.
  • Air convection in the interior contributes to temperature compensation, but the efficiency of this temperature compensation depends on the flow through the interior.
  • the object of the present invention is to provide an evaporator for a refrigerator or a refrigerator equipped with such an evaporator, which allows the temperature gradient in the interior of the refrigerator to be reduced regardless of the extent of air exchange between the individual compartments of the refrigerator.
  • the object is achieved by an evaporator according to claim 1 or a refrigerator according to claim 8.
  • each of the several plate-shaped heat exchanger elements of the evaporator according to the invention is connected on the inlet side to a common supply line and on the outlet side to a common suction line, the heat exchanger elements are no longer in series, but instead are flowed through in parallel by the refrigerant, a supply of all heat exchanger elements with uniformly cold refrigerant can be guaranteed.
  • a temperature gradient occurs only in the interior of the compartments and in all Subjects in the same way. If it is assumed that the temperatures at which the refrigerant enters and leaves the heat exchanger elements are the same as between the inlet connection point of the uppermost heat exchanger element and the outlet connection point of the lowest heat exchanger element in a conventional heat exchanger with elements connected in series, so one can see that with the heat exchanger according to the invention, a stronger heat gradient is generated within a compartment than with a conventional construction, but this stronger gradient also leads to an overall increased heat flow inside the cooling space and thus on average to a more homogeneous temperature distribution.
  • the heat exchanger elements of the evaporator according to the invention are preferably realized in a wire tube construction. However, since in a refrigeration device equipped with the evaporator according to the invention no heat flow between the compartments is required in order to achieve temperature compensation, heat exchanger elements in the form of closed-walled plates through which refrigerant flows can also be used in the context of the present invention.
  • the supply line is preceded by a common throttle point, which together ensures the expansion of the coolant for all heat exchanger elements.
  • the refrigerant is therefore essentially in the gaseous state in the supply line; and its pressure at the inlet port of each heat exchanger element is the same.
  • a throttle point can be arranged between the supply line and each heat exchanger element.
  • the cross section of the common supply line through which refrigerant flows is smaller than the cross section through which the heat exchanger can flow, which in turn is smaller than the cross section through which the common suction line flows through refrigerant.
  • the supply line and or the suction line each have a riser pipe arranged perpendicular to the heat exchanger elements.
  • a supply or discharge line is preferably connected laterally to the riser pipe of the supply line and or the suction line, and the riser pipe is extended downward beyond the connection points of the supply or discharge line and the heat exchanger elements.
  • This extension of the riser pipe acts as Separator or as a buffer volume that traps liquid refrigerant and thus ensures that only gaseous refrigerant flows through the heat exchanger elements or reaches a compressor connected to the suction line
  • FIG. 1 is a perspective view of an evaporator according to the invention.
  • Fig. 2 is a schematic section through a refrigerator, in which the evaporator from Fig. 1 is installed.
  • the evaporator shown in FIG. 1 comprises, in a manner known per se, a plurality of plate-shaped evaporator elements 1, each of which is formed from a meandering tube 2, the loops of which are stabilized and stiffened by a large number of soldered wires 3 of which only two are exemplarily shown in FIG. 2 on the lowest evaporator element 1.
  • the beginning and end of the tubes 2 each form a connection point 4 or 5, at which the tube 2 of the evaporator element 1 opens into a riser 6 or 7 which extends in a straight line and perpendicular to the plane of the evaporator elements 1.
  • the inside diameter of the risers 6, 7 is the same as each other and many times larger than that of the pipe 2.
  • a capillary line 8 opens into the riser 6 near its upper end, at the highest connection point 4 or just above it.
  • An outlet pipe 9 with a large free diameter is connected to the riser pipe 7 in its lower region, at the lowest connection point 5 or below. Due to the position of the capillary 8 and the outlet line 9 at opposite ends of the risers 6, 7, the pressure difference between the connection points 4, 5 is the same for each heat exchanger element 1, and accordingly the refrigerant throughput and cooling capacity are the same for all heat exchanger elements 1.
  • Both risers 6, 7 are extended downward via their respective lowest connection points, the connection 4 of the lowest evaporator element 1 in the case of the riser pipe 6 and the connection point 5 or the connection of the outlet pipe 9 in the case of the riser pipe 7.
  • the extension 10 of the riser pipe 6 serves on the one hand as a separator in which a possible residue of refrigerant emerging from the capillary line 8 without evaporation can collect, so that it does not have to flow through one of the tubes 2 and thereby cause noise, or as a buffer on which refrigerant condenses can, if the refrigerant circuit in which the evaporator is installed heats up and the refrigerant evaporates elsewhere during a temporary shutdown of a connected compressor.
  • the extension 11 of the riser 7 serves the same purpose of buffering or, in the absence of the extension 10, of intercepting refrigerant which emerges liquid from one of the pipes 2.
  • FIG. 2 shows a schematic section through a refrigeration device equipped with an evaporator according to the invention.
  • a body 12 and a door 13 attached to it surround an interior space 14, which is divided into compartments 15 by evaporator elements 1 is divided.
  • a compressor 16 is accommodated, which is connected on the one hand to the suction line formed by the riser 7 and the outlet line 9 and on the other hand is connected to a condenser 17, which here is in a manner known per se on the rear wall the body 12 is shown assembled.
  • a different attachment of the compressor and condenser is also possible, for example in a base unit arranged under the body
  • the capillary line 8 is part of a connecting line 18 which leads from the condenser to the riser 6 in the upper region of the body 12.
  • the evaporator elements 1 By connecting the evaporator elements 1 in parallel, they all have essentially the same temperature when exposed to refrigerant. There is therefore essentially no vertical temperature gradient in the interior 14, but only a horizontal one, transverse to the sectional plane of FIG. 2.
  • the bottom compartment 15 is therefore cooled just as effectively as the top compartment, and additional cooling coils or the like on the bottom of the interior 14 for cooling the bottom compartment 15 are not required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Verdampfer für ein Kältegerät umfasst eine Mehrzahl von plattenförmigen Wärmetauscher­elementen (1), die jeweils einlassseitig mit einer gemeinsamen Versorgungsleitung (6) und aus­lassseitig mit einer gemeinsamen Saugleitung (7, 9) verbunden sind.

Description

Beschreibung Kältegerät und Verdampfer dafür
[001] Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere einen Gefrierschrank, und einen Verdampfer dafür.
[002] Herkömmliche Verdampfer für einen Gefrierschrank umfassen eine Mehrzahl von plattenförmigen Wärmetauscherelementen, die im Innenraum des Gefrierschranks horizontal angeordnet sind und diesen in eine Mehrzahl von Fächern unterteilen. Die einzelnen Wärmetauscherelemente des Verdampfers sind untereinander in Reihe verbunden, so dass sie von einem Kältemittelstrom nacheinander durchflössen werden. Auf seinem Weg durch den Verdampfer erwärmt sich das Kältemittel. In der Regel verläuft der Weg des Kältemittels der Reihe nach von oben nach unten durch die Wärmetauscherelemente, so dass das oberste Element jeweils das kälteste und das untere Element das wärmste ist. Luftkonvektion im Innenraum trägt zu einem Temperaturausgleich bei, doch ist die Effizienz dieses Temperaturausgleichs abhängig von der Durchströmbarkeit des Innenraums. D.h., ein mit Kühlgut randvoll gepacktes Fach kann den Luftaustausch zwischen über ihm und unter ihm liegenden Fächern blockieren. Auch eine zu starke Vereisung der Wärmetauscherelemente selbst kann den Luftaustausch behindern, insbesondere bei den ansonsten für diese Anwendung wegen ihrer Luftdurchlässigkeit vorteilhaften Elementen in Drahtrohrbauweise. Um eine ausreichende Kühlung des untersten Fachs zu gewährleisten, ist man daher häufig gezwungen, ein Wärmetauscherelement auch am Boden des tiefstgelegenen Faches vorzusehen. Ein solches zusätzliches Wärmetauscherelement erhöht jedoch die Herstellungskosten des Kältegeräts.
[003] Aufgabe der vorliegenden Erfindung ist, einen Verdampfer für ein Kältegerät bzw. ein mit einem solchen Verdampfer ausgestattetes Kältegerät anzugeben, die es erlauben, unabhängig vom Ausmaß des Luftaustauschs zwischen den einzelnen Fächern des Kältegeräts den Temperaturgradienten im Innenraum des Kältegeräts zu reduzieren.
[004] Die Aufgabe wird gelöst durch einen Verdampfer nach Anspruch 1 bzw. ein Kältegerät nach Anspruch 8.
[005] Indem von den mehreren plattenförmigen Wärmetauscherelementen des erfindungsgemäßen Verdampfers jedes einlassseitig mit einer gemeinsamen Versorgungsleitung und auslassseitig mit einer gemeinsamen Saugleitung verbunden ist, sind die Wärmetauscherelemente also nicht mehr in Reihe, sondern parallel von dem Kältemittel durchströmt werden, kann eine Versorgung aller Wärmetauscherelemente mit gleichmäßig kaltem Kältemittel gewährleistet werden.
[006] Ein Temperaturgradient tritt nur noch jeweils im Inneren der Fächer und in allen Fächern in gleicher Weise auf. Wenn man annimmt, dass die Temperaturen, mit denen das Kältemittel in die Wärmetauscherelemente eintritt bzw. diese wieder verlässt, dieselben sind wie zwischen Einlass- Anschlussstelle des obersten Wärmetauscherelements und Auslass- Anschlussstelle des untersten Wärmetauscherelements in einem herkömmlichen Wärmetauscher mit in Reihe geschalteten Elementen, so sieht man, dass mit dem erfindungsgemäßen Wärmetauscher jeweils innerhalb eines Fachs ein stärkerer Wärmegradient erzeugt wird als bei herkömmlicher Bauweise, doch fuhrt dieser stärkere Gradient auch zu einem insgesamt verstärkten Wärmefluss im Inneren des Kühlraums und somit im Mittel zu einer homogeneren Temperaturverteilung.
[007] Die Wärmetauscherelemente des erfindungsgemäßen Verdampfers sind vorzugsweise in Drahtrohrbauweise realisiert. Da allerdings in einem mit dem erfindungsgemäßen Verdampfer ausgestatteten Kältegerät kein Wärmefluss zwischen den Fächern erforderlich ist, um einen Temperaturausgleich zu erzielen, können im Rahmen der vorliegenden Erfindung auch Wärmetauscherelemente in Form von ge- schlossenwandigen, von Kältemittel durchströmten Platten eingesetzt weiden.
[008] Einer ersten bevorzugten Ausgestaltung der Erfindung zufolge ist der Versorgungsleitung eine gemeinsame Drosselstelle vorgelagert, die die Entspannung des Kühlmittels für alle Wärmetauscherelemente gemeinsam besorgt. Das Kältemittel liegt somit in der Versorgungsleitung im Wesentlichen in gasförmigem Zustand vor; und sein Druck am Einlassanschluss jedes Wärmetauscherelements ist der gleiche.
[009] Alternativ kann zwischen der Versorgungsleitung und jedem Wärmetauscherelement eine Drosselstelle angeordnet sein.
[010] Bevorzugt ist der von Kältemittel durchströmte Querschnitt der gemeinsamen Versorgungsleitung kleiner als der durchströmbare Querschnitt des Wärmetauschers, der wiederum kleiner ist als der von Kältemittel durchströmte Querschnitt der gemeinsamen Saugleitung.
[011] Vorzugsweise weisen die Versorgungsleitung und oder die Saugleitung jeweils ein senkrecht zu den Wärmetauscherelementen angeordnetes Steigrohr auf.
[012] Ferner ist vorzugsweise an das Steigrohr der Versorgungsleitung und oder der Saugleitung eine Zu- bzw. Abfuhrleitung seitlich angeschlossen, und das Steigrohr ist nach unten über die Anschlussstellen der Zu- bzw. Abfuhrleitung und der Wärmetauscherelemente hinaus verlängert Diese Verlängerung des Steigrohrs fungiert als Abscheider bzw. als ein Puffervolumen, das flüssiges Kältemittel abfangt und so gewährleistet, dass nur gasförmiges Kältemittel durch die Wärmetauscherelemente strömt bzw. einen an die Saugleitung angeschlossenen Verdichter erreicht
[013] Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezug auf die beigefügten Figuren. Es zeigen: [014] Fig. 1 eine perspektivische Ansicht eines erfindungsgemäßen Verdampfers; und
[015] Fig. 2 einen schematischen Schnitt durch ein Kältegerät, in welchem der Verdampfer aus Fig. 1 eingebaut ist.
[016] Der in Fig. 1 gezeigte Verdampfer umfasst in an sich bekannter Weise eine Mehrzahl von plattenförmigen Verdampferelementen 1, die jeweils aus einem mäan- derföπnigen Rohr 2 gebildet sind, dessen Schleifen durch eine Vielzahl von angelöteten Drähten 3 stabilisiert und versteift sind, von denen in Fig. 2 nur zwei exemplarisch am untersten Verdampferelement 1 dargestellt sind.
[017] Anfang und Ende der Rohre 2 bilden jeweils eine Anschlussstelle 4 bzw. 5, an der das Rohr 2 des Verdampferelements 1 in eine Steigleitung 6 bzw. 7 mündet die sich geradlinig und senkrecht zur Ebene der Verdampferelemente 1 erstreckt. Der Innendurchmesser der Steigleitungen 6, 7 ist untereinander gleich und um ein Vielfaches größer als der des Rohrs 2.
[018] Eine Kapillarleitung 8 mündet in die Steigleitung 6 in der Nähe von deren oberem Ende, in Höhe der höchstgelegenen Anschlussstelle 4 oder knapp darüber. Eine Auslassleitung 9 mit großem freiem Durchmesser ist an die Steigleitung 7 in deren unterem Bereich, in Höhe der tiefstgelegenen Anschlussstelle 5 oder darunter, angeschlossen. Aufgrund der Lage der Kapillare 8 und der Auslassleitung 9 an entgegengesetzten Enden der Steigrohre 6, 7 ist die Druckdifferenz zwischen den Anschlussstellen 4, 5 für jedes Wärmetauscherelement 1 die gleiche, und dementsprechend sind auch Kältemitteldurchsatz und Kühlleistung für alle Wärmetauscherelemente 1 gleich.
[019] Beide Steigleitungen 6, 7 sind über ihre jeweils tiefstliegenden Anschlussstellen, den Anschluss 4 des untersten Verdampferelements 1 im Falle der Steigleitung 6 und die Anschlussstelle 5 oder den Anschluss der Auslassleitung 9 im Falle der Steigleitung 7 nach unten verlängert Die Verlängerung 10 der Steigleitung 6 dient einerseits als ein Abscheider, in welchem sich ein eventueller Rest an unveidampft aus der Kapillarleitung 8 austretendem Kältemittel sammeln kann, so dass es nicht durch eines der Rohre 2 strömen muss und dabei Geräusche verursacht, bzw. als ein Puffer, an dem Kältemittel kondensieren kann, wenn während eines zeitweiligen Stillstands eines angeschlossenen Verdichters sich der Kältemittelkreis, in dem der Verdampfer eingebaut ist erwärmt und Kältemittel an anderer Stelle verdampft. Dem gleichen Zweck der Pufferung bzw., bei NichtVorhandensein der Verlängerung 10, dem Abfangen von flüssig aus einem der Rohre 2 austretendem Kältemittel dient die Verlängerung 11 der Steigleitung 7.
[020] Fig.2 zeigt einen schematischen Schnitt durch ein mit einem erfindungsgemäßen Verdampfer ausgestattetes Kältegerät. Ein Korpus 12 und eine daran angeschlagene Tür 13 umgeben einen Innenraum 14, der durch Verdampferelemente 1 in Fächer 15 unterteilt ist. In einer im rückwärtigen unteren Bereich des Korpus 2 ausgesparten Nische ist ein Verdichter 16 untergebracht, der einerseits an die durch Steigleitung 7 und Auslassleitung 9 gebildete Saugleitung angeschlossen ist und andererseits mit einem Verflüssiger 17 verbunden ist, der hier in an sich bekannter Weise an der Rückwand des Korpus 12 montiert dargestellt ist. Eine andere Anbringung von Verdichter und Verflüssiger kommt auch in Betracht beispielsweise in einem unter dem Korpus angeordneten Sockelaggregat
[021] Die Kapillarleitung 8 ist Teil einer Verbindungsleitung 18, die im oberen Bereich des Korpus 12 vom Verflüssiger zu der Steigleitung 6 führt.
[022] Durch die Parallelschaltung der Verdampferelemente 1 haben diese bei Beaufschlagung mit Kältemittel alle im Wesentlichen die gleiche Temperatur. Es gibt daher im Wesentlichen keinen vertikalen Temperaturgradienten im Innenraum 14, sondern nur einen horizontalen, quer zur Schnittebene der Fig. 2. Das unterste Fach 15 ist daher genauso effektiv gekühlt wie das oberste, und zusätzliche Kühlschlangen oder dergleichen am Boden des Innenraums 14 zum Kühlen des untersten Fachs 15 sind nicht erforderlich.

Claims

Ansprüche
[001] Verdampfer für ein Kältegerät mit einer Mehrzahl von plattenförmigen Wärmetauscherelementen (1), dadurch gekennzeichnet, dass jedes der Wärmetauscherelemente (l)einlassseitig mit einer gemeinsamen Versorgungsleitung (6) und auslassseitig mit einer gemeinsamen Saugleitung (7, 9) verbunden ist.
[002] Verdampfer nach Ansprach 1, dadurch gekennzeichnet dass die Wärmetauscherelemente (1) in Drahtrohrbauweise realisiert sind.
[003] Verdampfer nach Anspruch 1 oder 2, dadurch gekennzeichnet dass eine gemeinsame Drosselstelle (8) der Versorgungsleitung (6) vorgelagert ist
[004] Verdampfer nach Ansprach 1 oder 2, dadurch gekennzeichnet dass zwischen der Versorgungsleitung (6) und jedem Wärmetauscherelement eine Drosselstelle angeordnet ist
[005] Verdampfer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet dass die Versorgungsleitung (6) und/oder die Saugleitung (7, 9) jeweils ein senkrecht zu den Wärmetauscherelementen angeordnetes Steigrohr (6, 7) umfassen.
[006] Verdampfer nach Ansprach 5, dadurch gekennzeichnet dass an das Steigrohr (6; 7) eine Leitung (8; 9) seitlich angeschlossen ist und dass das Steigrohr (6; 7) nach unten über die Anschlussstellen der Leitung (8; 9) und der Wärmetauscherelemente (1) hinaus verlängert ist.
[007] Verdampfer nach Ansprach 5, dadurch gekennzeichnet dass Versorgungs- (6) und Saugleitung (7, 9) ein Steigrohr (6; 7) von gleichem freiem Querschnitt umfassen, und dass eine Zufuhrleitung (8) zum Steigrohr (6) der Versorgungsleitung (6) bzw. eine Abfuhrleitung (9) für das Kältemittel vom Steigrohr (7) der Saugleitung (7, 9) in Höhe der höchsten Anschlussstelle (4) eines Wärmetauscherelements (1) oder darüber bzw. unterhalb der tiefsten Anschlussstelle (5) eines Wärmetauscherelements oder darunter angeordnet ist.
[008] Kältegerät mit einem von einem wärmeisolierenden Gehäuse umschlossenen Innenraum (14) und einem Verdampfer nach einem der vorhergehenden Ansprüche, dessen Wärmetauscherelemente (1) den Innenraum (14) in Fächer (15) unterteilen.
PCT/EP2005/005366 2004-05-17 2005-05-17 Kältegerät und verdampfer dafür WO2005114065A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05748016A EP1751475A1 (de) 2004-05-17 2005-05-17 Kältegerät und verdampfer dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004024397A DE102004024397A1 (de) 2004-05-17 2004-05-17 Kältegerät und Verdampfer dafür
DE102004024397.2 2004-05-17

Publications (1)

Publication Number Publication Date
WO2005114065A1 true WO2005114065A1 (de) 2005-12-01

Family

ID=34969082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005366 WO2005114065A1 (de) 2004-05-17 2005-05-17 Kältegerät und verdampfer dafür

Country Status (5)

Country Link
EP (1) EP1751475A1 (de)
CN (1) CN100538204C (de)
DE (1) DE102004024397A1 (de)
RU (1) RU2389951C2 (de)
WO (1) WO2005114065A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20100614A1 (it) * 2010-07-15 2010-10-14 Mondial Group Srl Evaporatore statico a ripiani evaporanti perfezionato.
DE102011107538A1 (de) * 2011-06-10 2012-12-13 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061097A1 (de) * 2006-12-22 2008-06-26 BSH Bosch und Siemens Hausgeräte GmbH Wärmetauscher
JP5755040B2 (ja) * 2011-06-14 2015-07-29 株式会社東芝 冷蔵庫

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB663052A (en) * 1948-09-18 1951-12-12 Dole Refrigerating Co Apparatus for cooling liquids
FR2359579A1 (fr) * 1976-07-29 1978-02-24 Pavailler Jacques Armoire conditionnee pour le controle de la fermentation de la pate, notamment a pain
EP0382966A1 (de) * 1989-02-16 1990-08-22 Dairei Co., Ltd. Solekältevorrichtung
US6006527A (en) * 1996-02-28 1999-12-28 Danfoss A/S Refrigeration system
US6008527A (en) 1997-03-14 1999-12-28 Toko Kabushiki Kaisha Diode device
EP1262723A1 (de) * 2001-06-01 2002-12-04 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB663052A (en) * 1948-09-18 1951-12-12 Dole Refrigerating Co Apparatus for cooling liquids
FR2359579A1 (fr) * 1976-07-29 1978-02-24 Pavailler Jacques Armoire conditionnee pour le controle de la fermentation de la pate, notamment a pain
EP0382966A1 (de) * 1989-02-16 1990-08-22 Dairei Co., Ltd. Solekältevorrichtung
US6006527A (en) * 1996-02-28 1999-12-28 Danfoss A/S Refrigeration system
US6008527A (en) 1997-03-14 1999-12-28 Toko Kabushiki Kaisha Diode device
EP1262723A1 (de) * 2001-06-01 2002-12-04 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20100614A1 (it) * 2010-07-15 2010-10-14 Mondial Group Srl Evaporatore statico a ripiani evaporanti perfezionato.
WO2012007977A1 (en) * 2010-07-15 2012-01-19 Mondial Group S.R.L. Improved static evaporator with evaporating shelves
DE102011107538A1 (de) * 2011-06-10 2012-12-13 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
EP2538158A2 (de) 2011-06-10 2012-12-26 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät

Also Published As

Publication number Publication date
EP1751475A1 (de) 2007-02-14
DE102004024397A1 (de) 2005-12-08
CN100538204C (zh) 2009-09-09
RU2006139666A (ru) 2008-06-27
CN1954181A (zh) 2007-04-25
RU2389951C2 (ru) 2010-05-20

Similar Documents

Publication Publication Date Title
DE60011196T2 (de) Kombinierter Wärmetauscher mit Verdampfer, Akkumulator und Saugleitung
DE3650658T2 (de) Wärmetauscher
DE10122360B4 (de) Unterkühlungskondensator
DE60012256T2 (de) Kondensator mit einem Mittel zur Entspannung
DE102006018681A1 (de) Wärmetauscher für ein Fahrzeug
DE102007002719A1 (de) Einheit für eine Kühlkreisvorrichtung
DE112015000465B4 (de) Klimaanlagensystem für ein Fahrzeug
DE102015105093A1 (de) Kondensator
DE102007002720A1 (de) Wärmetauscher und Kühlkreisvorrichtung mit diesem
DE69421222T2 (de) Kühlgerät
DE112010004016T5 (de) Zwischenwärmetauscher
DE112013001863T5 (de) Wärmetauscher und Wärmepumpensystem, das denselben verwendet
EP2021721A1 (de) Kälte- und/oder wärmespeicher
WO2005114065A1 (de) Kältegerät und verdampfer dafür
DE102011013519B4 (de) Kondensator
DE102019200673A1 (de) Kältegerät mit automatisch abtaubarem Verdampfer
EP2614324B1 (de) Kältegerät mit skin-verflüssiger
DE19957945A1 (de) Kondensator mit Unterkühlstrecke
DE69802353T2 (de) Luftgekühlter kondensator
DE102004047304A1 (de) Unterkühlender Kondensator
EP4217668A1 (de) Kältegerät
DE202014101213U1 (de) Heizkühlmodul
EP2606291B1 (de) Kältemittelkondensatorbaugruppe
EP2108912B1 (de) Kondensator, insbesondere für eine Kraftfahrzeug-Klimaanlage
DE19751768A1 (de) Verdampfer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005748016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580015595.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006139666

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005748016

Country of ref document: EP