EP2570503B1 - Method and device for heating a pre-coated steel circuit board - Google Patents

Method and device for heating a pre-coated steel circuit board Download PDF

Info

Publication number
EP2570503B1
EP2570503B1 EP12181212.7A EP12181212A EP2570503B1 EP 2570503 B1 EP2570503 B1 EP 2570503B1 EP 12181212 A EP12181212 A EP 12181212A EP 2570503 B1 EP2570503 B1 EP 2570503B1
Authority
EP
European Patent Office
Prior art keywords
furnace
air
supply
drying
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12181212.7A
Other languages
German (de)
French (fr)
Other versions
EP2570503A2 (en
EP2570503A3 (en
Inventor
Christoph Steins
Matthias Rode
Markus Pellmann
Karsten Bake
Dr. Christian Hielscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Automobiltechnik GmbH
Original Assignee
Benteler Automobiltechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46940246&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2570503(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Benteler Automobiltechnik GmbH filed Critical Benteler Automobiltechnik GmbH
Publication of EP2570503A2 publication Critical patent/EP2570503A2/en
Publication of EP2570503A3 publication Critical patent/EP2570503A3/en
Application granted granted Critical
Publication of EP2570503B1 publication Critical patent/EP2570503B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2241/00Treatments in a special environment

Definitions

  • the invention relates to a method for heating a precoated steel plate for the production of a thermoformed component according to the features in the preamble of claim 1 and a device for heating a precoated steel plate for the production of a thermoformed component according to the features in the preamble of claim. 4 ,
  • thermoformed components is based on the plastic deformation of mostly flat semi-finished products. Compared to the cold forming at room temperature, the previous heating, in particular of metallic semi-finished products, contributes to the fact that they do not receive any undesirable solidification with reduced toughness in the forming area. In addition, the heating overall facilitates the targeted change in shape of the semifinished product, since any shear or fracture fractures are largely prevented by the reduced in the heated state strengths of the material used.
  • steel blanks form the basis for the manufacture of bodywork or structural components.
  • high-strength components which have a very favorable ratio of strength to weight.
  • Their mechanical resistance leaves Increase in a known manner by the material is cured by heating and subsequent rapid cooling.
  • the causative change in position of the carbon atoms in the metal lattice begins when the austenitizing temperature is reached, with the subsequent cooling resulting in a martensitic hardening structure and thus significantly increasing the strength of the formed component.
  • the cooling rate required for this depends on the particular alloy used.
  • the heated board is placed in a molding tool, in which it is formed and cured by cooling.
  • a controlled atmosphere for example under nitrogen.
  • the heating can also take place in ambient air, provided that the board receives a suitable coating before being heated.
  • a heat treatment furnace belongs to the state of the art. This is suitable for heating of pre-coated blanks made of steel for the production of thermoformed components.
  • the furnace comprises at least one supply line, which is connected to a heatable interior of the furnace, wherein the supply line between a drying arrangement, a compressor and the interior of the furnace is arranged.
  • the interior is pretreated via the drying arrangement air through the feed line fed.
  • From the EP 1 013 785 B1 is a method for heating a precoated board made of steel, wherein the coating of aluminum or an aluminum alloy, for example, of aluminum and silicon.
  • the board provided with the coating is first heated in an oven, whereby at least partially an intermetallic alloy layer is formed on the board.
  • the alloy layer is formed between the surface of the board and the coating arranged thereon.
  • the heating takes place at a temperature between 750 ° C and 1200 ° C, wherein the atmosphere in the interior of the furnace due to the oxidation barrier formed by the coating requires no control. Subsequent cooling of the thermoformed component increases its mechanical hardness properties.
  • the corrosion and decarburization of the steel prevented by the coating and in particular by the intermetallic alloy formed prevents the formation of scale, which leads to rapid wear of the shaping tools.
  • the intermetallic alloy forms a lubricating function, especially at high temperatures, which facilitates the forming.
  • the passive corrosion inhibiting property of oxides on the surface of metals is known.
  • the access of atmospheric oxygen during heating is desired.
  • the nitrogen naturally contained in ambient air together with the coating formed of aluminum or of an alloy of aluminum and silicon forms extremely hard deposits which adhere to the forming tool.
  • appropriate tool cleaning is required.
  • the hard deposits require a grinding of the forming tool areas, which significantly increases their wear. Due to the heated furnace atmosphere, the oxygen content contained therein is at least partially reduced, whereby the formation of the desired oxide layer on the coating is at least limited. So can the attachment of the Coating on the mold counteracting oxide layer does not form completely, which contributes to the additional formation of deposits.
  • the incompletely developed and thus partially releasing aluminum oxide layer leads to increased dust formation, which leads to increased wear due to abrasion, in particular in the guided and / or stored components of the forming tool. Consequently, for example, the guides of slides and brakes of the forming tool also subject to increased wear. Due to the uncontrolled atmosphere within the furnace this has a corresponding proportion of water in the form of water vapor, which results from the exchange with the ambient air. The splitting of the water by the thermal load within the furnace leads to an increased proportion of hydrogen, which undesirably promotes any hydrogen embrittlement of the steel.
  • the advantageous from an economic point of view small openings of the furnace for its loading and the removal cause that only a small proportion of atmospheric oxygen enters the furnace, which also the formation of the advantageous oxide layer is limited to the coating.
  • the invention is, starting from the prior art, the object of the invention to improve a method and apparatus for heating a precoated steel plate to form an alloy layer for the production of thermoformed bodywork and structural components to the effect that the wear of the thermoforming tool by deposits and abrasion reduced and sufficient oxidation of the coating is simultaneously made possible with reduced risk of hydrogen embrittlement economically.
  • thermoformed component in particular for the production of a thermoformed body or structural component, first shown, wherein the provided with a coating board in an oven to a temperature of 700 ° C to 950 ° C is heated. As a result of the heating, an intermetallic alloy layer is formed on the board at least in some areas.
  • the atmosphere within the furnace is controlled by the supply of pretreated air, the air being pretreated by drying before being fed, the air being heated to a temperature of 100 ° C to 500 ° C after its drying, and dried Air is supplied to the furnace under pressure, wherein the pressure of the dried air is set to a value between the atmospheric pressure and including 8 bar and the dew point of the dried air to a value of -40 ° C to -10 ° C is set.
  • the particular advantage consists in the reduction of the proportion of dissolved water in the form of water vapor within the furnace atmosphere. Since less splittable water is thus present in the atmosphere of the furnace, consequently, the elimination of hydrogen is also reduced.
  • the proportion of hydrogen in the furnace atmosphere of any hydrogen embrittlement of the steel plate is reduced by penetrating into the material hydrogen.
  • the supply of dried ambient air increases the proportion of oxygen within the furnace atmosphere, thereby improving the desired formation of the oxide layer on the coating.
  • the thus well-formed oxide layer reduces the adhesion of the coating on the forming areas of the forming tool. Furthermore, by the well formed oxide layer whose detachment and the resulting dust formation is reduced, so that the associated abrasion moving and stored parts of the forming tool is reduced.
  • the coating is preferably an aluminum coating, in particular an aluminum-silicon coating.
  • the precoated board is heated to a temperature of 700 ° C to 950 ° C, in particular to a Austenitmaschinestemperatur AC3, and cured after the forming in the forming tool by cooling. Even if the cooling can take place outside the forming tool, the cooling is preferably carried out within the forming tool.
  • the board is made of a steel alloy with a carbon content of 0.15 wt .-% to 2.0 wt .-%.
  • a steel alloy which has the following proportions of its alloying partners in terms of percent by weight, is suitable for the board: Carbon (C): 0.18 wt% to 0.30 wt% Silicon (Si): 0.10 wt% to 0.70 wt% Manganese (Mn): 1.00% by weight to 2.50% by weight Chrome (Cr): 0.10 wt% to 0.80 wt% Molybdenum (Mo): 0.10 wt% to 0.50 wt% Titanium (Ti): From 0.02% to 0.05% by weight Boron (B): 0.002 wt% to 0.005 wt% Aluminum (Al): 0.01% by weight to 0.06% by weight Sulfur (S): maximum 0.01% by weight Phosphorus (P): maximum 0.025% by weight Rest: Iron, inc
  • the board has, for example, the following proportions of its alloying partners: Carbon (C): 0.19% by weight to 0.25% by weight Silicon (Si): 0.15% by weight to 0.50% by weight Manganese (Mn): 1.10% by weight to 1.40% by weight Phosphorus (P): maximum 0.025% by weight Sulfur (S): maximum 0.015% by weight Chrome (Cr): maximum 0.35% by weight Molybdenum (Mo): maximum 0.35% by weight Titanium (Ti): From 0.02% to 0.05% by weight Boron (B): 0.002 wt% to 0.005 wt% Aluminum (Al): 0.02 wt.% To 0.06 wt.% Rest: Iron, incl. Impurities caused by melting
  • the dried air is fed to the furnace under overpressure.
  • the desired overpressure By setting the desired overpressure, the desired amount of pretreated air, especially dried air, which is fed to the furnace can be controlled.
  • the pressure of the dried air, when fed into the furnace can be adjusted to a value between the atmospheric pressure and 8 bar inclusive.
  • the pressure of the dried air to be supplied to the furnace is adjusted to a value between the atmospheric pressure and 6 bar inclusive.
  • any existing infrastructure can also be reduced, resulting in low operating costs as a result. This would, for example, any existing nitrogen treatment and a corresponding filtration superfluous.
  • the dew point itself gives the value for the temperature at which the moisture dissolved in the air as water vapor precipitates as condensate.
  • the ability of air to absorb water in the form of water vapor depends on its overall temperature. Thus, in particular in the summer months with a correspondingly high air temperature, their absorption capacity for moisture is increased. In other words, warm air is able to absorb more moisture, whereas cold air may contain less moisture. Thus, with 100% saturation of the air with steam in warm air, more water is contained than in cold air.
  • the air to be supplied to the oven is heated after it has dried. If necessary and depending on the design, the air can also be heated during its drying. In principle, the air can also be heated before it is dried. The air is heated to a temperature of 100 ° C to 500 ° C.
  • the advantage is in the approximation of the temperature of the supplied air to the temperature within the furnace. As a result, otherwise inevitably occurring temperature fluctuations within the furnace atmosphere are largely avoided.
  • the furnace can be operated more economically, since the furnace atmosphere is not or only slightly cooled down by the supply of heated air. As a result, the required heating power is less than the supply of unheated air.
  • the furnace atmosphere in the region of the supply of air to the surrounding air within the furnace lower temperature, whereby the heating of the board can delay unfavorably.
  • the energy of the exhaust air, in particular the exhaust gas of the furnace is used, which is withdrawn for example via a suitable heat exchanger and the supplied air is supplied in the form of heat.
  • the configuration may, for example, be such that the exhaust air line, in particular the exhaust air line of at least one burner of the furnace has a heat-transmitting coupling with the supply line for the pretreated air.
  • the supply line of the pretreated air can be peripherally in contact with the exhaust air line, for example, in which the supply line is arranged around the exhaust air duct around or parallel to this.
  • the heat of the exhaust air can be transmitted via the respective walls of the lines in contact with each other at least partially to the air to be supplied.
  • the supply line for the pretreated air for example, at least partially disposed within an exhaust duct of at least one burner of the furnace.
  • the invention provides that the introduced during the heating of the board in the oven and this passing volume flow of the dried, in particular dried and heated air is set to 2.5 times the furnace volume per hour.
  • the air introduced into and passing through the oven is pressurized with respect to the desired volumetric flow rate.
  • the furnace used can be, for example, a chamber furnace and a rotary kiln or a roller hearth furnace.
  • a continuous furnace is preferably used.
  • the pressing tool can be continuously equipped with heated steel blanks.
  • an inserted in the continuous furnace board passes through this by means of a transport unit, for example in the form of transport rollers, wherein the board is heated in the furnace atmosphere and maintained at temperature.
  • the volume flow of the dried air introduced into the oven and passing through it during the heating of the board is adjusted in particular to 3 times the furnace volume per hour.
  • the volume flow passing through the oven is adjusted to 6 times the oven volume per hour.
  • the invention provides that the atmosphere within the furnace is set to the following values of its proportions: Nitrogen (N2): less than or equal to ( ⁇ ) 85% by volume, preferably 78% by volume; Oxygen (O2): from 10% by volume to 21% by volume, preferably from 15% by volume to 21% by volume, especially 21% by volume;
  • H2O steam Water vapor (H2O steam): less than ( ⁇ ) 3 vol.% And a residue consisting of carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), hydrogen (H2) and impurities dependent on the starting material and its coating
  • the distribution of nitrogen at 78% by volume and oxygen at 21% by volume corresponds to the content of normal ambient air.
  • the proportion of oxygen in the dried air can be increased, for example, by the supply of pure oxygen. Since the content of oxygen in the furnace atmosphere is reduced for example by the formation of the oxide layer and any combustion processes, even the supply of dried air leads to an increase in the oxygen content.
  • the supply of dried air also reduces the proportion of nitrogen which is increased within the furnace atmosphere.
  • the invention relates to a method for heating a precoated steel plate to form an alloy layer for the production of thermoformed body and structural component, which reduces the wear of the thermoforming tool by deposits and abrasion and economically sufficient oxidation of the coating with reduced risk of hydrogen embrittlement possible.
  • the use of mostly existing compressed air in this case represents a very cost-effective way to control the furnace atmosphere.
  • the sole drying of the compressed air to be supplied to the furnace brings about the described advantages, which in particular lead to the formation of a sufficient oxide layer, which in turn prevents or at least significantly reduces any deposits in the shaping areas of the forming tool.
  • the risk of hydrogen embrittlement is significantly reduced, which is due to the reduced proportion of water in the form of water vapor within the supplied air.
  • the well-formed oxide layer on the coating reduces their detachment, whereupon the possible formation of dust and the associated signs of wear of the forming tool are minimized.
  • a device for heating a precoated steel plate for the production of a thermoformed component is shown.
  • the components to be manufactured are in particular thermoformed bodywork or structural components.
  • the device comprises a furnace and at least one supply line, which is connected to a heatable interior of the furnace.
  • the feed line is arranged between a drying arrangement and the interior of the furnace.
  • the reduced by drying proportion of water in the form of water vapor within the furnace atmosphere reduces the risk of hydrogen embrittlement of the steel plate.
  • the furnace atmosphere is enriched in terms of its oxygen content with oxygen from the pretreated ambient air, which is otherwise reduced within the furnace atmosphere, in particular by the high temperatures.
  • the drying arrangement is connected to an air compressor.
  • the air compressed by the air compressor in a thus controllable amount is hineinleitbar through the dry assembly through the supply line into the interior of the furnace.
  • the air compressor is used to direct a determinable volume of dried air in the form of a volume flow in the interior of the furnace.
  • the required amount of proportions of the dried air, in particular oxygen regulated.
  • the drying arrangement has at least two drying containers, through which the air to be passed into the oven flows. Through the use of at least two dry containers they can be alternately flowed through with the required air.
  • the exchangeable flow through the two drying containers causes the non-traversed drying container can be dried with respect to the moisture collected therein, for example by heating. As a result of the alternating feeding of the two drying containers with air to be dried, this can be continuously provided for feeding into the oven.
  • the invention provides that the supply line is arranged at least in a central region of the interior of the furnace.
  • this design includes two openings, with an opening serve the feed of the continuous furnace and the other opening of the removal of the heated semi-finished product. In the vicinity of the two openings, an exchange of ambient air with the furnace atmosphere is possible.
  • the proportion of oxygen in the interior of the furnace is increased in the region of the openings relative to the furnace section located between the openings.
  • a virtually constant proportion of oxygen in the interior of the furnace can be achieved. The resulting positive effects on the formation of the oxide layer on the coating thus come into play over the entire run length of the furnace.
  • the furnace has at least one exhaust duct, via which any exhaust gases of at least one burner can be diverted.
  • the exhaust duct is preferably arranged outside the interior of the furnace.
  • the exhaust air line is at least partially in communication with the supply line for the air.
  • the exhaust duct is at least partially thermally coupled to the supply line.
  • the thermal coupling can be done for example via a heat exchanger.
  • the supply line may be at least partially integrated in an exhaust duct.
  • the structural separation within the heat exchanger no exchange of the respective fluids.
  • a suitable temperature in particular a heating of the supplied air is possible without additional energy.
  • the supplied air can be heated to 100 ° C.
  • the heating of the air before, during or after their drying can take place.
  • the exhaust air to be supplied to a temperature of 100 ° C to 950 ° C, preferably heated to a temperature of 100 ° C to 700 ° C, in particular to a temperature of 100 ° C to 500 ° C.
  • the supplied air can also be heated to a temperature of 100 ° C to 200 ° C.
  • the furnace is a continuous furnace in which at least two are located between the drying assembly and the interior of the furnace arranged supply lines are provided.
  • the distance between the at least two supply lines basically depends on the length of the continuous furnace.
  • a distance of the feed lines of 2.0 m to 3.0 m from each other is preferred in the context of the invention.
  • more supply lines can be arranged, which are arranged closer together, for example, with a correspondingly smaller cross-section.
  • the aim is to obtain the most uniform possible supply of dried air in the interior of the furnace.
  • a constant possible composition of the air more closely the furnace atmosphere, in the foreground.
  • the invention provides that the furnace has at least one dew point sensor.
  • the dew point sensor can be arranged, for example, within a supply line.
  • the at least one dew point sensor is arranged in the interior of the furnace to detect the real composition of the furnace atmosphere with respect to its dew point.
  • the dew point sensor is coupled to the drying arrangement.
  • the coupling serves to control, in particular the exchange of information between dew point sensor and dry arrangement.
  • the detected measured quantity by the dew point sensor serves to regulate the drying effect of the drying arrangement with respect to the air flowing through it.
  • the dew point sensor can transmit measured values to the drying arrangement at certain intervals, the drying effect of which is set by means of suitable control, for example.
  • the measurement of the dew point sensor can also be carried out continuously, so that the dry arrangement also undergoes a continuous adjustment of its efficiency.
  • the dew point sensor may be, for example, a humidity sensor or a humidity sensor.
  • the nominal dew point of the furnace atmosphere is thus regulated by the combination of dew point sensor and dry arrangement.
  • the dry arrangement may be, for example, a refrigeration dryer or an IR dryer.
  • the drying arrangement is preferably in order an adsorption dryer. This may for example comprise a desiccant of activated alumina, which has a continuously high adsorption capacity and a good regeneration capacity.
  • the drying arrangement can be time-controlled, it is advantageously capacity-controlled in order to enable the required regulation of the desired dew point.
  • the control of the degree of dryness can take place over all phases of the drying cycle, such as the adsorption, the pressure relief and the regeneration of the desiccant and the pressure build-up.
  • the furnace has at least two temperature zones.
  • the temperature zones can be arranged in the direction of passage of the furnace and / or transversely to the direction of passage of the furnace.
  • temperature zones arranged in the direction of travel can also be supplemented by temperature zones arranged transversely to the passage direction.
  • the mutually different temperature zones serve to enable a partial thermoforming of the steel plate, if necessary.
  • targeted individual areas of the board are brought to the required temperature in order to adjust the required properties of the material in the subsequent thermoforming, in particular by press hardening.
  • the individual temperature zones can be set, for example, by locally independent and different temperature settings. Furthermore, the individual temperature zones can be set and regulated in an advantageous manner, at least in regions, by the supply line of the pretreated air. Of course, a combination of temperature control and air supply is possible. In particular, the supply of the pretreated air allows a feasible within a very short time adaptation of local temperature conditions, since the temperature is usually below the temperature of the furnace atmosphere. Depending on the configuration, the regulation of individual temperature zones can thus be effected by the individual and, for example, increased local supply of pretreated air.
  • the feed line of the pretreated air can be designed such that it has as long a path as possible, for example by an alternating installation, in the area of the exhaust air, in particular the exhaust air line of the Brenners has.
  • Hierdruch takes place a heat transfer from the exhaust air, more precisely the exhaust gas, to the supply line and thus to the air guided therein, whereupon it heats up.
  • an undesired heat loss of the furnace atmosphere in particular an undesirable cooling in the supply lines to the interior of the furnace can be at least partially compensated. In other words, this results in the desired heating of the pretreated air before it is passed into the interior of the furnace.
  • At least one of the temperature zones is adjustable with respect to their temperature via the supply line of the air.
  • the temperature zone is arranged in the region of the feed line, so that the temperature zone can be set at least in regions by the supply of the air.
  • the volume of the temperature zone whose respective temperature is adjustable both on the amount and on the temperature of the air to be supplied.
  • the invention thus provides a device for heating a precoated steel plate to form an alloy layer for the production of thermoformed body and structural components, which significantly reduces the wear of the thermoforming tool by any deposits and abrasion.
  • the controlled supply of atmospheric oxygen allows sufficient oxidation of the coating, which reduces the adhesive effect of deposits on the forming areas of the forming tool.
  • the risk of hydrogen embrittlement is reduced by the reduced proportion of water in the form of water vapor in the furnace atmosphere.
  • FIG. 1 schematically shows a longitudinally extending furnace 1 in the form of a continuous furnace.
  • the furnace 1 has at its end in each case an opening, wherein with reference to the illustration of FIG. 1 right opening an entrance 2 and the input 2 opposite opening form an outlet 3 of the furnace 1.
  • a forming tool 4 is arranged in the area of the outlet 3 of the furnace 1.
  • the forming tool 4 comprises an upper die 4a and a lower die 4b, between which a precoated board 5 is deformable.
  • the forming tool 4 is located between the upper die 4a and the lower die 4b forming area 4c, within which the reshaping board 5 can be inserted.
  • a manipulator 6 is arranged in the form of a robot arm.
  • the furnace 1 is used to heat the precoated board 5 made of steel, which is first introduced via the input 2 in the furnace 1 and this passes in the direction of the output 3.
  • the coated board 5 is heated in a manner not shown to an austenitizing temperature of 700 ° C to 950 ° C.
  • the Heating of the board 5 forms an intermetallic alloy layer between the coating of the board and the surface of the board. Due to the oxygen present in the furnace atmosphere, the oxidation of the coating takes place, which thus forms an oxide layer on its surface.
  • the coating is preferably aluminum, in particular an aluminum-silicon alloy.
  • the upper die 4a and / or the lower die 4b have cooling means (not shown).
  • integrated cooling lines can be provided which can be flowed through by a cooling fluid in order to absorb and remove the heat present in the upper die 4a and / or the lower die 4b.
  • FIG. 2 shows the oven 1 the FIG. 1 with more details.
  • a drying arrangement 7 is arranged with at least one drying container, not shown.
  • the drying arrangement 7 is connected to an interior 1a of the furnace 1 via a central supply line 8 with further supply lines 8a arranged at a distance A from one another.
  • the furnace 1 several dew point sensors 9, which are connected via cable 10 with a controller 11.
  • the controller 11 is composed of a measuring module 11a and a default module 11b and a control module 11c. In principle, the connection between dew point sensor 9 and control 11 can also be wireless.
  • the distance A is dependent on the burners used and not shown in detail, in particular their performance and the corresponding burner tube thickness. In the present case, the distance A is preferably from 0.5 m to 2.5 m. The distance A may result, for example, from three times the particular burner tube thickness used. For example, with the use of 50 kW burners with a respective burner tube thickness of 50 cm, a distance A of 1.5 m could result.
  • a controller 12 is arranged, via which the the interior 1a of the furnace 1 to be supplied amount of dried over the drying assembly 7 air is adjustable.
  • the control module 11 c of the controller 11 is also connected via a cable 13 to the controller 12.
  • the drying assembly 7 is connected via a cable 14 to the control module 11 c of the controller 11.
  • the connection of the controller 12 and / or the drying arrangement 7 with the controller 11 can also be wireless.
  • the communication of the controller 12 and / or the drying arrangement 7 with the controller 11 can take place via a suitable BUS system.
  • FIG. 3 shows an alternative embodiment of a furnace 1 b, which extends from the furnace 1 of Figures 1 and 2 differs with respect to the supply of pretreated air in its interior 1c.
  • the supply lines 8b are arranged alternately and / or spirally around a hot exhaust duct 15 of a burner, not shown.
  • the supply lines 8b act as a heat exchanger, so that the pretreated air is heated in the region of the exhaust duct 15 within the supply lines 8b before it is introduced into the interior 1 c.
  • the anyway Existing heat can be used to preheat the pretreated air without using more energy to the desired temperature.
  • the dew point sensors 9 serve to detect the current dew point of the furnace atmosphere contained in the interior 1a, 1c of the furnace 1, 1b.
  • the detected values are transmitted via the cable 10 to the measuring module 11 a of the controller 11.
  • the desired value stored in the control 11 in the default module 11b is compared with the actual values transmitted to the measuring module 11a and measured by the dew point sensors 9 as a controlled variable. If an adjustment is necessary, the controller 12 is controlled via the cable 13 and / or the drying assembly 7 as actuators via the cable 14 by the control module 11 c of the controller 11 to the volume flow of dried air into the interior 1a, 1c and / or to adjust the dry performance of the dryer assembly 7.
  • the drying assembly 7 is connected either to a compressed air network not shown here or with an air compressor also not shown.
  • the drying arrangement 7 is charged with ambient air at a pressure above atmospheric pressure, which is dried via the drying arrangement 7 and fed through the supply lines 8, 8a, 8b into the interior 1a, 1c of the furnace 1, 1b.
  • the pretreated compressed air thus supplied escapes via at least one of the openings of the furnace 1, more specifically the inlet 2 and / or the outlet 3.

Description

Die Erfindung betrifft ein Verfahren zur Erwärmung einer vorbeschichteten Platine aus Stahl für die Herstellung eines warmgeformten Bauteils gemäß den Merkmalen im Oberbegriff von Patentanspruch 1 sowie eine Vorrichtung zur Erwärmung einer vorbeschichteten Platine aus Stahl für die Herstellung eines warmgeformten Bauteils gemäß den Merkmalen im Oberbegriff von Patentanspruch 4.The invention relates to a method for heating a precoated steel plate for the production of a thermoformed component according to the features in the preamble of claim 1 and a device for heating a precoated steel plate for the production of a thermoformed component according to the features in the preamble of claim. 4 ,

Die Herstellung warmgeformter Bauteile basiert auf der plastischen Umformung zumeist flächiger Halbzeuge. Gegenüber der Kaltumformung bei Raumtemperatur trägt die vorherige Erwärmung insbesondere metallischer Halbzeuge dazu bei, dass diese keine unerwünschte Verfestigung mit verminderter Zähigkeit im Umformbereich erhalten. Darüber hinaus erleichtert die Erwärmung insgesamt die gezielte Formänderung des Halbzeugs, da durch die im erwärmten Zustand herabgesetzten Festigkeiten des verwendeten Werkstoffs etwaige Scher- oder Trennbrüche weitestgehend verhindert werden.The production of thermoformed components is based on the plastic deformation of mostly flat semi-finished products. Compared to the cold forming at room temperature, the previous heating, in particular of metallic semi-finished products, contributes to the fact that they do not receive any undesirable solidification with reduced toughness in the forming area. In addition, the heating overall facilitates the targeted change in shape of the semifinished product, since any shear or fracture fractures are largely prevented by the reduced in the heated state strengths of the material used.

Insbesondere in der Automobilindustrie bilden Platinen aus Stahl die Grundlage zur Fertigung von Karosserie- oder Strukturbauteilen. Neben dem erforderlichen Schutz vor Korrosion entsteht dabei aus ökologischer sowie ökonomischer Sicht ein zunehmender Bedarf an hochfesten Bauteilen, welche ein sehr günstiges Verhältnis von Festigkeit zu Gewicht aufweisen. Deren mechanische Widerstandsfähigkeit lässt sich in bekannter Weise erhöhen, indem das Material durch Erwärmen und anschließendes rasches Abkühlen gehärtet wird. Die hierfür ursächliche Positionsänderung der Kohlenstoffatome im Metallgitter beginnt mit Erreichen der Austenitisierungstemperatur, wobei die nachfolgende Abkühlung zu einem martensitischen Härtegefüge führt und damit die Festigkeit des umgeformten Bauteils deutlich erhöht. Die hierfür erforderliche Abkühlgeschwindigkeit ist abhängig von der jeweils verwendeten Legierung.Especially in the automotive industry, steel blanks form the basis for the manufacture of bodywork or structural components. In addition to the necessary protection against corrosion arises from an ecological and economic point of view, an increasing demand for high-strength components, which have a very favorable ratio of strength to weight. Their mechanical resistance leaves Increase in a known manner by the material is cured by heating and subsequent rapid cooling. The causative change in position of the carbon atoms in the metal lattice begins when the austenitizing temperature is reached, with the subsequent cooling resulting in a martensitic hardening structure and thus significantly increasing the strength of the formed component. The cooling rate required for this depends on the particular alloy used.

Im Zusammenhang mit der Verwendung dünnwandiger Platinen aus Stahl haben sich das wirtschaftliche Form- oder Presshärten als Verfahren zur Warmumformung von Blechen etabliert. Hierbei wird die erwärmte Platine in ein formgebendes Werkzeug eingelegt, in welchem sie umgeformt und durch Abkühlung gehärtet wird. Um ein Entkohlen und Oxidieren des Stahls während der Erwärmung zu verhindern, kann diese in einer kontrollierten Atmosphäre, beispielsweise unter Stickstoff, erfolgen. Demgegenüber kann die Erwärmung auch in Umgebungsluft stattfinden, sofern die Platine vor ihrer Erwärmung eine geeignete Beschichtung erhält.In connection with the use of steel thin-walled blanks, economic molding or press-hardening have become established as a method of hot-working sheet metal. Here, the heated board is placed in a molding tool, in which it is formed and cured by cooling. To prevent decarburization and oxidation of the steel during heating, it may be done in a controlled atmosphere, for example under nitrogen. In contrast, the heating can also take place in ambient air, provided that the board receives a suitable coating before being heated.

Durch die US 2007/163685 A1 ist ein Verfahren zur Erwärmung einer vorbeschichteten Platine aus Stahl für die Herstellung eines warmgeformten Bauteils bekannt, wobei die mit einer Beschichtung versehene Platine in einem Ofen erwärmt wird und die Atmosphäre innerhalb des Ofens durch die Zufuhr vorbehandelter Luft kontrolliert wird. Die Luft wird vorbehandelt, indem sie vor ihrer Zufuhr getrocknet wird, indem ihr Wasserstoffgehalt vorzugsweise auf unter 1 % gesenkt und der Taupunkt auf maximal 10 °C beschränkt wird.By the US 2007/163685 A1 For example, there is known a method of heating a precoated steel sheet for the manufacture of a thermoformed component wherein the coated sheet is heated in an oven and the atmosphere within the furnace is controlled by the supply of pretreated air. The air is pretreated by drying before being fed, preferably by reducing its hydrogen content below 1% and limiting the dew point to a maximum of 10 ° C.

Durch die DE 26 36 639 A1 zählt ein Wärmebehandlungsofen zum Stand der Technik. Dieser ist geeignet zur Erwärmung von vorbeschichteten Platinen aus Stahl zur Herstellung von warmgeformten Bauteilen. Der Ofen umfasst wenigstens eine Zuleitung, welche mit einem beheizbaren Innenraum des Ofens verbunden ist, wobei die Zuleitung zwischen einer Trockenanordnung, einem Verdichter und dem Innenraum des Ofens angeordnet ist. Dem Innenraum ist über die Trockenanordnung vorbehandelte Luft durch die Zuleitung hindurch zuführbar.By the DE 26 36 639 A1 a heat treatment furnace belongs to the state of the art. This is suitable for heating of pre-coated blanks made of steel for the production of thermoformed components. The furnace comprises at least one supply line, which is connected to a heatable interior of the furnace, wherein the supply line between a drying arrangement, a compressor and the interior of the furnace is arranged. The interior is pretreated via the drying arrangement air through the feed line fed.

Aus der EP 1 013 785 B1 geht ein Verfahren zur Erwärmung einer vorbeschichteten Platine aus Stahl hervor, wobei die Beschichtung aus Aluminium oder einer Aluminiumlegierung, beispielsweise aus Aluminium und Silizium, besteht. Die mit der Beschichtung versehene Platine wird zunächst in einem Ofen erwärmt, wodurch zumindest bereichsweise eine intermetallische Legierungsschicht auf der Platine ausgebildet wird. Die Legierungsschicht ist dabei zwischen der Oberfläche der Platine und der auf dieser angeordneten Beschichtung ausgebildet. Die Erwärmung erfolgt auf eine Temperatur zwischen 750 °C und 1.200 °C, wobei die Atmosphäre im Innenraum des Ofens aufgrund der durch die Beschichtung gebildeten Oxidationsbarriere keine Kontrolle erfordert. Durch anschließende Kühlung des warmgeformten Bauteils werden dessen mechanische Härteeigenschaften erhöht.From the EP 1 013 785 B1 is a method for heating a precoated board made of steel, wherein the coating of aluminum or an aluminum alloy, for example, of aluminum and silicon. The board provided with the coating is first heated in an oven, whereby at least partially an intermetallic alloy layer is formed on the board. The alloy layer is formed between the surface of the board and the coating arranged thereon. The heating takes place at a temperature between 750 ° C and 1200 ° C, wherein the atmosphere in the interior of the furnace due to the oxidation barrier formed by the coating requires no control. Subsequent cooling of the thermoformed component increases its mechanical hardness properties.

Die durch die Beschichtung und insbesondere durch die gebildete intermetallische Legierung vermiedene Korrosion und Entkohlung des Stahls verhindert die Bildung von Zunder, welcher zu einer schnellen Abnutzung der formgebenden Werkzeuge führt. Darüber hinaus bildet die intermetallische Legierung insbesondere bei hohen Temperaturen eine Schmierfunktion, welche die Umformung erleichtert.The corrosion and decarburization of the steel prevented by the coating and in particular by the intermetallic alloy formed prevents the formation of scale, which leads to rapid wear of the shaping tools. In addition, the intermetallic alloy forms a lubricating function, especially at high temperatures, which facilitates the forming.

Grundsätzlich ist die als passiver Korrosionsschutz wirkende Eigenschaft von Oxiden auf der Oberfläche von Metallen bekannt. Um deren positive Eigenschaft auch auf der Oberfläche der Beschichtung zu erhalten, ist der Zutritt von Luftsauerstoff während der Erwärmung gewünscht. Demgegenüber bildet der auf natürliche Weise in Umgebungsluft enthaltende Stickstoff zusammen mit der aus Aluminium oder aus einer Legierung aus Aluminium und Silizium gebildeten Beschichtung überaus harte Ablagerungen, welche auf dem Umformwerkzeug haften bleiben. Um die Qualität der zu fertigenden Bauteile in Bezug auf deren Oberfläche nicht zu verringern, sind entsprechende Werkzeugreinigungen erforderlich. Neben den sich daraus zwangsläufig ergebenden Stillstands- sowie Rüst- und Instandhaltungszeiten verlangen die harten Ablagerungen ein Abschleifen der formgebenden Werkzeugbereiche, was deren Abnutzung deutlich erhöht. Aufgrund der erwärmten Ofenatmosphäre ist der darin enthaltende Sauerstoffanteil zumindest bereichsweise herabgesetzt, wodurch auch die Ausbildung der gewünschten Oxidschicht auf der Beschichtung zumindest eingeschränkt ist. So kann sich die der Anhaftung der Beschichtung an dem Formwerkzeug entgegenwirkende Oxidschicht nicht vollends ausbilden, was zur zusätzlichen Entstehung der Ablagerungen beiträgt.Basically, the passive corrosion inhibiting property of oxides on the surface of metals is known. In order to obtain their positive property on the surface of the coating, the access of atmospheric oxygen during heating is desired. On the other hand, the nitrogen naturally contained in ambient air together with the coating formed of aluminum or of an alloy of aluminum and silicon forms extremely hard deposits which adhere to the forming tool. In order not to reduce the quality of the components to be manufactured with respect to their surface, appropriate tool cleaning is required. In addition to the resulting inevitable downtime, set-up and maintenance times, the hard deposits require a grinding of the forming tool areas, which significantly increases their wear. Due to the heated furnace atmosphere, the oxygen content contained therein is at least partially reduced, whereby the formation of the desired oxide layer on the coating is at least limited. So can the attachment of the Coating on the mold counteracting oxide layer does not form completely, which contributes to the additional formation of deposits.

Des Weiteren führt die nicht voll entwickelte und sich somit zum Teil ablösende Aluminiumoxidschicht zu einer erhöhten Staubbildung, welche insbesondere bei den geführten und/oder gelagerten Bestandteilen des Umformwerkzeugs zu einem erhöhten Verschleiß durch Abrasion führt. Folglich unterliegen beispielsweise die Führungen von Schiebern sowie Bremsen des Umformwerkzeugs ebenfalls einem erhöhten Verschleiß. Aufgrund der unkontrollierten Atmosphäre innerhalb des Ofens weist dieser einen entsprechenden Wasseranteil in Form von Wasserdampf auf, welcher aus dem Austausch mit der Umgebungsluft resultiert. Die Aufspaltung des Wassers durch die thermische Belastung innerhalb des Ofens führt zu einem erhöhten Anteil an Wasserstoff, welche in unerwünschter Weise eine etwaige Wasserstoffversprödung des Stahls begünstigt. Auch die aus wirtschaftlicher Sicht vorteilhaften kleinen Öffnungen des Ofens für dessen Beschickung sowie die Entnahme bewirken, dass nur ein geringer Anteil an Luftsauerstoff in den Ofen gelangt, wodurch ebenfalls die Ausbildung der vorteilhaften Oxidschicht auf der Beschichtung eingeschränkt ist.Furthermore, the incompletely developed and thus partially releasing aluminum oxide layer leads to increased dust formation, which leads to increased wear due to abrasion, in particular in the guided and / or stored components of the forming tool. Consequently, for example, the guides of slides and brakes of the forming tool also subject to increased wear. Due to the uncontrolled atmosphere within the furnace this has a corresponding proportion of water in the form of water vapor, which results from the exchange with the ambient air. The splitting of the water by the thermal load within the furnace leads to an increased proportion of hydrogen, which undesirably promotes any hydrogen embrittlement of the steel. The advantageous from an economic point of view small openings of the furnace for its loading and the removal cause that only a small proportion of atmospheric oxygen enters the furnace, which also the formation of the advantageous oxide layer is limited to the coating.

Im Ergebnis bietet somit die ansonsten vorteilhafte Erwärmung vorbeschichteter Platinen noch Raum für Verbesserungen.As a result, the otherwise advantageous heating of pre-coated boards still offers room for improvement.

Der Erfindung liegt, ausgehend vom Stand der Technik, die Aufgabe zugrund, ein Verfahren sowie eine Vorrichtung zur Erwärmung einer vorbeschichteten Stahlplatine unter Ausbildung einer Legierungsschicht für die Herstellung warmgeformter Karosserie- und Strukturbauteile dahingehend zu verbessern, dass der Verschleiß des Warmformwerkzeugs durch Ablagerungen sowie Abrasion reduziert wird und eine ausreichende Oxidierung der Beschichtung bei gleichzeitig verringerter Gefahr einer Wasserstoffversprödung wirtschaftlich ermöglicht wird.The invention is, starting from the prior art, the object of the invention to improve a method and apparatus for heating a precoated steel plate to form an alloy layer for the production of thermoformed bodywork and structural components to the effect that the wear of the thermoforming tool by deposits and abrasion reduced and sufficient oxidation of the coating is simultaneously made possible with reduced risk of hydrogen embrittlement economically.

Die Lösung des verfahrensmäßigen Teils der Aufgabe besteht nach der Erfindung in einem Verfahren zu Erwärmung einer vorbeschichteten Platine aus Stahl für die Herstellung eines warmgeformten Bauteils gemäß den Merkmalen von Patentanspruch 1.The solution of the procedural part of the object according to the invention in a method for heating a precoated steel plate for the production of a thermoformed component according to the features of claim 1.

Die Lösung des gegenständlichen Teils der Aufgabe besteht nach der Erfindung in einer Vorrichtung zur Erwärmung einer vorbeschichteten Platine aus Stahl für die Herstellung eines warmgeformten Bauteils gemäß den Merkmalen von Patentanspruch 4.The solution of the objective part of the object according to the invention in a device for heating a precoated steel plate for the production of a thermoformed component according to the features of claim 4.

Vorteilhafte Weiterbildungen sind Gegenstand der jeweils abhängigen Patentansprüche.Advantageous developments are the subject of the respective dependent claims.

Hiernach wird zunächst ein Verfahren zur Erwärmung einer vorbeschichteten Platine aus Stahl für die Herstellung eines warmgeformten Bauteils, insbesondere für die Herstellung eines warmgeformten Karosserie- oder Strukturbauteils, aufgezeigt, wobei die mit einer Beschichtung versehene Platine in einem Ofen auf eine Temperatur von 700°C bis 950°C erwärmt wird. Durch die Erwärmung wird zumindest bereichsweise eine intermetallische Legierungsschicht auf der Platine ausgebildet. Erfindungsgemäß wird die Atmosphäre innerhalb des Ofens durch die Zufuhr vorbehandelter Luft kontrolliert, wobei die Luft vorbehandelt wird, indem sie vor ihrer Zufuhr getrocknet wird, wobei die Luft nach ihrer Trocknung auf eine Temperatur von 100°C bis 500°C erwärmt wird und die getrocknete Luft dem Ofen unter Überdruck zugeführt wird, wobei der Druck der getrockneten Luft auf einen Wert zwischen dem atmosphärischen Druck und einschließlich 8 bar eingestellt wird sowie der Taupunkt der getrockneten Luft auf einen Wert von -40°C bis -10°C eingestellt wird.Hereafter, a method for heating a precoated steel plate for the production of a thermoformed component, in particular for the production of a thermoformed body or structural component, first shown, wherein the provided with a coating board in an oven to a temperature of 700 ° C to 950 ° C is heated. As a result of the heating, an intermetallic alloy layer is formed on the board at least in some areas. According to the invention, the atmosphere within the furnace is controlled by the supply of pretreated air, the air being pretreated by drying before being fed, the air being heated to a temperature of 100 ° C to 500 ° C after its drying, and dried Air is supplied to the furnace under pressure, wherein the pressure of the dried air is set to a value between the atmospheric pressure and including 8 bar and the dew point of the dried air to a value of -40 ° C to -10 ° C is set.

Der besondere Vorteil besteht in der Herabsetzung des Anteils von gelöstem Wasser in Form von Wasserdampf innerhalb der Ofenatmosphäre. Da somit weniger aufspaltbares Wasser in der Atmosphäre des Ofens vorliegt, wird folglich auch die Abspaltung von Wasserstoff reduziert. Durch die Herabsetzung des Anteils an Wasserstoff in der Ofenatmosphäre wird der etwaigen Wasserstoffversprödung der Stahlplatine durch in den Werkstoff eindringenden Wasserstoff reduziert. Gegenüber der Zufuhr von Stickstoff wird durch die Zufuhr von getrockneter Umgebungsluft der Anteil an Sauerstoff innerhalb der Ofenatmosphäre erhöht, wodurch die gewünschte Ausbildung der Oxidschicht auf der Beschichtung verbessert wird. Die somit gut ausgebildete Oxidschicht reduziert die Anhaftung der Beschichtung auf den formgebenden Bereichen des Umformwerkzeugs. Weiterhin wird durch die gut ausgebildete Oxidschicht deren Ablösung und die daraus resultierende Staubbildung verringert, so dass auch die damit einhergehende Abrasion bewegter sowie gelagerte Teile des Umformwerkzeugs reduziert wird.The particular advantage consists in the reduction of the proportion of dissolved water in the form of water vapor within the furnace atmosphere. Since less splittable water is thus present in the atmosphere of the furnace, consequently, the elimination of hydrogen is also reduced. By reducing the proportion of hydrogen in the furnace atmosphere of any hydrogen embrittlement of the steel plate is reduced by penetrating into the material hydrogen. Compared to the supply of nitrogen, the supply of dried ambient air increases the proportion of oxygen within the furnace atmosphere, thereby improving the desired formation of the oxide layer on the coating. The thus well-formed oxide layer reduces the adhesion of the coating on the forming areas of the forming tool. Furthermore, by the well formed oxide layer whose detachment and the resulting dust formation is reduced, so that the associated abrasion moving and stored parts of the forming tool is reduced.

Bei der Beschichtung handelt es sich vorzugsweise um eine Aluminiumbeschichtung, insbesondere eine Aluminium-Silizium-Beschichtung. Im Rahmen der Erfindung wird die vorbeschichtete Platine auf eine Temperatur von 700 °C bis 950 °C, insbesondere auf eine Austenitisierungstemperatur AC3, erwärmt und nach deren Umformung in dem Umformwerkzeug durch Abkühlung gehärtet. Auch wenn die Abkühlung außerhalb des Umformwerkzeugs erfolgen kann, wird die Abkühlung bevorzugt innerhalb des Umformwerkzeugs durchgeführt.The coating is preferably an aluminum coating, in particular an aluminum-silicon coating. In the context of the invention, the precoated board is heated to a temperature of 700 ° C to 950 ° C, in particular to a Austenitisierungstemperatur AC3, and cured after the forming in the forming tool by cooling. Even if the cooling can take place outside the forming tool, the cooling is preferably carried out within the forming tool.

Vorzugsweise besteht die Platine aus einer Stahllegierung mit einem Kohlenstoffanteil von 0,15 Gew.-% bis 2,0 Gew.-%. Insbesondere bietet sich für die Platine eine Stahllegierung an, welche folgende Anteile ihrer Legierungspartner in Gewichtsprozenten ausgedrückt aufweist: Kohlenstoff (C): 0,18 Gew.-% bis 0,30 Gew.-% Silizium (Si): 0,10 Gew.-% bis 0,70 Gew.-% Mangan (Mn): 1,00 Gew.-% bis 2,50 Gew.-% Chrom (Cr): 0,10 Gew.-% bis 0,80 Gew.-% Molybdän (Mo): 0,10 Gew.-% bis 0,50 Gew.-% Titan (Ti): 0,02 Gew.-% bis 0,05 Gew.-% Bor (B): 0,002 Gew.-% bis 0,005 Gew.-% Aluminium (Al): 0,01 Gew.-% bis 0,06 Gew.-% Schwefel (S): maximal 0,01 Gew.-% Phosphor (P): maximal 0,025 Gew.-% Rest: Eisen, einschl. erschmelzungsbedingter Verunreinigungen Preferably, the board is made of a steel alloy with a carbon content of 0.15 wt .-% to 2.0 wt .-%. In particular, a steel alloy, which has the following proportions of its alloying partners in terms of percent by weight, is suitable for the board: Carbon (C): 0.18 wt% to 0.30 wt% Silicon (Si): 0.10 wt% to 0.70 wt% Manganese (Mn): 1.00% by weight to 2.50% by weight Chrome (Cr): 0.10 wt% to 0.80 wt% Molybdenum (Mo): 0.10 wt% to 0.50 wt% Titanium (Ti): From 0.02% to 0.05% by weight Boron (B): 0.002 wt% to 0.005 wt% Aluminum (Al): 0.01% by weight to 0.06% by weight Sulfur (S): maximum 0.01% by weight Phosphorus (P): maximum 0.025% by weight Rest: Iron, incl. Impurities caused by melting

Alternativ hierzu sieht die Erfindung vor, dass die Platine beispielsweise folgende Anteile ihrer Legierungspartner aufweist: Kohlenstoff (C): 0,19 Gew.-% bis 0,25 Gew.-% Silizium (Si): 0,15 Gew.-% bis 0,50 Gew.-% Mangan (Mn): 1,10 Gew.-% bis 1,40 Gew.-% Phosphor (P): maximal 0,025 Gew.-% Schwefel (S): maximal 0,015 Gew.-% Chrom (Cr): maximal 0,35 Gew.-% Molybdän (Mo): maximal 0,35 Gew.-% Titan (Ti): 0,02 Gew.-% bis 0,05 Gew.-% Bor (B): 0,002 Gew.-% bis 0,005 Gew.-% Aluminium (Al): 0,02 Gew.-% bis 0,06 Gew.-% Rest: Eisen, einschl. erschmelzungsbedingter Verunreinigungen Alternatively, the invention provides that the board has, for example, the following proportions of its alloying partners: Carbon (C): 0.19% by weight to 0.25% by weight Silicon (Si): 0.15% by weight to 0.50% by weight Manganese (Mn): 1.10% by weight to 1.40% by weight Phosphorus (P): maximum 0.025% by weight Sulfur (S): maximum 0.015% by weight Chrome (Cr): maximum 0.35% by weight Molybdenum (Mo): maximum 0.35% by weight Titanium (Ti): From 0.02% to 0.05% by weight Boron (B): 0.002 wt% to 0.005 wt% Aluminum (Al): 0.02 wt.% To 0.06 wt.% Rest: Iron, incl. Impurities caused by melting

Die getrocknete Luft wird dem Ofen unter Überdruck zugeführt. Durch die Einstellung des gewünschten Überdrucks kann die gewünschte Menge an vorbehandelter Luft, insbesondere getrockneter Luft, welche dem Ofen zugeführt wird, kontrolliert werden. Der Druck der getrockneten Luft kann bei ihrer Zuführung in den Ofen auf einen Wert zwischen dem atmosphärischen Druck und einschließlich 8 bar eingestellt werden. Bevorzugt wird der Druck der getrockneten und dem Ofen zuzuführenden Luft auf einen Wert zwischen dem atmosphärischen Druck und einschließlich 6 bar eingestellt. Durch die Vorgabe des Luftdrucks, näherhin des Überdrucks, der zuzuführenden getrockneten Luft ist sichergestellt, dass eine bestimmte Menge gewünschter Elemente, insbesondere Sauerstoff (O2) während der Erwärmung der vorbeschichteten Platine vorhanden ist. Zudem kann insbesondere bei einem Überdruck von 6 bar der in bekannter Weise vorhandene Netzdruck vorhandener Druckluftleitungen ohne etwaige Druckluft-Höherverdichtung genutzt werden, um die gewünschte Zuführung in den Ofen zu realisieren. Hierdurch kann auf in aller Regel vorhandene Einrichtungen und Einstellgrößen zurückgegriffen werden. Der Vorteil liegt in einem möglichst geringem Aufwand und somit wirtschaftlicher Nutzung vorhandener Komponenten sowie Größen.The dried air is fed to the furnace under overpressure. By setting the desired overpressure, the desired amount of pretreated air, especially dried air, which is fed to the furnace can be controlled. The pressure of the dried air, when fed into the furnace, can be adjusted to a value between the atmospheric pressure and 8 bar inclusive. Preferably, the pressure of the dried air to be supplied to the furnace is adjusted to a value between the atmospheric pressure and 6 bar inclusive. By specifying the air pressure, more precisely the overpressure, of the dried air to be supplied, it is ensured that a specific amount of desired elements, in particular oxygen (O 2 ), is present during the heating of the precoated board. In addition, in particular at an overpressure of 6 bar of existing in a known manner network pressure existing compressed air lines can be used without any compressed air higher compression to the to realize desired feed into the oven. As a result, it is possible to resort to devices and setting variables that are generally available. The advantage lies in the least possible effort and thus economic use of existing components and sizes.

Ein weiterer Vorteil des Überdrucks wird in dem Verdrängen von Umgebungsluft sowie von etwaigen Abbrandprodukten aus der Ofenatmosphäre gesehen. So wird insbesondere bei hohen Umgebungstemperaturen die dabei mit einem erhöhten Anteil an Feuchtigkeit versehene Umgebungsluft in vorteilhafter Weise aus der Ofenatmosphäre heraus verdrängt. Durch das weitere Nachführen von in ihrem Feuchtegehalt kontrollierter Luft wird somit die gewünschte Ofenatmosphäre eingestellt.Another advantage of the overpressure is seen in the displacement of ambient air as well as any combustion products from the furnace atmosphere. Thus, especially at high ambient temperatures, the thereby provided with an increased amount of moisture ambient air displaced in an advantageous manner from the furnace atmosphere out. By further tracking of controlled in their moisture content air thus the desired furnace atmosphere is set.

Im Gegensatz zur Kontrolle der Atmosphäre mittels Zufuhr von Stickstoff (N2) kann etwaige vorhandene Infrastruktur zudem reduziert werden, was im Ergebnis zu geringen Betriebskosten führt. Hierbei würden beispielsweise eine etwaige vorhandene Stickstoff-Aufbereitung sowie eine entsprechende Filtration überflüssig.In addition to controlling the atmosphere by adding nitrogen (N 2 ), any existing infrastructure can also be reduced, resulting in low operating costs as a result. This would, for example, any existing nitrogen treatment and a corresponding filtration superfluous.

Durch die Trocknung der Luft wird deren Taupunkt auf einen Wert von - 40 °C bis-10 °C eingestellt werden. Grundsätzlich wird bei einem Wert für den Taupunkt der getrockneten Luft von mindestens - 10 °C eine gute Wirtschaftlichkeit erreicht. Durch die Spanne für den Wert des Taupunkts der getrockneten Luft zwischen - 40 °C und-10 °C wird grundsätzlich eine gute Qualität im Einklang mit gerechtfertigten Kosten für den damit einhergehenden Aufwand erreicht.By drying the air, its dew point is set to a value of -40 ° C to -10 ° C. Basically, a good economy is achieved at a value for the dew point of the dried air of at least - 10 ° C. The range for the value of the dew point of the dried air between -40 ° C and -10 ° C, in principle, a good quality in accordance with justified costs for the associated effort is achieved.

Der Taupunkt selbst gibt den Wert für die Temperatur wieder, ab welchem die als Wasserdampf in der Luft gelöste Feuchtigkeit als Kondensat ausfällt. Die Fähigkeit von Luft, Wasser in Form von Wasserdampf aufzunehmen, hängt insgesamt von deren Temperatur ab. So ist insbesondere in den Sommermonaten bei entsprechend hoher Lufttemperatur deren Aufnahmefähigkeit für Feuchtigkeit erhöht. Mit anderen Worten ist warme Luft in der Lage, mehr Feuchtigkeit aufzunehmen, wohingegen kalte Luft weniger Feuchtigkeit enthalten kann. So ist bei jeweils 100 % Sättigung der Luft mit Wasserdampf in warmer Luft mehr Wasser enthalten als in kalter Luft.The dew point itself gives the value for the temperature at which the moisture dissolved in the air as water vapor precipitates as condensate. The ability of air to absorb water in the form of water vapor depends on its overall temperature. Thus, in particular in the summer months with a correspondingly high air temperature, their absorption capacity for moisture is increased. In other words, warm air is able to absorb more moisture, whereas cold air may contain less moisture. Thus, with 100% saturation of the air with steam in warm air, more water is contained than in cold air.

Unabhängig von der Temperatur der Luft kann durch deren Trocknung folglich der jeweilige Taupunkt reduziert werden.Regardless of the temperature of the air can thus be reduced by the drying of the respective dew point.

Die dem Ofen zuzuführende Luft wird nach ihrer Trocknung erwärmt. Bei Bedarf und je nach Ausgestaltung kann die Luft auch bereits während ihrer Trocknung erwärmt werden. Grundsätzlich kann die Luft auch schon vor ihrer Trocknung erwärmt werden. Die Luft wird dabei auf eine Temperatur von 100 °C bis 500 °C erwärmt. Der Vorteil besteht in der Annährung der Temperatur der zuzuführenden Luft an die Temperatur innerhalb des Ofens. Hierdurch werden sich ansonsten zwangsläufig einstellende Temperaturschwankungen innerhalb der Ofenatmosphäre weitestgehend vermieden. Zudem kann der Ofen wirtschaftlicher betrieben werden, da die Ofenatmosphäre durch die Zufuhr erwärmter Luft nicht oder nur gering heruntergekühlt wird. Folglich ist die benötigte Erwärmungsleistung gegenüber der Zufuhr nicht erwärmter Luft geringer.The air to be supplied to the oven is heated after it has dried. If necessary and depending on the design, the air can also be heated during its drying. In principle, the air can also be heated before it is dried. The air is heated to a temperature of 100 ° C to 500 ° C. The advantage is in the approximation of the temperature of the supplied air to the temperature within the furnace. As a result, otherwise inevitably occurring temperature fluctuations within the furnace atmosphere are largely avoided. In addition, the furnace can be operated more economically, since the furnace atmosphere is not or only slightly cooled down by the supply of heated air. As a result, the required heating power is less than the supply of unheated air.

Insbesondere bei der Zufuhr nicht erwärmter Luft weist die Ofenatmosphäre im Bereich der Zuführung der Luft eine gegenüber der sie umgebenden Luft innerhalb des Ofens niedrigere Temperatur auf, wodurch sich die Erwärmung der Platine unvorteilhaft verzögern kann. In vorteilhafter Weise wird hierfür die Energie der Abluft, insbesondere das Abgas des Ofens genutzt, welche beispielsweise über einen geeigneten Wärmetauscher entzogen und der zuzuführenden Luft in Form von Wärme zugeführt wird. Die Ausgestaltung kann beispielsweise derart erfolgen, dass die Abluftleitung, insbesondere die Abluftleitung wenigstens eines Brenners des Ofens eine wärmeübertragende Kopplung mit der Zuleitung für die vorbehandelte Luft aufweist. Hierfür kann die Zuleitung der vorbehandelten Luft umfangsseitig mit der Abluftleitung in Kontakt stehen, beispielsweise in dem die Zuleitung um die Abluftleitung herum oder parallel zu dieser angeordnet ist. Hierdurch kann die Wärme der Abluft über die jeweiligen Wandungen der miteinander in Kontakt stehenden Leitungen zumindest bereichsweise auf die zuzuführende Luft übertragen werden.In particular, in the supply of unheated air, the furnace atmosphere in the region of the supply of air to the surrounding air within the furnace lower temperature, whereby the heating of the board can delay unfavorably. Advantageously, for this purpose, the energy of the exhaust air, in particular the exhaust gas of the furnace is used, which is withdrawn for example via a suitable heat exchanger and the supplied air is supplied in the form of heat. The configuration may, for example, be such that the exhaust air line, in particular the exhaust air line of at least one burner of the furnace has a heat-transmitting coupling with the supply line for the pretreated air. For this purpose, the supply line of the pretreated air can be peripherally in contact with the exhaust air line, for example, in which the supply line is arranged around the exhaust air duct around or parallel to this. As a result, the heat of the exhaust air can be transmitted via the respective walls of the lines in contact with each other at least partially to the air to be supplied.

Alternativ hierzu kann die Zuleitung für die vorbehandelte Luft beispielsweise auch zumindest abschnittsweise innerhalb einer Abluftleitung wenigstens eines Brenners des Ofens angeordnet sein. Durch die dabei umfangsseitig vollständig mit erhitzter Abluft umgebene Zuleitung kann eine möglichst große Wärmeübertragung zwischen der Abluft und der vorbehandelten Luft erreicht werden.Alternatively, the supply line for the pretreated air, for example, at least partially disposed within an exhaust duct of at least one burner of the furnace. By doing the whole circumference completely with heated Exhaust air surrounded feed line as large as possible heat transfer between the exhaust air and the pretreated air can be achieved.

Die Erfindung sieht vor, dass der während des Erwärmens der Platine in den Ofen eingeleitete und diesen passierende Volumenstrom der getrockneten, insbesondere getrockneten und erwärmten Luft auf das 2,5-fache des Ofenvolumens pro Stunde eingestellt wird. Die in den Ofen eingeleitete und diesen passierende Luft wird in Bezug auf den gewünschten Volumenstrom über den Druck eingestellt. Bei dem eingesetzten Ofen kann es sich beispielsweise um einen Kammerofen sowie einen Drehofen oder einen Rollenherdofen handeln. Für eine wirtschaftliche Fertigung wird bevorzugt ein Durchlaufofen eingesetzt. Hierdurch kann das Presswerkzeug kontinuierlich mit erwärmten Stahlplatinen bestückt werden.The invention provides that the introduced during the heating of the board in the oven and this passing volume flow of the dried, in particular dried and heated air is set to 2.5 times the furnace volume per hour. The air introduced into and passing through the oven is pressurized with respect to the desired volumetric flow rate. The furnace used can be, for example, a chamber furnace and a rotary kiln or a roller hearth furnace. For economical production, a continuous furnace is preferably used. As a result, the pressing tool can be continuously equipped with heated steel blanks.

Dabei durchläuft eine in den Durchlaufofen eingelegte Platine diesen mittels einer Transporteinheit, beispielsweise in Form von Transportrollen, wobei die Platine in der Ofenatmosphäre erwärmt und auf Temperatur gehalten wird.In this case, an inserted in the continuous furnace board passes through this by means of a transport unit, for example in the form of transport rollers, wherein the board is heated in the furnace atmosphere and maintained at temperature.

Der in den Ofen eingeleitete und diesen während des Erwärmens der Platine passierende Volumenstrom der getrockneten Luft wird insbesondere auf das 3-fache des Ofenvolumens pro Stunde eingestellt. Bevorzugt wird der den Ofen passierende Volumenstrom auf das 6-fache des Ofenvolumens pro Stunde eingestellt. Durch den kontinuierlich den Ofen mit getrockneter Luft passierenden Volumenstrom wird sichergestellt, dass nur die gewünschte Atmosphäre innerhalb des Ofens vorhanden ist, da insbesondere der vorhandene Überdruck und die damit einhergehende Strömung ein etwaiges Eindringen von Umgebungsluft wirksam verhindert.The volume flow of the dried air introduced into the oven and passing through it during the heating of the board is adjusted in particular to 3 times the furnace volume per hour. Preferably, the volume flow passing through the oven is adjusted to 6 times the oven volume per hour. By continuously passing the oven with dried air flow rate ensures that only the desired atmosphere is present within the furnace, as in particular the existing pressure and the associated flow effectively prevents any ingress of ambient air.

Die Erfindung sieht vor, dass die Atmosphäre innerhalb des Ofens auf folgende Werte ihrer Anteile eingestellt wird: Stickstoff (N2): kleiner oder gleich (≤) 85 Vol-%, bevorzugt 78 Vol-%; Sauerstoff (O2): von 10 Vol-% bis 21 Vol-%, bevorzugt von 15 Vol-% bis 21 Vol-%, insbesondere 21 Vol-%; The invention provides that the atmosphere within the furnace is set to the following values of its proportions: Nitrogen (N2): less than or equal to (≤) 85% by volume, preferably 78% by volume; Oxygen (O2): from 10% by volume to 21% by volume, preferably from 15% by volume to 21% by volume, especially 21% by volume;

Wasserdampf (H2O-Dampf): kleiner (<) 3 Vol-% und
ein Rest, bestehend aus Kohlenstoffmonoxid (CO), Kohlenstoffdioxid (CO2), Methan (CH4), Wasserstoff (H2) sowie vom Ausgangsmaterial und deren Beschichtung abhängige Verunreinigungen
Water vapor (H2O steam): less than (<) 3 vol.% And
a residue consisting of carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), hydrogen (H2) and impurities dependent on the starting material and its coating

Die Verteilung von Stickstoff mit 78 Vol.-% und Sauerstoff in Höhe von 21 Vol.-% entspricht dem Gehalt normaler Umgebungsluft. Der Anteil des Sauerstoffs in der getrockneten Luft kann beispielsweise durch die Zufuhr von reinem Sauerstoff erhöht werden. Da der Gehalt an Sauerstoff in der Ofenatmosphäre beispielsweise durch die Ausbildung der Oxidschicht sowie etwaiger Brennprozesse reduziert wird, führt bereits die Zufuhr getrockneter Luft zu einer Erhöhung des Sauerstoffgehalts. Durch die Zufuhr getrockneter Luft wird dabei auch der innerhalb der Ofenatmosphäre erhöhte Anteil an Stickstoff reduziert.The distribution of nitrogen at 78% by volume and oxygen at 21% by volume corresponds to the content of normal ambient air. The proportion of oxygen in the dried air can be increased, for example, by the supply of pure oxygen. Since the content of oxygen in the furnace atmosphere is reduced for example by the formation of the oxide layer and any combustion processes, even the supply of dried air leads to an increase in the oxygen content. The supply of dried air also reduces the proportion of nitrogen which is increased within the furnace atmosphere.

Die Erfindung zeigt ein Verfahren zur Erwärmung einer vorbeschichteten Stahlplatine unter Ausbildung einer Legierungsschicht für die Herstellung warmgeformter Karosserie- und Strukturbauteil auf, welche den Verschleiß des Warmformwerkzeugs durch Ablagerungen sowie Abrasion reduziert und eine ausreichende Oxidierung der Beschichtung bei gleichzeitig verringerter Gefahr einer Wasserstoffversprödung wirtschaftlich ermöglicht. Insbesondere die Verwendung zumeist vorhandener Druckluft stellt hierbei eine überaus kostengünstige Möglichkeit dar, die Ofenatmosphäre zu kontrollieren. So bewirkt die alleinige Trocknung der dem Ofen zuzuführenden Druckluft die geschilderten Vorteile, welche insbesondere zur Ausbildung einer ausreichenden Oxidschicht führen, welche wiederum etwaige Ablagerungen in den formgebenden Bereichen des Umformwerkzeugs verhindert oder zumindest deutlich reduziert. Darüber hinaus wird die Gefahr einer Wasserstoffversprödung deutlich reduziert, was auf den herabgesetzten Anteil an Wasser in Form von Wasserdampf innerhalb der zuzuführenden Luft zurückzuführen ist. Weiterhin reduziert die gut ausgebildete Oxidschicht auf der Beschichtung deren Ablösung, woraufhin die mögliche Staubentwicklung sowie die damit einhergehenden Verschleißerscheinungen des Umformwerkzeugs minimiert werden.The invention relates to a method for heating a precoated steel plate to form an alloy layer for the production of thermoformed body and structural component, which reduces the wear of the thermoforming tool by deposits and abrasion and economically sufficient oxidation of the coating with reduced risk of hydrogen embrittlement possible. In particular, the use of mostly existing compressed air in this case represents a very cost-effective way to control the furnace atmosphere. Thus, the sole drying of the compressed air to be supplied to the furnace brings about the described advantages, which in particular lead to the formation of a sufficient oxide layer, which in turn prevents or at least significantly reduces any deposits in the shaping areas of the forming tool. In addition, the risk of hydrogen embrittlement is significantly reduced, which is due to the reduced proportion of water in the form of water vapor within the supplied air. Furthermore, the well-formed oxide layer on the coating reduces their detachment, whereupon the possible formation of dust and the associated signs of wear of the forming tool are minimized.

Weiterhin wird im Rahmen der Erfindung eine Vorrichtung zur Erwärmung einer vorbeschichteten Platine aus Stahl für die Herstellung eines warmgeformten Bauteils aufgezeigt. Bei den zu fertigenden Bauteilen handelt es sich insbesondere um warmgeformte Karosserie- oder Strukturbauteile. Die Vorrichtung umfasst einen Ofen sowie wenigstens eine Zuleitung, welche mit einem beheizbaren Innenraum des Ofens verbunden ist. Erfindungsgemäß ist die Zuleitung zwischen einer Trockenanordnung und dem Innenraum des Ofens angeordnet. Hierdurch ist dem Innenraum des Ofens über die Trockenanordnung vorbehandelbarer Luft durch die Zuleitung hindurch zuführbar.Furthermore, in the context of the invention, a device for heating a precoated steel plate for the production of a thermoformed component is shown. The components to be manufactured are in particular thermoformed bodywork or structural components. The device comprises a furnace and at least one supply line, which is connected to a heatable interior of the furnace. According to the invention, the feed line is arranged between a drying arrangement and the interior of the furnace. As a result, air which can be pretreated via the drying arrangement can be supplied to the interior of the furnace through the supply line.

Der durch die Trocknung reduzierte Anteil an Wasser in Form von Wasserdampf innerhalb der Ofenatmosphäre setzt die Gefahr einer Wasserstoffversprödung der Stahlplatine herab. Darüber hinaus wird die Ofenatmosphäre in Bezug auf ihren Sauerstoffgehalt mit Sauerstoff aus der vorbehandelten Umgebungsluft angereichert, welcher ansonsten innerhalb der Ofenatmosphäre insbesondere durch die hohen Temperaturen herabgesetzt ist.The reduced by drying proportion of water in the form of water vapor within the furnace atmosphere reduces the risk of hydrogen embrittlement of the steel plate. In addition, the furnace atmosphere is enriched in terms of its oxygen content with oxygen from the pretreated ambient air, which is otherwise reduced within the furnace atmosphere, in particular by the high temperatures.

In vorteilhafter Weise ist die Trockenanordnung mit einem Luftverdichter verbunden. Hierdurch ist die durch den Luftverdichter komprimierte Luft in einer somit steuerbaren Menge durch die Trockenanordnung hindurch über die Zuleitung in den Innenraum des Ofens hineinleitbar. Mit anderen Worten dient der Luftverdichter dazu, ein bestimmbares Volumen an getrockneter Luft in Form eines Volumenstroms in den Innenraum des Ofens zu leiten. Hierdurch wird die benötigte Menge an Anteilen der getrockneten Luft, insbesondere an Sauerstoff, geregelt.Advantageously, the drying arrangement is connected to an air compressor. As a result, the air compressed by the air compressor in a thus controllable amount is hineinleitbar through the dry assembly through the supply line into the interior of the furnace. In other words, the air compressor is used to direct a determinable volume of dried air in the form of a volume flow in the interior of the furnace. As a result, the required amount of proportions of the dried air, in particular oxygen, regulated.

Die Trockenanordnung weist wenigstens zwei Trockenbehälter auf, durch welche die in den Ofen zu leitende Luft hindurchströmt. Durch den Einsatz von wenigstens zwei Trockenbehältern können diese wechselweise mit der benötigten Luft durchströmt werden. Die wechselbare Durchströmung der beiden Trockenbehälter bewirkt, dass der nicht durchströmte Trockenbehälter in Bezug auf die darin gesammelte Feuchtigkeit beispielsweise durch Erwärmen getrocknet werden kann. Durch die alternierende Beschickung der beiden Trockenbehälter mit zu trocknender Luft kann diese folglich kontinuierlich für die Zufuhr in den Ofen bereitgestellt werden.The drying arrangement has at least two drying containers, through which the air to be passed into the oven flows. Through the use of at least two dry containers they can be alternately flowed through with the required air. The exchangeable flow through the two drying containers causes the non-traversed drying container can be dried with respect to the moisture collected therein, for example by heating. As a result of the alternating feeding of the two drying containers with air to be dried, this can be continuously provided for feeding into the oven.

Die Erfindung sieht vor, dass die Zuleitung zumindest in einem mittleren Bereich des Innenraums des Ofens angeordnet ist. Insbesondere beim Einsatz eines Durchlaufofens umfasst dieser bauartbedingt zwei Öffnungen, wobei eine Öffnung der Beschickung des Durchlaufofens und die andere Öffnung der Entnahme des erwärmten Halbzeugs dienen. In Nähe der beiden Öffnungen ist ein Austausch von Umgebungsluft mit der Ofenatmosphäre möglich. Hierdurch ist der Anteil an Sauerstoff im Innenraum des Ofens im Bereich der Öffnungen gegenüber dem zwischen den Öffnungen gelegenen Ofenabschnitt erhöht. Durch die Anordnung der Zuleitung in einem mittleren Bereich des Innenraums kann folglich ein nahezu gleich bleibender Anteil an Sauerstoff im Innenraum des Ofens erreicht werden. Die sich daraus ergebenden positiven Effekte auf die Bildung der Oxidschicht auf der Beschichtung kommen somit über die gesamte Durchlauflänge des Ofens zum Tragen.The invention provides that the supply line is arranged at least in a central region of the interior of the furnace. In particular, when using a continuous furnace this design includes two openings, with an opening serve the feed of the continuous furnace and the other opening of the removal of the heated semi-finished product. In the vicinity of the two openings, an exchange of ambient air with the furnace atmosphere is possible. As a result, the proportion of oxygen in the interior of the furnace is increased in the region of the openings relative to the furnace section located between the openings. As a result of the arrangement of the supply line in a central region of the interior, a virtually constant proportion of oxygen in the interior of the furnace can be achieved. The resulting positive effects on the formation of the oxide layer on the coating thus come into play over the entire run length of the furnace.

Der Ofen weist wenigstens eine Abluftleitung auf, über welche etwaige Abgase mindestens eines Brenners ableitbar sind. Die Abluftleitung ist bevorzugt außerhalb des Innenraums des Ofens angeordnet. In vorteilhafter Weise steht die Abluftleitung zumindest bereichsweise mit der Zuleitung für die Luft in Verbindung. Die Abluftleitung ist zumindest bereichsweise mit der Zuleitung thermisch gekoppelt. Die thermische Kopplung kann beispielsweise über einen Wärmetauscher erfolgen. Auch kann die Zuleitung zumindest abschnittsweise in einer Abluftleitung integriert sein. Der Vorteil besteht in einer zumindest teilweisen Übertragung der Wärme der Abluft, wodurch die dem Innenraum des Ofens zuzuführende Luft erwärmt wird.The furnace has at least one exhaust duct, via which any exhaust gases of at least one burner can be diverted. The exhaust duct is preferably arranged outside the interior of the furnace. Advantageously, the exhaust air line is at least partially in communication with the supply line for the air. The exhaust duct is at least partially thermally coupled to the supply line. The thermal coupling can be done for example via a heat exchanger. Also, the supply line may be at least partially integrated in an exhaust duct. The advantage consists in an at least partial transfer of the heat of the exhaust air, whereby the air to be supplied to the interior of the furnace is heated.

Insbesondere durch die bauliche Trennung innerhalb des Wärmetauschers erfolgt kein Austausch der jeweiligen Fluide. Hierdurch wird ohne zusätzlichen Energieaufwand eine geeignete Temperierung, insbesondere eine Erwärmung der zuzuführenden Luft ermöglicht. Hierbei kann die zuzuführende Luft auf 100 °C erwärmt sein. Grundsätzlich kann die Erwärmung der Luft vor, während oder nach ihrer Trocknung erfolgen. Durch die Abluft wird die zuzuführende Luft auf eine Temperatur von 100 °C bis 950 °C, bevorzugt auf eine Temperatur von 100 °C bis 700 °C, insbesondere auf eine Temperatur von 100 °C bis 500 °C erwärmt. Je nach Auslegung des Wärmetauschers kann die zuzuführende Luft auch auf eine Temperatur von 100 °C bis 200 °C erwärmt sein.In particular, the structural separation within the heat exchanger no exchange of the respective fluids. As a result, a suitable temperature, in particular a heating of the supplied air is possible without additional energy. Here, the supplied air can be heated to 100 ° C. In principle, the heating of the air before, during or after their drying can take place. By the exhaust air to be supplied to a temperature of 100 ° C to 950 ° C, preferably heated to a temperature of 100 ° C to 700 ° C, in particular to a temperature of 100 ° C to 500 ° C. Depending on the design of the heat exchanger, the supplied air can also be heated to a temperature of 100 ° C to 200 ° C.

Bevorzugt handelt es sich bei dem Ofen um einen Durchlaufofen, bei dem wenigstens zwei zwischen der Trockenanordnung und dem Innenraum des Ofens angeordnete Zuleitungen vorgesehen sind. Der Abstand zwischen den wenigstens zwei Zuleitungen hängt grundsätzlich von der Länge des Durchlaufofens ab. In Bezug auf einen typischen Durchlaufofen wird im Rahmen der Erfindung ein Abstand der Zuleitungen von 2,0 m bis 3,0 m zueinander bevorzugt. Grundsätzlich können auch mehr Zuleitungen angeordnet sein, welche beispielsweise mit entsprechend kleinerem Querschnitt dichter beieinander angeordnet sind. Ziel ist es, eine möglichst gleichmäßige Zufuhr an getrockneter Luft in den Innenraum des Ofens zu erhalten. Hierbei steht eine möglichst gleich bleibende Zusammensetzung der Luft, näherhin der Ofenatmosphäre, im Vordergrund.Preferably, the furnace is a continuous furnace in which at least two are located between the drying assembly and the interior of the furnace arranged supply lines are provided. The distance between the at least two supply lines basically depends on the length of the continuous furnace. With regard to a typical continuous furnace, a distance of the feed lines of 2.0 m to 3.0 m from each other is preferred in the context of the invention. In principle, more supply lines can be arranged, which are arranged closer together, for example, with a correspondingly smaller cross-section. The aim is to obtain the most uniform possible supply of dried air in the interior of the furnace. Here is a constant possible composition of the air, more closely the furnace atmosphere, in the foreground.

Um eine möglichst gleich bleibende und von der jeweiligen Temperatur der zu trocknenden Luft unabhängige Zusammensetzung der Ofenatmosphäre zu erhalten, sieht die Erfindung vor, dass der Ofen mindestens einen Taupunktsensor aufweist. Der Taupunktsensor kann beispielsweise innerhalb einer Zuleitung angeordnet sein. In vorteilhafter Weise ist der wenigstens eine Taupunktsensor im Innenraum des Ofens angeordnet, um die reale Zusammensetzung der Ofenatmosphäre in Bezug auf deren Taupunkt zu erfassen. Hierfür ist der Taupunktsensor mit der Trockenanordnung gekoppelt. Die Kopplung dient der Steuerung, insbesondere dem Informationsaustausch zwischen Taupunktsensor und Trockenanordnung. Mit anderen Worten dient die erfasste Messgröße durch den Taupunktsensor dazu, die trocknende Wirkung der Trockenanordnung in Bezug auf die sie durchströmende Luft zu regeln. Hierfür kann der Taupunktsensor in bestimmten Abständen gemessene Werte an die Trockenanordnung übermitteln, deren trocknende Wirkung beispielsweise durch eine geeignete Steuerung eingestellt wird.In order to obtain a composition of the furnace atmosphere which is as constant as possible and independent of the respective temperature of the air to be dried, the invention provides that the furnace has at least one dew point sensor. The dew point sensor can be arranged, for example, within a supply line. Advantageously, the at least one dew point sensor is arranged in the interior of the furnace to detect the real composition of the furnace atmosphere with respect to its dew point. For this purpose, the dew point sensor is coupled to the drying arrangement. The coupling serves to control, in particular the exchange of information between dew point sensor and dry arrangement. In other words, the detected measured quantity by the dew point sensor serves to regulate the drying effect of the drying arrangement with respect to the air flowing through it. For this purpose, the dew point sensor can transmit measured values to the drying arrangement at certain intervals, the drying effect of which is set by means of suitable control, for example.

Selbstverständlich kann die Messung des Taupunktsensors auch kontinuierlich erfolgen, so dass die Trockenanordnung ebenfalls eine kontinuierliche Justierung ihres Wirkungsgrades erfährt. Bei dem Taupunktsensor kann es sich beispielsweise um einen Feuchtefühler oder Feuchtesensor handeln. Der Solltaupunkt der Ofenatmosphäre wird somit durch die Kombination aus Taupunktsensor und Trockenanordnung eingeregelt.Of course, the measurement of the dew point sensor can also be carried out continuously, so that the dry arrangement also undergoes a continuous adjustment of its efficiency. The dew point sensor may be, for example, a humidity sensor or a humidity sensor. The nominal dew point of the furnace atmosphere is thus regulated by the combination of dew point sensor and dry arrangement.

Bei der Trockenanordnung kann es sich beispielsweise um einen Kältetrockner oder einen IR-Trockner handeln. Bevorzugt handelt es sich bei der Trockenanordnung um einen Adsorptionstrockner. Dieser kann beispielsweise ein Trockenmittel aus aktiviertem Aluminiumoxid aufweisen, welches ein kontinuierlich hohes Adsorptionsvermögen sowie eine gute Regenerationsfähigkeit besitzt.The dry arrangement may be, for example, a refrigeration dryer or an IR dryer. The drying arrangement is preferably in order an adsorption dryer. This may for example comprise a desiccant of activated alumina, which has a continuously high adsorption capacity and a good regeneration capacity.

Auch wenn die Trockenanordnung zeitgesteuert ausgeführt sein kann, ist diese in vorteilhafter Weise kapazitätsgesteuert, um die erforderliche Einregelung des Soll-Taupunkts zu ermöglichen. Die Regelung des Trockengrades kann dabei über alle Phasen des Trockenzykluses erfolgen, wie beispielsweise der Adsorption, der Druckentlastung sowie der Regeneration des Trockenmittels und des Druckaufbaus.Although the drying arrangement can be time-controlled, it is advantageously capacity-controlled in order to enable the required regulation of the desired dew point. The control of the degree of dryness can take place over all phases of the drying cycle, such as the adsorption, the pressure relief and the regeneration of the desiccant and the pressure build-up.

In vorteilhafter Weise besitzt der Ofen wenigstens zwei Temperaturzonen. Dabei können die Temperaturzonen in Durchlaufrichtung des Ofens und/oder quer zur Durchlaufrichtung des Ofens angeordnet sein. Dabei können auch in Laufrichtung angeordnete Temperaturzonen durch quer zur Durchlaufrichtung angeordnete Temperaturzonen ergänzt sein. Die voneinander unterschiedlichen Temperaturzonen dienen dazu, bei Bedarf ein partielles Warmformen der Stahlplatine zu ermöglichen. Hierbei werden gezielt einzelne Bereiche der Platine auf die erforderliche Temperatur gebracht, um in der anschließenden Warmformung, insbesondere durch Presshärten, die erforderlichen Eigenschaften des Materials einzustellen.Advantageously, the furnace has at least two temperature zones. In this case, the temperature zones can be arranged in the direction of passage of the furnace and / or transversely to the direction of passage of the furnace. In this case, temperature zones arranged in the direction of travel can also be supplemented by temperature zones arranged transversely to the passage direction. The mutually different temperature zones serve to enable a partial thermoforming of the steel plate, if necessary. Here, targeted individual areas of the board are brought to the required temperature in order to adjust the required properties of the material in the subsequent thermoforming, in particular by press hardening.

Die einzelnen Temperatuzonen können beispielsweise durch lokal von einander unabhängige sowie unterschiedliche Temperierungen eingestellt werden. Weiterhin können die einzelnen Temperaturzonen in vorteilhafter Weise zumindest bereichsweise durch die Zuleitung der vorbehandelten Luft eingestellt sowie geregelt werden. Selbstverständlich ist auch eine Kombination aus Temperierung und Luftzuleitung möglich. Insbesondere die Zufuhr der vorbehandelten Luft ermöglicht eine innerhalb kürzester Zeit durchführbare Anpassung lokaler Temperaturzustände, da deren Temperatur zumeist unterhalb der Temperatur der Ofenatmosphäre liegt. Je nach Ausgestaltung kann so die Regelung einzelner Temperaturzonen durch die individuelle und beispielsweise verstärkte lokale Zufuhr vorbehandelter Luft erfolgen.The individual temperature zones can be set, for example, by locally independent and different temperature settings. Furthermore, the individual temperature zones can be set and regulated in an advantageous manner, at least in regions, by the supply line of the pretreated air. Of course, a combination of temperature control and air supply is possible. In particular, the supply of the pretreated air allows a feasible within a very short time adaptation of local temperature conditions, since the temperature is usually below the temperature of the furnace atmosphere. Depending on the configuration, the regulation of individual temperature zones can thus be effected by the individual and, for example, increased local supply of pretreated air.

Dem gegenüber kann bei Bedarf die Zuleitung der vorbehandelten Luft derart gestaltet sein, dass diese einen möglichst langen Weg, beispielsweise durch eine alternierende Verlegung, im Bereich der Abluft, insbesondere der Abluftleitung des Brenners aufweist. Hierdruch erfolgt eine Wärmeübertragung aus der Abluft, näherhin dem Abgas, auf die Zuleitung und damit auf die darin geführte Luft, woraufhin sich diese erwärmt. Hierdurch kann ein unerwünschter Wärmeverlust der Ofenatmosphäre insbesondere eine unerwünschte Abkühlung im Bereich der Zuleitungen zum Innenraum des Ofens zumindest teilweise kompensiert werden. Mit anderen Worten erfolgt hierdurch die gewünschte Erwärmung der vorbehandelten Luft, bevor diese in den Inneraum des Ofens geleitet wird.On the other hand, if necessary, the feed line of the pretreated air can be designed such that it has as long a path as possible, for example by an alternating installation, in the area of the exhaust air, in particular the exhaust air line of the Brenners has. Hierdruch takes place a heat transfer from the exhaust air, more precisely the exhaust gas, to the supply line and thus to the air guided therein, whereupon it heats up. In this way, an undesired heat loss of the furnace atmosphere, in particular an undesirable cooling in the supply lines to the interior of the furnace can be at least partially compensated. In other words, this results in the desired heating of the pretreated air before it is passed into the interior of the furnace.

Bei Bedarf können durch die Anordnung der Zuleitungen entsprechend auch atmosphärische Zonen im Innenraum des Ofens gebildet sein.If necessary, by the arrangement of the leads according to atmospheric zones may be formed in the interior of the furnace.

Es ist vorgesehen, dass wenigstens eine der Temperaturzonen in Bezug auf ihre Temperatur über die Zuleitung der Luft einstellbar ist. Hierbei ist die Temperaturzone im Bereich der Zuleitung angeordnet, so dass die Temperaturzone zumindest bereichsweise durch die Zufuhr der Luft einstellbar ist. In Abhängigkeit des Volumens der Temperaturzone ist deren jeweilige Temperatur sowohl über die Menge als auch über die Temperatur der zuzuführenden Luft einstellbar.It is envisaged that at least one of the temperature zones is adjustable with respect to their temperature via the supply line of the air. In this case, the temperature zone is arranged in the region of the feed line, so that the temperature zone can be set at least in regions by the supply of the air. Depending on the volume of the temperature zone whose respective temperature is adjustable both on the amount and on the temperature of the air to be supplied.

Die Erfindung zeigt somit eine Vorrichtung zur Erwärmung einer vorbeschichteten Stahlplatine unter Ausbildung einer Legierungsschicht für die Herstellung warmgeformter Karosserie- und Strukturbauteile auf, welche den Verschleiß des Warmformwerkzeugs durch etwaige Ablagerungen sowie Abrasion deutlich reduziert. Insbesondere die kontrollierte Zuführung von Luftsauerstoff ermöglicht eine ausreichende Oxidierung der Beschichtung, welche die anhaftende Wirkung von Ablagerungen auf den formgebenden Bereichen des Umformwerkzeugs verringert. Zudem wird die Gefahr einer Wasserstoffversprödung durch den herabgesetzten Anteil an Wasser in Form von Wasserdampf in der Ofenatmosphäre reduziert.The invention thus provides a device for heating a precoated steel plate to form an alloy layer for the production of thermoformed body and structural components, which significantly reduces the wear of the thermoforming tool by any deposits and abrasion. In particular, the controlled supply of atmospheric oxygen allows sufficient oxidation of the coating, which reduces the adhesive effect of deposits on the forming areas of the forming tool. In addition, the risk of hydrogen embrittlement is reduced by the reduced proportion of water in the form of water vapor in the furnace atmosphere.

Somit können bereits vorhandene Öfen sowie übliche Druckluftnetzwerke genutzt werden, wobei lediglich eine Ergänzung durch eine Trockenanordnung und etwaige Zuleitungen zum Innenraum des Ofens nötig sind. Insbesondere die Herabsetzung etwaiger Ablagerungen auf dem Warmformwerkzeug sowie die aus der Staubbildung resultierende Abrasion verringern den Instandhaltungsaufwand insgesamt. Darüber hinaus wird auch der Ausschuss an Keramikrollen als Bestandteil der Transporteinrichtung in Durchlauföfen reduziert, da die Neigung zur Ablagerung durch die gut ausgebildete Oxidschicht auf der Beschichtung reduziert ist.Thus, existing ovens and conventional compressed air networks can be used, with only a supplement by a dry arrangement and any supply lines to the interior of the furnace are necessary. In particular, the reduction of any deposits on the thermoforming tool as well as the resulting dust from the dusting reduce the overall maintenance effort. In addition, the committee will also be involved in ceramic rolls as part of Transport device in continuous furnaces reduced, since the tendency for deposition is reduced by the well-formed oxide layer on the coating.

Die Erfindung wird nachfolgend anhand einiger in den Zeichnungen schematisch dargestellter Ausführungsbeispiele näher erläutert. Es zeigen:

Figur 1
einen erfindungsgemäßen Durchlaufofen in Kombination mit einem Umformwerkzeug in einer Seitenansicht;
Figur 2
den erfindungsgemäßen Ofen aus Figur 1 mit der Zufuhr von getrockneter Luft dienenden Komponenten in gleicher Darstellungsweise sowie
Figur 3
eine Variante des erfindungsgemäßen Ofens der Figuren 1 und 2 mit geänderter Zufuhr der vorbehandelten Luft in gleicher Darstellungsweise.
The invention will be explained in more detail with reference to some schematically illustrated in the drawings embodiments. Show it:
FIG. 1
a continuous furnace according to the invention in combination with a forming tool in a side view;
FIG. 2
the furnace according to the invention FIG. 1 with the supply of dried air serving components in the same representation as well as
FIG. 3
a variant of the furnace of the invention Figures 1 and 2 with modified supply of pretreated air in the same way.

Figur 1 zeigt schematisch einen sich in Längsrichtung erstreckenden Ofen 1 in Form eines Durchlaufofens. Der Ofen 1 weist endseitig jeweils eine Öffnung auf, wobei die mit Bezug auf die Darstellung von Figur 1 rechts gelegene Öffnung einen Eingang 2 und die dem Eingang 2 gegenüberliegende Öffnung einen Ausgang 3 des Ofens 1 bilden. Im Bereich des Ausgangs 3 des Ofens 1 ist ein Umformwerkzeug 4 angeordnet. Das Umformwerkzeug 4 umfasst ein Obergesenk 4a sowie ein Untergesenk 4b, zwischen denen eine vorbeschichtete Platine 5 umformbar ist. FIG. 1 schematically shows a longitudinally extending furnace 1 in the form of a continuous furnace. The furnace 1 has at its end in each case an opening, wherein with reference to the illustration of FIG. 1 right opening an entrance 2 and the input 2 opposite opening form an outlet 3 of the furnace 1. In the area of the outlet 3 of the furnace 1, a forming tool 4 is arranged. The forming tool 4 comprises an upper die 4a and a lower die 4b, between which a precoated board 5 is deformable.

Hierfür weist das Umformwerkzeug 4 einen zwischen dem Obergesenk 4a und dem Untergesenk 4b befindlichen Umformbereich 4c auf, innerhalb dem die umzuformende Platine 5 einlegbar ist.For this purpose, the forming tool 4 is located between the upper die 4a and the lower die 4b forming area 4c, within which the reshaping board 5 can be inserted.

Zwischen dem Ofen 1 und dem Umformwerkzeug 4 ist ein Manipulator 6 in Form eines Roboterarms angeordnet. Der Ofen 1 dient der Erwärmung der vorbeschichteten Platine 5 aus Stahl, wobei diese zunächst über den Eingang 2 in den Ofen 1 eingeführt wird und diesen in Richtung des Ausgangs 3 durchläuft. Auf ihrem Weg durch den Ofen 1 hindurch, näherhin durch dessen Ofenatmosphäre hindurch, wird die beschichtete Platine 5 in nicht näher dargestellter Art und Weise auf eine Austenitisierungstemperatur von 700 °C bis 950 °C erwärmt. Durch die Erwärmung der Platine 5 bildet sich zwischen der Beschichtung der Platine und der Oberfläche der Platine eine intermetallische Legierungsschicht aus. Durch den in der Ofenatmosphäre vorhandenen Sauerstoff erfolgt die Oxidation der Beschichtung, welche somit auf ihrer Oberfläche eine Oxidschicht ausbildet. Bei der Beschichtung handelt es sich bevorzugt um Aluminium, insbesondere um eine Aluminium-Silizium-Legierung.Between the furnace 1 and the forming tool 4, a manipulator 6 is arranged in the form of a robot arm. The furnace 1 is used to heat the precoated board 5 made of steel, which is first introduced via the input 2 in the furnace 1 and this passes in the direction of the output 3. On its way through the furnace 1, more precisely through its furnace atmosphere, the coated board 5 is heated in a manner not shown to an austenitizing temperature of 700 ° C to 950 ° C. By the Heating of the board 5 forms an intermetallic alloy layer between the coating of the board and the surface of the board. Due to the oxygen present in the furnace atmosphere, the oxidation of the coating takes place, which thus forms an oxide layer on its surface. The coating is preferably aluminum, in particular an aluminum-silicon alloy.

Spätestens bei Entnahme der Platine 5 durch den Ausgang 3 aus dem Ofen 1 ist diese auf Austenitisierungstemperatur erhitzt. Die Platine 5 wird in nicht näher dargestellter Art und Weise durch den Manipulator 6 erfasst und in den Umformbereich 4c des Umformwerkzeugs 4 eingelegt. Anschließend erfolgt in ebenfalls nicht dargestellter Art und Weise die Umformung der Platine 5, wobei das Obergesenk 4a dem Untergesenk 4b mittels Pressenkraft angenähert wird. Anschließend wird die noch in dem Umformbereich 4c des Umformwerkzeugs 4 befindliche Platine 5 abgekühlt, um diese zu härten.At the latest when removing the board 5 through the outlet 3 from the furnace 1, this is heated to Austenitisierungstemperatur. The board 5 is detected in a manner not shown by the manipulator 6 and inserted into the forming area 4 c of the forming tool 4. Subsequently, in a likewise not shown manner, the deformation of the board 5, wherein the upper die 4 a is approximated to the lower die 4 b by means of pressing force. Subsequently, the board 5 still located in the forming area 4c of the forming tool 4 is cooled to harden it.

Um die umgeformte Platine 5 innerhalb des Umformwerkzeugs 4 mit einer von der jeweiligen Legierung abhängigen Geschwindigkeit abzukühlen, weisen das Obergesenk 4a und/oder das Untergesenk 4b nicht näher dargestellte Abkühlmittel auf. So können beispielsweise integrierte Kühlleitungen vorgesehen sein, welche mit einem kühlenden Fluid durchströmbar sind, um die im Obergesenk 4a und/oder dem Untergesenk 4b vorhandene Wärme aufzunehmen und abzutransportieren.In order to cool the formed blank 5 within the forming tool 4 at a speed dependent on the respective alloy, the upper die 4a and / or the lower die 4b have cooling means (not shown). Thus, for example, integrated cooling lines can be provided which can be flowed through by a cooling fluid in order to absorb and remove the heat present in the upper die 4a and / or the lower die 4b.

In der Praxis erfolgt eine kontinuierliche Beschickung des Ofens 1 mit vorbeschichteten Platinen 5 über den Eingang 2. Somit stehen kontinuierlich auf Austenitisierungstemperatur erhitzte Platinen 5 am Ausgang 3 des Ofens 1 zur Verfügung, welche über den Manipulator 6 in das Umformwerkzeug 4 eingelegt und darin umgeformt sowie pressgehärtet werden.In practice, a continuous feeding of the furnace 1 with precoated boards 5 via the input 2. Thus, continuously heated austenitizing at boards 5 at the output 3 of the furnace 1 are available, which is inserted via the manipulator 6 in the forming tool 4 and formed therein be press-hardened.

Figur 2 zeigt den Ofen 1 der Figur 1 mit weiteren Details. Außerhalb des Ofens 1 ist eine Trockenanordnung 7 mit wenigstens einem nicht näher dargestellten Trockenbehälter angeordnet. Die Trockenanordnung 7 ist über eine zentrale Zuleitung 8 mit weiteren in einem Abstand A zueinander angeordneten Zuleitungen 8a mit einem Innenraum 1a des Ofens 1 verbunden. Weiterhin weist der Ofen 1 mehrere Taupunktsensoren 9 auf, welche über Kabel 10 mit einer Regelung 11 verbunden sind. Die Regelung 11 setzt sich aus einem Messmodul 11a sowie einem Vorgabemodul 11 b und einem Steuermodul 11 c zusammen. Grundsätzlich kann die Verbindung zwischen Taupunktsensor 9 und Regelung 11 auch drahtlos erfolgen. FIG. 2 shows the oven 1 the FIG. 1 with more details. Outside the furnace 1, a drying arrangement 7 is arranged with at least one drying container, not shown. The drying arrangement 7 is connected to an interior 1a of the furnace 1 via a central supply line 8 with further supply lines 8a arranged at a distance A from one another. Furthermore, the furnace 1 several dew point sensors 9, which are connected via cable 10 with a controller 11. The controller 11 is composed of a measuring module 11a and a default module 11b and a control module 11c. In principle, the connection between dew point sensor 9 and control 11 can also be wireless.

Der Abstand A ist abhängig von den verwendeten und nicht näher dargestellten Brennern, insbesondere deren Leistung und der damit korrespondierenden Brennerrohrstärke. Vorliegend beträgt der Abstand A bevorzugt von 0,5 m bis 2,5 m. Der Abstand A kann sich beispielsweise aus dem dreifachen der jeweiligen verwendeten Brennerrohrstärke ergeben. So könnte sich beispielsweise bei der Verwendung von 50 kW-Brennern mit einer jeweiligen Brennerrohrstärke von 50 cm ein Abstand A von 1,5 m ergeben.The distance A is dependent on the burners used and not shown in detail, in particular their performance and the corresponding burner tube thickness. In the present case, the distance A is preferably from 0.5 m to 2.5 m. The distance A may result, for example, from three times the particular burner tube thickness used. For example, with the use of 50 kW burners with a respective burner tube thickness of 50 cm, a distance A of 1.5 m could result.

Zwischen der Zuleitung 8 und der Trockenanordnung 7 ist ein Regler 12 angeordnet, über welchen die dem Innenraum 1a des Ofens 1 zuzuführende Menge an über die Trockenanordnung 7 getrocknete Luft regelbar ist. Das Steuermodul 11 c der Regelung 11 ist ebenfalls über ein Kabel 13 mit dem Regler 12 verbunden. Zudem ist auch die Trockenanordnung 7 über ein Kabel 14 mit dem Steuermodul 11 c der Regelung 11 verbunden. Grundsätzlich kann auch die Verbindung des Reglers 12 und/oder der Trockenanordnung 7 mit der Regelung 11 drahtlos erfolgen. Selbstverständlich kann die Komunikation des Reglers 12 und/oder der Trockenanordnung 7 mit der Regelung 11 über ein geeignetes BUS-System erfolgen.Between the supply line 8 and the drying assembly 7, a controller 12 is arranged, via which the the interior 1a of the furnace 1 to be supplied amount of dried over the drying assembly 7 air is adjustable. The control module 11 c of the controller 11 is also connected via a cable 13 to the controller 12. In addition, the drying assembly 7 is connected via a cable 14 to the control module 11 c of the controller 11. In principle, the connection of the controller 12 and / or the drying arrangement 7 with the controller 11 can also be wireless. Of course, the communication of the controller 12 and / or the drying arrangement 7 with the controller 11 can take place via a suitable BUS system.

Figur 3 zeigt eine alternative Ausgestaltung eines Ofens 1 b, welcher sich von dem Ofen 1 der Figuren 1 und 2 in Bezug auf die Zuführung der vorbehandelten Luft in seinem Innenraum 1c unterscheidet. Die über den Regler 12 mit der Trockenanordnung 7 verbundene zentrale Zuleitung 8 weist hierbei ebenfalls im Abstand A zueinander angeordnete Zuleitungen 8b auf, welche mit dem Innenraum 1c des Ofens 1b verbunden sind. Um die vorbehandelte Luft vor ihrer Einleitung in den Innenraum 1c des Ofens 1b zu erwärmen, sind die Zuleitungen 8b alternierend und/oder spiralförmig um eine heiße Abluftleitung 15 eines nicht näher dargestellten Brenners angeordnet. Die Zuleitungen 8b wirken dabei als Wärmetauscher, so dass die vorbehandelte Luft im Bereich der Abluftleitung 15 innerhalb der Zuleitungen 8b erwärmt wird, bevor sie in den Innenraum 1 c eingeleitet wird. Somit kann die ohnehin vorhandene Wärme genutzt werden, um die vorbehandelte Luft ohne Einsatz weiterer Energie auf die gewünschte Temperatur vorzuwärmen. FIG. 3 shows an alternative embodiment of a furnace 1 b, which extends from the furnace 1 of Figures 1 and 2 differs with respect to the supply of pretreated air in its interior 1c. The central supply line 8, which is connected to the drying arrangement 7 via the controller 12, likewise has supply lines 8b arranged at a distance A from one another, which are connected to the interior 1c of the oven 1b. In order to heat the pretreated air prior to its introduction into the interior 1c of the furnace 1b, the supply lines 8b are arranged alternately and / or spirally around a hot exhaust duct 15 of a burner, not shown. The supply lines 8b act as a heat exchanger, so that the pretreated air is heated in the region of the exhaust duct 15 within the supply lines 8b before it is introduced into the interior 1 c. Thus, the anyway Existing heat can be used to preheat the pretreated air without using more energy to the desired temperature.

In der Praxis dienen die Taupunktsensoren 9 dazu, den aktuellen Taupunkt der im Innenraum 1a, 1c des Ofens 1, 1b enthaltenen Ofenatmosphäre zu erfassen. Die erfassten Werte werden über das Kabel 10 an das Messmodul 11 a der Regelung 11 übermittelt. Der in der Regelung 11 im Vorgabemodul 11 b hinterlegte Soll-Wert wird mit dem an das Messmodul 11a übermittelten und von den Taupunktsensoren 9 als Regelgröße gemessenen Ist-Werten verglichen. Sofern eine Anpassung notwendig ist, wird der Regler 12 über das Kabel 13 und/oder die Trockenanordnung 7 als Stellglieder über das Kabel 14 durch das Steuermodul 11 c der Regelung 11 angesteuert, um den Volumenstrom an getrockneter Luft in den Innenraum 1a, 1c und/oder die Trockenleistung der Trockenanordnung 7 anzupassen.In practice, the dew point sensors 9 serve to detect the current dew point of the furnace atmosphere contained in the interior 1a, 1c of the furnace 1, 1b. The detected values are transmitted via the cable 10 to the measuring module 11 a of the controller 11. The desired value stored in the control 11 in the default module 11b is compared with the actual values transmitted to the measuring module 11a and measured by the dew point sensors 9 as a controlled variable. If an adjustment is necessary, the controller 12 is controlled via the cable 13 and / or the drying assembly 7 as actuators via the cable 14 by the control module 11 c of the controller 11 to the volume flow of dried air into the interior 1a, 1c and / or to adjust the dry performance of the dryer assembly 7.

Um die benötigte Menge an getrockneter Luft in dem Innenraum 1a, 1c zu bringen, ist die Trockenanordnung 7 entweder mit einem hier nicht näher dargestellten Druckluftnetzwerk oder mit einem ebenfalls nicht näher dargestellten Luftverdichter verbunden. Hierdurch wird die Trockenanordnung 7 mit einem über dem atmosphärischen Druck liegenden Druck mit Umgebungsluft beschickt, welche über die Trockenanordnung 7 getrocknet und durch die Zuleitungen 8, 8a, 8b hindurch in den Innenraum 1a, 1c des Ofens 1, 1b zugeführt wird. Die somit zugeführte, vorbehandelte Druckluft entweicht über wenigstens eine der Öffnungen des Ofens 1, näherhin den Eingang 2 und/oder den Ausgang 3.In order to bring the required amount of dried air in the interior 1a, 1c, the drying assembly 7 is connected either to a compressed air network not shown here or with an air compressor also not shown. As a result, the drying arrangement 7 is charged with ambient air at a pressure above atmospheric pressure, which is dried via the drying arrangement 7 and fed through the supply lines 8, 8a, 8b into the interior 1a, 1c of the furnace 1, 1b. The pretreated compressed air thus supplied escapes via at least one of the openings of the furnace 1, more specifically the inlet 2 and / or the outlet 3.

Bezugszeichen:Reference numerals:

1 -1 -
Ofenoven
1a -1a -
Innenraum v. 1Interior v. 1
1 b -1 b -
Ofenoven
1c -1c -
Innenraum v. 1bInterior v. 1b
2 -2 -
Eingangentrance
3 -3 -
Ausgangoutput
4 -4 -
Umformwerkzeugforming tool
4a -4a -
Obergesenkupper die
4b -4b -
Untergesenklower die
4c -4c -
Umformbereichforming region
5 -5 -
beschichtete Platinecoated board
6 -6 -
Manipulatormanipulator
7 -7 -
Trockenanordnungdry arrangement
8 -8th -
Zuleitungsupply
8a -8a -
Zuleitungsupply
8b -8b -
Zuleitungsupply
9 -9 -
TaupunktsensorDew Point
10-10-
Kabelelectric wire
11 -11 -
Regelungregulation
11a -11a -
Messmodulmeasurement module
11b -11b -
Vorgabemoduldefault module
11c -11c -
Steuermodulcontrol module
12-12-
Reglerregulator
13-13-
Kabelelectric wire
14-14-
Kabelelectric wire
15-15
Abluftleitungexhaust duct
A -A -
Abstand zwischen 8a, 8bDistance between 8a, 8b

Claims (7)

  1. Method for heating a pre-coated plate (5) made from steel for the production of a hot-formed component, in particular for the production of a hot-formed body or structural component, wherein the plate (5) provided with a coating is heated in a furnace (1, 1b) to a temperature from 700°C to 950°C, whereby an intermetallic alloy layer is formed at least in regions on the plate (5) and the atmosphere within the furnace (1, 1b) is controlled by the supply of pre-treated air, wherein the air is pre-treated in that it is dried before its supply, wherein the air is heated after its drying to a temperature from 100°C to 500°C and the dried air is supplied to the furnace (1, 1b) under excess pressure, wherein the pressure of the dried air is set to a value between the atmospheric pressure and 8 bar inclusive, and the dew point of the dried air is set to a value from -40°C to -10°C.
  2. Method according to claim 1, characterised in that the volumetric flow rate of the dried air passing through the furnace (1, 1b) during the heating of the plate (5) is set to 2.5 times the furnace volume per hour, in particular to 3 times the furnace volume per hour, preferably to 6 times the furnace volume per hour.
  3. Method according to claim 1 or 2, characterised in that the atmosphere within the furnace is set to the following values of its components:
    nitrogen (N2): less than or equal to (≤) 85 vol%, preferably 78 vol%;
    oxygen (O2): from 10 vol% to 21 vol%, preferably from 15 vol% to 21 vol%, in particular 21 vol%;
    water vapour (H2O vapour): less than (<) 3 vol% and
    a remainder, consisting of carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), hydrogen (H2) as well as impurities depending on the starting material and the coating thereof.
  4. Device for heating a pre-coated plate (5) made from steel for the production of a hot-formed component, in particular for the production of a hot-formed body or structural component, comprising a furnace (1, 1b) as well as at least one supply line (8, 8a, 8b) which is connected to a heatable interior (1a, 1c) of the furnace (1, 1b) and the supply line (8, 8a, 8b) is arranged between a drying assembly (7) and the interior (1a, 1c) of the furnace (1, 1b), such that air which is able to be pre-treated via the drying assembly (7) is able to be supplied to the interior (1a,1c) through the supply line (8, 8a, 8b), wherein the drying assembly (7) is connected to an air compressor and the air compressed by the air compressor is able to be conducted through the drying assembly (7) via the supply line (8, 8a, 8b) into the interior (1a, 1c) of the furnace (1, 1b) and the drying assembly (7) comprises at least two drying containers, wherein the drying containers are able to be flowed through alternately with the pre-treated air and at least one burner of the furnace (1, 1b) has an exhaust air line (15), wherein the exhaust air line (15) is thermally coupled at least in regions to the supply line (8, 8a, 8b) and the furnace (1, 1b) has at least one dew point sensor (9), wherein the dew point sensor (9) is coupled at least indirectly to the drying assembly (7).
  5. Device according to claim 4, characterised in that the furnace (1, 1b) is a continuous furnace and at least two supply lines (8, 8a, 8b) arranged between the drying assembly (7) and the interior (1a, 1c) of the furnace (1, 1b) are provided, wherein the supply lines (8, 8a, 8b) have a distance from 2.0 to 3.0m from one another.
  6. Device according to claim 4 or 5, characterised in that the furnace (1, 1b) has at least two temperature zones, wherein the temperature zones are arranged in the through-put direction and/or transversely to the through-put direction of the furnace (1, 1b).
  7. Device according to claim 6, characterised in that at least one temperature zone is able to be set in its temperature at least in regions by the supply of the air via the supply line (8, 8a, 8b).
EP12181212.7A 2011-09-15 2012-08-21 Method and device for heating a pre-coated steel circuit board Not-in-force EP2570503B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011053634A DE102011053634B3 (en) 2011-09-15 2011-09-15 Method and device for heating a precoated steel plate

Publications (3)

Publication Number Publication Date
EP2570503A2 EP2570503A2 (en) 2013-03-20
EP2570503A3 EP2570503A3 (en) 2014-12-10
EP2570503B1 true EP2570503B1 (en) 2017-06-21

Family

ID=46940246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12181212.7A Not-in-force EP2570503B1 (en) 2011-09-15 2012-08-21 Method and device for heating a pre-coated steel circuit board

Country Status (3)

Country Link
US (1) US9194034B2 (en)
EP (1) EP2570503B1 (en)
DE (1) DE102011053634B3 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796570A1 (en) * 2013-04-25 2014-10-29 Linde Aktiengesellschaft Method for controlling a dew point temperature of a heat treatment furnace
DE102015016656A1 (en) 2015-12-19 2017-06-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) A method of making a coated hot worked cured body and a body made by the method
DE102016102504A1 (en) 2016-02-08 2017-08-10 Salzgitter Flachstahl Gmbh Aluminum-based coating for steel sheets or steel strips and method of making same
JP6072952B1 (en) 2016-03-01 2017-02-01 日新製鋼株式会社 Method for producing black-plated steel sheet, apparatus for producing black-plated steel sheet, and system for producing black-plated steel sheet
WO2018115914A1 (en) * 2016-12-19 2018-06-28 Arcelormittal A manufacturing process of hot press formed aluminized steel parts
WO2020070545A1 (en) * 2018-10-04 2020-04-09 Arcelormittal A press hardening method
CN109207680A (en) * 2018-11-14 2019-01-15 上海置信电气非晶有限公司 A kind of amorphous alloy core method for annealing, production method and annealing system
US11149327B2 (en) 2019-05-24 2021-10-19 voestalpine Automotive Components Cartersville Inc. Method and device for heating a steel blank for hardening purposes
US11047804B2 (en) * 2019-11-08 2021-06-29 voestalpine Automotive Components Cartersville Inc. Detection of contamination on steel parts using ultraviolet light
KR102312423B1 (en) * 2019-11-28 2021-10-12 현대제철 주식회사 Apparatus for controlling dew point in furnace of hot stamping and method thereof
CN112877590A (en) 2019-11-29 2021-06-01 宝山钢铁股份有限公司 Coated hot-formed part with excellent performance and manufacturing method thereof
WO2022218831A1 (en) * 2021-04-16 2022-10-20 Aerospace Transmission Technologies GmbH Method for the heat treatment of metal workpieces

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768916A (en) 1951-11-13 1956-10-30 Drever Co Continuous bluing system for ferrous strip
GB777881A (en) 1954-10-18 1957-06-26 Harold Norregaard Ipsen A furnace for heat treating metal parts
GB1225690A (en) 1967-10-18 1971-03-17
DE2636639C2 (en) 1976-08-13 1983-12-01 Associated Electrical Industries Ltd., London Furnace for the heat treatment of metal strips
JPS5855026A (en) 1981-09-29 1983-04-01 Nisshin Steel Co Ltd Method and device for preventing dew condensation of steel plate, hoop steel or the like
DE4437494A1 (en) 1994-10-20 1996-04-25 Graeff Roderich Wilhelm Method and device for drying moist gas
DE19816311B4 (en) 1997-04-14 2005-08-25 CiS Institut für Mikrosensorik gGmbH Arrangement for monitoring the separation of water and monitoring the dew point temperature in refrigeration compressed air dryers
DE19808011C1 (en) 1998-02-26 2000-02-03 Tepcon Eng Gmbh Drying of compressed air by condensation
FR2782326B1 (en) 1998-08-13 2000-09-15 Air Liquide METHOD FOR GALVANIZING A METAL STRIP
FR2787735B1 (en) * 1998-12-24 2001-02-02 Lorraine Laminage PROCESS FOR PRODUCING A WORKPIECE FROM A STRIP OF ROLLED STEEL SHEET AND ESPECIALLY HOT ROLLED
WO2001077528A1 (en) 2000-04-11 2001-10-18 Cash Engineering Research Pty Ltd. Integrated compressor drier apparatus
JP2006051543A (en) 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
EP2266722B1 (en) 2004-09-15 2012-03-14 Nippon Steel Corporation Method of production of a high strength part
DE102007038215A1 (en) * 2007-08-13 2009-02-19 Nano-X Gmbh Process for producing an active corrosion protection coating on steel components
DE202011110724U1 (en) 2011-03-25 2016-01-22 Schwartz Gmbh Roller hearth furnace for heating workpieces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2570503A2 (en) 2013-03-20
US9194034B2 (en) 2015-11-24
EP2570503A3 (en) 2014-12-10
DE102011053634B3 (en) 2013-03-21
US20130068350A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
EP2570503B1 (en) Method and device for heating a pre-coated steel circuit board
EP2730665B1 (en) Thermoforming line and method for producing a thermoformed and press-hardened motor vehicle component
EP2655672B1 (en) Method for producing hardened components with regions of different hardness and/or ductility
EP2993241B1 (en) Method and press for manufacturing cured sheet metal components, in sections at least
EP2497840B1 (en) Oven system and process for partially heating steel blanks
EP2324938B1 (en) Method and thermal recasting assembly for producing a hardened, thermally recast workpiece
EP3303642B1 (en) Method for contactlessly cooling steel sheets and device therefor
EP2896466A1 (en) Method and device for producing a metal component
EP2125263A1 (en) Method and apparatus for the temperature-controlled shaping of hot-rolled steel material
EP1939308A1 (en) Method for manufacturing a component through hot press hardening and highly rigid component with improved breaking strain
WO2015110456A1 (en) Heat treatment device
EP2446977B1 (en) Method for producing a tubular profile
WO2019011650A1 (en) Method and device for the heat treatment of a metal component
WO2017129600A1 (en) Method for heat treatment of a metal component
EP3530760A1 (en) Method for producing a thermoformed and hardened steel sheet component
DE102010027179B3 (en) Production of automotive components e.g. structural/body parts of a car, comprises heating metal part in fluidized bed and subjecting metal part to forming, hardening or aging process, and forming metal part in warm state
EP2818571B1 (en) Diffusion of aluminium-silicon into a steel sheet web
DE102007030388A1 (en) Method for the production of a hardened sheet metal component comprises deforming a flexible rolled metal strip with different thickness regions in a deforming tool and pressure hardening
DE102011007590B4 (en) Method and device for sliding bending
CN112301279A (en) Production method of hot-rolled round steel for annealing-free low-hardness spring
DE102016109095B4 (en) Apparatus and method for partial hardening of sheet steel components
EP3201369B1 (en) Method for the manufacture of steel strip material having different mechanical properties across the width of the strip
DE102005033042B3 (en) Preheating of e.g. sheet for hot-pressing in automobile industry, employs heat released by cooling- and deformation processes, to preheat workpieces before forming
DE102020111615A1 (en) Process for retrofitting a heat treatment system
DE102016118253A1 (en) Process for heat treatment of a metallic component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/14 20060101ALI20141031BHEP

Ipc: C22C 38/22 20060101ALI20141031BHEP

Ipc: C21D 9/46 20060101ALI20141031BHEP

Ipc: C21D 9/48 20060101ALI20141031BHEP

Ipc: C22C 38/28 20060101ALI20141031BHEP

Ipc: C22C 38/02 20060101ALI20141031BHEP

Ipc: C21D 1/76 20060101AFI20141031BHEP

Ipc: C22C 38/32 20060101ALI20141031BHEP

Ipc: C22C 38/04 20060101ALI20141031BHEP

Ipc: C22C 38/38 20060101ALI20141031BHEP

Ipc: C23C 8/10 20060101ALI20141031BHEP

Ipc: C22C 38/06 20060101ALI20141031BHEP

17P Request for examination filed

Effective date: 20150608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012010577

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0001760000

Ipc: C23C0002280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/06 20060101ALI20170213BHEP

Ipc: C22C 38/38 20060101ALI20170213BHEP

Ipc: C23C 2/28 20060101AFI20170213BHEP

Ipc: C23C 8/10 20060101ALI20170213BHEP

Ipc: C23C 2/26 20060101ALI20170213BHEP

Ipc: C21D 9/46 20060101ALI20170213BHEP

Ipc: C22C 38/28 20060101ALI20170213BHEP

Ipc: C22C 38/14 20060101ALI20170213BHEP

Ipc: C22C 38/32 20060101ALI20170213BHEP

Ipc: C22C 38/22 20060101ALI20170213BHEP

Ipc: C21D 1/76 20060101ALI20170213BHEP

Ipc: C22C 38/04 20060101ALI20170213BHEP

Ipc: C22C 38/02 20060101ALI20170213BHEP

INTG Intention to grant announced

Effective date: 20170314

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BENTELER AUTOMOBILTECHNIK GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 903007

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012010577

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012010577

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170921

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

26N No opposition filed

Effective date: 20180322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170821

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 903007

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210827

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012010577

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301