EP2570196A2 - Utilisation de complexes de polyélectrolytes pour la fabrication de films polymères ayant des propriétés de barrière à l'oxygène - Google Patents

Utilisation de complexes de polyélectrolytes pour la fabrication de films polymères ayant des propriétés de barrière à l'oxygène Download PDF

Info

Publication number
EP2570196A2
EP2570196A2 EP20120195417 EP12195417A EP2570196A2 EP 2570196 A2 EP2570196 A2 EP 2570196A2 EP 20120195417 EP20120195417 EP 20120195417 EP 12195417 A EP12195417 A EP 12195417A EP 2570196 A2 EP2570196 A2 EP 2570196A2
Authority
EP
European Patent Office
Prior art keywords
cationic
polymer
polyelectrolyte
polymers
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20120195417
Other languages
German (de)
English (en)
Other versions
EP2570196B1 (fr
EP2570196A3 (fr
Inventor
Carmen-Elena Cimpeanu
Thomas Breiner
Dieter Urban
Karl-Heinz Schumacher
Volker Schädler
Heiko Diehl
Hermann Seyffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP2570196A2 publication Critical patent/EP2570196A2/fr
Publication of EP2570196A3 publication Critical patent/EP2570196A3/fr
Application granted granted Critical
Publication of EP2570196B1 publication Critical patent/EP2570196B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31928Ester, halide or nitrile of addition polymer

Definitions

  • the invention relates to the use of polyelectrolyte complexes to impart an oxygen barrier to polymeric film packaging materials.
  • Polymer building components of the polyelectrolyte complex are applied in polymerized form to the polymer film.
  • the polymer film is coated with a composition containing a polyelectrolyte complex prepared from anionic polymer and cationic surfactant, or the polymer film is coated with at least three alternating layers, one each of two adjacent layers containing an anionic polyelectrolyte constituent component and the other of two adjacent layers containing a cationic polyelectrolyte constituent component and form polyelectrolyte complexes at the mutual, adjacent interfaces of the alternating layers.
  • packaging materials used have oxygen barrier properties, i. that they have the lowest possible transmission or the lowest possible permeability for oxygen.
  • Polymeric films used as packaging materials for example, polyolefins such as polyethylene or oriented polypropylene or polyesters such as e.g. From polyethylene terephthalate usually in pure, uncoated form show a relatively high permeability to oxygen, various measures have been proposed to increase the oxygen barrier properties of the packaging materials.
  • the WO 03/068869 describes a method for producing packaging materials having oxygen barrier properties, wherein a carrier material is coated with a polymerizable compound and the compound is subsequently polymerized on the carrier material.
  • the EP 2 014 730 describes a coating composition for forming a gas barrier film based on a polycarboxylic acid polymer which is crosslinked by means of a zinc compound.
  • the WO 07/002322 describes coated polymer films with oxygen barrier properties.
  • the coating composition is a solution of a maleic acid / acrylic acid copolymer and a vinyl alcohol / vinylamine copolymer. After coating, the two copolymers of the coating composition crosslink on the polymer film.
  • the WO 98/31719 describes coating compositions for barrier coatings.
  • the compositions contain an ethylenically unsaturated acid monomer and a polyamine containing a built-in crosslinker. After coating, crosslinking takes place by triggering a free-radically induced polymerization.
  • the packaging should be as good as possible temperature-resistant, flexible and block-resistant and possible no harmful substances such. Contain metals.
  • the invention relates to the use of at least one polyelectrolyte complex to impart oxygen barrier to packaging materials of polymer films, wherein polymer structural components of the polyelectrolyte complex are applied in polymerized form to the polymer film and wherein at least one polymer film on at least one side with a previously anionic polymer and cationic Surfactant prepared polyelectrolyte complex-containing composition is coated; or wherein a polymer film is coated on at least one side with at least three alternating layers, wherein each one of two adjacent layers contains at least one anionic polyelectrolyte constituent component and the other of two adjacent layers at least one cationic Polyelektrolyt awardedkomponente contains and at the mutual, adjacent interfaces of at least three alternating layers form polyelectrolyte complexes.
  • the invention also provides a coated polymer film obtainable by use according to the invention, wherein at least one side of the polymer film is coated with at least three alternating layers, one of two adjacent layers containing at least one anionic polyelectrolyte constituent component and the other of two adjacent layers containing at least one cationic one Polyelektrolyt awardedkomponente contains and form polyelectrolyte complexes at the mutual, adjacent interfaces of the at least three alternating layers.
  • the coating prepared according to the invention with the polyelectrolyte complex has oxygen barrier properties.
  • the barrier properties can be measured with the permeability test described in the examples.
  • oxygen barrier property means reduced transmission or permeability to oxygen compared to uncoated substrate.
  • the Oxygen permeability for polymer films coated according to the invention less than 30%, in particular less than 20% or less than 10%, for example between 1% and 3% of the value of the uncoated polymer film (measured at 23 ° C. and 0% relative atmospheric humidity).
  • the oxygen barrier layer containing the polyelectrolyte complex is provided with moisture protection in order to prevent or at least greatly reduce impairment of the barrier effect by high atmospheric humidity.
  • the moisture protection can be done by an additional coating with a material which has a barrier effect against water vapor or humidity. Alternatively or cumulatively, a coextrusion with such a material can also take place.
  • suitable are, for example, polyolefins, in particular polyethylene.
  • the moisture barrier is formed by coating with a polyolefin or by coextrusion of a polyolefin with at least one selected from polyelectrolyte complexes, anionic polyelectrolyte constituent components, and anionic polyelectrolyte constituent components.
  • Polyelectrolytes are ionic polymers.
  • Polyelectrolyte complexes within the meaning of the invention are the reaction products of oppositely charged ionic polyelectrolyte constituent components, wherein at least one of the constituent components is a cationic or an anionic polymer.
  • Polyelectrolyte complexes useful in the invention are e.g. formed from an anionic polymer and from a cationic polymer or from an anionic polymer and from a non-polymeric, cationic surfactant, or from a cationic polymer and from a non-polymeric, anionic surfactant.
  • polyelectrolyte complexes of cationic polymer and anionic polymer or of an anionic polymer and non-polymeric, cationic surfactant Preference is given to polyelectrolyte complexes of cationic polymer and anionic polymer or of an anionic polymer and non-polymeric, cationic surfactant.
  • the polyelectrolyte complexes have a defined stoichiometric composition, i. the equivalent ratio of anionic and cationic groups in these complexes is at or near 1.
  • the polyelectrolyte complexes can also be predominantly anionic or predominantly cationically charged.
  • a cationic or an anionic polymer may additionally be present in excess, i. be present in free, uncomplexed form.
  • Anionic polymers are polymers with anionic groups, in particular organic polymers with carboxylate, phosphate or sulfate groups. It is also possible to use the corresponding acids, provided that they are either neutralized by bases present in the reaction medium or converted into anionic groups by basic groups of the cationic polymer. Suitable anionic polymers are, for example, those formed by free-radical polymerization of ethylenically unsaturated, free-radically polymerizable anionic polymers. Of these, Also included are copolymers of at least one anionic monomer and one or more different nonionic copolymerizable monomers.
  • anionic monomers are, for example, monoethylenically unsaturated C 3 - to C 10 - or C 3 - to C 5 -carboxylic acids such as acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, maleic acid, fumaric acid, vinylsulfonic acid, styrenesulfonic acid, acrylamidomethylpropanesulfonic acid, vinylphosphonic acid, itaconic acid and the alkali metal , Alkaline earth metal or ammonium salts of these acids into consideration.
  • Preferred anionic monomers include acrylic acid, methacrylic acid, maleic acid and 2-acrylamido-2-methylpropanesulfonic acid.
  • aqueous dispersions of polymers based on acrylic acid are particularly preferred.
  • the anionic monomers can be polymerized either alone to form homopolymers or else mixed with one another to give copolymers. Examples include the homopolymers of acrylic acid, homopolymers of methacrylic acid or copolymers of acrylic acid and maleic acid, copolymers of acrylic acid and methacrylic acid and copolymers of methacrylic acid and maleic acid.
  • the polymerization of the anionic monomers can also be carried out in the presence of at least one other ethylenically unsaturated monomer.
  • These monomers may be nonionic or may carry a cationic charge.
  • nonionic comonomers are acrylamide, methacrylamide, NC 1 - to C 3 alkylacrylamides, N-vinylformamide, acrylic acid esters of monohydric alcohols having 1 to 20 carbon atoms, in particular methyl acrylate, ethyl acrylate, isobutyl acrylate and n-butyl acrylate, methacrylic acid esters of monohydric alcohols with 1 to 20 carbon atoms such as methyl methacrylate and ethyl methacrylate, and vinyl acetate and vinyl propionate.
  • Suitable cationic monomers copolymerizable with the anionic monomers are dialkylaminoethyl acrylates, dialkylaminoethyl methacrylates, dialkylaminopropyl acrylates, dialkylaminopropyl methacrylates, dialkylaminoethylacrylamides, dialkylaminoethylmethacrylamides, dialkylaminopropylacrylamides, dialkylaminopropylmethacrylamides, diallyldimethylammonium chloride, vinylimidazole, and the basic monomers neutralized and / or quaternized with acids.
  • cationic monomers are dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylaminopropyl methacrylate, diethylaminopropyl acrylate and diethylaminopropyl methacrylate, dimethylaminoethylacrylamide, dimethylaminoethylmethacrylamide, dimethylaminopropylacrylamide, dimethylaminopropylmethacrylamide, diethylaminoethylacrylamide and diethylaminopropylacrylamide.
  • the basic monomers may be completely or even partially neutralized or quaternized, for example, in each case from 1 to 99%.
  • Preferably used quaternizing agent for the basic monomers is dimethyl sulfate. You can do the quaternization However, the monomers also with diethyl sulfate or with alkyl halides such as methyl chloride, ethyl chloride or benzyl chloride perform.
  • the cationic monomers are used at most in an amount such that the resulting polyelectrolyte complexes in total carry an anionic charge at pH values ⁇ 6.0 and a temperature of 20 ° C.
  • the anionic excess charge in the resulting amphoteric polymers is, for example, at least 5 mol%, preferably at least 10 mol%.
  • the comonomers are used in the preparation of the anionic polyelectrolyte complexes, for example in amounts such that the resulting polymer dispersions when diluted with water and at pH values above 7.0 and a temperature of 20 ° C are water-soluble and have an anionic charge.
  • the amount of nonionic and / or cationic comonomers is e.g. 0 to 99, preferably 5 to 75 wt .-% and is usually in the range of 5 to 25 wt .-%.
  • copolymers examples include copolymers of from 25 to 90% by weight of acrylic acid and from 75 to 10% by weight of acrylamide.
  • at least one ethylenically unsaturated C 3 to C 5 carboxylic acid is polymerized in the absence of other monoethylenically unsaturated monomers.
  • Particularly preferred are homopolymers of acrylic acid obtainable by radical polymerization of acrylic acid in the absence of other monomers.
  • the anionic polymer contains 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • acrylic acid is copolymerized with AMPS.
  • the amount of AMPS can be, for example, from 0.1 to 15 mol% or from 0.5 to 10 mol%, based on the amount of all monomers.
  • the polymerization can additionally be carried out in the presence of at least one crosslinker. Copolymers having a higher molecular weight are then obtained than when the anionic monomers are polymerized in the absence of a crosslinking agent. Incorporation of a crosslinker in the polymers also results in reduced solubility of the polymers in water. Depending on the amount of copolymerized crosslinker, the polymers become water-insoluble but are swellable in water.
  • Crosslinkers which can be used are all compounds which have at least two ethylenically unsaturated double bonds in the molecule.
  • crosslinkers are triallylamine, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, methylenebisacrylamide, N, N'-divinylethyleneurea, allyl ethers containing at least two allyl groups or vinyl ethers of polyhydric alcohols having at least two vinyl groups, for example sorbitol, 1,2-ethanediol, 1,4-butanediol, trimethylolpropane , Glycerol, diethylene glycol and of sugars such as sucrose, glucose, mannose, completely with acrylic acid or methacrylic acid esterified dihydric alcohols having 2 to 4 carbon atoms such as ethylene glycol dimethacrylate, ethylene glycol diacrylate, butanediol dimethacrylate, butanediol diacrylate, diacrylates or dimethacrylates of polyethylene glycols having molecular weights of 300 to 600,
  • crosslinking agents are used in the preparation of the dispersions of the invention, the amounts of crosslinker used in each case are, for example, from 0.0005 to 5.0, preferably from 0.001 to 1.0,% by weight, based on the total monomers used in the polymerization.
  • Crosslinkers preferably used are pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, N, N'-divinylethyleneurea, allyl ethers containing at least two allyl groups of sugars such as sucrose, glucose or mannose and triallylamine and also mixtures of these compounds.
  • crosslinked copolymers of acrylic acid and / or methacrylic acid are preferably prepared by reacting acrylic acid and / or methacrylic acid in the presence of pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, N, N'-divinylethyleneurea, at least two allyl-containing allyl ethers of sugars such as sucrose, glucose or mannose or triallylamine and mixtures of these compounds polymerized.
  • the resulting polyelectrolyte complexes are soluble or swellable in dilute aqueous solution at pH values> 7.0.
  • the cationic polymers used to form the polyelectrolyte complexes are preferably water-soluble, i. they have a solubility in water of at least 1 g / l at 20 ° C.
  • Cationic polymers are polymers with cationic groups, in particular organic polymers with quaternary ammonium groups. It is also possible to use polymers having primary, secondary or tertiary amine groups, provided that they are either protonated by acids contained in the reaction medium or by acid groups of the anionic polymer and thus converted into cationic groups.
  • the amine or ammonium groups of the cationic polymer can be present as substituents or as part of the polymer chain. They may also be part of an aromatic or non-aromatic ring system.
  • the basic monomers can also be present in the form of the salts with mineral acids or in quaternized form.
  • the average molecular weights M w of the cationic polymers are at least 500. They are for example in the range of 500 to 1 million, preferably from 1,000 to 500,000 or 2,000 to 100,000.
  • the copolymers of vinylimidazolium methosulfate and N-vinylpyrrolidone listed under (a) contain, for example, 10 to 90% by weight of N-vinylpyrrolidone in copolymerized form.
  • N-vinylpyrrolidone may be at least one comonomer from the group of ethylenically unsaturated C 3 - to C 5 carboxylic acids such as acrylic acid or methacrylic acid or the esters of these carboxylic acids with 1 to 18 carbon atoms containing monohydric alcohols such as methyl acrylate, ethyl acrylate , Isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, methyl methacrylate, ethyl methacrylate or n-butyl methacrylate.
  • Polymers of group (b) are preferably polydiallyldimethylammonium chloride.
  • copolymers of diallyldimethylammonium chloride are suitable and dimethylaminoethyl acrylate, copolymers of diallyldimethylammonium chloride and dimethylaminoethyl methacrylate, copolymers of diallyldimethylammonium chloride and diethylaminoethyl acrylate, copolymers of diallyldimethylammonium chloride and dimethylaminopropyl acrylate, copolymers of diallyldimethylammonium chloride and dimethylaminoethylacrylamide and copolymers of diallyldimethylammonium chloride and dimethylaminopropylacrylamide.
  • the copolymers of diallyldimethylammonium chloride contain, for example, from 1 to 50, usually from 2 to 30, mol% of at least one of the abovementioned
  • Vinylamine-containing polymers (c) are obtainable by polymerizing N-vinylformamide, optionally in the presence of comonomers, and hydrolyzing the vinylformamide polymers with elimination of formyl groups to form amino groups.
  • the degree of hydrolysis of the polymers may be, for example, 1 to 100%, and most often in the range of 60 to 100%.
  • the average molecular weights M w are up to 1 million.
  • Polymers containing vinylamine units are marketed, for example, as Catiofast® grades by BASF SE.
  • Ethylenimine units containing polymers of group (d) such as polyethyleneimines are also commercial products. They are sold, for example, under the name Polymin® by BASF SE, for example Polymin® SK. These cationic polymers are polymers of ethyleneimine prepared by polymerizing ethyleneimine in an aqueous medium in the presence of small amounts of acids or acid-forming compounds such as halogenated hydrocarbons such as chloroform, carbon tetrachloride, tetrachloroethane or ethyl chloride, or condensation products of epichlorohydrin and amino group-containing compounds such as mono- and polyamines, for example dimethylamine, diethylamine, ethylenediamine, diethylenetriamine and triethylenetetramine or ammonia. They have, for example, molar masses M w of 500 to 1 million, preferably 1000 to 500,000.
  • This group of cationic polymers also includes graft polymers of ethyleneimine on compounds having a primary or secondary amino group, e.g. Polyamidoamines from dicarboxylic acids and polyamines. If appropriate, the polyamidoamines grafted with ethyleneimine can also be reacted with bifunctional crosslinkers, for example with epichlorohydrin or bis-chlorohydrin ethers of polyalkylene glycols.
  • Suitable cationic polymers of group (e) are polymers containing dialkylaminoalkyl acrylate and / or dialkylaminoalkyl methacrylate units. These monomers can be used in the form of the free bases, but preferably in the form of the salts with mineral acids such as hydrochloric acid, sulfuric acid or phosphoric acid and in quaternized form in the polymerization.
  • the quaternizing agents used are, for example, dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride, cetyl chloride or benzyl chloride. From these monomers, both homopolymers and copolymers can be prepared.
  • Suitable comonomers are, for example, acrylamide, methacrylamide, N-vinylformamide, N-vinylpyrrolidone, methyl acrylate, ethyl acrylate, methyl methacrylate and mixtures of the stated monomers.
  • Cationic polymers of group (f) are polymers containing dimethylaminoethylacrylamide or dimethylaminoethylmethacrylamide units and containing the basic monomers preferably in the form of salts with mineral acids or in quaternized form. These may be homopolymers and copolymers.
  • Examples are homopolymers of dimethylaminoethylacrylamide fully quaternized with dimethylsulfate or with benzyl chloride, homopolymers of dimethylaminoethylmethacrylamide fully quaternized with dimethylsulfate, methylchloride, ethylchloride or benzylchloride, as well as copolymers of acrylamide and dimethylaminoethylacrylamide quaternized with dimethylsulfate.
  • Aqueous dispersions of polyelectrolyte complexes can be prepared by free-radically polymerizing the anionic monomers in question, if appropriate in the presence of other monomers, in an aqueous medium in the presence of cationic polymers.
  • the amount of basic or cationic monomers can be chosen so that the resulting polymer complexes always carry an excess of anionic charge, determined at pH 7 and 20 ° C.
  • the determination of the charge density of the polyelectrolytes or polyelectrolyte complexes can according to D. Horn, Progr. Colloid & Polymer Sci., Vol. 65, 251-264 (1978 ) respectively.
  • Basic polymers are preferably used in the form of the salts with mineral acids or organic acids such as formic acid or acetic acid in the polymerization. Otherwise, these salts form anyway in the polymerization, because the polymerization is carried out at a pH ⁇ 6.0.
  • the polymerization can additionally be carried out in the presence of at least one chain transfer agent.
  • chain transfer agents are organic compounds which contain sulfur in bonded form, such as dodecylmercaptan, thiodiglycol, ethylthioethanol, di-n-butylsulfide, di-n-octylsulfide, diphenylsulfide, diisopropyldisulfide, 2-mercaptoethanol, 1,3-mercaptopropanol, 3-mercaptopropan 1,2-diol, 1,4-mercaptobutanol, thioglycolic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, thioacetic acid and thiourea, aldehydes, organic acids such as formic acid, sodium formate or ammonium formate, alcohols such as in particular isopropanol and
  • the chain transfer agents are preferably used together with at least one crosslinker in the polymerization. By varying the amount and the ratio of chain transfer agent and crosslinker, it is possible to control the rheology of the resulting polymers.
  • Chain transfer agents and / or crosslinkers may be initially charged in the polymerization, for example, in the aqueous polymerization medium or dosed together or separately from the monomers, depending on the progress of the polymerization, to the polymerization batch.
  • the polymerization usually uses initiators which form radicals under the reaction conditions.
  • Suitable polymerization initiators are, for example, peroxides, hydroperoxides, hydrogen peroxide, sodium or potassium persulfate, redox catalysts and azo compounds such as 2,2-azobis (N, N-dimethyleneisobutyramidine) dihydrochloride, 2,2-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2-azobis (2,4-dimethylvaleronitrile) and 2,2-azobis (2-amidinopropane) dihydrochloride.
  • the initiators are used in the amounts customary in the polymerization.
  • azo initiators are used as polymerization initiators.
  • the polymerization of the anionic monomers is carried out, for example, batchwise by initially introducing the monomers and at least one cationic compound in a polymerization zone and metering the polymerization initiator in portions or continuously.
  • the polymerization starts in the presence of an initiator and the remaining portion of the monomers, the cationic polymer and the initiator continuously or in portions added.
  • the polymerization is usually carried out in all cases with the exclusion of oxygen under an inert gas atmosphere, for example under nitrogen or helium.
  • the polymerization temperatures are for example in the range of 5 to 100 ° C, preferably 15 to 90 ° C and usually at 20 to 70 ° C. The polymerization temperature depends very much on the particular initiator used.
  • the concentration of the polyelectrolyte complexes in the solutions or aqueous dispersions used for the coating is preferably at least 1% by weight, in particular at least 5% by weight and up to 50 or up to 60% by weight. In most cases, the content of polyelectrolyte complexes in the aqueous dispersion is from 1 to 40% by weight or from 5 to 35% by weight, in particular from 15 to 30% by weight.
  • Preferred aqueous dispersions of the polyelectrolyte complexes have a viscosity of 100 to 150,000 mPas, or 200 to 5,000 mPas (measured with a Brookfield viscometer at 20 ° C., 20 ° C.) at pH values below 6.0 and a temperature of 20 ° C. Rpm, spindle 4).
  • the polyelectrolyte complexes have different molecular weights.
  • the average molecular weight M w of the polyelectrolyte complexes is, for example, 1,000 to 10 million, preferably 5,000 to 5 million, and is usually in the range of 10,000 to 3 million. The molecular weight is determined with the aid of light scattering.
  • the average particle size of the dispersed polyelectrolyte complexes is, for example, 0.1 to 200 ⁇ m, preferably 0.5 to 70 ⁇ m. You can z. Example by means of optical microscopy, light scattering or freeze-fracture electron microscopy.
  • the coating of the polymer films takes place with a composition comprising a polyelectrolyte complex previously prepared from anionic polymer and cationic surfactant.
  • Suitable anionic polymers are those mentioned above.
  • preferred anionic polymers are composed of acrylic acid or methacrylic acid as single monomers or as monomers besides nonionic comonomers, e.g. Polyacrylates, synthesized from acrylic acid or methacrylic acid and acrylic acid or methacrylic acid esters of monohydric alcohols having 1 to 20, preferably 1 to 12 carbon atoms.
  • the aliphatic groups may also contain cross-links or other groups such as additional amino groups in addition to the C atoms and the hydrogen atoms.
  • suitable cationic surfactants are the chlorides or bromides of alkyldimethylbenzylammonium salts, alkyltrimethylammonium salts, eg cetyltrimethylammonium chloride or bromide, tetradecyltrimethylammonium chloride or bromide, alkyldimethylhydroxyethylammonium chlorides or bromides, dialkyldimethylammonium chlorides or bromides, alkylpyridinium salts, eg lauryl or cetylpyridinium chloride, alkylamidoethyltrimethylammonium ether sulfates and compounds with cationic Characteristics such as amine oxides, for example alkylmethylamine oxides or alkylaminoethyldimethylamine oxides. Particularly preferred is cetyltrimethylam
  • a polymer film is coated on at least one side with at least three alternating layers, wherein in each case one of two adjacent layers contains at least one anionic polyelectrolyte constituent component and the other of two adjacent layers contains at least one cationic polyelectrolyte constituent component and at the mutual, adjacent Interfaces of at least three alternating layers can form polyelectrolyte complexes.
  • the combination of first to third coating of the polymer film imparts oxygen barrier properties.
  • anionic polymers cationic polymers and cationic surfactants
  • the above-mentioned Polyelektrolyt inconveniencekomponenten can be used.
  • Anionic polymers are in particular olefin / (meth) acrylic acid copolymers.
  • Cationic polymers are in particular polyvinylamines or completely or partially hydrolyzed polyvinylformamides.
  • Anionic polyelectrolyte constituent components which are suitable for all embodiments are in particular anionic polymers which can be prepared from monomers selected from the group consisting of monoethylenically unsaturated C 3 - to C 10 -carboxylic acids, vinylsulfonic acid, styrenesulfonic acid, acrylamidomethylpropanesulfonic acid, vinylphosphonic acid and salts of these acids.
  • Cementic polyelectrolyte constituent components suitable for all embodiments are, in particular, cationic polymers selected from the group consisting of vinylimidazolium unit-containing polymers, polydiallyldimethylammonium halides, polymers containing vinylamine units, polymers containing ethyleneimine units, polymers containing dialkylaminoalkylacrylate units, polymers containing dialkylaminoalkylmethacrylate units, polymers containing dialkylaminoalkylacrylamide units, and polymers containing cationic surfactants or cationic surfactants from the group consisting of compounds of the general formula N (+) R 1 R 2 R 3 R 4 X (-) wherein R1 to R4 independently of one another are alkyl groups each having 1 to 22 carbon atoms, where in each case at least one of the radicals R1 to R4 has at least 8 carbon atoms and where X - represents an anion, for example a halogen, acetate, phosphate, nitrate
  • a preferred combination in particular for embodiments with alternating layers, is the combination of one or more completely or partially hydrolyzed polyvinylformamides with one or more homopolymers or copolymer of acrylic acid or methacrylic acid.
  • film substrates suitable for packaging are coated with an aqueous solution or dispersion of at least one polyelectrolyte complex or at least one structural component of a polyelectrolyte complex.
  • Suitable substrates are in particular polymer films.
  • the solutions or dispersions used for the coating may contain further additives or auxiliaries, for example thickeners for adjusting the rheology, wetting aids or binders.
  • Polymer films preferred as carrier material are films of oriented polypropylene or polyethylene, which polyethylene may have been prepared by both high pressure and low pressure polymerization of ethylene.
  • Other suitable carrier films are, for example, films of polyester, such as polyethylene terephthalate, films of polyamide, polystyrene and polyvinyl chloride.
  • the support material is biodegradable films, e.g. from biodegradable aliphatic-aromatic copolyesters and / or polylactic acid, for example Ecoflex® or Ecovio® films.
  • Suitable copolyesters are e.g. formed from alkanediols, in particular C 2 to C 8 alkanediols, e.g.
  • 1,4-butanediol from aliphatic dicarboxylic acids, in particular C 2 to C 8 dicarboxylic acids, such as e.g. Adipic acid and from aromatic dicarboxylic acids such as e.g. Terephthalic acid.
  • aliphatic dicarboxylic acids in particular C 2 to C 8 dicarboxylic acids, such as e.g. Adipic acid and from aromatic dicarboxylic acids such as e.g. Terephthalic acid.
  • the thickness of the carrier films is generally in the range of 10 to 200 microns, in films of polyamide at 30 to 50 microns, in films of polyethylene terephthalate at 10 to 40 microns, in films of polyvinyl chloride at about 100 microns and films of polystyrene at about 30-75 microns.
  • the application can be carried out, for example, on coating machines in such a way that the coating composition is applied to a support film made of a plastic. If web-shaped materials are used, the polymer dispersion is usually applied from a trough over an applicator roll and leveled with the aid of an air brush. Other ways of applying the coating succeed, for example. with the aid of the reverse gravure method, with a spray method or with a roller blade or with other coating methods known to the person skilled in the art.
  • the gravure and gravure processes known from printing technology are likewise suitable for the production of a barrier coating by means of a polyelectrolyte complex.
  • the different polymers are applied alternately per print job.
  • the flexographic printing process known to the person skilled in the art is to be mentioned as a high-pressure process, the gravure process as an example of intaglio printing, and offset printing as an example of lithographic printing.
  • Modern digital printing, printing by inkjet, electrophotography or direct imaging can also be used.
  • the polyelectrolyte complex is first formed in situ on the packaging material by applying two, three or more coating compositions simultaneously or in one step immediately after one another, for example by cascade coating, wherein one of the coating compositions contains at least one anionic polymer and the other coating composition contains at least one cationic polymer. It is preferred that first at least a first coating composition is applied, which contains at least one cationic polymer having primary, secondary or tertiary amine groups and then at least one second coating composition is applied, which contains at least one anionic polymer having acid groups.
  • the cationic polymers having amino groups are, for example, polymers having units selected from the group consisting of vinylamine, ethyleneimine, dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, dialkylaminoalkylacrylamide, dialkylaminoalkylmethacrylamide and mixtures thereof; in particular polyvinylamines, polyethyleneimines, polydimethylaminoethyl acrylate, polydimethylaminoethyl methacrylate, copolymers of acrylamide and dimethylaminoethyl acrylate and copolymers of acrylamide and dimethylaminoethyl methacrylate.
  • the anionic polymers having acid groups are, for example, polymers having units selected from acrylic acid, methacrylic acid, maleic acid, 2-acrylamido-2-methylpropanesulfonic acid and mixtures thereof, in particular homopolymers of acrylic acid and copolymers of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid.
  • the carrier film may be previously subjected to a corona treatment.
  • the amounts applied to the sheet-like materials are, for example, preferably 1 to 10 g (polymer, solids) per m 2 , preferably 2 to 7 g / m 2 for films, or preferably 10 to 30 g / m 2 for paper or board.
  • the solvent is evaporated.
  • the material can pass through a dryer channel, which can be equipped with an infrared irradiation device. Thereafter, the coated and dried material is passed over a cooling roll and finally wound up.
  • the thickness of the dried coating is preferably 0.5 to 50 ⁇ m, more preferably 2 to 20 ⁇ m.
  • the coated with the polyelectrolyte complex substrates show excellent barrier to oxygen, especially in wrinkles, folds and corners.
  • the coated substrates can be used as such as packaging, preferably for food.
  • the coatings have very good mechanical properties, and show e.g. Good block behavior and show essentially no cracking.
  • the coated substrates In order to obtain special surface or coating properties of the packaging materials, for example a good printability, even better sealing and blocking behavior, good water resistance, it may be advantageous to coat the coated substrates with cover layers having these desired properties additionally lend.
  • the substrates precoated with polyelectrolyte complexes show good overcoatability. It can be overcoated again according to a method mentioned above or coated several times in a continuous process without intermediate winding and unwinding of the film.
  • the oxygen barrier layer is thereby inside the system, the surface properties are then determined by the cover layer.
  • the cover layer has good adhesion to the fat barrier layer.
  • Particularly preferred is the application of a moisture protection coating, which ensures the effectiveness of the oxygen barrier layer even at higher humidities.
  • the oxygen transmission or the oxygen permeability was determined on coatings on polymer films at the respectively indicated relative humidity. Initially, the oxygen transmission (transmission) is measured, which is then converted to a layer thickness of 1 micron and given as oxygen permeability with the unit cm 3 (1 micron) / (m 2 xdx bar), where d is the time in days. The determination is based on ASTM-D 3985.
  • Polyethylene terephthalate polymer film having a thickness of 25 ⁇ m
  • a polymer film of polyethylene terephthalate having a thickness of 25 ⁇ m was coated with a layer of 10 parts by weight of ethylene / methacrylic acid copolymer and 90 parts by weight of poly (ethyl acrylate) having a thickness of 13 ⁇ m.
  • a polymer film of oPP (oriented polypropylene) having a thickness of 30 ⁇ m was coated with a W / W dispersion of a polyelectrolyte complex of cetyltrimethylammonium chloride (CTAC) and a copolymer of 80 parts by weight of acrylic acid, 10 parts by weight of hydroxyethyl acrylate and 10 Parts by weight of methyl acrylate, neutralized with NaOH.
  • CTAC cetyltrimethylammonium chloride
  • the W / W dispersion of the polyelectrolyte complex was prepared by mixing the copolymer with the cationic surfactant in water.
  • CTAC is added as a complexing agent. The mixture is stirred until a homogeneous emulsion is formed. then NaOH is added to stabilize the emulsion.
  • the layer thickness of the layer of the polyelectrolyte complex on the oPP film was 3 ⁇ m.
  • the oxygen barrier effect was measured at 50% relative humidity. Oxygen permeability: 62 cm 3 (1 ⁇ m) / (m 2 xdx bar)
  • Example 3 IR measurements to detect the formation of polyelectrolyte complexes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Paper (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
EP12195417.6A 2009-08-24 2010-08-17 Utilisation de complexes de polyélectrolytes pour la fabrication de films polymères ayant des propriétés de barrière à l'oxygène Active EP2570196B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09168479 2009-08-24
EP10742833A EP2473289A2 (fr) 2009-08-24 2010-08-17 Utilisation de complexes de polyélectrolytes pour produire des feuilles polymères à propriétés de barrière à oxygène
PCT/EP2010/061925 WO2011023587A2 (fr) 2009-08-24 2010-08-17 Utilisation de complexes de polyélectrolytes pour produire des feuilles polymères à propriétés de barrière à oxygène

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP10742833.6 Division 2010-08-17
EP10742833A Division EP2473289A2 (fr) 2009-08-24 2010-08-17 Utilisation de complexes de polyélectrolytes pour produire des feuilles polymères à propriétés de barrière à oxygène

Publications (3)

Publication Number Publication Date
EP2570196A2 true EP2570196A2 (fr) 2013-03-20
EP2570196A3 EP2570196A3 (fr) 2017-07-19
EP2570196B1 EP2570196B1 (fr) 2020-04-15

Family

ID=43302965

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10742833A Withdrawn EP2473289A2 (fr) 2009-08-24 2010-08-17 Utilisation de complexes de polyélectrolytes pour produire des feuilles polymères à propriétés de barrière à oxygène
EP12195417.6A Active EP2570196B1 (fr) 2009-08-24 2010-08-17 Utilisation de complexes de polyélectrolytes pour la fabrication de films polymères ayant des propriétés de barrière à l'oxygène

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10742833A Withdrawn EP2473289A2 (fr) 2009-08-24 2010-08-17 Utilisation de complexes de polyélectrolytes pour produire des feuilles polymères à propriétés de barrière à oxygène

Country Status (6)

Country Link
US (1) US8980437B2 (fr)
EP (2) EP2473289A2 (fr)
JP (1) JP5882209B2 (fr)
CN (1) CN102481597B (fr)
ES (1) ES2805328T3 (fr)
WO (1) WO2011023587A2 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2315815E (pt) 2008-08-21 2014-03-06 Basf Se Processo para a produção de embalagens com propriedades de barreira antigordura
BR112012019200A2 (pt) * 2010-02-03 2017-06-13 Basf Se espessante associativo, processo para a preparação de um espessante associativo, composição espessante aquosa, uso de um espessante associativo, agente de deslizamento de revestimento de papel, e, papel ou papelão.
US8637160B2 (en) 2010-06-14 2014-01-28 Basf Se Polymer dispersions of vinylaromatic compounds and acrylate monomers prepared in the presence of seed latex and carbohydrate compounds
EP2797724B1 (fr) * 2011-12-30 2018-07-04 Compagnie Générale des Etablissements Michelin Barrière de revêtement intérieure perfectionnée à partir d'un film mince multicouche
CA2863927A1 (fr) * 2012-02-07 2013-08-15 Chemetall Gmbh Procede destine a revetir des surfaces metalliques de substrats, et articles revetus selon un tel procede
US9902872B2 (en) 2012-06-06 2018-02-27 Basf Se Use of aqueous polyanion-polyethyleneimine solutions for producing polymer films with oxygen-barrier properties
US20150376449A1 (en) * 2014-06-27 2015-12-31 Dow Global Technologies Llc Barrier film, methods of manufacture thereof and articles comprising the same
CN104479060B (zh) * 2014-11-27 2017-02-22 广东多正化工科技有限公司 烯胺类共聚物表面处理剂及其制备方法
KR20180008544A (ko) * 2015-05-18 2018-01-24 바스프 에스이 산소 이동 차단을 위한 종이 기재상의 아크릴레이트 폴리머를 가진 코팅층의 용도
JP6835819B2 (ja) 2015-07-30 2021-02-24 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se ポリアニオンとエトキシル化カチオン性ポリマーとフィロケイ酸塩とを含有する、酸素バリア性の向上を示すコーティング用組成物
JP7066700B2 (ja) * 2016-10-19 2022-05-13 ザ テキサス エーアンドエム ユニバーシティ システム ガス不透過性被膜を塗布するための方法
FR3068706A1 (fr) * 2017-07-04 2019-01-11 Arkema France Materiau absorbant pour la protection des dispositifs electroniques
US10737259B2 (en) * 2018-08-31 2020-08-11 Pall Corporation Salt tolerant anion exchange medium
KR20220035449A (ko) * 2019-07-18 2022-03-22 에보니크 오퍼레이션즈 게엠베하 수성 폴리우레탄 분산액 중에서의 폴리올 에스테르 및 양이온성 다가전해질의 조합된 용도
CN113321834B (zh) * 2020-02-12 2022-08-19 中国石油化工股份有限公司 一种智能控湿阻隔复合薄膜及其制备方法和应用
CN112251097A (zh) * 2020-10-20 2021-01-22 汤普勒新材料嘉兴有限公司 一种多功能聚丙烯酸酯纳米复合涂饰剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031719A1 (fr) 1997-01-17 1998-07-23 Eg Technology Partners, Lp Composition a base d'acide organique insature et de polyamine, destinee a un revetement formant barriere
WO2003068869A2 (fr) 2002-02-18 2003-08-21 Basf Aktiengesellschaft Enductions pour materiaux supports destinees a bloquer le passage de l'oxygene
WO2007002322A1 (fr) 2005-06-22 2007-01-04 Mitsubishi Polyester Film, Inc. Film polymerique enduit ayant des proprietes de barriere contre l'oxygene
EP2014730A1 (fr) 2006-04-26 2009-01-14 Kureha Corporation Liquide de revêtement, film faisant barrière aux gaz et film multicouche faisant barrière aux gaz chacun utilisant le liquide de revêtement, et leurs procédés de production

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213271A (ja) * 1985-03-20 1986-09-22 Dainichi Seika Kogyo Kk 導電性塗料
US4704324A (en) * 1985-04-03 1987-11-03 The Dow Chemical Company Semi-permeable membranes prepared via reaction of cationic groups with nucleophilic groups
US4927540A (en) * 1986-09-04 1990-05-22 The Dow Chemical Company Ionic complex for enhancing performance of water treatment membranes
JP3216908B2 (ja) * 1992-04-28 2001-10-09 株式会社クラレ エチレン−ビニルアルコール系共重合体の水性分散液
JP3634515B2 (ja) * 1996-08-20 2005-03-30 大日本印刷株式会社 帯電防止バリアフィルム
WO1999024513A1 (fr) * 1997-11-06 1999-05-20 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Revetement autoorganisateur
US6022908A (en) * 1998-04-22 2000-02-08 Hewlett-Packard Company Printing liquids for improved print quality
US6060410A (en) * 1998-04-22 2000-05-09 Gillberg-Laforce; Gunilla Elsa Coating of a hydrophobic polymer substrate with a nonstoichiometric polyelectrolyte complex
JPH11314669A (ja) * 1998-05-06 1999-11-16 Sumitomo Chem Co Ltd バブルパッケージ用資材
EP1141124B1 (fr) * 1998-11-13 2004-02-04 Biocompatibles UK Limited Complexes de polyions anioniques-cationiques comprenant un composant monomere zwitterionique
JP4615737B2 (ja) * 2001-01-10 2011-01-19 中央理化工業株式会社 水性樹脂組成物
US6596379B2 (en) 2001-05-24 2003-07-22 Exxonmobil Oil Corporation Polymers stabilized by water-soluble, cationic, amino-functional polymer, and plastic film coated with same
DE10129537A1 (de) * 2001-06-21 2003-01-09 Basf Ag Verfahren zur Herstellung einer wässrigen Dispersion von aus Polymerisat und feinteiligem anorganischem Feststoff aufgebauten Partikeln
JP4135387B2 (ja) * 2001-08-31 2008-08-20 東洋製罐株式会社 ガスバリアー材、その製法、ガスバリアー層形成用コーティング液及びガスバリアー材を備えた包装材
JP4951157B2 (ja) * 2002-11-25 2012-06-13 三菱樹脂株式会社 帯電防止性フィルム
DE102004007927A1 (de) * 2004-02-18 2005-09-01 Basf Ag Verfahren und Vorrichtung zum Aufbringen mindestens zweier chemisch unterschiedlicher fließfähiger Medien
DE102005007483A1 (de) 2005-02-17 2006-08-31 Basf Ag Wässrige Dispersionen von überwiegend anionisch geladenen Polyelektrolytkomplexen, Verfahren zu ihrer Herstellung und ihre Verwendung
DK1749450T3 (da) * 2005-08-05 2014-07-14 Heinz Italia S P A Glutenfri pasta og dej, anvendelse af dejen og fremgangsmåde til deres fremstilling
CN100415508C (zh) * 2006-05-30 2008-09-03 浙江大学 一种高阻隔性自组装多层复合薄膜的制备方法
EP1958707A1 (fr) * 2007-01-31 2008-08-20 INSERM (Institut National de la Santé et de la Recherche Medicale) Films multicouches en polyélectrolyte supportés stimulables mécaniquement
CA2731072C (fr) * 2008-07-18 2016-11-08 Quick-Med Technologies, Inc. Complexe electrolytique pour transmettre des proprietes antimicrobiennes a un substrat
PT2315815E (pt) * 2008-08-21 2014-03-06 Basf Se Processo para a produção de embalagens com propriedades de barreira antigordura
BR112012019200A2 (pt) 2010-02-03 2017-06-13 Basf Se espessante associativo, processo para a preparação de um espessante associativo, composição espessante aquosa, uso de um espessante associativo, agente de deslizamento de revestimento de papel, e, papel ou papelão.
US8637160B2 (en) 2010-06-14 2014-01-28 Basf Se Polymer dispersions of vinylaromatic compounds and acrylate monomers prepared in the presence of seed latex and carbohydrate compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031719A1 (fr) 1997-01-17 1998-07-23 Eg Technology Partners, Lp Composition a base d'acide organique insature et de polyamine, destinee a un revetement formant barriere
WO2003068869A2 (fr) 2002-02-18 2003-08-21 Basf Aktiengesellschaft Enductions pour materiaux supports destinees a bloquer le passage de l'oxygene
WO2007002322A1 (fr) 2005-06-22 2007-01-04 Mitsubishi Polyester Film, Inc. Film polymerique enduit ayant des proprietes de barriere contre l'oxygene
EP2014730A1 (fr) 2006-04-26 2009-01-14 Kureha Corporation Liquide de revêtement, film faisant barrière aux gaz et film multicouche faisant barrière aux gaz chacun utilisant le liquide de revêtement, et leurs procédés de production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. HORN, PROGR. COLLOID & POLYMER SEI., vol. 65, 1978, pages 251 - 264

Also Published As

Publication number Publication date
JP5882209B2 (ja) 2016-03-09
CN102481597A (zh) 2012-05-30
US20120148855A1 (en) 2012-06-14
WO2011023587A2 (fr) 2011-03-03
ES2805328T3 (es) 2021-02-11
CN102481597B (zh) 2014-06-25
WO2011023587A3 (fr) 2011-11-24
JP2013502337A (ja) 2013-01-24
EP2473289A2 (fr) 2012-07-11
EP2570196B1 (fr) 2020-04-15
EP2570196A3 (fr) 2017-07-19
US8980437B2 (en) 2015-03-17

Similar Documents

Publication Publication Date Title
EP2570196B1 (fr) Utilisation de complexes de polyélectrolytes pour la fabrication de films polymères ayant des propriétés de barrière à l'oxygène
EP2315815B1 (fr) Procédé de fabrication d'emballages ayant des propriétés de barrière aux graisses
EP1833867B1 (fr) Copolymeres organiques contenant des nanoparticules
EP2714391B1 (fr) Emballages en papier et en carton munis d'un revêtement barrière constitué d'un mélange de polymères
EP2714990B1 (fr) Emballages en papier et en carton comprenant un revêtement de barrière
EP0286008B1 (fr) Utilisation de dispersions aqueuses de matières synthétiques cationiques pour imprégner et abreuver des substrats absorbants
EP1029005B1 (fr) Revetement autoorganisateur
DE69722083T2 (de) Dauerhafte antistatische Beschichtung und beschichtete Polymerfolie
WO2010142568A1 (fr) Procédé de production d'un tissu non tissé gonflant
CN108291991B (zh) 电磁能吸收性光学产品及其制造方法
EP2467419B1 (fr) Utilisation de complexes polyelecrolytes en tant que barrières pour agents plastifiants
EP2723565B1 (fr) Films de polymers recouverts ayant des propriétés de barrière à l'oxygène
DE4006098A1 (de) Fluorurethangruppen enthaltende polymerisate aus ethylenisch ungesaettigten monomeren, verfahren zu ihrer herstellung und ihre verwendung
WO2000029489A1 (fr) Complexes de polyelectrolytes et de tensioactifs ioniques contenant des dispersions colloidales aqueuses, procedes permettant de les preparer et leur utilisation
DE60025185T2 (de) Thermoplastische harzfolie mit zufriedenstellender bedruckbarkeit
EP1419203B1 (fr) Couche protectrice a fonction de depot, son mode de production et son utilisation
DE10214578B4 (de) Vernetzbare Harzzusammensetzung
DE2315436A1 (de) Elektrisch-leitendes papier
DE19603272A1 (de) Verfahren zur Verbesserung der Haftungseigenschaften von Polymeroberflächen
EP0180867A2 (fr) Dispersions aqueuses stables de copolymères de chlorure de vinylidène et leur application

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2473289

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 5/00 20060101AFI20170615BHEP

Ipc: B05D 7/00 20060101ALI20170615BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180119

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2473289

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010016588

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1256639

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200716

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010016588

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2805328

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

26N No opposition filed

Effective date: 20210118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200817

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200817

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1256639

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 14

Ref country code: GB

Payment date: 20230822

Year of fee payment: 14

Ref country code: ES

Payment date: 20230914

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 14

Ref country code: DE

Payment date: 20230828

Year of fee payment: 14