EP2566813A1 - Nano-wires made of novel precursors and method for the production thereof - Google Patents

Nano-wires made of novel precursors and method for the production thereof

Info

Publication number
EP2566813A1
EP2566813A1 EP11720073A EP11720073A EP2566813A1 EP 2566813 A1 EP2566813 A1 EP 2566813A1 EP 11720073 A EP11720073 A EP 11720073A EP 11720073 A EP11720073 A EP 11720073A EP 2566813 A1 EP2566813 A1 EP 2566813A1
Authority
EP
European Patent Office
Prior art keywords
precursors
nanowires
nanowires according
hydrogen
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11720073A
Other languages
German (de)
French (fr)
Inventor
Norbert Auner
Christian Bauch
Rumen Deltschew
Sven Holl
Gerd Lippold
Javad MOHSSENI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spawnt Private SARL
Original Assignee
Spawnt Private SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201010019565 external-priority patent/DE102010019565A1/en
Priority claimed from DE201010019874 external-priority patent/DE102010019874A1/en
Application filed by Spawnt Private SARL filed Critical Spawnt Private SARL
Publication of EP2566813A1 publication Critical patent/EP2566813A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10773Halogenated silanes obtained by disproportionation and molecular rearrangement of halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G17/00Compounds of germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/125Quantum wire structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to nanowires made of
  • nanowires are characterized by the fact that they are obtained by a novel process using novel precursors.
  • the precursors provide compounds or mixtures of compounds each having at least one direct
  • Substituents consist of halogen and / or hydrogen and in their composition, the atomic ratio
  • Metalloidatomen is at least 1: 1.
  • Deposition of the formed elemental silicon contribute. Depending on the reaction conditions, crystalline or wholly or partially amorphous nanowires are formed. Preference is given to using metals which have low melting temperature eutectic mixtures with silicon. The model The idea is that under the reaction conditions, a liquid metal / Si mixture is formed, from which by further uptake of Si from the decomposing
  • precursor compounds precipitates solid Si.
  • silicon nanowires are deposited on substrates such as silicon or metal oxides, for example Al 2 O 3 .
  • Silicon nanowires on crystalline silicon first the oxide layer of the substrate must be removed. Become
  • Chlorosilanes used as precursor compounds forms together with additional hydrogen present HCl, which reacts with the oxide layer (S. Ge, K. Jiang, X. Lu, Y. Chen, R. Wang, S. Fan, Advanced Materials 2005, 17, 56). Become
  • Chlorine-free precursor silanes used may be the same
  • the first either a chlorine-containing silane or in addition to a silane containing another source of chlorine, which provides for the start of growth, but requires relatively high temperatures for decomposition. Thereafter, the reaction temperature is lowered and a second Precursorgas used, which has a lower decomposition temperature.
  • a chlorine-containing silane or in addition to a silane containing another source of chlorine which provides for the start of growth, but requires relatively high temperatures for decomposition. Thereafter, the reaction temperature is lowered and a second Precursorgas used, which has a lower decomposition temperature.
  • Precursor compounds are SiH 4 , S1 2 H 6 , S1CI 4 and S1H 2 CI 2 listed.
  • suitable catalyst metals are Au, Al, Pt, Fe, Ti, Ga, Ni, Sn or In.
  • Solvents at 400 - 520 ° C and 14.3 - 23.4 MPa pressure takes place.
  • the catalyst metal used is Ni and in addition to trisilane S1 3 H 8 , octylsilane and phenylsilane are also used as precursor compounds. AT Heitsch, DD
  • Boiling temperature (420-430 ° C) leads to Si nanowires.
  • silanes Si n H2 n +2
  • Si n H2 n +2 pyrophoric properties
  • the present invention is based on the object, novel nanowires by a new method
  • Precursors for the growth of nanowires are silicon and / or germanium-containing compounds, which are among the
  • Process conditions are converted to elemental silicon and / or germanium.
  • Polysilanes according to the invention are compounds having at least one Si-Si bond. According to one embodiment of the invention, polysilanes are halogenated and hydrogenated Polysilanes and polysilanes with organic substituents and the corresponding partially halogenated and partially hydrogenated
  • Polysilanes having the general formula: Si n X a H b , wherein a + b is greater than or equal to 2n and less than 2n + 2, a and b are each greater than or equal to 0 and X halogen, amine substituent or organic radical such.
  • B alkyl radicals, especially methyl.
  • Polygermanes in the context of the invention are compounds having at least one Ge-Ge bond.
  • the polygermanes are halogenated and hydrogenated polygermanes and the corresponding partially halogenated and partially hydrogenated polygermanes having the general formula:
  • B alkyl radicals, especially methyl.
  • Amine substituents can be used for GeN nanowires.
  • Polygermasilanes according to the invention are compounds having at least one bond Si-Ge. According to one embodiment of the invention polygermasilanes are halogenated and hydrogenated polygermasilanes and the corresponding partially halogenated and partially hydrogenated polygermasilanes having the general
  • polygermasilanes having organic substituents for SiGeC nanowires or amine substituents for SiGeN nanowires can also be used.
  • polygermasilanes with (transition) metal substituents can also be used.
  • p-doped precursors means that the respective
  • “Fermi level”) contains appropriate proportion of p-doping atoms such as boron, aluminum, gallium, indium, preferably boron atoms, which may either be incorporated in the precursor molecules or may be added as separate compounds to the precursors Precursors means that the respective p-doping atoms such as boron, aluminum, gallium, indium, preferably boron atoms, which may either be incorporated in the precursor molecules or may be added as separate compounds to the precursors Precursors means that the respective
  • “Fermi level”) contains appropriate proportion of n-doping atoms such as nitrogen, phosphorus, arsenic, antimony, bismuth, preferably phosphorus atoms, which are present either in the
  • Precursor molecules may be incorporated or may be added to the precursors as separate compounds.
  • Further doping elements can be taken from the groups of the periodic system of the elements on the left and right of the 4th main group (group 14), preferably groups 13 and 15.
  • Monosilanes and monogermans are all compounds each having only one silicon or germanium atom designated. SiX a H b and GeX a H b , where a + b is 4 and a and b are each greater than or equal to 0.
  • metal atoms refers to atoms of the semi-metals silicon and germanium.
  • the nanowires produced according to the invention are distinguished by the fact that the novel precursors used are liquid under standard conditions (room temperature, atmospheric pressure) with one exception (S1 2 H 6 ) and in many
  • Solvents are soluble, so that they can be handled easier and safer than many classic precursors such as monosilane.
  • solvents inert to the precursors are monochlorosilanes, e.g. B. SiCl 4 , liquid alkanes, eg. For example, hexane, heptane, pentane, octane, and aromatics such as benzene, toluene and xylene.
  • Particularly preferred precursors are in some
  • the nanowires can be obtained from precursors which contain virtually no rings, the content of rings based on the entire product mixture being less than 2 mass%.
  • the nanowires can be obtained from precursors which contain almost no branched chains, the content of
  • Branching points based on the total product mixture is ⁇ 5% by mass, preferably ⁇ 2% by mass.
  • halogenated polysilanes having a low content of rings and low branched chains can be used, as described in PCT application WO2009 / 143823 A2, which is hereby incorporated by reference in terms of their properties and synthesis.
  • the nanowires can be obtained from precursors which consist predominantly of branched chains.
  • halogenated polysilanes having a high content of rings and branched chains can be used as described in PCT application WO 2009/143824 A1 which are hereby incorporated by reference for their properties and synthesis.
  • nanowires can be obtained from precursors
  • Substituents consist exclusively of hydrogen.
  • Gas mixture (precursor and carrier gas and / or hydrogen) may additionally by an inert gas, such as
  • additives such as doping additives, eg. As liquid or solid boron, metal or
  • Contain phosphorus compounds Contain phosphorus compounds. Examples are BBr 3 , TiCl 4 or PCI 3 . However, the addition of inert gases is not mandatory in the process according to the invention.
  • the deposition temperatures in the process according to the invention are between 250 and 1100 ° C., preferably between 330 and 950 ° C.
  • Precursors according to the invention can be obtained without the presence of hydrogen during deposition is in free or bound form is required, as other semiconductor-supplying reactions exist, including: S1 3 CI 8 -> 2 SiCl 4 + Si, Ge 3 Cl 8 -> 2 GeCl 4 + Ge, 3 GeSi 2 Cl 8 -> 4 SiCl 4 + 2 GeCl 4 + GeSi 2 .
  • reaction pressures in the process according to the invention are in the range from 0.1 hPa to 2200 hPa, preferably from 1 hPa to 1100 hPa, more preferably from 200 hPa to 1100 hPa.
  • the partial pressures of the precursors according to the invention can be easily determined by varying the temperatures of the precursors according to the invention
  • Reservoir and admixture of other gas components can be adjusted.
  • Nanowires of the invention are metals such as bismuth, preferably transition metals, such as Cu, Ag, Ni and Pt or Au or mixtures thereof used.
  • Ni and Pt are compatible with typical metal oxide semiconductor technologies.
  • the novel precursors can be attached to the metallic catalyst.
  • gates to the corresponding elements eg. B. Si or Ge or alloys z.
  • B. Si-Ge alloys decompose and so the nanowires are formed.
  • the particle sizes (diameter) of the catalysts are 5 nm to 1000 nm, preferably 20 nm - 200 nm and can
  • the nanowires according to the invention have diameters in the range from 50 to 1200 nm and lengths in the range from 100 to 100000 nm, whereby other dimensions can also be obtained by varying the growth times.
  • the growth rates are in the range of 5 nm to 5000 nm per minute.
  • the growth of the nanowires according to the invention can also be carried out without hydrogen halide formation, which also influences the etching behavior and the epitaxial alignment of the nanowires.
  • the precursors according to the invention are preferably suitable both for the gas / liquid / solid phase growth process and for the gas / solid / solid phase growth process.
  • a liquid eutectic of the metal and the semi-metal element eg, gold / silicon
  • the gas phase solves silicon is deposited on the solid wire and in which fresh silicon is decomposed by decomposing the precursors the gas phase solves.
  • a solid alloy of the metalloid element is formed in the metal by dissolution of the element after decomposition of the metal
  • the highly halogenated polysilanes, polygermans or polygermasilanes hydrogen-free nanowires are obtained, since the use of hydrogen for the production of nanowires is not required.
  • Precursors may preferably be designed as single-source precursors for doped semiconductor regions.
  • the nanowires produced according to the invention are characterized in that the novel precursors used alternate in time, that is, e.g. In turn, p- and n-doped precursors can be used for growth, with the precursors during the process
  • alternating regions with different Si: Ge ratios can also be generated in a corresponding manner.
  • nanowires can be used in the growth direction
  • compositions are obtained.
  • different precursors / blends may be provided during growth.
  • different dopants or alloys can be obtained in a crystal of a nanowire.
  • By-products can be formed by undesired, uncatalyzed decomposition of the precursors.

Abstract

The invention relates to nano-wires which consist of or comprise semiconductor materials and are used for applications in photovoltaics and electronics and to a method for the production thereof. The nano-wires are characterized in that they are obtained by a novel method using novel precursors. The precursors represent compounds, or mixtures of compounds, each having at least one direct Si-Si and/or Ge-Si and/or Ge-Ge bond, the substituents of which consist of halogen and/or hydrogen, and in the composition of which the atomic ratio of substituent:metalloid atoms is at least 1:1.

Description

Beschreibung description
Nanodrähte aus neuartigen Precursoren und Verfahren zu deren Herstellung Nanowires of novel precursors and process for their preparation
Die vorliegende Erfindung betrifft Nanodrähte, die aus The present invention relates to nanowires made of
Halbleitermaterialien bestehen oder diese umfassen und für Anwendungen in der Photovoltalk und der Elektronik dienen, sowie ein Verfahren zur Herstellung derselben. Die Nanodrähte zeichnen sich dadurch aus, dass diese durch ein neuartiges Verfahren unter Verwendung neuartiger Precursoren erhalten werden. Die Precursoren stellen Verbindungen oder Gemische von Verbindungen mit jeweils mindestens einer direkten Semiconductor materials or comprise and serve for applications in the photovoltaic and the electronics, and a method for producing the same. The nanowires are characterized by the fact that they are obtained by a novel process using novel precursors. The precursors provide compounds or mixtures of compounds each having at least one direct
Bindung Si-Si und/oder Ge-Si und/oder Ge-Ge dar, deren Bond Si-Si and / or Ge-Si and / or Ge-Ge, whose
Substituenten aus Halogen und/oder Wasserstoff bestehen und in deren Zusammensetzung das Atomverhältnis Substituents consist of halogen and / or hydrogen and in their composition, the atomic ratio
Substituenten : Metalloidatomen mindestens 1:1 beträgt. Substituents: Metalloidatomen is at least 1: 1.
Stand der Technik: State of the art:
Im Stand der Technik ist zur Erzeugung von Silicium- Nanodrähten die thermische Zersetzung von gasförmigen In the prior art, for the production of silicon nanowires, the thermal decomposition of gaseous
Silicium-Precursorverbindungen beschrieben. Dabei kommen neben unterschiedlichen Siliciumverbindungen katalytisch wirksame Metalle zum Einsatz. Allgemein werden zunächst Katalysatormetall-Agglomerate mit einigen Nanometern Silicon precursor compounds described. In addition to different silicon compounds catalytically active metals are used. Generally, first, catalyst metal agglomerates with a few nanometers
Durchmesser erzeugt, die dann katalytisch auf die Zersetzung der Silicium-Verbindungen wirken und zur geordneten Diameter generated, which then act catalytically on the decomposition of the silicon compounds and the ordered
Abscheidung des gebildeten elementaren Siliciums beitragen. Abhängig von den Reaktionsbedingungen entstehen kristalline oder ganz oder teilweise amorphe Nanodrähte. Bevorzugt werden Metalle eingesetzt, die eutektische Mischungen mit niedriger Schmelztemperatur mit Silicium aufweisen. Die Modell- Vorstellung besagt, dass sich unter den Reaktionsbedingungen eine flüssige Metall/Si-Mischung bildet, aus der sich durch weitere Aufnahme von Si aus den sich zersetzenden Deposition of the formed elemental silicon contribute. Depending on the reaction conditions, crystalline or wholly or partially amorphous nanowires are formed. Preference is given to using metals which have low melting temperature eutectic mixtures with silicon. The model The idea is that under the reaction conditions, a liquid metal / Si mixture is formed, from which by further uptake of Si from the decomposing
Precursorverbindungen schließlich festes Si abscheidet. Finally, precursor compounds precipitates solid Si.
Allerdings wird ein vergleichbares Wachstumsverhalten auch bereits bei Temperaturen unterhalb des eutektischen However, a similar growth behavior even at temperatures below the eutectic
Schmelzpunktes beobachtet. Überwiegend werden Silicium- Nanodrähte auf Substraten wie Silicium oder Metalloxiden, beispielsweise AI2O3, abgeschieden. Melting point observed. Predominantly silicon nanowires are deposited on substrates such as silicon or metal oxides, for example Al 2 O 3 .
Beispielsweise E.C. Garnett, W. Liang, P. Yang, Advanced Materials 2007, 79, 2946 beschreiben die Erzeugung von For example E.C. Garnett, W. Liang, P. Yang, Advanced Materials 2007, 79, 2946 describe the production of
Silicium-Nanodrähten durch CVD-Abscheidung aus SiCl4/H2 mit Pt als Katalysatormetall- bei Normaldruck und 805°C. Y. Silicon nanowires by CVD deposition from SiCl 4 / H2 with Pt as the catalyst metal at atmospheric pressure and 805 ° CY
Zhang, Q. Zhang, N. Wang, Y. Yan, H. Zhou, J. Zhu, Journal of Crystal Growth 2006, 221, 185 verwenden ein ähnliches Zhang, Q. Zhang, N. Wang, Y. Yan, H. Zhou, J. Zhu, Journal of Crystal Growth 2006, 221, 185 use a similar one
Verfahren bei Normaldruck und einer optimierten Temperatur von 900°C mit Ni als Katalysatormetall. Process at atmospheric pressure and an optimized temperature of 900 ° C with Ni as the catalyst metal.
Es zeigt sich, dass zur epitaktischen Abscheidung von It turns out that for the epitaxial deposition of
Silicium-Nanodrähten auf kristallinem Silicium zunächst die Oxidschicht des Substrates entfernt werden muss. Werden Silicon nanowires on crystalline silicon first the oxide layer of the substrate must be removed. Become
Chlorsilane als Precursorverbindungen eingesetzt, bildet sich zusammen mit zusätzlich vorhandenem Wasserstoff HCl, das mit der Oxidschicht reagiert (S. Ge, K. Jiang, X. Lu, Y. Chen, R. Wang, S. Fan, Advanced Materials 2005, 17, 56) . Werden Chlorosilanes used as precursor compounds forms together with additional hydrogen present HCl, which reacts with the oxide layer (S. Ge, K. Jiang, X. Lu, Y. Chen, R. Wang, S. Fan, Advanced Materials 2005, 17, 56). Become
Chlorfreie Precursorsilane eingesetzt, kann der gleiche Chlorine-free precursor silanes used, may be the same
Effekt durch Zumischen von HCl erreicht werden (S. Sharma, T.T. Kamins, R.S. Williams, Journal of Crystal Growth 2004, 261, 613). Beispielsweise WO 2001/136412 beansprucht nach der Herstellung von geeigneten Katalysatormetall-Agglomeraten die aufeinanderfolgende Verwendung von mindestens zwei Sharma, T. T. Kamins, R.S. Williams, Journal of Crystal Growth 2004, 261, 613). For example, WO 2001/136412 claims, after the preparation of suitable catalyst metal agglomerates, the sequential use of at least two
unterschiedlichen Precursor-Gasgemischen, von denen das erste entweder ein chlorhaltiges Silan oder neben einem Silan eine andere Chlorquelle enthält, welches für den Wachstumsstart sorgt, aber zur Zersetzung vergleichsweise hohe Temperaturen erfordert. Danach wird die Reaktionstemperatur abgesenkt und ein zweites Precursorgas eingesetzt, das eine niedrigere Zersetzungstemperatur aufweist. Als geeignete different precursor gas mixtures, of which the first either a chlorine-containing silane or in addition to a silane containing another source of chlorine, which provides for the start of growth, but requires relatively high temperatures for decomposition. Thereafter, the reaction temperature is lowered and a second Precursorgas used, which has a lower decomposition temperature. As appropriate
Precursorverbindungen werden SiH4, S12H6, S1CI4 und S1H2CI2 angeführt. Beispiele für geeignete Katalysatormetalle sind Au, AI, Pt, Fe, Ti, Ga, Ni, Sn oder In. Neben der Precursor compounds are SiH 4 , S1 2 H 6 , S1CI 4 and S1H 2 CI 2 listed. Examples of suitable catalyst metals are Au, Al, Pt, Fe, Ti, Ga, Ni, Sn or In. In addition to the
konventionellen CVD-Methode zur Erzeugung der Silicium- Nanodrähte werden auch „Plasma Enhanced Sputter Deposition" und"Plasma Enhanced CVD" genannt, die eine Absenkung der Reaktionstemperatur ermöglichen. conventional CVD method for the production of the silicon nanowires are also called "Plasma Enhanced Sputter Deposition" and "Plasma Enhanced CVD", which allow a lowering of the reaction temperature.
W.I. Park, G. Zhenq, X- Jiang, B. Tian, C.M. Lieber, Nano Letters 2008, 8, 3004 beschreiben, dass bei 400°C und 10 Torr Druck die Wachstumsrate von Silicium-Nanodrähten mit Au als Katalysator für Disilan S12H6 130 Mal größer ist als für SiH4. Selbst mit für SiH4 optimierten Reaktionstemperaturen bleibt die Wachstumsrate um den Faktor 31 hinter derjenigen WI Park, G. Zhenq, X-Jiang, B. Tian, CM Lieber, Nano Letters 2008, 8, 3004 describe that at 400 ° C and 10 torr pressure, the growth rate of silicon nanowires with Au as the catalyst for disilane S1 2 H 6 is 130 times larger than SiH 4 . Even with optimized reaction temperatures for SiH 4 , the growth rate remains 31 times behind that
ausgehend von Disilan zurück. S. Akhtar, A. Tanaka, K. Usami, Y. Tsuchiya, S. Oda, Thin Solid Films 2008, 517, 317 zeigen, dass selbst bei einer Temperatur von 350°C und 3 Torr Druck mit Au-Katalysator aus S12H6/H2 Nanodrähte hergestellt werden können. Beispielsweise JP 2006117475 A und JP 2007055840 A beschreiben die Erzeugung von Si-Nanodrähten bereits bei Temperaturen von 250-300°C, wobei Disilan und Trisilan als Siliciumquellen eingesetzt werden, die Metalle Au, Ag, Fe, Ni als Katalysatoren dienen und ein Druck von 1 - 5 Torr während der Reaktion eingestellt wird. back from Disilan. S. Akhtar, A. Tanaka, K. Usami, Y. Tsuchiya, S. Oda, Thin Solid Films 2008, 517, 317 show that even at a temperature of 350 ° C and 3 Torr pressure with Au catalyst of S1 2 H 6 / H 2 nanowires can be produced. For example, JP 2006117475 A and JP 2007055840 A describe the production of Si nanowires already at temperatures of 250-300 ° C, with disilane and trisilane are used as silicon sources, which serve metals Au, Ag, Fe, Ni as catalysts and a pressure of 1 - 5 torr is set during the reaction.
H.-Y. Tuan, D.C. Lee, T. Hanrath, B.A. Korgel , Nano Letters 2005, 5, 681 belegen, dass die Bildung von Si-Nanodrähten auch ohne ein Substrat in überkritischen organischen H.-Y. Tuan, DC Lee, T. Hanrath, BA Korgel, Nano Letters 2005, 5, 681, prove that the formation of Si nanowires even without a substrate in supercritical organic
Lösungsmitteln bei 400 - 520°C und 14,3 - 23,4 MPa Druck stattfindet. Als Katalysatormetall findet Ni Verwendung und neben Trisilan S13H8 werden auch Octylsilan und Phenylsilan als Precursorverbindungen eingesetzt. A.T. Heitsch, D.D. Solvents at 400 - 520 ° C and 14.3 - 23.4 MPa pressure takes place. The catalyst metal used is Ni and in addition to trisilane S1 3 H 8 , octylsilane and phenylsilane are also used as precursor compounds. AT Heitsch, DD
Fanfair, H.-Y. Tuan, B.A. Korgel, Journal of the American Chemical Society 2008, 130, 5436 belegen, dass diese Reaktion für Trisilan als Precursormolekül mit hochsiedenden Fanfair, H.-Y. Tuan, B.A. Korgel, Journal of the American Chemical Society 2008, 130, 5436 show that this reaction for trisilane as a precursor molecule with high-boiling
organischen Lösungsmitteln bereits bei Normaldruck und organic solvents already at atmospheric pressure and
Siedetemperatur (420-430°C) zu Si-Nanodrähten führt. Boiling temperature (420-430 ° C) leads to Si nanowires.
Nachteilig an der Verwendung von Silanen (SinH2n+2) sind deren pyrophore Eigenschaften ( Selbstentzündlichkeit an Luft) , die die Handhabung erschweren. A disadvantage of the use of silanes (Si n H2 n +2) are their pyrophoric properties (self-ignitability in air), which complicate the handling.
Aufgabenstellung : Task:
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neuartige Nanodrähte nach einem neuen Verfahren aus The present invention is based on the object, novel nanowires by a new method
geeigneten für diesen Zweck neuen Precursoren der angegebenen Art zu schaffen. Weiterhin soll ein Verfahren zur Herstellung derartiger Nanodrähte zur Verfügung gestellt werden. to create suitable for this purpose new precursors of the specified type. Furthermore, a method for producing such nanowires is to be made available.
Definitionen : Definitions:
Precursoren für das Wachstum von Nanodrähten sind Silicium und/oder Germanium-haltige Verbindungen, die unter den Precursors for the growth of nanowires are silicon and / or germanium-containing compounds, which are among the
Prozessbedingungen zu elementarem Silicium und/oder Germanium umgesetzt werden. Process conditions are converted to elemental silicon and / or germanium.
Polysilane im Sinne der Erfindung sind Verbindungen mit mindestens einer Bindung Si-Si. Gemäß einer Ausführungsform der Erfindung sind Polysilane halogenierte und hydrierte Polysilane sowie Polysilane mit organischen Substituenten und die entsprechenden teilhalogenierten und teilhydrierten Polysilanes according to the invention are compounds having at least one Si-Si bond. According to one embodiment of the invention, polysilanes are halogenated and hydrogenated Polysilanes and polysilanes with organic substituents and the corresponding partially halogenated and partially hydrogenated
Polysilane mit der allgemeinen Formel: SinXaHb , wobei a+b größer gleich 2n und kleiner gleich 2n+2 ist, a und b jeweils größer gleich 0 sind und X = Halogen, Aminsubstituent oder organischer Rest, wie z. B. Alkylreste, insbesondere Methyl ist. Weiterhin können auch Polysilane mit organischen Polysilanes having the general formula: Si n X a H b , wherein a + b is greater than or equal to 2n and less than 2n + 2, a and b are each greater than or equal to 0 and X = halogen, amine substituent or organic radical such. B. alkyl radicals, especially methyl. Furthermore, polysilanes with organic
Substituenten für SiC-Nanodrähte oder Aminsubstituenten für SiN-Nanodrähte verwendet werden. Weiterhin können auch Substituents for SiC nanowires or amine substituents for SiN nanowires can be used. You can also continue
Polysilane mit (Übergangs ) -Metallsubstituenten verwendet werden . Polysilanes with (transition) -Metallsubstituenten be used.
Polygermane im Sinne der Erfindung sind Verbindungen mit mindestens einer Bindung Ge-Ge. Gemäß einer Ausführungsform der Erfindung sind die Polygermane halogenierte und hydrierte Polygermane sowie die entsprechenden teilhalogenierten und teilhydrierten Polygermane mit der allgemeinen Formel: Polygermanes in the context of the invention are compounds having at least one Ge-Ge bond. According to one embodiment of the invention, the polygermanes are halogenated and hydrogenated polygermanes and the corresponding partially halogenated and partially hydrogenated polygermanes having the general formula:
GenXaHb , wobei a+b größer gleich 2n und kleiner gleich 2n+2 ist, a und b jeweils größer gleich 0 sind und X = Halogen, Aminsubstituent oder organischer Rest, wie z. B. Alkylreste, insbesondere Methyl ist. Weiterhin können auch Polygermane mit organischen Substituenten für GeC-Nanodrähte oder Ge n X a H b , where a + b is greater than or equal to 2n and less than 2n + 2, a and b are each greater than or equal to 0 and X = halogen, amine substituent or organic radical such. B. alkyl radicals, especially methyl. Furthermore, polygermanes with organic substituents for GeC nanowires or
Aminsubstituenten für GeN-Nanodrähte verwendet werden. Amine substituents can be used for GeN nanowires.
Weiterhin können auch Polygermane mit (Übergangs) - Metallsubstituenten verwendet werden. Furthermore, it is also possible to use polygermanes with (transition) metal substituents.
Polygermasilane im Sinne der Erfindung sind Verbindungen mit mindestens einer Bindung Si-Ge. Gemäß einer Ausführungsform der Erfindung sind Polygermasilane halogenierte und hydrierte Polygermasilane sowie die entsprechenden teilhalogenierten und teilhydrierten Polygermasilane mit der allgemeinen Polygermasilanes according to the invention are compounds having at least one bond Si-Ge. According to one embodiment of the invention polygermasilanes are halogenated and hydrogenated polygermasilanes and the corresponding partially halogenated and partially hydrogenated polygermasilanes having the general
Formel: Sin-zGezXaHb oder SizGen-zXaHb , wobei a+b größer gleich 2n und kleiner gleich 2n+2 ist, a und b jeweils größer gleich 0 sind, n größer z und X = Halogen, Aminsubstituent oder organischer Rest, wie z. B. Alkylreste, insbesondere Methyl ist. Weiterhin können auch Polygermasilane mit organischen Substituenten für SiGeC-Nanodrähte oder Aminsubstituenten für SiGeN-Nanodrähte verwendet werden. Weiterhin können auch Polygermasilane mit (Übergangs ) -Metallsubstituenten verwendet werden . p-Dotierte Precursoren bedeutet, dass die jeweilige Formula: Si n - z Ge z X a H b or Si z Ge n - z XaH b , where a + b is greater than or equal to 2n and less than or equal to 2n + 2, and a and b are greater than or equal to each other Are 0, n is greater than z and X = halogen, amine substituent or organic radical, such as. B. alkyl radicals, especially methyl. Furthermore, polygermasilanes having organic substituents for SiGeC nanowires or amine substituents for SiGeN nanowires can also be used. Furthermore, polygermasilanes with (transition) metal substituents can also be used. p-doped precursors means that the respective
Verbindung/das Gemisch einen für die gewünschten Compound / mixture one for the desired
Halbleitereigenschaften des Abscheidungsproduktes (z.B. Semiconductor properties of the deposition product (e.g.
„Fermi-Level " ) zweckmäßigen Anteil an p-dotierenden Atomen wie Bor, Aluminium, Gallium, Indium, bevorzugt Bor-Atomen, enthält, welche entweder in die Precursormoleküle eingebaut sein können oder als separate Verbindungen den Precursoren beigemischt sein können. n-Dotierte Precursoren bedeutet, dass die jeweilige "Fermi level") contains appropriate proportion of p-doping atoms such as boron, aluminum, gallium, indium, preferably boron atoms, which may either be incorporated in the precursor molecules or may be added as separate compounds to the precursors Precursors means that the respective
Verbindung/das Gemisch einen für die gewünschten Compound / mixture one for the desired
Halbleitereigenschaften des Abscheidungsproduktes (z.B. Semiconductor properties of the deposition product (e.g.
„Fermi-Level") zweckmäßigen Anteil an n-dotierenden Atomen wie Stickstoff, Phosphor, Arsen, Antimon, Bismut, bevorzugt Phosphor-Atomen, enthält, welche entweder in die "Fermi level") contains appropriate proportion of n-doping atoms such as nitrogen, phosphorus, arsenic, antimony, bismuth, preferably phosphorus atoms, which are present either in the
Precursormoleküle eingebaut sein können oder als separate Verbindungen den Precursoren beigemischt sein können. Precursor molecules may be incorporated or may be added to the precursors as separate compounds.
Weitere Dotierelemente können den Gruppen des Periodensystems der Elemente links und rechts der 4. Hauptgruppe (Gruppe 14) entnommen werden, bevorzugt den Gruppen 13 und 15. Further doping elements can be taken from the groups of the periodic system of the elements on the left and right of the 4th main group (group 14), preferably groups 13 and 15.
Als Monosilane und Monogermane werden alle Verbindungen mit jeweils lediglich einem Silicium- oder Germaniumatom bezeichnet. SiXaHb und GeXaHb, wobei a+b gleich 4 und a und b jeweils größer gleich 0 sind. Monosilanes and monogermans are all compounds each having only one silicon or germanium atom designated. SiX a H b and GeX a H b , where a + b is 4 and a and b are each greater than or equal to 0.
Mit „Metalloidatomen" werden Atome der Halbmetalle Silicum und Germanium bezeichnet. The term "metalloid atoms" refers to atoms of the semi-metals silicon and germanium.
Die Ausdrücke „...aus Halogen bestehen..." oder „...aus Wasserstoff bestehen..." bedeuten, dass abgesehen von geringfügigen The expressions "... consist of halogen ..." or "... consist of hydrogen ..." mean that apart from minor ones
sonstigen Bestandteilen (<1 Massen!) . die Substituenten ausschließlich aus Halogen bzw. aus Wasserstoff bestehen. other ingredients (<1 masses!). the substituents consist exclusively of halogen or of hydrogen.
Unter „überwiegend" wird verstanden, dass der betreffende Bestandteil zu mehr als 80 Massen% im Gemisch enthalten ist. By "predominantly" it is meant that the component in question is more than 80% by mass in the mixture.
„Nahezu keine" bedeutet, dass ein Nebenbestandteil in einer Mischung zu weniger als 5 Massen% enthalten ist. "Almost none" means that a minor ingredient is contained in a mixture of less than 5 mass%.
Beschreibung : Description :
Die erfindungsgemäß hergestellten Nanodrähte zeichnen sich dadurch aus, dass die verwendeten neuartigen Precursoren unter Standardbedingungen (Raumtemperatur, Normaldruck) bis auf eine Ausnahme (S12H6) flüssig sind und in vielen The nanowires produced according to the invention are distinguished by the fact that the novel precursors used are liquid under standard conditions (room temperature, atmospheric pressure) with one exception (S1 2 H 6 ) and in many
Lösungsmitteln löslich sind, so dass sie sich leichter und sicherer handhaben lassen als viele klassische Precursoren wie z.B. Monosilan. Beispiele für gegenüber den Precursoren inerte Lösungsmittel sind Monochlorsilane, z. B. SiCl4, flüssige Alkane, z. B. Hexan, Heptan, Pentan, Oktan, sowie Aromaten, wie zum Beispiel Benzol, Toluol und Xylol. Solvents are soluble, so that they can be handled easier and safer than many classic precursors such as monosilane. Examples of solvents inert to the precursors are monochlorosilanes, e.g. B. SiCl 4 , liquid alkanes, eg. For example, hexane, heptane, pentane, octane, and aromatics such as benzene, toluene and xylene.
Besonders bevorzugte Precursoren sind bei einigen Particularly preferred precursors are in some
Ausführungsformen der Erfindung die jeweils hochchlorierten Polysilane, Polygermane und Polygermasilane, insbesondere SinHal2n+2 mit Hai = Cl, F, Br, I, wobei bevorzugt SinCl2n+2 mit n = 2 -10, weiter bevorzugt mit n = 2 -5 verwendet wird. Als Polygermane können allgemein Verbindungen der allgemeinen Formel GenHal2n+2 mit Hai = Cl, F, Br, I, bevorzugt GenCl2n+2 verwendet werden. Als Polygermasilane können Verbindungen der allgemeinen Formel Sin-xGexHal2n+2 oder SixGen-xHal2n+2 mit n > x verwendet werden, wobei der Parameter n bei den Polygermanen und Polygermasilanen n = 2 -10, weiter bevorzugt n = 2 -5 sein kann. Embodiments of the invention, in each case highly chlorinated polysilanes, polygermans and polygermasilanes, in particular Si n Hal2n + 2 with Hai = Cl, F, Br, I, wherein preferably Si n Cl2 n +2 with n = 2-10, more preferably with n = 2-5 is used. As polygermanes it is generally possible to use compounds of the general formula Ge n Hal 2 n + 2 where Hal = Cl, F, Br, I, preferably Ge n Cl 2 n +2. As Polygermasilane compounds of the general formula Si n -xGe Hal2 x n +2 or Si x Ge n -xHal2 n + 2 can be used with n> x, wherein the parameter n in the polygermanes Polygermasilanen and n = 2 to 10, more preferably n = 2 -5 can be.
Gemäß einer weiteren Ausführungsform der Erfindung können die Nanodrähte aus Precursoren erhalten werden, welche nahezu keine Ringe enthalten, wobei der Gehalt an Ringen bezogen auf das gesamte Produktgemisch unter < 2 Massen% beträgt. According to a further embodiment of the invention, the nanowires can be obtained from precursors which contain virtually no rings, the content of rings based on the entire product mixture being less than 2 mass%.
Gemäß einer weiteren Ausführungsform der Erfindung können die Nanodrähte aus Precursoren erhalten werden, welche nahezu keine verzweigten Ketten enthalten, wobei der Gehalt an According to a further embodiment of the invention, the nanowires can be obtained from precursors which contain almost no branched chains, the content of
Verzweigungsstellen bezogen auf das gesamte Produktgemisch unter < 5 Massen%, bevorzugt < 2 Massen% beträgt. Branching points based on the total product mixture is <5% by mass, preferably <2% by mass.
Beispielsweise können halogenierte Polysilane mit einem geringen Anteil an Ringen und wenig verzweigten Ketten verwendet werden, wie sie in der PCT-Anmeldung WO2009/143823 A2 beschrieben werden, auf die hiermit im Bezug auf deren Eigenschaften und Synthese vollinhaltlich Bezug genommen wird . For example, halogenated polysilanes having a low content of rings and low branched chains can be used, as described in PCT application WO2009 / 143823 A2, which is hereby incorporated by reference in terms of their properties and synthesis.
Weiterhin können die Nanodrähte aus Precursoren erhalten werden die überwiegend aus verzweigten Ketten bestehen. Furthermore, the nanowires can be obtained from precursors which consist predominantly of branched chains.
Beispielsweise können halogenierte Polysilane mit einem hohen Anteil an Ringen und verzweigten Ketten verwendet werden, wie sie in der PCT-Anmeldung WO 2009/143824 AI beschrieben werden, auf die hiermit im Bezug auf deren Eigenschaften und Synthese vollinhaltlich Bezug genommen wird. For example, halogenated polysilanes having a high content of rings and branched chains can be used as described in PCT application WO 2009/143824 A1 which are hereby incorporated by reference for their properties and synthesis.
Gemäß einer anderen Ausführungsform der Erfindung können Nanodrähte aus Precursoren erhalten werden deren According to another embodiment of the invention, nanowires can be obtained from precursors
Substituenten ausschließlich aus Wasserstoff bestehen. Es kommen dabei beispielsweise Polysilane, Polygermane oder Polygermasilane der allgemeinen Formeln SinH2n+2, GenH2n+2 und/oder Sin-xGexH2n+2 oder SixGen-xH2n+2 mit n > x mit n = 3 -10, weiter bevorzugt mit n = 3 -5, als Precursoren verwendet werden. Es können auch cyclische Polysilane, Polygermane und Polygermasilane mit den allgemeinen Formeln SinH2n, GenH2n und/oder Sin-xGexH2n oder SixGen-xH2n mit n > x mit n = 3 -10, weiter bevorzugt mit n = 4-6 verwendet werden. Substituents consist exclusively of hydrogen. There come, for example, polysilanes, polygermanes or Polygermasilane of the general formulas Si n H2 n + 2, n Ge n +2 H2 and / or Sin-xge x H 2n + 2 or Si x gene xH 2n + 2 with n> x with n = 3 -10, more preferably n = 3 -5, are used as precursors. It can n H2 n, Ge n n H2 and / or Sin-xge x H 2n or Si x gene xH 2n with n> x, n = 3 -10 and cyclic polysilanes, and polygermanes Polygermasilane by the general formulas Si, further preferably used with n = 4-6.
Die bei dem erfindungsgemäßen Verfahren verwendete The used in the inventive method
Gasmischung (Precursor und Trägergas und/oder Wasserstoff) kann zusätzlich durch ein Inertgas, wie beispielsweise Gas mixture (precursor and carrier gas and / or hydrogen) may additionally by an inert gas, such as
Helium, Neon, Argon, Krypton, Xenon oder Stickstoff verdünnt sein und/oder weitere Zumischungen (Additive), wie dotierende Additive, z. B. flüssige oder feste Bor-, Metall- oder Helium, neon, argon, krypton, xenon or nitrogen and / or further admixtures (additives), such as doping additives, eg. As liquid or solid boron, metal or
Phosphorverbindungen enthalten. Beispiele sind BBr3, TiCl4 oder PCI3. Die Zumischung von Inertgasen ist jedoch beim erfindungsgemäßen Verfahren nicht zwingend. Contain phosphorus compounds. Examples are BBr 3 , TiCl 4 or PCI 3 . However, the addition of inert gases is not mandatory in the process according to the invention.
Die Abscheidungstemperaturen beim erfindungsgemäßen Verfahren liegen zwischen 250 - 1100°C, bevorzugt zwischen 330 bis 950°C. The deposition temperatures in the process according to the invention are between 250 and 1100 ° C., preferably between 330 and 950 ° C.
Manche Ausführungsformen des erfindungsgemäße Verfahrens zeichnen sich dadurch aus, dass Nanodrähte aus den Some embodiments of the method according to the invention are characterized in that nanowires from the
erfindungsgemäßen Precursoren erhalten werden können, ohne dass während der Abscheidung die Anwesenheit von Wasserstoff in freier oder gebundener Form erforderlich ist, da andere Halbleiter-liefernde Reaktionen vorliegen, z.B.: S13CI8 -> 2 SiCl4 + Si, Ge3Cl8 -> 2 GeCl4 + Ge, 3 GeSi2Cl8 -> 4 SiCl4 + 2 GeCl4 + GeSi2. Bei manchen Ausführungsformen der Erfindung ist dies durch Verwendung von hochhalogenierten, insbesondere hochchlorierten Polysilanen der allgemeinen Formel SinCl2n+2 mit n = 2 -10, weiter bevorzugt mit n = 2 -5 oder durch Precursors according to the invention can be obtained without the presence of hydrogen during deposition is in free or bound form is required, as other semiconductor-supplying reactions exist, including: S1 3 CI 8 -> 2 SiCl 4 + Si, Ge 3 Cl 8 -> 2 GeCl 4 + Ge, 3 GeSi 2 Cl 8 -> 4 SiCl 4 + 2 GeCl 4 + GeSi 2 . In some embodiments of the invention, this is achieved by using highly halogenated, in particular highly chlorinated polysilanes of the general formula Si n Cl 2 n +2 where n = 2 -10, more preferably n = 2 -5 or by
Verwendung der korrespondierenden hochhalogenierten, Use of the corresponding highly halogenated,
insbesondere hochchlorierten Polygermane oder Polygermasilane möglich . especially highly chlorinated polygermane or polygermasilane possible.
Die Reaktionsdrücke liegen beim erfindungsgemäßen Verfahren im Bereich von 0,1 hPa bis 2200 hPa, bevorzugt bei 1 hPa bis 1100 hPa, weiter bevorzugt zwischen 200hPa und 1100 hPa. The reaction pressures in the process according to the invention are in the range from 0.1 hPa to 2200 hPa, preferably from 1 hPa to 1100 hPa, more preferably from 200 hPa to 1100 hPa.
Die Partialdrücke der erfindungsgemäßen Precursoren können auf einfache Weise durch Variation der Temperaturen des The partial pressures of the precursors according to the invention can be easily determined by varying the temperatures of the
Vorratsgefäßes sowie Zumischung von weiteren Gaskomponenten eingestellt werden. Reservoir and admixture of other gas components can be adjusted.
Als metallische Katalysatoren zur Abscheidung der As metallic catalysts for the deposition of
erfindungsgemäßen Nanodrähte kommen Metalle wie Bismut, bevorzugt Übergangsmetalle, wie beispielsweise Cu, Ag, Ni und Pt oder auch Au oder deren Mischungen zum Einsatz. Nanowires of the invention are metals such as bismuth, preferably transition metals, such as Cu, Ag, Ni and Pt or Au or mixtures thereof used.
Durch Verwendung der erfindungsgemäßen Precursoren können Katalysatoren zum Einsatz kommen, die die elektronischen Eigenschaften der Nanodrähte nicht beeinträchtigen. Besonders Ni und Pt sind kompatibel mit typischen Metalloxid- Halbleitertechnologien . By using the precursors according to the invention, it is possible to use catalysts which do not impair the electronic properties of the nanowires. Especially Ni and Pt are compatible with typical metal oxide semiconductor technologies.
Gemäß einer weiteren Ausführungsform der Erfindung können sich die neuartigen Precursoren an den metallischen Katalysa- toren zu den entsprechenden Elementen, z. B. Si oder Ge bzw. Legierungen z. B. Si-Ge-Legierungen zersetzen und so die Nanodrähte gebildet werden. According to a further embodiment of the invention, the novel precursors can be attached to the metallic catalyst. gates to the corresponding elements, eg. B. Si or Ge or alloys z. B. Si-Ge alloys decompose and so the nanowires are formed.
Die Korngrößen (Durchmesser) der Katalysatoren betragen 5 nm bis 1000 nm, bevorzugt 20 nm - 200 nm und können The particle sizes (diameter) of the catalysts are 5 nm to 1000 nm, preferably 20 nm - 200 nm and can
beispielsweise mittels eines Elektronenmikroskops bestimmt werden . be determined for example by means of an electron microscope.
Die erfindungsgemäßen Nanodrähte besitzen Durchmesser im Bereich von 50 bis 1200 nm und Längen im Bereich von 100 bis 100000 nm, wobei durch Variation der Wachstumszeiten auch andere Dimensionen erhalten werden können. The nanowires according to the invention have diameters in the range from 50 to 1200 nm and lengths in the range from 100 to 100000 nm, whereby other dimensions can also be obtained by varying the growth times.
Die Wachstumsraten liegen im Bereich von 5 nm bis 5000 nm pro Minute . The growth rates are in the range of 5 nm to 5000 nm per minute.
Durch Verwendung der erfindungsgemäßen Precursoren und/oder bei niedrigen Prozesstemperaturen von unter 600°C während der Bildung der Nanodrähte kann das Wachstum der erfindungsgemäßen Nanodrähte auch ohne Halogenwasserstoffbildung durchgeführt werden, wodurch auch das Ätzverhalten und die epitaktisch bedingte Ausrichtung der Nanodrähte beeinflusst werden . By using the precursors according to the invention and / or at low process temperatures of below 600 ° C. during the formation of the nanowires, the growth of the nanowires according to the invention can also be carried out without hydrogen halide formation, which also influences the etching behavior and the epitaxial alignment of the nanowires.
Die erfindungsgemäßen Precursoren sind bevorzugt sowohl für den Gas-/Flüssig-/Festphasen-Wachstumsprozess als auch für den Gas-/Fest-/Festphasen-Wachstumsprozess geeignet. Bei dem Gas-/Flüssig-/Festphasen-Wachstumsprozess bildet sich ein flüssiges Eutektikum aus dem Metall und dem Halbmetall- Element (z.B. Gold/Silicium) aus welchem sich Silicium auf dem festen Draht abscheidet und in welchem sich frisches Silicium durch Zersetzung der Prekursoren in der Gasphase löst. Bei dem Gas-/Fest-/Festphasen-Wachstumsprozess bildet sich eine feste Legierung des Halbmetall-Elementes im Metall durch das Auflösen des Elementes nach Zersetzung des The precursors according to the invention are preferably suitable both for the gas / liquid / solid phase growth process and for the gas / solid / solid phase growth process. In the gas / liquid / solid phase growth process, a liquid eutectic of the metal and the semi-metal element (eg, gold / silicon) is formed, from which silicon is deposited on the solid wire and in which fresh silicon is decomposed by decomposing the precursors the gas phase solves. In the gas / solid / solid phase growth process, a solid alloy of the metalloid element is formed in the metal by dissolution of the element after decomposition of the metal
Prekursors als auch durch die Abscheidung aus der festen Legierung auf den Nanodraht geschehen durch Prekursors as well as by the deposition of the solid alloy on the nanowire happen through
Diffusionsprozesse in der festen Legierung. Diffusion processes in the solid alloy.
Bei einigen Ausführungsformen der Erfindung können durch Verwendung der erfindungsgemäßen Precursoren, wie In some embodiments of the invention, by using the precursors of the invention, such as
beispielsweise der hochhalogenierten Polysilane, Polygermane oder Polygermasilane Wasserstofffreie Nanodrähte erhalten werden, da die Verwendung von Wasserstoff für die Erzeugung der Nanodrähte nicht erforderlich ist. For example, the highly halogenated polysilanes, polygermans or polygermasilanes hydrogen-free nanowires are obtained, since the use of hydrogen for the production of nanowires is not required.
Die erfindungsgemäß hergestellten Nanodrähte zeichnen sich ferner dadurch aus, dass die verwendeten neuartigen The nanowires produced according to the invention are further characterized in that the novel
Precursoren bevorzugt als single-source Precursoren für dotierte Halbleiterbereiche ausgelegt werden können. Precursors may preferably be designed as single-source precursors for doped semiconductor regions.
Hierdurch kann die Verwendung giftiger oder anderweitig gefährlicher Dotierstoffe, z.B. Phosphin und Diboran, entfallen, welche in konventionellen Dotierverfahren die Verwendung kostspieliger Gasversorgungs- und This may reduce the use of toxic or otherwise hazardous dopants, e.g. Phosphine and diborane omitted, which in conventional doping the use of expensive gas supply and
Sicherheitssysteme nötig machen. Gemäß einer Ausführungsform der Erfindung ist es somit möglich, die Nanodrähte unter Verwendung ausschließlich der Precursoren ohne zusätzliche Reaktivgase, wie zum Beispiel Wasserstoff zu erzeugen.  Make security systems necessary. Thus, according to one embodiment of the invention, it is possible to produce the nanowires using only the precursors without additional reactive gases, such as hydrogen.
Weiterhin zeichnen sich die erfindungsgemäß hergestellten Nanodrähte dadurch aus, dass die verwendeten neuartigen Precursoren zeitlich alternierend, d.h, z.B. im Wechsel p- und n-dotierte Prekursoren zum Wachstum eingesetzt werden können, wobei die Precursoren während des Prozesses Furthermore, the nanowires produced according to the invention are characterized in that the novel precursors used alternate in time, that is, e.g. In turn, p- and n-doped precursors can be used for growth, with the precursors during the process
mindestens einmal gewechselt werden. Hierdurch können z.B. unterschiedlich dotierte Bereiche vorzugsweise alternierend in Längsrichtung, insbesondere p/n-Übergänge erhalten werden, die z. B. für den photovoltaischen Effekt wichtig sind. be changed at least once. This can eg differently doped regions preferably alternately in the longitudinal direction, in particular p / n transitions are obtained, the z. B. are important for the photovoltaic effect.
Weiterhin können auf entsprechende Weise auch alternierende Bereiche mit unterschiedlichen Si : Ge-Verhältnissen erzeugt werden . Furthermore, alternating regions with different Si: Ge ratios can also be generated in a corresponding manner.
Weiterhin können Nanodrähte mit in Wachstumsrichtung Furthermore, nanowires can be used in the growth direction
alternierenden Zusammensetzungen erhalten werden. Dazu können alternierend unterschiedliche Prekursoren/-gemische während des Wachstums zur Verfügung gestellt werden. Dadurch können z.B. unterschiedliche Dotierungen oder Legierungen in einem Kristall eines Nanodrahts erhalten werden. alternating compositions are obtained. Alternately, different precursors / blends may be provided during growth. Thereby, e.g. different dopants or alloys can be obtained in a crystal of a nanowire.
Ferner zeichnet sich das erfindungsgemäße Verfahren zur Furthermore, the inventive method is characterized for
Herstellung von Nanodrähten dadurch aus, dass bei der Production of nanowires characterized by that in the
Abscheidung der Nanodrähte neben den Nanodrähten weniger als 10% pulverförmige Nebenprodukte, enthaltend z. B. die Deposition of the nanowires next to the nanowires less than 10% powdery by-products, containing z. B. the
elementaren Halbmetalle Si oder Ge im Abscheidungsbereich der Nanodrähte abgeschieden werden. Diese unerwünschten elemental semimetals Si or Ge are deposited in the deposition region of the nanowires. This unwanted
Nebenprodukte können durch unerwünschte, nicht katalysierte Zersetzung der Precursoren gebildet werden. By-products can be formed by undesired, uncatalyzed decomposition of the precursors.
Alle erfindungsgemäßen Precursoren können auch zum All precursors according to the invention can also be used for
epitaktischen Wachstum von Nanodrähten auf kristallinen Si- Substraten eingesetzt werden. epitaxial growth of nanowires on crystalline Si substrates.
Ausführungsbeispiel : Exemplary embodiment:
Unter Verwendung von hochchlorierten Polysilanen der Formel SinCl2n+2 mit n = 2 -10, beispielsweise S13CI8 als Precursoren mit Au als metallischem Katalysator konnten Nanodrähte unter Zersetzung der Precursoren bei Temperaturen zwischen 400 °C bis 900 °C erzeugt werden. Neben den Precursoren war nur noch Helium als Inertgas vorhanden, so dass die Nanodrähte insbesondere unter Abwesenheit von Wasserstoff oder anderen Reaktivgasen erzeugt wurden. Die Nanodrähte wiesen Using highly chlorinated polysilanes of formula Si n CL2n + 2 with n = 2 to 10, for example S1 3 CI 8 as precursors with Au as the metallic catalyst could nanowires with decomposition of the precursors at temperatures between 400 ° C to 900 ° C are generated. Besides the precursors was only Helium as an inert gas, so that the nanowires were generated in particular in the absence of hydrogen or other reactive gases. The nanowires showed
Dimensionen von 2 ym bis 20 ym Länge und eine Breite von 50 nm bis 500 nm auf. Dimensions of 2 ym to 20 ym in length and a width of 50 nm to 500 nm.

Claims

Patentansprüche claims
1. Nanodrähte, die aus Halbleitermaterialien bestehen oder diese umfassen und für Anwendungen in der Photovoltaik und der Elektronik dienen, dadurch gekennzeichnet, dass sie aus Precursoren erzeugt werden, welche Verbindungen oder Gemische von Verbindungen mit jeweils mindestens einer direkten Bindung Si-Si und/oder Ge-Si und/oder Ge-Ge Nanowires consisting of or comprising semiconductor materials and serving for applications in photovoltaics and electronics, characterized in that they are produced from precursors which contain compounds or mixtures of compounds each having at least one direct bond Si-Si and / or Ge-Si and / or Ge-Ge
darstellen, deren Substituenten aus Halogen und/oder Wasserstoff bestehen und in deren Zusammensetzung das Atomverhältnis Substituenten : Metalloidatomen mindestens 1 : 1 beträgt.  represent, whose substituents consist of halogen and / or hydrogen and in whose composition the atomic ratio substituents: Metalloidatomen is at least 1: 1.
2. Nanodrähte nach Anspruch 1, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche für die Abscheidung nicht die Anwesenheit von Wasserstoff in freier oder gebundener Form erfordern. 2. nanowires according to claim 1, characterized in that they are obtained from precursors which do not require the presence of hydrogen in free or bound form for the deposition.
3. Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche nahezu keine Ringe enthalten, wobei der Gehalt an Ringen bezogen auf das gesamte Produktgemisch unter < 2 Massen% beträgt. 3. nanowires according to one of the preceding claims, characterized in that they are obtained from precursors which contain almost no rings, wherein the content of rings based on the total product mixture is less than 2 mass%.
4. Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche nahezu keine verzweigten Ketten enthalten, wobei der Gehalt an 4. nanowires according to one of the preceding claims, characterized in that they are obtained from precursors containing almost no branched chains, wherein the content of
Verzweigungsstellen bezogen auf das gesamte  Branching points relative to the whole
Produktgemisch unter < 5 Massen%, bevorzugt < 2 Massen% beträgt. Product mixture is <5% by mass, preferably <2% by mass.
5. Nanodrähte nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden die überwiegend aus verzweigten Ketten bestehen . 5. nanowires according to one of claims 1 to 3, characterized in that they are obtained from precursors which consist predominantly of branched chains.
6. Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden deren Substituenten ausschließlich aus Halogen, insbesondere Chlor bestehen. 6. nanowires according to any one of the preceding claims, characterized in that they are obtained from precursors whose substituents consist exclusively of halogen, in particular chlorine.
7. Nanodrähte nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden deren Substituenten ausschließlich aus Wasserstoff bestehen. 7. nanowires according to one of claims 1 to 5, characterized in that they are obtained from precursors whose substituents consist exclusively of hydrogen.
Nanodrähte nach einem der Ansprüche 1 bis 4 oder 6, 7, dadurch gekennzeichnet dass diese aus Precursoren erhalten werden welche üb rwiegend aus linearen Ketten bestehen. Nanowires according to one of claims 1 to 4 or 6, 7, characterized in that they are obtained from precursors which consist predominantly of linear chains.
9. Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden welche eine mittlere Kettenlänge von n = 2-6, bevorzugt n = 2-5 besitzen. 9. nanowires according to any one of the preceding claims, characterized in that they are obtained from precursors which have an average chain length of n = 2-6, preferably n = 2-5.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden welche in inerten Lösungsmitteln leicht löslich sind. Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors which are readily soluble in inert solvents.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche nicht pyrophor, wie zum Beispiel hochhalogenierte Polysilane, wobei das Halogen insbesondere Cl und/oder Br ist, sind. Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors which are not pyrophoric, such as Example highly halogenated polysilanes, wherein the halogen is in particular Cl and / or Br are.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese weniger als 1 Atom-% Wasserstoff enthalten. Nanowires according to one of the preceding claims, characterized in that they contain less than 1 atomic% of hydrogen.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese 10 ppb bis 50000 ppm, bevorzugt lOppb bis 100 ppm Halogen, bevorzugt Chlor enthalten. Nanowires according to one of the preceding claims, characterized in that they contain 10 ppb to 50,000 ppm, preferably 10 ppm to 100 ppm of halogen, preferably chlorine.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche einen H-Gehalt kleiner als Atom-%, bevorzugt kleiner als 2 Atom% aufweisen. Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors which have an H content of less than atomic%, preferably less than 2 atomic%.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche p-dotierende Atome in den Precursormolekülen eingebaut enthalten. Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors which contain incorporated p-doping atoms in the precursor molecules.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche n-dotierende Atome in den Precursormolekülen eingebaut enthalten. Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors which contain incorporated n-doping atoms in the precursor molecules.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche p-dotierende Zusätze als separate Additive im Gemisch enthalten. Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche n-dotierende Zusätze als separate Additive im Gemisch enthalten. Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors containing p-doping additives as separate additives in the mixture. Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors containing n-doping additives as separate additives in the mixture.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche dotierende Zusätze aus den Gruppen des Periodensystems der Elemente links und rechts, der 4. Hauptgruppe (Gruppe 14) enthalten, bevorzugt aus den Gruppen 13 und 15. Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors containing doping additives from the groups of the Periodic Table of the Elements left and right, the 4th main group (group 14), preferably from groups 13 and 15.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus den Nanowires according to one of the preceding claims, characterized in that these from the
Precursoren erhalten werden, wobei zusätzlich Precursors are obtained, in addition
Beimischungen aus der Gruppe der Monosilane und/oder der Monogermane zugesetzt sind. Admixtures from the group of monosilanes and / or monogermane are added.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche an Katalysatoren zur Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors which are attached to catalysts for
Abscheidung der erfindungsgemäßen Nanodrähte zersetzt werden, wobei als Katalysatoren Metalle, bevorzugt Übergangsmetalle, oder deren Mischungen zum Einsatz kommen . Deposition of the nanowires of the invention are decomposed, using as catalysts metals, preferably transition metals, or mixtures thereof.
Nanodrähte nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass diese aus Precursoren erhalten werden, welche sowohl für den Gas- / Nanowires according to one of the preceding claims, characterized in that they are obtained from precursors which are suitable both for the gas /
Flüssig- / Festphasen-Wachstumsprozess als auch für den Gas- / Fest- / Festphasen-Wachstumsprozess geeignet sind. Liquid / solid phase growth process as well as for the gas / solid / solid phase growth process are suitable.
23. Verfahren zum Herstellen von Nanodrähten nach einem der vorangehenden Ansprüche durch Umsetzen von Precursoren oder Precursoren und Wasserstoff, dadurch gekennzeichnet, dass mit einem Mischungsverhältnis Precursor : Wasserstoff von 1:0 bis 1:1000000 23. A method for producing nanowires according to one of the preceding claims by reacting precursors or precursors and hydrogen, characterized in that with a mixing ratio precursor: hydrogen of 1: 0 to 1: 1 000 000
gearbeitet wird.  is working.
24. Verfahren nach dem vorangehenden Anspruch 23, dadurch gekennzeichnet, dass die Abscheidung ohne Anwesenheit von Wasserstoff in elementarer oder gebundener Form erfolgt . 24. The method according to the preceding claim 23, characterized in that the deposition takes place without the presence of hydrogen in elemental or bonded form.
25. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass bei der Abscheidung der Nanodrähte weniger als 10% pulverförmige 25. The method according to any one of the preceding claims, characterized in that in the deposition of the nanowires less than 10% powdery
Nebenprodukte auftreten.  By-products occur.
26. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem Druckbereich von 0,1 - 2200 hPa, bevorzugt 1 bis 1200 hPa gearbeitet wird. 26. The method according to any one of the preceding claims, characterized in that working in a pressure range of 0.1 - 2200 hPa, preferably 1 to 1200 hPa.
27. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abscheidung bei einer Temperatur von 250°C bis 1100°C, bevorzugt 300°C bis 950°C, weiter bevorzugt insbesondere 350°C bis 900°C stattfindet. 27. The method according to any one of the preceding claims, characterized in that the deposition takes place at a temperature of 250 ° C to 1100 ° C, preferably 300 ° C to 950 ° C, more preferably in particular 350 ° C to 900 ° C.
28. Verfahren zum Herstellen von Nanodrähten nach einem der vorangehenden Ansprüche durch Umsetzen von Precursoren oder Precursoren und Wasserstoff, dadurch gekennzeichnet, dass zeitlich alternierend 28. A method for producing nanowires according to one of the preceding claims by reacting precursors or precursors and hydrogen, characterized in that temporally alternating
unterschiedliche Precursoren zum Wachstum eingesetzt werden, wobei die Precursoren während des Prozesses mindestens einmal gewechselt werden. different precursors used for growth be replaced with the precursors at least once during the process.
Verfahren zum Herstellen von Nanodrähten nach einem der vorangehenden Ansprüche durch Umsetzen von Process for producing nanowires according to one of the preceding claims by reacting
Precursoren oder Precursoren und Wasserstoff, dadurch gekennzeichnet, dass Nanodrähte mit in Precursors or precursors and hydrogen, characterized in that nanowires with in
Wachstumsrichtung alternierenden Zusammensetzungen erhalten werden. Growth direction alternating compositions can be obtained.
EP11720073A 2010-05-05 2011-05-05 Nano-wires made of novel precursors and method for the production thereof Withdrawn EP2566813A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201010019565 DE102010019565A1 (en) 2010-05-05 2010-05-05 Nanowires of novel precursors and process for their preparation
DE201010019874 DE102010019874A1 (en) 2010-05-07 2010-05-07 Nanowire useful in photovoltaics and electronics, comprises semiconductor materials and precursors of compounds or mixtures of compounds with a direct silicon-silicon-, germanium-silicon- and/or germanium-germanium-bond
PCT/EP2011/057253 WO2011138418A1 (en) 2010-05-05 2011-05-05 Nano-wires made of novel precursors and method for the production thereof

Publications (1)

Publication Number Publication Date
EP2566813A1 true EP2566813A1 (en) 2013-03-13

Family

ID=44903639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11720073A Withdrawn EP2566813A1 (en) 2010-05-05 2011-05-05 Nano-wires made of novel precursors and method for the production thereof

Country Status (7)

Country Link
US (1) US9263262B2 (en)
EP (1) EP2566813A1 (en)
JP (1) JP2013527831A (en)
CA (1) CA2797834A1 (en)
SG (1) SG185123A1 (en)
WO (1) WO2011138418A1 (en)
ZA (1) ZA201208193B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263262B2 (en) * 2010-05-05 2016-02-16 Spawnt Private S.À.R.L. Nanowires made of novel precursors and method for the production thereof
DE102012108250A1 (en) 2012-09-05 2014-03-06 Spawnt Private S.À.R.L. Method for depositing silicon layers
KR101462025B1 (en) * 2013-11-29 2014-11-19 한국화학연구원 Inorganic-Orgaic Hybrid Light Harvesters of Perovskite Structure and Fabrication of Solar Cells Using Thereof
US10312081B2 (en) 2016-07-15 2019-06-04 University Of Kentucky Research Foundation Synthesis of metal oxide surfaces and interfaces with crystallographic control using solid-liquid-vapor etching and vapor-liquid-solid growth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011137446A2 (en) * 2010-04-30 2011-11-03 University Of Southern California Fabrication of silicon nanowires

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082254C (en) 1995-08-22 2002-04-03 松下电器产业株式会社 Silicon Structure, its mfg. method and apparatus, and solar cell using same
JP3053183B1 (en) 1999-08-27 2000-06-19 科学技術振興事業団 Floating melting using pseudo-microgravity field by magnetic force
JP4547519B2 (en) * 2004-10-22 2010-09-22 独立行政法人物質・材料研究機構 Method for producing silicon nanowire
JP4811851B2 (en) 2005-08-24 2011-11-09 独立行政法人物質・材料研究機構 Method for cross-linking growth of silicon nanowires
KR101287350B1 (en) 2005-12-29 2013-07-23 나노시스, 인크. Methods for oriented growth of nanowires on patterned substrates
EP2082419A4 (en) * 2006-11-07 2014-06-11 Systems and methods for nanowire growth
JP2008305982A (en) 2007-06-07 2008-12-18 Panasonic Corp Field effect transistor and its manufacturing method
WO2009043823A1 (en) 2007-09-28 2009-04-09 Advance Thun Ag Paraglider
DE102007046783A1 (en) 2007-09-29 2009-04-23 Carl Zeiss Nts Gmbh Device for deflecting or deflecting a particle beam
US7915146B2 (en) 2007-10-23 2011-03-29 International Business Machines Corporation Controlled doping of semiconductor nanowires
DE102008025260B4 (en) 2008-05-27 2010-03-18 Rev Renewable Energy Ventures, Inc. Halogenated polysilane and thermal process for its preparation
DE102008025261B4 (en) 2008-05-27 2010-03-18 Rev Renewable Energy Ventures, Inc. Halogenated polysilane and plasma-chemical process for its preparation
FR2944783B1 (en) * 2009-04-28 2011-06-03 Commissariat Energie Atomique PROCESS FOR THE PRODUCTION OF SILICON NANOWILS AND / OR GERMANIUM
US9263262B2 (en) * 2010-05-05 2016-02-16 Spawnt Private S.À.R.L. Nanowires made of novel precursors and method for the production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011137446A2 (en) * 2010-04-30 2011-11-03 University Of Southern California Fabrication of silicon nanowires

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011138418A1 *

Also Published As

Publication number Publication date
WO2011138418A1 (en) 2011-11-10
US20130214243A1 (en) 2013-08-22
SG185123A1 (en) 2012-11-29
ZA201208193B (en) 2014-06-25
CA2797834A1 (en) 2011-11-10
US9263262B2 (en) 2016-02-16
JP2013527831A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
EP2507174B1 (en) Method for producing halogenated polysilanes
DE60004566T2 (en) METHOD FOR DEPOSITING THIN TRANSITIONAL METAL NITRIDE FILMS
DE102009053804B3 (en) Process for the preparation of hydridosilanes
WO2011138418A1 (en) Nano-wires made of novel precursors and method for the production thereof
EP2655254B1 (en) Process for preparing hydridosilanes
EP0226898A2 (en) Composite powder, composite bodies and process for their production
DE112014001162T5 (en) Process for the preparation of trichlorosilane
DE102008056824A1 (en) Inorganic compounds
TWI776897B (en) Semiconductor sintered body, electrical and electronic component, and manufacturing method of semiconductor sintered body
AT149652B (en) Process for the production of carbides, carbonitrides, nitrides, borides, silicides and titanides, especially for hard alloys.
EP2142557B1 (en) Plasma-assisted organofunctionalization of silicon tetrahalides or organohalosilanes
EP2064267A2 (en) Solid polysilane mixtures
DE3241440A1 (en) Method of producing powdered silicon nitride
DE102009029054A1 (en) New nanoscale silicon particles that are functionalized by covalently bonded organic groups, useful to produce or in electronic components e.g. a solar cell, sensor, thin film transistor and conducting path, and for producing dispersion
DE102010019874A1 (en) Nanowire useful in photovoltaics and electronics, comprises semiconductor materials and precursors of compounds or mixtures of compounds with a direct silicon-silicon-, germanium-silicon- and/or germanium-germanium-bond
DE102012003585A1 (en) Process for producing a monocrystalline metal-semiconductor compound
DE112015005658T5 (en) Process for the hydrogenation of a halosilane
DE102010019565A1 (en) Nanowires of novel precursors and process for their preparation
EP2130214B1 (en) Selective growth of polycrystalline silicon-containing semiconductor material on a silicon-containing semiconductor surface
DE102014109275A1 (en) Process for the preparation of nanoparticles, nanoparticles and their use
DE102014007766A1 (en) Process for the plasma-chemical preparation of halogenated oligosilanes from tetrachlorosilane
DE102012108250A1 (en) Method for depositing silicon layers
DE102012213506A1 (en) Process for producing a single crystal of silicon
DE102014007767A1 (en) Process and apparatus for producing halogenated oligosilanes from silicon and tetrachlorosilane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150325

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160817