JP4811851B2 - Method for cross-linking growth of silicon nanowires - Google Patents

Method for cross-linking growth of silicon nanowires Download PDF

Info

Publication number
JP4811851B2
JP4811851B2 JP2005242748A JP2005242748A JP4811851B2 JP 4811851 B2 JP4811851 B2 JP 4811851B2 JP 2005242748 A JP2005242748 A JP 2005242748A JP 2005242748 A JP2005242748 A JP 2005242748A JP 4811851 B2 JP4811851 B2 JP 4811851B2
Authority
JP
Japan
Prior art keywords
silicon
silicon nanowires
cross
nanowires
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005242748A
Other languages
Japanese (ja)
Other versions
JP2007055840A (en
Inventor
裕 鈴木
弘 荒木
哲二 野田
正弘 土佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005242748A priority Critical patent/JP4811851B2/en
Publication of JP2007055840A publication Critical patent/JP2007055840A/en
Application granted granted Critical
Publication of JP4811851B2 publication Critical patent/JP4811851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体等情報通信用デバイス用素材として用いることのできる単結晶シリコンナノワイヤーを任意の金属粒子ドット間に架橋させる制御成長方法に関するものである。   The present invention relates to a controlled growth method in which single crystal silicon nanowires that can be used as a material for information communication devices such as semiconductors are crosslinked between arbitrary metal particle dots.

ナノテクノロジーの進展にともなって、シリコンナノワイヤーの合成とその応用が注目されている。   With the progress of nanotechnology, the synthesis of silicon nanowires and their application are attracting attention.

このような状況において、本発明者らは、ポリシランの低温CVDにより温度300℃以下においてシリコンナノワイヤーを合成する方法を確立し、これを新しい技術としてすでに提案しているところである(特許文献1)。   Under such circumstances, the present inventors have established a method for synthesizing silicon nanowires at a temperature of 300 ° C. or lower by low-temperature CVD of polysilane, and have already proposed this as a new technology (Patent Document 1). .

一方、シリコンナノワイヤーの応用として、マイクロマシン用の素材やナノサイズ半導体が考えられているが、半導体への応用では、リソグラフィー技術のように、回路に直接半導体ワイヤーが組み込まれるのが望ましい。そのためには、できるだけ低温でワイヤーを合成可能とする必要がある。さらに、任意の位置に制御した方向にナノワイヤーを自発的に成長させることができれば、より回路構成が容易になる。このような回路構成のためのシリコンナノワイヤーの架橋方法としては、対向するシリコンウエファー間にモノシリコンの熱分解を用いてワイヤーを作製する方法が報告されている(非特許文献1)。しかし、この方法ではシリコンナノワイヤーの成長反応に600℃以上の高温条件が必要であり、また形成される架橋構造が複雑であるという問題がある。
特願2004−307618号公報 M. Saif Islam et al, Nanotechnology, 15, (2004) L5-L8
On the other hand, materials for micromachines and nano-sized semiconductors are considered as applications of silicon nanowires. However, in semiconductor applications, it is desirable that semiconductor wires be directly incorporated into circuits as in lithography techniques. For that purpose, it is necessary to be able to synthesize the wire at as low a temperature as possible. Furthermore, if the nanowire can be grown spontaneously in a direction controlled to an arbitrary position, the circuit configuration becomes easier. As a method for bridging silicon nanowires for such a circuit configuration, a method of producing a wire using thermal decomposition of monosilicon between opposing silicon wafers has been reported (Non-patent Document 1). However, this method has a problem that a high temperature condition of 600 ° C. or more is required for the growth reaction of silicon nanowires, and the formed crosslinked structure is complicated.
Japanese Patent Application No. 2004-307618 M. Saif Islam et al, Nanotechnology, 15, (2004) L5-L8

本発明は、以上のとおりの背景から、すでに本発明者らが提案しているシリコンナノワイヤーのポリシランCVDによる合成法の特徴を生かし、従来のシリコンナノワイヤーの架橋のための600℃以上の高温での成長という、回路上への熱損傷が避けられず、しかも複雑な架橋構造であるという問題点を解決し、より低温での、回路上の熱損傷を与えることなく、任意の位置においてその場でシリコンナノワイヤーの架橋構造を形成することのできる新しい技術手段を提供することを課題としている。   The present invention is based on the background as described above, taking advantage of the characteristics of the synthesis method of silicon nanowires already proposed by the present inventors by polysilane CVD, and has a high temperature of 600 ° C. or higher for crosslinking of conventional silicon nanowires. This solves the problem of thermal damage on the circuit, which is unavoidable, and is a complicated cross-linked structure, and at a lower temperature without causing thermal damage on the circuit. It is an object to provide a new technical means capable of forming a crosslinked structure of silicon nanowires in situ.

本発明は、上記の課題を解決するための手段として以下のことを特徴としている。   The present invention is characterized by the following as means for solving the above problems.

第1:基板表面上の所定位置に触媒金属がコーティングされたシリコン角柱ドットパターンを配設し、ポリシランガスの300℃以下の温度でのCVDによって所定の触媒金属がコーティングされた前記シリコン角柱間にシリコンナノワイヤーを架橋成長させることを特徴とするシリコンナノワイヤーの架橋成長方法。
First: A silicon prism column pattern coated with a catalytic metal is disposed at a predetermined position on the substrate surface, and between the silicon prisms coated with the predetermined catalytic metal by CVD at a temperature of 300 ° C. or less of polysilane gas. A method for cross-linking and growing silicon nanowires, characterized in that silicon nanowires are cross-linked and grown.

第2:上記の方法により形成された架橋構造を有することを特徴とするシリコンナノワイヤーの架橋構造体。   Second: A crosslinked structure of silicon nanowires having a crosslinked structure formed by the above method.

上記のとおりの本発明によれば、従来の問題点を解消し、回路の熱損傷をともなうことなく、300℃以下の温度で任意の場所に結晶性のシリコンナノワイヤー架橋を作製できる。このため、任意の位置でのナノワイヤー配線による半導体回路作製が実現可能となる。また、反応ガスの圧力、流量を制御することによりワイヤーのサイズの制御が可能である。   According to the present invention as described above, a crystalline silicon nanowire bridge can be produced at an arbitrary place at a temperature of 300 ° C. or lower without solving the conventional problems and without causing thermal damage to the circuit. For this reason, semiconductor circuit fabrication by nanowire wiring at an arbitrary position can be realized. In addition, the wire size can be controlled by controlling the pressure and flow rate of the reaction gas.

本発明においては、ポリシランガスのCVD法によってシリコンナノワイヤーを架橋成長させることを特徴としている。   The present invention is characterized in that silicon nanowires are crosslinked and grown by a CVD method using a polysilane gas.

ポリシランガスは、熱的に不安定で、分解してSiを生成するものから選定されるが、300℃以下の温度でのCVDにおいて、たとえばジシラン、トリシラン等のガスが好適なものとして用いられる。CVDの温度は、300℃以下、より好適には250℃〜300℃の範囲とすることが考慮される。   The polysilane gas is selected from those which are thermally unstable and decompose to produce Si. For CVD at a temperature of 300 ° C. or less, for example, a gas such as disilane or trisilane is preferably used. It is considered that the CVD temperature is 300 ° C. or less, and more preferably in the range of 250 ° C. to 300 ° C.

本発明のシリコンナノワイヤーの架橋成長においては、たとえば好適には、約2μm角以下の触媒金属粒子のドットをあらかじめリソグラフィーによって作製し、全圧1〜5Torr、ポリシランガス流量0.1〜1SCCMの条件で温度約250〜300℃でパターン上に接触させることによってドット間にシリコンナノワイヤーの架橋を作る。ドットに用いる金属として金、銀、鉄、ニッケル等が例示される。その厚さは1〜5nm程度であることが望ましい。   In the cross-linking growth of the silicon nanowire of the present invention, for example, preferably, dots of catalyst metal particles of about 2 μm square or less are prepared in advance by lithography, and the total pressure is 1 to 5 Torr and the polysilane gas flow rate is 0.1 to 1 SCCM. The silicon nanowires are cross-linked between the dots by contacting them on the pattern at a temperature of about 250-300 ° C. Gold, silver, iron, nickel etc. are illustrated as a metal used for a dot. The thickness is desirably about 1 to 5 nm.

架橋成長されるシリコンナノワイヤーは、結晶性であって、好適には単結晶である。このシリコンナノワイヤーを架橋成長させる基板としては、たとえば好適にはシリコンあるいはシリカ等が例示される。   The silicon nanowires that are cross-linked and grown are crystalline and are preferably single crystals. Examples of the substrate on which the silicon nanowires are crosslinked and grown preferably include silicon or silica.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.

<実施例1>
シリコンナノワイヤーを成長、位置制御するために、シリコン基板上に触媒金属粒子のパターニングが必要である。まず、SOI(Silicon On Insurator)基板を用いてSiO2上に図1aの平面図のように、厚さ2μm、2μm角のSi単結晶ドットを約15μm間隔でエッチングにより作製する。続いてスパッタリングにより金を約2nmコーティングする。さらに、希釈フッ酸によりSiO2層を取り除くと、金粒子に覆われたシリコン角柱のパターンが得られる(図1b)。ここで、図1(a)(b)での符号は次のものを示している。
<Example 1>
In order to grow and control the position of silicon nanowires, it is necessary to pattern catalytic metal particles on a silicon substrate. First, using a SOI (Silicon On Insurator) substrate, Si single crystal dots having a thickness of 2 μm and a 2 μm square are formed on SiO 2 by etching at intervals of about 15 μm as shown in the plan view of FIG. Subsequently, about 2 nm of gold is coated by sputtering. Furthermore, when the SiO 2 layer is removed with diluted hydrofluoric acid, a silicon prism pattern covered with gold particles is obtained (FIG. 1b). Here, the symbols in FIGS. 1A and 1B indicate the following.

1:ドット間隔3〜20μm、2:金属/シリコン柱、3:SiO2層、4:シリコン基板。 1: dot spacing of 3-20 μm, 2: metal / silicon pillar, 3: SiO 2 layer, 4: silicon substrate.

実際に得られた像を図2に示す。   The actually obtained image is shown in FIG.

図2のように得られた金ドットパターン試料を反応容器内で1×10 −6 Torrまで真空に引く。ついで試料を296℃まで加熱する。温度が一定になったら、容器内にH2ガスで10%に希釈したSiガス(1SCCM)とアルゴンガス(20SCCM) を5Torrまで導入し、その状態で20min保持する。実験後、基板表面を電子顕微鏡で観察すると、図3のようにシリコンナノワイヤーが生成する。金ドット間で架橋されていることがわかる。
参考例1
シリコン基板上に金を約2nm厚さでスパッタコーティングし、約15μm幅の細い傷を入れる。その後、参考例1と同様な条件によりシリコンナノワイヤーを形成させる。図4に示すようにシリコンナノワイヤーによる架橋が行われていることがわかる。なお図4では反応ガスは右上から左下へ流しており、ほぼ流れの方向に沿ってワイヤーが形成される。
The gold dot pattern sample obtained as shown in FIG. 2 is evacuated to 1 × 10 −6 Torr in a reaction vessel. The sample is then heated to 296 ° C. When the temperature becomes constant, Si 2 H 6 gas (1 SCCM) and argon gas (20 SCCM) diluted to 10% with H 2 gas are introduced into the container up to 5 Torr, and kept in that state for 20 min. After the experiment, when the substrate surface is observed with an electron microscope, silicon nanowires are generated as shown in FIG. It can be seen that the gold dots are cross-linked.
< Reference Example 1 >
On a silicon substrate, gold is sputter-coated with a thickness of about 2 nm, and a thin scratch having a width of about 15 μm is made. Thereafter, silicon nanowires are formed under the same conditions as in Reference Example 1 . As shown in FIG. 4, it can be seen that crosslinking with silicon nanowires is performed. In FIG. 4, the reaction gas flows from the upper right to the lower left, and a wire is formed substantially along the flow direction.

リソグラフィーにより作製した触媒金属ドットパターンを示した図であって、(a)上から見たパターン、(b)断面図である。It is the figure which showed the catalyst metal dot pattern produced by lithography, Comprising: (a) The pattern seen from the top, (b) It is sectional drawing. 触媒金属ドット(2×2×4(高さ))パターンの例を示した写真図である。It is the photograph which showed the example of the catalyst metal dot (2x2x4 (height)) pattern. 金ドット間を架橋したシリコンナノワイヤーの写真図である。It is a photograph figure of silicon nanowire which bridged between gold dots. シリコンナノワイヤーブリッジの例の写真図である。It is a photograph figure of the example of a silicon nanowire bridge.

符号の説明Explanation of symbols

1 ドット間隔3−20μm
2 金属/シリコン柱
3 SiO2
4 シリコン基板
1 dot spacing 3-20μm
2 Metal / silicon pillar 3 SiO 2 layer 4 Silicon substrate

Claims (2)

基板表面上の所定位置に触媒金属がコーティングされたシリコン角柱ドットパターンを配設し、ポリシランガスの300℃以下の温度でのCVDによって所定の触媒金属がコーティングされた前記シリコン角柱間にシリコンナノワイヤーを架橋成長させることを特徴とするシリコンナノワイヤーの架橋成長方法。 Silicon nanowires are disposed between the silicon prisms coated with a predetermined catalytic metal by CVD at a temperature of 300 ° C. or less of polysilane gas, with a silicon prism column pattern coated with a catalytic metal at a predetermined position on the substrate surface. A method for cross-linking growth of silicon nanowires, characterized by comprising: 請求項1の方法により形成された架橋構造を有することを特徴とするシリコンナノワイヤーの架橋構造体。
A crosslinked structure of silicon nanowires having a crosslinked structure formed by the method of claim 1.
JP2005242748A 2005-08-24 2005-08-24 Method for cross-linking growth of silicon nanowires Expired - Fee Related JP4811851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242748A JP4811851B2 (en) 2005-08-24 2005-08-24 Method for cross-linking growth of silicon nanowires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242748A JP4811851B2 (en) 2005-08-24 2005-08-24 Method for cross-linking growth of silicon nanowires

Publications (2)

Publication Number Publication Date
JP2007055840A JP2007055840A (en) 2007-03-08
JP4811851B2 true JP4811851B2 (en) 2011-11-09

Family

ID=37919646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242748A Expired - Fee Related JP4811851B2 (en) 2005-08-24 2005-08-24 Method for cross-linking growth of silicon nanowires

Country Status (1)

Country Link
JP (1) JP4811851B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101475524B1 (en) 2008-08-05 2014-12-23 삼성전자주식회사 Nanowire comprising silicon rich oxide and method for producing the same
KR101091778B1 (en) 2009-05-15 2011-12-12 고려대학교 산학협력단 The method of preparing a porous polyimide memebrane using a silicon nanowire and the polyimide membrane prepared by the same method
JP2013527831A (en) * 2010-05-05 2013-07-04 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Nanowires produced from novel precursors and methods for producing the same
DE102010019874A1 (en) 2010-05-07 2011-11-10 Spawnt Private S.À.R.L. Nanowire useful in photovoltaics and electronics, comprises semiconductor materials and precursors of compounds or mixtures of compounds with a direct silicon-silicon-, germanium-silicon- and/or germanium-germanium-bond
DE102010019565A1 (en) 2010-05-05 2011-11-10 Spawnt Private S.À.R.L. Nanowires of novel precursors and process for their preparation
WO2011155397A1 (en) * 2010-06-11 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device
CN105097439B (en) * 2014-05-23 2017-10-27 中国科学院上海微系统与信息技术研究所 The method that a kind of micron of copper Graph Control silicon nanowires is accurately positioned growth
KR20160021314A (en) 2014-08-14 2016-02-25 삼성디스플레이 주식회사 Method for manufacturing nanowires

Also Published As

Publication number Publication date
JP2007055840A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4811851B2 (en) Method for cross-linking growth of silicon nanowires
KR101626181B1 (en) Method for the controlled growth of a graphene film
US8669171B2 (en) Method for eliminating the metal catalyst residues on the surface of wires produced by catalytic growth
JP4922337B2 (en) Method for producing silicon nanostructure
JP2010509171A (en) Nanowire growth system and method
US20050133254A1 (en) Direct integration of inorganic nanowires with micron-sized electrodes
JP2009522197A5 (en)
JP2006248893A (en) Nano-wires and method of manufacturing the same
JP2009522197A (en) Method for oriented growth of nanowires on patterned substrates
JP2007161576A (en) Method for producing carbon nanotube array
JP4547519B2 (en) Method for producing silicon nanowire
JPH05319983A (en) Production of single crystal
US7053403B1 (en) Iridium oxide nanostructure
TW201007819A (en) Method for fabricating circuit structure
JP2004193523A (en) Nanostructure, electronic device, and its manufacturing method
JP2007223024A (en) Method for producing support for growth of localized elongated nanostructure
JP4863361B2 (en) Method for producing carbon nanotube
JP5896494B2 (en) Method for producing catalytic metal layer and method for producing graphene material
JP2003158093A (en) Inter-element wiring formation method
JP2011100779A (en) Semiconductor device and method of manufacturing the same
KR102161547B1 (en) FABRICATING METHOD OF β-Ga2O3 THIN FILM LAYER WITH EXCELLENT ELECTRICAL AND THERMAL PROPERTIES
KR101538742B1 (en) Synthesis method for nanowires
Doerk et al. Branching induced faceting of Si nanotrees
CN104966666A (en) Manufacturing method for nitride nano wire
JP3849026B2 (en) Method for producing silicon nanowire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees