EP2064267A2 - Solid polysilane mixtures - Google Patents
Solid polysilane mixturesInfo
- Publication number
- EP2064267A2 EP2064267A2 EP07817520A EP07817520A EP2064267A2 EP 2064267 A2 EP2064267 A2 EP 2064267A2 EP 07817520 A EP07817520 A EP 07817520A EP 07817520 A EP07817520 A EP 07817520A EP 2064267 A2 EP2064267 A2 EP 2064267A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- mixtures
- polysilanes
- solid
- polysilane
- polysilanes according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/60—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
Definitions
- the invention relates to solid mixtures of polysilanes whose individual components decompose and which are obtained from the hydrogenation of plasma-chemically generated largely halogenated, preferably fluorinated, particularly preferably chlorinated Polysilanmischungen.
- polysilanes are generally compounds of the composition Si n H 2n or Si n H 2n + 2 where n> 1.
- Polysilanes may contain linear si n chains and / or Si n rings, as well as chain branches. exhibit.
- Polysilanes of the composition Si n H 2n or Si n H 2n + 2 are denoted by n> 10, preferably n> 12, as high molecular weight polysilanes or high molecular weight polysilanes according to the invention, this corresponds to molar masses of more than 350 g / mol.
- polysilanes are referred to, which are solid at room temperature, as solid mixtures of polysilanes mixtures of polysilanes whose individual components are solid at room temperature.
- boiling is defined as a state in which the vapor pressure of a substance corresponds to the applied process pressure, the boiling point in the sense of the invention being the temperature at which the vapor pressure of a substance reaches the applied process pressure.
- the substance may be in the liquid or solid state at the boiling point and during boiling. This explicitly includes sublimation, the direct transition from solids to the gas state. If the decomposition temperature of a substance is reached before it begins to boil, then the boiling point of the substance under the applied process pressure is the temperature at which, based on the vapor pressure curve of the substance, it would theoretically boil.
- Hydrogen-substituted polysilanes with high boiling points are suitable for the production of Silici ⁇ m-Schlvier or Sillcl ⁇ m structures, since solutions of the Polysilanes in solvents with a lower boiling point than that of the dissolved polysilanes selectively applied, the solvent removed and the remaining high-boiling polysilanes can be decomposed by suitable processing to silicon (Nature 2006, 440, 783-786).
- EP 1087428 A1 describes that solutions of polysilanes can be applied in a targeted manner by means of ink-jet processes in order to arrive at silicon structures.
- EP 1085579 A1 discloses that, by suitable methods, such solutions can be applied over a wide area in order to produce thin films of silicon.
- EP 1357154 A1 discloses that a particular advantage of using high molecular weight polysilanes compared to polysilanes with low boiling points is the possibility of process control close to atmospheric pressure and the avoidance of CVD method. At the same time, high molecular weight polysilanes are safer to handle than low molecular weight because they are less prone to auto-ignition due to their lower vapor pressure and lower reactivity with air.
- a disadvantage of the process described in EP 1357154 A1 for the preparation of the polysilane mixtures used in the prior art is the complex, multistage process in which first low molecular weight polysilanes are synthesized which are then partially subjected to photochemical chain extension in order to obtain a usable polysilane mixture with high-boiling fractions reach.
- low-boiling polysiams are lost through evaporation or must be separated from the high-boiling fractions by suitable separation techniques prior to processing the polysilane mixture.
- the rapid decomposition of polysilanes to silicon begins at about 300 ° C.
- the polysilanes used should be under the used process pressure do not boil below the decomposition temperature.
- the boiling point of a polysilane at a given pressure increases with increasing molecular weight. It is known that, for chain-type polysilanes and atmospheric pressure, a boiling point of about 300 ° C. is achieved with the decasilane Si 10 H 22 , a boiling point of about 350 ° C. with the tridekasiane Si 13 H 28 .
- the melting points of the corresponding polysilanes are above 0 ° C, already the dodecasifan Si 12 H 26 is solid at room temperature. Accordingly, mixtures of polysilanes, the components of which are solid at room temperature, are particularly suitable for allowing decomposition to silicon with low evaporation rates.
- DE 102005024041.0 discloses that mixtures of largely chlorinated polysilanes can be obtained by reaction of SiCl 4 with H 2 in a plasma process at low temperature.
- the object of the invention is to provide polysilane mixtures with high boiling points and sufficient solubility, the synthesis of which is simplified in comparison to the prior art and thus less expensive.
- the object is achieved by hydrogenating a mixture of substantially chlorinated polysilanes, produced according to DE 102005024041.0, without further purification in suitable processes, and then obtaining solid mixtures of polysides by suitable aftertreatment.
- the object is achieved by hydrogenating this fraction in suitable processes according to a fractionation with separation of the desired high molecular weight fraction of the chloropolysilane mixtures as described in DE 102006 034061.2 and appropriately treating the resultant mixture of hydrogenated polysilanes to obtain a solid mixture of polysilanes ,
- the polysilanes volatile below their decomposition temperature below the desired process pressure can be separated, for example, by atmospheric pressure distillation or distillation under reduced pressure. These volatile polysilanes can be further used for the precipitation of silicon layers in gas phase processes, for example CVD processes.
- the separation of the polysilanes of insufficient molecular weight may be effected by suitable solvents or solvent mixtures in which polysilanes of suitable molecular mass, in contrast to those of lower molecular mass, are less or more soluble.
- a separation of the resulting solutions from the solid Röckpartyn can be done for example by filtration or centrifugation.
- the separation of the polysilanes of insufficient molecular weight can be carried out by chromatographic methods, for example GPC or HPLC.
- a solvent for solid polysilane mixtures can serve low molecular weight polysilanes, which are removed after application of the liquid by suitable methods on a substrate by evaporation.
- Liquids are used which do not react with components of the Poiysilanmischungen under the handling conditions and have a boiling point which is below the decomposition temperature of the Polysilanmischungen.
- Solid polysilane mixtures can be applied as solids to surfaces and, after application by heat treatment, melted to produce liquid polysilicon structures or polysilane films which are thereafter decomposed to silicon by suitable methods.
- Solid polysilane mixtures can form dispersions with solvents or solvent mixtures in which the polysilanes are only partially dissolved. Sufficiently small sizes of the dispersed polysilane particles further permit processing into homogeneous polysilicon structures or polysilane layers, especially if the process temperatures result in melting of the remaining polysilane mixture after evaporation of the solvent or solvent mixture.
- the compounds or dispersions of the solid polysilane mixtures may be admixed with further compounds in a suitable amount which comprise, for example, at least one element of the main groups I or V of the Periodic Table of the Elements,
- the compounds admixed to the solid polysilane mixtures or their solutions or dispersions preferably have boiling points below the applied process pressure which are at least as high as the decomposition temperatures of the polysilane mixtures, more preferably decompose at temperatures similar to those of the polysilane mixtures, so that the concentrations of the admixed elements in the resulting silicon can be controlled and predicted.
- Solid polysilane mixtures oxidize slowly under air contact, but are not self-igniting. The solid ignited in air with a flame goes out automatically when removing the ignition source and in the absence of an additional heat source.
- solid polysilane mixtures before further use of the solid polysilane mixtures, it proves to be advantageous to store them in a transport container whose surface is made light-tight and the interior of which is acted upon by the inert Polysilangemisch with an inert gas. It also proves to be advantageous to provide this transport container with a take-off device with which the solid Polysilangemisch dosed withdrawn and can be supplied for further use.
- the mixtures can be processed into shaped articles, for example pellets or rods.
- the production of moldings may be associated with the addition of additives in order to promote the cohesion of the moldings and / or to reduce the Oxidungsempfind ⁇ ndige of the polysilanes contained.
- the production of the moldings can take place up to temperatures at which the polysilane mixtures solid at room temperature melt completely or partially, but do not yet decompose.
- the shaped bodies can also be subsequently coated with a functional layer which, for example, reduces abrasion, improves the cohesion of the shaped bodies and / or reduces the oxidation sensitivity of the shaped bodies.
- the substances used as aggregates or coating materials should not be mixed with the components of the processing temperatures
- Polysilane mixtures react and either selectively before or during the preparation of Polysilanariaen or dispersions of the polysilanes or, if they remain in the solution or dispersion of Polysilanmischungen, under the applied process pressure from the surface evaporate on which silicon is to be produced before the decomposition temperature of the Potysilanmischungen is reached in order to avoid contamination of the resulting Silicium Modellen or layers.
- Polysilane mixture are dissolved in 350 ml_ benzene and added dropwise with stirring at 0 ° C 180 mL of a 1 M LiAIH 4 solution in diethyl ether. Thereafter, allow to warm slowly to room temperature. After a total of 24 h, the solid precipitate is filtered off and washed with benzene. The residue is extracted to remove lithium salts with a total of 400 mL of absolute ethanol at room temperature and the residue is isolated 3.85 g of solid Polysifanmischung.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Silicon Polymers (AREA)
- Silicon Compounds (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
Beschreibung description
Feste Polysilan-MischungenSolid polysilane mixtures
Die Erfindung betrifft feste Mischungen von Polysilanen, deren einzelne Komponenten sich zersetzen und die aus der Hydrierung von auf plasmachemtschem Wege erzeugten weitgehend halogenierten, vorzugsweise fluorierten, besonders bevorzugt chlorierten Polysilanmischungen gewonnen werden.The invention relates to solid mixtures of polysilanes whose individual components decompose and which are obtained from the hydrogenation of plasma-chemically generated largely halogenated, preferably fluorinated, particularly preferably chlorinated Polysilanmischungen.
Als Polysilane im Sinne der Erfindung werden allgemein Verbindungen der Zusammensetzung SinH2n oder SinH2n+2 mit n > 1 bezeichnet. Polysilane können lineare sin-Ketten und/oder Sin-Ringe enthalten sowie Kettenverzweigungen. aufweisen.In the context of the invention, polysilanes are generally compounds of the composition Si n H 2n or Si n H 2n + 2 where n> 1. Polysilanes may contain linear si n chains and / or Si n rings, as well as chain branches. exhibit.
Als hochmolekulare Polysilane oder Polysilane hoher Molekülmasse im Sinne der Erfindung werden Polysilane der Zusammensetzung SinH2n oder SinH2n+2 mit n > 10, vorzugsweise mit n > 12 bezeichnet, dies entspricht Molmassen von mehr als 350 g/mol.Polysilanes of the composition Si n H 2n or Si n H 2n + 2 are denoted by n> 10, preferably n> 12, as high molecular weight polysilanes or high molecular weight polysilanes according to the invention, this corresponds to molar masses of more than 350 g / mol.
Als feste Polysilane im Sinne der Erfindung werden Polysilane bezeichnet, die bei Raumtemperatur fest sind, als feste Mischungen von Polysilanen Mischungen von Polysilanen, deren einzelne Komponenten bei Raumtemperatur fest sind.As solid polysilanes according to the invention polysilanes are referred to, which are solid at room temperature, as solid mixtures of polysilanes mixtures of polysilanes whose individual components are solid at room temperature.
Als Sieden im Sinne der Erfindung wird ein Zustand bezeichnet, in dem der Dampfdruck einer Substanz dem angelegten Prozessdruck entspricht, als Siedepunkt im Sinne der Erfindung die Temperatur, bei der der Dampfdruck einer Substanz den angelegten Prozessdruck erreicht. Die Substanz kann am Siedepunkt und während des Siedens in flüssiger oder in fester Form vorliegen. Dies schließt ausdrücklich die Sublimation, den direkten Übergang von Feststoffen in den Gaszustand, mit ein. Wird die Zersetzungstemperatur einer Substanz erreicht, bevor sie zu sieden beginnt, so ist unter dem Siedepunkt der Substanz unter dem angelegten Prozessdruck diejenige Temperatur zu verstehen, bei der ausgehend von der Dampfdruckkurve der Substanz diese theoretisch sieden würde.For the purposes of the invention, boiling is defined as a state in which the vapor pressure of a substance corresponds to the applied process pressure, the boiling point in the sense of the invention being the temperature at which the vapor pressure of a substance reaches the applied process pressure. The substance may be in the liquid or solid state at the boiling point and during boiling. This explicitly includes sublimation, the direct transition from solids to the gas state. If the decomposition temperature of a substance is reached before it begins to boil, then the boiling point of the substance under the applied process pressure is the temperature at which, based on the vapor pressure curve of the substance, it would theoretically boil.
Wasserstoff-substituierte Polysilane mit hohen Siedepunkten eignen sich für die Erzeugung von Siliciυm-Schlchten oder Sillclυm-Strukturen, da Lösungen der Polysilane in Lösungsmitteln mit niedrigerem Siedepunkt als dem der gelösten Polysilane gezielt aufgetragen, das Lösungsmittel entfernt und die zurückbleibenden hochsiedenden Polysilane durch geeignete Prozessierung zu Silicium zersetzt werden können (Nature 2006, 440, 783-786). EP 1087428 A1 beschreibt, dass Lösungen von Polysilanen mit Tintenstrahl-Verfahren gezielt aufgetragen werden können, um zu Silicium-Strυkturen zu gelangen. EP 1085579 A1 legt offen, dass durch geeignete Methoden solche Lösungen flächig aufgetragen werden können, um dünne Filme aus Silicium zu erzeugen. EP 1357154 A1 offenbart, dass ein besonderer Vorteil der Verwendung hochmolekularer Polysilane im Vergleich zu Polysilanen mit niedrigen Siedepunkten in der Möglichkeit einer Prozessführung nahe Normaldruck und der Vermeidung von CVD-Verfahren liegt. Gleichzeitig sind hochmolekulare Polysilane sicherer handzuhaben als niedermolekulare, da sie auf Grund ihres niedrigeren Dampfdruckes und geringeren Reaktionsbereitschaft mit Luft weniger zur Selbstentzündung neigen. Ein Nachteil des in EP 1357154 A1 beschriebenen Verfahrens zur Herstellung der im Stand der Technik eingesetzten PolysϊJanmischungen ist der aufwendige, mehrstufige Prozess, bei dem zunächst niedermolekulare Polysilane synthetisiert werden, welche danach teilweise einer photochemischen Kettenveriängerung unterzogen werden um zu einer verwendbaren Polysilanmischung mit hochsiedenden Anteilen zu gelangen. Während der Prozessierung gehen niedrig siedende Polysiiane durch Verdampfen verloren oder müssen durch geeignete Trennverfahren vor der Prozessierung der Polysilanmischung von den hochsiedenden Anteilen abgetrennt werden. Die in GB 2077710 A beschriebene alternative Darstellung von Polysilanen durch Reaktion von Halogensilanen SiHmX4-m mit einem stöchiometrischen Überschuss an Alkalimetallen erzeugt in THF unlösliche Polysilane mit unbestimmter Kettenlänge, deren Löslichkeit und thermisches Verhalten nicht beschrieben sind. Zur Darstellung von Polysilanen mit einer empirischen Zusammensetzung nahe (SiH2)0 ist der Einsatz von H2SiCI2 notwendig, welches gegen Dismutation nicht beständig ist, so dass im Laufe einer Lagerung auch selbstentzundliches SiH4 entsteht. Des weiteren sind Alkalimetalle vergleichsweise teure Reduktionsmittel.Hydrogen-substituted polysilanes with high boiling points are suitable for the production of Siliciυm-Schlchten or Sillclυm structures, since solutions of the Polysilanes in solvents with a lower boiling point than that of the dissolved polysilanes selectively applied, the solvent removed and the remaining high-boiling polysilanes can be decomposed by suitable processing to silicon (Nature 2006, 440, 783-786). EP 1087428 A1 describes that solutions of polysilanes can be applied in a targeted manner by means of ink-jet processes in order to arrive at silicon structures. EP 1085579 A1 discloses that, by suitable methods, such solutions can be applied over a wide area in order to produce thin films of silicon. EP 1357154 A1 discloses that a particular advantage of using high molecular weight polysilanes compared to polysilanes with low boiling points is the possibility of process control close to atmospheric pressure and the avoidance of CVD method. At the same time, high molecular weight polysilanes are safer to handle than low molecular weight because they are less prone to auto-ignition due to their lower vapor pressure and lower reactivity with air. A disadvantage of the process described in EP 1357154 A1 for the preparation of the polysilane mixtures used in the prior art is the complex, multistage process in which first low molecular weight polysilanes are synthesized which are then partially subjected to photochemical chain extension in order to obtain a usable polysilane mixture with high-boiling fractions reach. During processing, low-boiling polysiams are lost through evaporation or must be separated from the high-boiling fractions by suitable separation techniques prior to processing the polysilane mixture. The alternative preparation of polysilanes described in GB 2077710 A by reaction of halosilanes SiH m X 4-m with a stoichiometric excess of alkali metals produces THF-insoluble polysilanes of indefinite chain length, the solubility and thermal behavior of which are not described. For the preparation of polysilanes with an empirical composition close to (SiH 2 ) 0 , the use of H 2 SiCl 2 is necessary, which is not resistant to dismutation, so that self-ignitable SiH 4 is formed during storage. Furthermore, alkali metals are comparatively expensive reducing agents.
Die schnelle Zersetzung von Polysilanen zu Silicium beginnt etwa bei 300°C. Um die Verluste von Silicium in die Gasphase durch das Verdampfen von niedermolekularen Polysilanen möglichst gering zu halten, sollten die eingesetzten Polysilane unter dem verwendeten Prozessdruck nicht unterhalb der Zersetzungstemperatur sieden. Der Siedepunkt eines Polysilans bei einem vorgegebenem Druck erhöht sich mit steigender Molmasse. Es ist bekannt, dass für kettenförmige Polysilane und Normaldruck ein Siedepunkt von ca. 300°C mit dem Dekasilan Si10H22 erreicht wird, ein Siedepunkt von ca. 350°C mit dem Tridekasiian Si13H28. Die Schmelzpunkte der entsprechenden Polysilane liegen oberhalb 0°C, bereits das Dodekasifan Si12H26 ist bei Raumtemperatur fest. Entsprechend sind Mischungen von Polysilanen, deren Komponenten bei Raumtemperatur fest sind, in besonderer Weise dazu geeignet, mit geringen Verdampfungsveriusten die Zersetzung zu Silicium zu ermöglichen.The rapid decomposition of polysilanes to silicon begins at about 300 ° C. In order to minimize the losses of silicon in the gas phase by the evaporation of low molecular weight polysilanes, the polysilanes used should be under the used process pressure do not boil below the decomposition temperature. The boiling point of a polysilane at a given pressure increases with increasing molecular weight. It is known that, for chain-type polysilanes and atmospheric pressure, a boiling point of about 300 ° C. is achieved with the decasilane Si 10 H 22 , a boiling point of about 350 ° C. with the tridekasiane Si 13 H 28 . The melting points of the corresponding polysilanes are above 0 ° C, already the dodecasifan Si 12 H 26 is solid at room temperature. Accordingly, mixtures of polysilanes, the components of which are solid at room temperature, are particularly suitable for allowing decomposition to silicon with low evaporation rates.
Aus DE 102005024041.0 ist bekannt, dass durch Reaktion von SiCl4 mit H2 in einem Plasmaverfahren bei niedriger Temperatur Mischungen aus weitgehend chlorierten Polysilanen erhalten werden können.DE 102005024041.0 discloses that mixtures of largely chlorinated polysilanes can be obtained by reaction of SiCl 4 with H 2 in a plasma process at low temperature.
Aufgabe der Erfindung ist es, Polysilanmischungen mit hoben Siedepunkten und hinreichenden Löslichkeϊten zur Verfügung zu stellen, deren Synthese im Vergleich zum Stand der Technik vereinfacht und somit kostengünstiger ist.The object of the invention is to provide polysilane mixtures with high boiling points and sufficient solubility, the synthesis of which is simplified in comparison to the prior art and thus less expensive.
Die Aufgabe wird dadurch gelöst, dass eine nach DE 102005024041.0 als Zwischenprodukt erzeugte Mischung weitgehend chlorierter Polysilane ohne weitere Aufreinigung in geeigneten Verfahren hydriert und danach durch geeignete Nachbehandlung feste Mischungen von Polysiianen erhalten werden.The object is achieved by hydrogenating a mixture of substantially chlorinated polysilanes, produced according to DE 102005024041.0, without further purification in suitable processes, and then obtaining solid mixtures of polysides by suitable aftertreatment.
Alternativ wird die Aufgabe dadurch gelöst, dass nach einer in DE 102006 034061.2 beschriebenen Fraktionierung mit Abtrennung des gewünschten hochmolekularen Anteils der Chlorpolysilanmiscbungen dieser Anteil in geeigneten Verfahren hydriert und die entstehende Mischung von hydrierten Poiysilanen in geeigneterweise nachbehandelt wird, um eine feste Mischung von Poiysilanen zu erhalten.Alternatively, the object is achieved by hydrogenating this fraction in suitable processes according to a fractionation with separation of the desired high molecular weight fraction of the chloropolysilane mixtures as described in DE 102006 034061.2 and appropriately treating the resultant mixture of hydrogenated polysilanes to obtain a solid mixture of polysilanes ,
Vorzugsweise werden für die Hydrierung Verfahren und/oder Reaktionsbeclingungen eingesetzt, die nicht zu einer Verringerung der Anzahl n der Siüciumatome in den einzelnen Komponenten der eingesetzten Mischung SinXn oder SinXn+2 (X ist H oder Cl) führen, also keine Spaltung von Si-Si-Bindungen bewirken. Die Hydrierung der unbehandelten weitgehend chlorierten Polysilanmischungen oder der weitgehend chlorierten Potysilanfraktioneπ geeigneter Molekularmassen kann mittels im Stand der Technik bekannter stöchlometrischer chemischer Umsetzungen mit Metall- oder Metalloidhydriden erfolgen, beispielsweise LiAIH4, NaAIH4, NaBH4 oder auch mittels geeigneter katalytischer Verfahren mit Wasserstoff oder . geeigneten Wasserstoff-Trägerverbindungen.For the hydrogenation, preference is given to using processes and / or reaction conditions which do not lead to a reduction in the number n of silicon atoms in the individual components of the mixture used Si n X n or Si n X n + 2 (X is H or Cl), ie do not cause cleavage of Si-Si bonds. The hydrogenation of the untreated largely chlorinated polysilane mixtures or the largely chlorinated Potysilanfraktioneπ of suitable molecular masses can be carried out by known in the art stoichiometric chemical reactions with metal or Metallloidhydriden, for example LiAIH 4 , NaAIH 4 , NaBH 4 or by suitable catalytic methods with hydrogen or. suitable hydrogen carrier compounds.
Nach Hydrierung der unbehandelten weitgehend chlorierten Polysilanmischungen können die unterhalb Ihrer Zersetzungstemperatur unter dem erwünschten Prozessdruck flüchtigen Polysilane beispielsweise durch Normaldruckdestiflation oder Destillation unter erniedrigtem Druck abgetrennt werden. Diese flüchtigen Polysilane lassen sich zur Abscoeidung von Siliciumschichten in Gasphasenprozessen, beispielsweise CVD-Prozessen, weiter verwenden.After hydrogenation of the untreated, largely chlorinated polysilane mixtures, the polysilanes volatile below their decomposition temperature below the desired process pressure can be separated, for example, by atmospheric pressure distillation or distillation under reduced pressure. These volatile polysilanes can be further used for the precipitation of silicon layers in gas phase processes, for example CVD processes.
Die Abtrennung der Polysilane nicht ausreichender Molekülmasse kann durch geeignete Lösungsmittel oder Lösungsmitteimischungen erfolgen, in denen Polysilane geeigneter Molekularmasse im Unterschied zu denen geringerer Molekularmasse schlechter oder besser löslich sind. Eine Trennung der erhaltenen Lösungen von den festen Röckständen kann beispielsweise durch Filtration oder Zentrifugation erfolgen.The separation of the polysilanes of insufficient molecular weight may be effected by suitable solvents or solvent mixtures in which polysilanes of suitable molecular mass, in contrast to those of lower molecular mass, are less or more soluble. A separation of the resulting solutions from the solid Röckständen can be done for example by filtration or centrifugation.
Die Abtrennung der Polysilane nicht ausreichender Molekülmasse kann durch chromatographische Verfahren erfolgen, beispielsweise GPC oder HPLC.The separation of the polysilanes of insufficient molecular weight can be carried out by chromatographic methods, for example GPC or HPLC.
Als Lösungsmittel für feste Polysilanmischungen können niedermolekulare Polysilane dienen, die nach Auftragen der Flüssigkeit mit geeigneten Verfahren auf eine Unterlage durch Verdampfen entfernt werden.As a solvent for solid polysilane mixtures can serve low molecular weight polysilanes, which are removed after application of the liquid by suitable methods on a substrate by evaporation.
Als Lösungsmittel oder in Lösungsmittelgemisehen zur Herstellung von Lösungen oder Dispersionen fester Polysilanmischungen Können auch organischeAs a solvent or in Lösungsgemisehen for the preparation of solutions or dispersions of solid polysilane mixtures can also organic
Flüssigkeiten verwendet werden, die unter den Handhabungsbedingungen nicht mit Komponenten der Poiysilanmischungen reagieren und einen Siedepunkt besitzen, der unterhalb der Zersetzungstemperatur der Polysilanmischungen liegt. Feste Polysilanmischungen können als Feststoffe auf Oberflächen aufgetragen und nach dem Auftragen durch Wärmebehandlung aufgeschmolzen werden, um flüssige Polysiianstrukturen oder Polysilanfilme zu erzeugen, welche danach durch geeignete Verfahren zu Silicium zersetzt werden.Liquids are used which do not react with components of the Poiysilanmischungen under the handling conditions and have a boiling point which is below the decomposition temperature of the Polysilanmischungen. Solid polysilane mixtures can be applied as solids to surfaces and, after application by heat treatment, melted to produce liquid polysilicon structures or polysilane films which are thereafter decomposed to silicon by suitable methods.
Feste Polysilanmischungen können mit Lösungsmitteln oder Lösungsmittel- mischungen Dispersionen bilden, in denen die Polysilane nur teilweise gelöst vorliegen. Hinreichend geringe Größen der dispergierten Polysilan-Partikel erlauben weiterhin die Prozessierung zu homogenen Polysiianstrukturen oder Polysilanschichten, insbesondere wenn die Prozesstemperaturen nach Verdampfen des Lösungsmittels oder der Lösungsmittelmischung zu einem Aufschmelzen der zurückbleibenden Polysilanmischung führen.Solid polysilane mixtures can form dispersions with solvents or solvent mixtures in which the polysilanes are only partially dissolved. Sufficiently small sizes of the dispersed polysilane particles further permit processing into homogeneous polysilicon structures or polysilane layers, especially if the process temperatures result in melting of the remaining polysilane mixture after evaporation of the solvent or solvent mixture.
Zur Herstellung von Siliciumstrukturen oder Siliciumschichten mit spezifischen elektronischen Eigenschaften können den Lösungen oder Dispersionen der festen Polysilanmischungen weitere Verbindungen in geeigneter Menge zugemischt werden, die beispielsweise mindestens ein Element der Hauptgruppen \l\ oder V des Periodensystems der Elemente enthalten,In order to produce silicon structures or silicon layers with specific electronic properties, the compounds or dispersions of the solid polysilane mixtures may be admixed with further compounds in a suitable amount which comprise, for example, at least one element of the main groups I or V of the Periodic Table of the Elements,
Zur Herstellung von Siliciumstrukturen oder Silicϊumschichten mit spezifischen elektronischen Eigenschaften können des werteren den festen Poiysilanmischungen selbst nach ihrer Gewinnung weitere Verbindungen in geeigneter Menge zugemischt werden, die beispielsweise mindestens ein Element der Hauptgruppen IiI oder V des Periodensystems der Elemente enthalten.For the production of silicon structures or Silicϊumschichten with specific electronic properties of the werteren the solid Poiysilanmischungen even after their recovery further compounds in a suitable amount are admixed containing, for example, at least one element of the main groups IiI or V of the Periodic Table of the Elements.
Die den festen Polysilanmischungen oder ihren Lösungen oder Dispersionen zugemischten Verbindungen weisen unter dem angelegten Prozessdruck vorzugsweise Siedepunkte auf, die mindestens so hoch sind wie die Zersetzungstemperaturen der Polysilanmischungen, besonders bevorzugt zersetzen sie sich bei ähnlichen Temperaturen wie die Polysilanmischungen, damit die Konzentrationen der zugemischten Elemente im entstehenden Silicium kontrolliert und vorherbestimmt werden kann. Feste Polysilanmischungen oxidieren langsam unter Luftkontakt, sind aber nicht selbstentzündlich. Der an Luft mit einer Flamme entzündete Feststoff erlischt bei Entfernen der Zündquelle und in Abwesenheit einer zusätzlichen Wärmequelle selbsttätig.The compounds admixed to the solid polysilane mixtures or their solutions or dispersions preferably have boiling points below the applied process pressure which are at least as high as the decomposition temperatures of the polysilane mixtures, more preferably decompose at temperatures similar to those of the polysilane mixtures, so that the concentrations of the admixed elements in the resulting silicon can be controlled and predicted. Solid polysilane mixtures oxidize slowly under air contact, but are not self-igniting. The solid ignited in air with a flame goes out automatically when removing the ignition source and in the absence of an additional heat source.
Vor weiterer Verwendung der festen Polysilanmischungen erweist es sich deshalb als vorteilhaft, diese in einem Transportbehälter aufzubewahren, dessen Oberfläche lichtdicht ausgeführt wird und dessen Inneres mit dem festen Polysilangemisch mit einem Inertgas beaufschlagt wird. Es erweist sich weiter als vorteilhaft diesen Transportbehälter mit einer Abzugsvorrichtung zu versehen, mit der das feste Polysilangemisch dosiert abgezogen und der weiteren Verwendung zugeführt werden kann.Therefore, before further use of the solid polysilane mixtures, it proves to be advantageous to store them in a transport container whose surface is made light-tight and the interior of which is acted upon by the inert Polysilangemisch with an inert gas. It also proves to be advantageous to provide this transport container with a take-off device with which the solid Polysilangemisch dosed withdrawn and can be supplied for further use.
Zur besseren Handhabung und/oder um die Oxidationsempfindlichkeit der festen Polysilanmischungen zu reduzieren, können die Mischungen zu Formkörpern, wie beispielsweise Pellets oder Stangen, verarbeitet werden. Die Herstellung von Formkörpern kann mit der Zugabe von Zuschlagsstoffen verbunden sein, um den Zusammenhalt der Formkörper zu fördern und/oder die Oxidationsempfϊndlichkeit der enthaltenen Polysilane zu reduzieren.For better handling and / or to reduce the oxidation sensitivity of the solid polysilane mixtures, the mixtures can be processed into shaped articles, for example pellets or rods. The production of moldings may be associated with the addition of additives in order to promote the cohesion of the moldings and / or to reduce the Oxidungsempfindϊndlichkeit of the polysilanes contained.
Die Herstellung der Formkörper kann bis zu Temperaturen erfolgen, bei denen die bei Raumtemperatur festen Polysilanmischungen ganz oder teilweise aufschmelzen, sich aber noch nicht zersetzen.The production of the moldings can take place up to temperatures at which the polysilane mixtures solid at room temperature melt completely or partially, but do not yet decompose.
Die Formkörper können auch nachträglich mit einer Funktionsschicht überzogen werden, die beispielsweise den Abrieb reduziert, den Zusammenhalt der Formkörper verbessert und/oder die Oxidationsempfindlichkeit der Formkörper verringert.The shaped bodies can also be subsequently coated with a functional layer which, for example, reduces abrasion, improves the cohesion of the shaped bodies and / or reduces the oxidation sensitivity of the shaped bodies.
Die als Zuschlagsstoffe oder Beschichtungsmittel verwendeten Substanzen sollten unter den Verarbeitungstemperaturen nicht mit den Komponenten derThe substances used as aggregates or coating materials should not be mixed with the components of the processing temperatures
Polysilanmischungen reagieren und sich entweder selektiv vor oder während der Herstellung der Polysilanlösungen oder dispersionen von den Polysilanen trennen lassen oder, falls sie in der Lösung oder Dispersion der Polysilanmischungen enthalten bleiben, unter dem anliegenden Prozessdruck von der Oberfläche verdampfen, auf der Silicium erzeugt werden soll, bevor die Zersetzungstemperatur der Potysilanmischungen erreicht ist, um Verunreinigungen der entstehenden Siliciumstrυkturen oder -Schichten zu vermeiden.Polysilane mixtures react and either selectively before or during the preparation of Polysilanlösungen or dispersions of the polysilanes or, if they remain in the solution or dispersion of Polysilanmischungen, under the applied process pressure from the surface evaporate on which silicon is to be produced before the decomposition temperature of the Potysilanmischungen is reached in order to avoid contamination of the resulting Siliciumstrukturen or layers.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen beschrieben:The invention will be described below with reference to exemplary embodiments:
Beispiel 1:Example 1:
25,7 g einer durch plasmachβmische Verfahren gewonnenen weitgehend chlorierten25.7 g of a largely chlorinated by plasmachβmische method obtained
Polysilanmischung werden in 350 ml_ Benzol gelöst und unter Rühren bei 0°C 180 mL einer 1 M LiAIH4-Lösung in Diethylether zugetropft. Danach wird langsam auf Raumtemperatur erwärmen lassen. Nach insgesamt 24 h wird der feste Niederschlag abfiltriert und mit Benzol nachgewaschen. Der Rückstand wird zur Abtrennung von Lithium-Salzen mit insgesamt 400 mL absolutem Ethanol bei Raumtemperatur extrahiert und als Rückstand 3,85 g feste Polysifanmischung isoliert. Polysilane mixture are dissolved in 350 ml_ benzene and added dropwise with stirring at 0 ° C 180 mL of a 1 M LiAIH 4 solution in diethyl ether. Thereafter, allow to warm slowly to room temperature. After a total of 24 h, the solid precipitate is filtered off and washed with benzene. The residue is extracted to remove lithium salts with a total of 400 mL of absolute ethanol at room temperature and the residue is isolated 3.85 g of solid Polysifanmischung.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006043929.5A DE102006043929B4 (en) | 2006-09-14 | 2006-09-14 | Process for the preparation of solid polysilane mixtures |
PCT/DE2007/001648 WO2008031427A2 (en) | 2006-09-14 | 2007-09-13 | Solid polysilane mixtures |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2064267A2 true EP2064267A2 (en) | 2009-06-03 |
Family
ID=39104926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07817520A Withdrawn EP2064267A2 (en) | 2006-09-14 | 2007-09-13 | Solid polysilane mixtures |
Country Status (4)
Country | Link |
---|---|
US (1) | US8177943B2 (en) |
EP (1) | EP2064267A2 (en) |
DE (1) | DE102006043929B4 (en) |
WO (1) | WO2008031427A2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008025260B4 (en) | 2008-05-27 | 2010-03-18 | Rev Renewable Energy Ventures, Inc. | Halogenated polysilane and thermal process for its preparation |
DE102008025261B4 (en) | 2008-05-27 | 2010-03-18 | Rev Renewable Energy Ventures, Inc. | Halogenated polysilane and plasma-chemical process for its preparation |
DE102010025710A1 (en) | 2010-06-30 | 2012-01-05 | Spawnt Private S.À.R.L. | Storage material and process for recovering H-silanes therefrom |
DE102010025948A1 (en) | 2010-07-02 | 2012-01-05 | Spawnt Private S.À.R.L. | Medium chain polysilanes and process for their preparation |
DE102010032075A1 (en) * | 2010-07-23 | 2012-01-26 | Eads Deutschland Gmbh | Hydrogen production by means of hydrogenated polysilanes for the operation of fuel cells |
DE102013207444A1 (en) * | 2013-04-24 | 2014-10-30 | Evonik Degussa Gmbh | Process and apparatus for the production of polychlorosilanes |
DE102013207447A1 (en) * | 2013-04-24 | 2014-10-30 | Evonik Degussa Gmbh | Process and apparatus for the preparation of octachlorotrisilane |
WO2016095953A1 (en) * | 2014-12-15 | 2016-06-23 | Spawnt Private S.À.R.L. | Method for producing chlorinated oligosilanes |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB207710A (en) | 1923-08-29 | 1923-12-06 | George Henry Watts | Improvements in horse and like shoes |
NL106444C (en) | 1953-03-19 | |||
BE536407A (en) * | 1954-03-12 | |||
GB823383A (en) | 1955-01-13 | 1959-11-11 | Siemens Ag | Improvements in or relating to processes and apparatus for the production of very pure crystalline substances |
US2945797A (en) * | 1956-05-12 | 1960-07-19 | Saint Gobain | Manufacture of metals of high purity |
DE1061593B (en) * | 1956-06-25 | 1959-07-16 | Siemens Ag | Device for obtaining the purest semiconductor material for electrotechnical purposes |
GB892014A (en) | 1957-04-30 | 1962-03-21 | Saint Gobain | A method of and apparatus for the manufacture in a highly purified state of metals and other chemical elements having a metallic character |
GB883326A (en) | 1959-04-08 | 1961-11-29 | Bbc Brown Boveri & Cie | Method of producing trichlorsilane |
GB1194415A (en) * | 1967-07-03 | 1970-06-10 | United States Borax Chem | High Temperature Chemical Reaction and Apparatus therefor |
DE1982587U (en) | 1967-10-11 | 1968-04-04 | Lundex Fa | SHELF. |
US3933985A (en) * | 1971-09-24 | 1976-01-20 | Motorola, Inc. | Process for production of polycrystalline silicon |
US3968199A (en) * | 1974-02-25 | 1976-07-06 | Union Carbide Corporation | Process for making silane |
US4070444A (en) * | 1976-07-21 | 1978-01-24 | Motorola Inc. | Low cost, high volume silicon purification process |
US4102764A (en) * | 1976-12-29 | 1978-07-25 | Westinghouse Electric Corp. | High purity silicon production by arc heater reduction of silicon intermediates |
US4102985A (en) | 1977-01-06 | 1978-07-25 | Westinghouse Electric Corp. | Arc heater production of silicon involving a hydrogen reduction |
US4138509A (en) * | 1977-12-23 | 1979-02-06 | Motorola, Inc. | Silicon purification process |
DE3016807A1 (en) * | 1980-05-02 | 1981-11-05 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | METHOD FOR PRODUCING SILICON |
US4404256A (en) * | 1980-03-26 | 1983-09-13 | Massachusetts Institute Of Technology | Surface fluorinated polymers |
US4309259A (en) * | 1980-05-09 | 1982-01-05 | Motorola, Inc. | High pressure plasma hydrogenation of silicon tetrachloride |
US4321246A (en) * | 1980-05-09 | 1982-03-23 | Motorola, Inc. | Polycrystalline silicon production |
GB2077710B (en) * | 1980-06-11 | 1983-10-12 | Nat Res Dev | Synthesising a polysilane |
JPS5727915A (en) | 1980-06-11 | 1982-02-15 | Nat Res Dev | Synthesis of polysilane |
GB2079262B (en) * | 1980-07-02 | 1984-03-28 | Central Glass Co Ltd | Process of preparing silicon tetrafluoride by using hydrogen fluoride gas |
US4374182A (en) * | 1980-07-07 | 1983-02-15 | Dow Corning Corporation | Preparation of silicon metal through polymer degradation |
FR2530638A1 (en) * | 1982-07-26 | 1984-01-27 | Rhone Poulenc Spec Chim | PROCESS FOR THE PREPARATION OF A TRICHLOROSILANE MIXTURE USEFUL FOR THE PREPARATION OF HIGH-PURITY SILICON |
US4416913A (en) * | 1982-09-28 | 1983-11-22 | Motorola, Inc. | Ascending differential silicon harvesting means and method |
JPS59195519A (en) | 1983-04-15 | 1984-11-06 | Mitsui Toatsu Chem Inc | Manufacture of hexachlorodisilane |
JPS6086274A (en) | 1983-10-18 | 1985-05-15 | Seiko Epson Corp | Preparation of polycrystalline silicon film |
JPS60112610A (en) | 1983-11-21 | 1985-06-19 | Denki Kagaku Kogyo Kk | Preparation of silicon tetrachloride |
DE3402318A1 (en) | 1984-01-24 | 1985-07-25 | Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen | METHOD FOR DOPING LIGHT WAVE BASE MATERIAL ON QUARTZ GLASS BASE WITH GERMANIUM |
US4537942A (en) * | 1984-02-10 | 1985-08-27 | Minnesota Mining And Manufacturing Company | Polyhydridosilanes and their conversion to pyropolymers |
US4683147A (en) * | 1984-04-16 | 1987-07-28 | Canon Kabushiki Kaisha | Method of forming deposition film |
DE3581848D1 (en) * | 1984-07-06 | 1991-04-04 | Wacker Chemie Gmbh | METHOD FOR PRODUCING SILICON TETRACHLORIDE. |
DE3518620A1 (en) | 1985-05-23 | 1986-11-27 | Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen | Process for the preparation of an optical waveguide base material based on quartz glass |
JPS62143814A (en) | 1985-12-18 | 1987-06-27 | Mitsubishi Metal Corp | Manufacturing method of chlorosilane |
KR880000618B1 (en) * | 1985-12-28 | 1988-04-18 | 재단법인 한국화학연구소 | Preparation for silicon multy crystal |
EP0264722A3 (en) * | 1986-10-09 | 1989-07-12 | Mitsubishi Materials Corporation | Process for preparing amorphous silicon |
JPS63222011A (en) | 1987-03-11 | 1988-09-14 | Mitsubishi Metal Corp | Method for manufacturing polycrystalline silicon |
US4814155A (en) * | 1987-07-27 | 1989-03-21 | Dow Corning Corporation | Method of selective reduction of polyhalosilanes with alkyltin hydrides |
JPS6433011A (en) * | 1987-07-29 | 1989-02-02 | Agency Ind Science Techn | Production of silicon tetrachloride |
DE3726702A1 (en) * | 1987-08-11 | 1989-02-23 | Wacker Chemie Gmbh | METHOD FOR REDUCING THE HALOGEN CONTENT OF HALOGEN-CONTAINING POLYCARBOSILANS AND POLYSILANS |
JPH01192716A (en) | 1988-01-28 | 1989-08-02 | Mitsubishi Metal Corp | Manufacturing method of high purity silicon |
US4908330A (en) * | 1988-02-01 | 1990-03-13 | Canon Kabushiki Kaisha | Process for the formation of a functional deposited film containing group IV atoms or silicon atoms and group IV atoms by microwave plasma chemical vapor deposition process |
JPH01197309A (en) | 1988-02-01 | 1989-08-09 | Mitsubishi Metal Corp | Method for producing granular silicon |
DE3917838A1 (en) * | 1989-06-01 | 1990-12-06 | Kali Chemie Ag | HALOGENED POLYCARBOSILANES AND METHOD FOR THE PRODUCTION THEREOF |
US5194398A (en) | 1989-06-28 | 1993-03-16 | Mitsui Toatsu Chemicals, Inc. | Semiconductor film and process for its production |
AU631436B2 (en) * | 1989-06-28 | 1992-11-26 | Mitsui Toatsu Chemicals Inc. | Semiconductor film and process for its production |
EP0503165B1 (en) * | 1991-03-12 | 1996-01-31 | Agfa-Gevaert N.V. | Optical scanning apparatus |
DE4214045A1 (en) | 1992-04-29 | 1993-11-04 | Solvay Deutschland | Poly:carbo:silane for prepn. of fibres |
US5273587A (en) * | 1992-09-04 | 1993-12-28 | United Solar Systems Corporation | Igniter for microwave energized plasma processing apparatus |
GB2271518B (en) * | 1992-10-16 | 1996-09-25 | Korea Res Inst Chem Tech | Heating of fluidized bed reactor by microwave |
DE60038931D1 (en) | 1999-03-30 | 2008-07-03 | Seiko Epson Corp | Process for producing a silicon layer and ink jet composition for ink jet printers |
EP1085579B1 (en) * | 1999-03-30 | 2009-02-18 | Seiko Epson Corporation | Method of manufacturing solar cell |
WO2000058409A1 (en) * | 1999-03-30 | 2000-10-05 | Jsr Corporation | Coating composition |
JP2004525841A (en) * | 2000-05-16 | 2004-08-26 | 東北電力株式会社 | Method and apparatus for producing high-purity silicon |
CN1193932C (en) * | 2000-08-02 | 2005-03-23 | 三菱综合材料多晶硅股份有限公司 | Process for producing disilicone hexachloride |
US6703265B2 (en) * | 2000-08-02 | 2004-03-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
US20020187096A1 (en) * | 2001-06-08 | 2002-12-12 | Kendig James Edward | Process for preparation of polycrystalline silicon |
US7033561B2 (en) * | 2001-06-08 | 2006-04-25 | Dow Corning Corporation | Process for preparation of polycrystalline silicon |
US6858196B2 (en) * | 2001-07-19 | 2005-02-22 | Asm America, Inc. | Method and apparatus for chemical synthesis |
RU2200058C1 (en) * | 2002-02-12 | 2003-03-10 | Открытое акционерное общество "ТВЭЛ" | Method of performing homogeneous and heterogeneous reactions by means of plasma |
JP2003313299A (en) * | 2002-04-22 | 2003-11-06 | Seiko Epson Corp | Higher order silane composition and method for forming silicon film using the composition |
US7540920B2 (en) * | 2002-10-18 | 2009-06-02 | Applied Materials, Inc. | Silicon-containing layer deposition with silicon compounds |
US20040152287A1 (en) * | 2003-01-31 | 2004-08-05 | Sherrill Adrian B. | Deposition of a silicon film |
JP2004331552A (en) * | 2003-05-07 | 2004-11-25 | Mitsui Chemicals Inc | Method for producing hydrogenated organosilane |
JP2004331551A (en) * | 2003-05-07 | 2004-11-25 | Mitsui Chemicals Inc | Method for producing hydrogenated organosilane |
DE10337309A1 (en) * | 2003-08-14 | 2005-03-10 | Goldschmidt Ag Th | Production of (organo)silanes, used as precursors in chemical vapor deposition of dielectric for semiconductor industry, uses magnesium hydride etherate complex in apolar solvent for reducing halide |
NZ529657A (en) * | 2003-11-20 | 2004-07-30 | Apotex Inc | Iron chelating cycloalkyl derivatives of 3-hydroxy-4-pyridinones |
US7498015B1 (en) * | 2004-02-27 | 2009-03-03 | Kovio, Inc. | Method of making silane compositions |
US7314513B1 (en) * | 2004-09-24 | 2008-01-01 | Kovio, Inc. | Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions |
US7485691B1 (en) * | 2004-10-08 | 2009-02-03 | Kovio, Inc | Polysilane compositions, methods for their synthesis and films formed therefrom |
DE102005024041A1 (en) * | 2005-05-25 | 2006-11-30 | City Solar Ag | Process for the preparation of silicon from halosilanes |
DE102006034061A1 (en) * | 2006-07-20 | 2008-01-24 | REV Renewable Energy Ventures, Inc., Aloha | Polysilane processing and use |
DE102007007874A1 (en) * | 2007-02-14 | 2008-08-21 | Evonik Degussa Gmbh | Process for the preparation of higher silanes |
-
2006
- 2006-09-14 DE DE102006043929.5A patent/DE102006043929B4/en not_active Expired - Fee Related
-
2007
- 2007-09-13 WO PCT/DE2007/001648 patent/WO2008031427A2/en active Application Filing
- 2007-09-13 EP EP07817520A patent/EP2064267A2/en not_active Withdrawn
-
2009
- 2009-03-12 US US12/402,852 patent/US8177943B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2008031427A2 * |
Also Published As
Publication number | Publication date |
---|---|
US20100004385A1 (en) | 2010-01-07 |
US8177943B2 (en) | 2012-05-15 |
WO2008031427A3 (en) | 2008-12-11 |
DE102006043929A1 (en) | 2008-03-27 |
WO2008031427A2 (en) | 2008-03-20 |
DE102006043929B4 (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008031427A2 (en) | Solid polysilane mixtures | |
AT395856B (en) | METHOD FOR PRODUCING POLYMER SILAZANES | |
EP2507174B1 (en) | Method for producing halogenated polysilanes | |
EP2621856B1 (en) | Method for producing higher silane compounds | |
WO2008009473A1 (en) | Polysilane processing and use | |
EP2655254B1 (en) | Process for preparing hydridosilanes | |
EP2651825B1 (en) | Process for preparing higher halosilanes and hydridosilanes | |
DE102008004397A1 (en) | Process for reducing the content of elements, such as boron, in halosilanes and plant for carrying out the process | |
EP0717094B1 (en) | Process for the recuperation of solid paraffins from highly polluted poyolefinic wastes | |
DE4243063C2 (en) | Method and device for the pyrolytic decomposition of plastic, in particular plastic waste | |
EP3380646B1 (en) | Method for the organometallic gas phase deposition under use of solutions of indiumalkyl compounds in hydrocarbons | |
EP2588411A1 (en) | Polysilanes of medium chain length and a method for the production of same | |
EP3010854A1 (en) | Formulations containing hydridosilanes and hydridosilane oligomers, method for preparing same and use thereof | |
WO2014202459A1 (en) | Formulations containing hydridosilanes and hydridosilane oligomers, method for preparing same and use thereof | |
DE10394037B4 (en) | Process for producing a metal sulfide layer | |
DE102014007685B4 (en) | Process for preparing hexachlorodisilane | |
WO2018138150A1 (en) | Method for the reduction of metal halides | |
DE1216255B (en) | Process for coating finely divided, highly reactive materials | |
DE3136786C2 (en) | ||
DE2921570B2 (en) | Process for the production of silicon carbide | |
DE1520700B1 (en) | METHOD FOR RECOVERING THE SOLVENT FROM POLYMER SOLUTIONS | |
DE102022128972B4 (en) | Process for preparing a pourable, flowable or pasty starting substrate and device for carrying out the process | |
EP3428123A1 (en) | Method for reducing metal halogenides | |
DE102008006246B4 (en) | Process and apparatus for the continuous production of mercury sulphide for subsequent disposal | |
DE69008774T2 (en) | Process for the disposal of residues from the production processes of chlorinated hydrocarbons. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090403 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BAUCH, CHRISTIAN Inventor name: AUNER, NORBERT Inventor name: DELTSCHEW, RUMEN Inventor name: MOHSSENI-ALA, SEYED-JAVAD Inventor name: LIPPOLD, GERD Inventor name: HOLL, SVEN |
|
17Q | First examination report despatched |
Effective date: 20090901 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LIPPOLD, GERD Inventor name: AUNER, NORBERT Inventor name: MOHSSENI-ALA, SEYED-JAVAD Inventor name: BAUCH, CHRISTIAN Inventor name: DELTSCHEW, RUMEN Inventor name: HOLL, SVEN |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SPAWNT PRIVATE S.A.R.L. |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NAGARJUNA FERTILIZERS AND CHEMICALS LIMITED |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180228 |