JPS6086274A - Preparation of polycrystalline silicon film - Google Patents

Preparation of polycrystalline silicon film

Info

Publication number
JPS6086274A
JPS6086274A JP19482383A JP19482383A JPS6086274A JP S6086274 A JPS6086274 A JP S6086274A JP 19482383 A JP19482383 A JP 19482383A JP 19482383 A JP19482383 A JP 19482383A JP S6086274 A JPS6086274 A JP S6086274A
Authority
JP
Japan
Prior art keywords
gas
polycrystalline silicon
substrate
film
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19482383A
Other languages
Japanese (ja)
Inventor
Tsutomu Otake
大竹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP19482383A priority Critical patent/JPS6086274A/en
Publication of JPS6086274A publication Critical patent/JPS6086274A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only

Abstract

PURPOSE:To reduce production cost, by growing vapor of silicon halide carried to the vicinity of a substrate by carrier gas into a film by gas phase reaction. CONSTITUTION:The gas generated from silicon halide (SiCl4, SiBr4, SiI4) is carried to the vicinity of a substrate poperly subjected to temp. control by carrier gas (H2, Ar). The energy of plasma, heat or light is imparted to said vapor to perform gas phase reaction and a polycrystalline film is grown on the substrate. By this method, the polycrystalline silicon film is prepared inexpensively because of the use of an inexpensive stock material.

Description

【発明の詳細な説明】 本発明はシリコンのハロゲン化物、すなわち、5iC(
1,4、SjBデ。、あるいはS=工。から蒸発する気
体をキャリアガスによって基板近傍に運び、気相反応に
よる膜の成長を行なうことにより安価な多結晶シリコン
膜を得るための多結晶シリコン膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides silicon halide, namely 5iC (
1, 4, SjB de. , or S = engineering. The present invention relates to a method for producing a polycrystalline silicon film, in which an inexpensive polycrystalline silicon film is obtained by transporting gas evaporated from a substrate to the vicinity of a substrate using a carrier gas and growing the film through a gas phase reaction.

多結晶シリコン(以下では多結晶s7とかく、)膜は集
積回路のゲート酸線をはじめ光センサ等の霜、子デバイ
スに広く利用されている。
Polycrystalline silicon (hereinafter referred to as polycrystalline S7) films are widely used in gate oxidation lines of integrated circuits, optical sensors, and other child devices.

多結晶Si膜の製造方法は従来から、一般に常圧CVD
、あるいは減圧CvDが用いられている。
Conventionally, the manufacturing method of polycrystalline Si film is generally atmospheric pressure CVD.
, or reduced pressure CvD is used.

この方法はモノシランガス(seH+)を熱によって気
相反応させ、基板上に多結晶S<を形成する方法である
In this method, monosilane gas (seH+) is subjected to a vapor phase reaction using heat to form polycrystalline S< on the substrate.

ところが、この方法で用いるモノシランは、17当り1
00円前後の高価なガスである。このため多結晶シリコ
ンをつける工程が入ることによって、そのデバイスは製
造コストが高くなる。
However, the monosilane used in this method has a concentration of 1/17
It is an expensive gas that costs around 00 yen. Therefore, the manufacturing cost of the device increases due to the step of applying polycrystalline silicon.

本発明はかかる欠点を除失したものであって、その目的
とするところは、安価な方法で多結晶si膜を作ること
にある。
The present invention eliminates these drawbacks, and its purpose is to produce a polycrystalline Si film using an inexpensive method.

本発明の詳細については実施例をもって説明する。気相
反応を起させる手段としては、熱の他にプラズマや光の
エネルギーを利用することができ、それぞれプラズマO
’VD、光OVDと呼ばれている。また、熱とプラズマ
、熱と光等各エネルギーの組み合せによって気相反応を
起こさせることができる。
The details of the present invention will be explained with reference to Examples. In addition to heat, plasma and light energy can be used as a means of causing a gas phase reaction, and plasma O and light energy can be used, respectively.
It is called 'VD, optical OVD. Furthermore, a gas phase reaction can be caused by a combination of energies such as heat and plasma, heat and light, etc.

本発明もエネルギーを与える方法においては従来とかわ
るものではなく、いずれの方法においても多結晶s5を
得ることができ、特性上も大きな差は認められない。
The method of applying energy in the present invention is not different from the conventional method, and polycrystalline s5 can be obtained using either method, and there is no significant difference in characteristics.

したがって、以下の説明は熱OVDの実施例を用いる。Therefore, the following description uses a thermal OVD example.

実施例 第1図は本発明の製造に用いる装置である。同図におい
て、1はキャリアガスのボンベ、2はドーピングガスの
ボンベ、3aと3bは調圧器、4α、!l: 4 b 
ハマスフローコントローラ、5α〜5cはガス配管、6
はウォータバス、7は水、8はシリコンのハロゲン化物
、9はガス吹出し口、1゜は加熱ヒータ・11はボート
・12は基板、15は炉芯管、1’ 4はメカニカルブ
ースターポンプ、15は油回転ポンプ、16αと16b
はバルブである。
Embodiment FIG. 1 shows an apparatus used for manufacturing the present invention. In the figure, 1 is a carrier gas cylinder, 2 is a doping gas cylinder, 3a and 3b are pressure regulators, 4α, ! l: 4 b
Hamas flow controller, 5α to 5c are gas piping, 6
is a water bath, 7 is water, 8 is silicon halide, 9 is a gas outlet, 1° is a heater, 11 is a boat, 12 is a substrate, 15 is a furnace core tube, 1' 4 is a mechanical booster pump, 15 are oil rotary pumps, 16α and 16b
is a valve.

多結晶シリコンの製造方法について述べる。あらかじめ
メカニカルブースターポンプ14と油回転ポンプ15に
よって、炉芯管内を約600 ’Oに加熱する。一定の
温度に達したところで、キャリアガス、たとえば水素ガ
スの入ったボンベ1がら調圧器3αで1にy / ci
に圧力制御したガスをマス70−コントローラ4αで流
量を200〜3006c/ai++に制御して配W5b
に流す。配管5bを通ったガスはシリコンのハロゲン化
’h ”” i cL。
A method for manufacturing polycrystalline silicon will be described. The inside of the furnace core tube is heated to about 600'O by the mechanical booster pump 14 and the oil rotary pump 15 in advance. When a certain temperature is reached, the cylinder 1 containing carrier gas, such as hydrogen gas, is adjusted to 1 y/ci using a pressure regulator 3α.
Distribute the gas whose pressure is controlled to 200 to 3006c/ai++ using the mass 70 and controller 4α
flow to. The gas passing through the pipe 5b is halogenated silicon.

5jBr4 、Si工。の−っ、たとえばs<On+(
7)液体を通って配管5cへと流れる。このときS i
 Ofi4 の温度はウォーターバス6によって、21
℃に保つ。21℃におけるs<B。の分圧は200 u
n Torrであり、キャリアガスによってs t a
 Q、の蒸気が配管5cに運ばれる。
5jBr4, Si engineering. For example, s<On+(
7) Flows through the liquid to pipe 5c. At this time S i
The temperature of Ofi4 is set to 21 by water bath 6.
Keep at ℃. s<B at 21°C. The partial pressure of is 200 u
n Torr, and s ta by carrier gas.
The steam of Q is carried to the pipe 5c.

ボンベ2、調FF、器3b、マスフローコントローラ4
bはドーピング用のガス系で、ホウ素をドーピングした
い場合にはジボラン(B2H6)を、リンをドーピング
したい場合にはホスヒン(PH3)のガスを希釈してボ
ンベ2に充填し・配管5αを通して流す。このガスは配
管5GにおいてSjOβ4と混合される。
Cylinder 2, key FF, vessel 3b, mass flow controller 4
b is a doping gas system; when doping with boron is desired, diborane (B2H6) is used; when doping with phosphorus is desired, diluted gas of phosphin (PH3) is filled into cylinder 2 and passed through pipe 5α. This gas is mixed with SjOβ4 in the pipe 5G.

バルブ16aとバルブ16bとはそれぞれS i OQ
4ガス、ドーピングガスの開閉を行なうバルブである0 上記の状態において、5lap、ガスは熱分解されsi
になる。その時基板温度を約600℃という高い温度に
保つことにより、一部が結晶化されて多結晶シリコンと
なる。
The valve 16a and the valve 16b are each S i OQ
4 Gas is a valve that opens and closes the doping gas 0 In the above state, 5 laps, the gas is thermally decomposed and Si
become. At that time, by keeping the substrate temperature at a high temperature of about 600° C., a portion of the substrate is crystallized and becomes polycrystalline silicon.

上記実施例では、シリコンのハロゲン化物として5iO
R,について説明したがB i B ?’4やsi工。
In the above example, 5iO is used as the silicon halide.
I explained about R, but B i B? '4 and si engineering.

を用いても同様に多結晶シリコン膜を作ることができる
A polycrystalline silicon film can be similarly made using .

また、基板の温度を500℃くらいに保ちつつ高周波プ
ラズマ−放電によって、熱とプラズマからS i O1
4の分解エネルギーを与えることによっても、多結晶シ
リコンを作ること力fできる。
In addition, SiO1 is removed from heat and plasma by high-frequency plasma discharge while keeping the temperature of the substrate at about 500°C.
Polycrystalline silicon can also be produced by applying a decomposition energy of 4.

キャリアガスは上記実施例の他にアルゴン、ヘリウムを
用いることができる・しかし、キャリアガスの種類によ
って、膜の性質が異なる。
In addition to the above embodiments, argon or helium can be used as the carrier gas. However, the properties of the film differ depending on the type of carrier gas.

例えば・多結晶シリコンを集積回路のゲート配線に用い
る場合、キャリアガスとして水素を用いると、他のガス
に比べ、MOS)ランジスタは、ゲート電圧に対するド
レイン電流の立ち上がりが急峻になる。すなわち、チャ
ネル内のキャリア移動度の大きな特性が得られる。
For example, when polycrystalline silicon is used for the gate wiring of an integrated circuit, when hydrogen is used as a carrier gas, the drain current rises steeply with respect to the gate voltage in a MOS transistor compared to other gases. That is, a characteristic of high carrier mobility within the channel can be obtained.

一方、キャリアガスにアルゴンを用いると多結晶シリコ
ンの堆積速度は水素やヘリウムに比べて3〜4倍となる
。したがって、短時間に厚い膜を作製する場合にはアル
ゴンが優れている。
On the other hand, when argon is used as a carrier gas, the deposition rate of polycrystalline silicon is three to four times that of hydrogen or helium. Therefore, argon is excellent when producing a thick film in a short time.

従来のC’VD法により、モノシランガスから多結晶シ
リコンを作る場合、製造コストに占めるガス化の割合は
30〜40%である。これはモノシランガスが100円
/を前後という非常に高価なガスによるものである。
When producing polycrystalline silicon from monosilane gas by the conventional C'VD method, the proportion of gasification in the manufacturing cost is 30 to 40%. This is due to the fact that monosilane gas is very expensive, costing around 100 yen.

本発明では、モノシランガスの代りに12当り10円以
下のシリコンハロゲン化物を用いるため多結晶シリコン
の製造コストは6割近く安くなる。
In the present invention, silicon halide, which costs less than 10 yen per 12, is used instead of monosilane gas, so the manufacturing cost of polycrystalline silicon is reduced by nearly 60%.

本発明は多結晶シリコンが各種デバイスに広く応用され
るようになってきた現在、安価な製造方法を与えるもの
であって、その利用範囲はきわめて広い。すなわち、集
積回路、薄膜太賜電池、光センサ、液晶表示デバイスの
チイソチング素子等広い利用が期待できるものである。
Now that polycrystalline silicon is being widely applied to various devices, the present invention provides an inexpensive manufacturing method, and its range of use is extremely wide. That is, it can be expected to be widely used in integrated circuits, thin film batteries, optical sensors, and isostatic elements for liquid crystal display devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造に用いる装置である。 1・・・・・・キャリアガスのボンベ 2・・・・・ドーピングガスのボンベ 6a〜3b・・・・・・調圧器 4σ〜4b・・・・マスフローコントローラ5a〜5G
・・・・・・ガス配管 6・・・・・ウォーターバス 7・・・・・水 8・・・・・・シ男コンのハロゲン化物9・・・・・・
ガス吹出し口 10・・・・・・加熱ヒータ 11・・・・・ボート 12・・・・・・基板 16・・・・・・炉芯管 14・・・・・・メカニカルブースターポンプ15・・
・・・・油回転ポンプ 16α〜16b・・・・・・バルブ 以 上 出願人 株式会社諏訪精工舎 代理人 弁理士 最上 務
FIG. 1 shows an apparatus used for manufacturing the present invention. 1...Carrier gas cylinder 2...Doping gas cylinder 6a-3b...Pressure regulator 4σ-4b...Mass flow controller 5a-5G
・・・・・・Gas piping 6・・・・・・Water bath 7・・・・・・Water 8・・・・・・Halide of the man's condom 9・・・・・・
Gas outlet 10... Heater 11... Boat 12... Substrate 16... Furnace core tube 14... Mechanical booster pump 15...
...Oil rotary pumps 16α to 16b...Valves and above Applicant Suwa Seikosha Co., Ltd. Agent Patent attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】 1)シリコン化合物の気相反応による多結晶シリコン膜
の製造方法において、シリコンのハロゲン化物、すなわ
ち、S s CQ4 、 S s B r4 、あるい
はS<工。から蒸発する気体をキャリアガスによって、
適当に温度制御された基板近傍に連び気相反応によって
、膜の成長を行なうことを特徴とする多結晶シリコン膜
の製造方法。 2)気相反応を行なわせる為の手段として、プラズマ、
熱、あるいは光のエネルギーを用いたことを特徴とする
特許請求の範囲第1項記載のシリコン膜の製造方法・ 3)キャリアガスとして水素又はアルゴンを用いたこと
を特徴とする特許請求の範囲第1項記載の多結晶シリコ
ン膜の製造方法。
[Claims] 1) A method for producing a polycrystalline silicon film by vapor phase reaction of a silicon compound, in which a silicon halide, ie, S s CQ4 , S s Br4 , or S <<> is used. The gas evaporated from the carrier gas is
A method for producing a polycrystalline silicon film, characterized in that the film is grown by a gas phase reaction in the vicinity of an appropriately temperature-controlled substrate. 2) Plasma,
3) A method for producing a silicon film according to claim 1, characterized in that heat or light energy is used; 3) Claim 1, characterized in that hydrogen or argon is used as a carrier gas. 2. The method for producing a polycrystalline silicon film according to item 1.
JP19482383A 1983-10-18 1983-10-18 Preparation of polycrystalline silicon film Pending JPS6086274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19482383A JPS6086274A (en) 1983-10-18 1983-10-18 Preparation of polycrystalline silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19482383A JPS6086274A (en) 1983-10-18 1983-10-18 Preparation of polycrystalline silicon film

Publications (1)

Publication Number Publication Date
JPS6086274A true JPS6086274A (en) 1985-05-15

Family

ID=16330842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19482383A Pending JPS6086274A (en) 1983-10-18 1983-10-18 Preparation of polycrystalline silicon film

Country Status (1)

Country Link
JP (1) JPS6086274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821155A (en) * 1995-12-20 1998-10-13 Mitsubishi Denki Kabushiki Kaisha Method of growing n-type III-V semiconductor materials on a substrate using SiI4
WO2006125425A1 (en) * 2005-05-25 2006-11-30 Rev Renewable Energy Ventures Ag Method for production of silicon from silyl halides
US8177943B2 (en) 2006-09-14 2012-05-15 Spawnt Private S.A.R.L. Solid polysilane mixtures

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821155A (en) * 1995-12-20 1998-10-13 Mitsubishi Denki Kabushiki Kaisha Method of growing n-type III-V semiconductor materials on a substrate using SiI4
WO2006125425A1 (en) * 2005-05-25 2006-11-30 Rev Renewable Energy Ventures Ag Method for production of silicon from silyl halides
JP4832511B2 (en) * 2005-05-25 2011-12-07 スポーント プライヴェイト エスアーアールエル Process for producing silicon from halogenated silanes
US8147656B2 (en) 2005-05-25 2012-04-03 Spawnt Private S.A.R.L. Method for the production of silicon from silyl halides
US9382122B2 (en) 2005-05-25 2016-07-05 Spawnt Private S.À.R.L. Method for the production of silicon from silyl halides
US8177943B2 (en) 2006-09-14 2012-05-15 Spawnt Private S.A.R.L. Solid polysilane mixtures

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
US3484311A (en) Silicon deposition process
JPH0650730B2 (en) Method for manufacturing semiconductor thin film
US4910163A (en) Method for low temperature growth of silicon epitaxial layers using chemical vapor deposition system
JPS6086274A (en) Preparation of polycrystalline silicon film
US3653991A (en) Method of producing epitactic growth layers of semiconductor material for electrical components
JPS6089575A (en) Production of silicon nitride film
JPH01252776A (en) Formation of aluminum film by vapor growth
US3152932A (en) Reduction in situ of a dipolar molecular gas adhering to a substrate
JPH10189582A (en) Manufacture of silicon insulating film
JPS58135633A (en) Epitaxial growth of silicon
US4609424A (en) Plasma enhanced deposition of semiconductors
JPS6140034B2 (en)
JPS61114519A (en) Vapor growth equipment
JPS6278192A (en) Production of n-type single crystal thin film
JPS6278191A (en) Production of single crystal thin film
JPS5493357A (en) Growing method of polycrystal silicon
KR0151821B1 (en) Process for chemical vapor deposition of silicon with suppressed particle formation
JPH04324628A (en) Manufacture of silicon thin film
KR100368318B1 (en) Method of processing for selective epitaxial growth in semiconductor device
JPH0368131A (en) Organic metal vapor growth method
JPH04324627A (en) Manufacture of silicon thin film