JPS6089575A - Production of silicon nitride film - Google Patents
Production of silicon nitride filmInfo
- Publication number
- JPS6089575A JPS6089575A JP19698983A JP19698983A JPS6089575A JP S6089575 A JPS6089575 A JP S6089575A JP 19698983 A JP19698983 A JP 19698983A JP 19698983 A JP19698983 A JP 19698983A JP S6089575 A JPS6089575 A JP S6089575A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- silicon nitride
- light
- sicl4
- compd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5096—Flat-bed apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はシリコンハロゲン化物、すなわち、5ioz4
,81Br4 あるいはB1工、から蒸発する気体と、
窒素又は窒素化合物の気体とを気相反応させ、適当に温
度制御された基板上に安価なシリコン窒化膜を得るため
のシリコン窒化膜の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides silicon halide, i.e. 5ioz4
, 81Br4 or B1 engineering, and the gas evaporated from
The present invention relates to a method of manufacturing a silicon nitride film for obtaining an inexpensive silicon nitride film on an appropriately temperature-controlled substrate by causing a gas phase reaction with nitrogen or a nitrogen compound gas.
シリコン窒化膜(以下では51xHy とかく)は良好
な絶縁性、耐湿性をもつため半導体デバイスの絶縁膜あ
るいはパッシベーション膜として広く利用されている。Silicon nitride films (hereinafter referred to as 51xHy) have good insulation properties and moisture resistance, and are therefore widely used as insulating films or passivation films for semiconductor devices.
BixNy(一般にはXユ3.Yユ4が用いられる)の
作製方法として、モノシランガスとアンモニアあるいは
、モノシランガスと窒銅とを高周波プラズマあるいは光
によって気相反1+i5を起させる方法が用いられてい
る。As a method for producing BixNy (generally, XY3 and YY4 are used), a method is used in which a gas phase 1+i5 is caused between monosilane gas and ammonia or monosilane gas and copper nitrate using high frequency plasma or light.
ところが、この方法で用いるモノシランは、1を当り1
00円前後の高価なガスである。このため81XNY
をつける工程か入ることによって、そのデバイスは&4
[コストが高くなる。However, the monosilane used in this method is
It is an expensive gas that costs around 00 yen. For this reason 81XNY
By adding , the device becomes &4
[Cost increases.
本発明はかかる欠点を除去したものでありて、その目的
とするところは、安価な方法で81X、NYの膜を作る
ことにある。The present invention eliminates these drawbacks, and its purpose is to produce a 81X, NY film in an inexpensive manner.
本発明の詳細については実施例をもって説明する。気相
反応を起させる手段としては、前述のように、プラズマ
、熱、あるいは光のエネルギーを利用することができる
。The details of the present invention will be explained with reference to Examples. As a means for causing a gas phase reaction, plasma, heat, or light energy can be used as described above.
本発明もエネルギーを与える方法においては、従来とか
わるものではなく、いずれの場合も81XNY(7)膜
を作ることができる。その中で最も成長速度の早い光と
プラズマの併用によるaVDについて説明する。The method of the present invention for applying energy is not different from the conventional method, and an 81XNY(7) film can be produced in either case. Among them, aVD using a combination of light and plasma, which has the fastest growth rate, will be explained.
実施例
第1図は本発明の製造に用いる装置である。同図におい
て、1はキャリアガスのボンベ、2はアンモニア(wa
s)のボンベ、6はパージ用窒素のボンベ、4は反応室
クリーニング用フレオンガスのボンベ、5a〜5dはW
Il圧器、6α〜6dはマスフローコントローラ、7は
ウォーターバス、8α〜8dは配管、9はシリコンハロ
ゲン化物、10はガス吠き出し口をもつ下部電極、11
は上部電極、12は基板、13はヒータ、14a〜14
hは光導入口、15a〜15hはレンズ系、16α〜1
6bは光源、17は反応室、18は高周波電源、19は
ストレーナ、20はパルプ、21はメカニカルブースタ
ポンプ、22は油回転ポンプである。Embodiment FIG. 1 shows an apparatus used for manufacturing the present invention. In the figure, 1 is a carrier gas cylinder, 2 is ammonia (wa
s) cylinder, 6 is a nitrogen cylinder for purging, 4 is a Freon gas cylinder for reaction chamber cleaning, 5a to 5d are W
Il pressure vessel, 6α to 6d are mass flow controllers, 7 is a water bath, 8α to 8d are piping, 9 is a silicon halide, 10 is a lower electrode with a gas outlet, 11
is an upper electrode, 12 is a substrate, 13 is a heater, 14a to 14
h is a light introduction port, 15a to 15h are lens systems, 16α to 1
6b is a light source, 17 is a reaction chamber, 18 is a high frequency power source, 19 is a strainer, 20 is pulp, 21 is a mechanical booster pump, and 22 is an oil rotary pump.
51xHy の作製方法について述べる。The method for producing 51xHy will be described.
あらかじめメカニカルブースタポンプ21と油回転ポン
プ22とによって、反応室17の中を排気しつつ、ヒー
タ16によって、基板120侃度を300〜350℃に
加熱する。While the inside of the reaction chamber 17 is evacuated in advance by the mechanical booster pump 21 and the oil rotary pump 22, the substrate 120 is heated to a temperature of 300 to 350° C. by the heater 16.
との状態でキャリアガス、すなわち水素、アルゴン、ヘ
リウム、窒素のいずれか、たとえば窒ψガスの入ったボ
ンベ1からt!、L’j圧器5αで1Kp / cdL
に圧力制御したガスをマスフローコントローラ6aで約
200印/馴に流1(L制御して配管8αに流す。配管
8aを通ったガスはシリコンの)・ロゲン化物810t
4.5iBr、、811゜の一つ、たとえば810 t
4の液体9を通って配gshへとhlすれる。このとき
5ioz4の温度はウォーターパス7によって、21℃
に保つ。21℃における8 10 t4の分圧は200
mrTorrであり、キャリアガスによって蒸気が86
から80へと運ばれる。t! from a cylinder 1 containing a carrier gas, hydrogen, argon, helium, or nitrogen, such as nitrogen ψ gas, under the conditions of t! , 1Kp/cdL with L'j pressure gauge 5α
The gas whose pressure was controlled to about 200 m/min with the mass flow controller 6a was flowed into the pipe 8α under L control.
4.5iBr, one of 811°, for example 810t
4 through the liquid 9 to the distribution gsh. At this time, the temperature of 5ioz4 is reduced to 21℃ by water path 7.
Keep it. The partial pressure of 8 10 t4 at 21℃ is 200
mrTorr, and the carrier gas causes the vapor to
It will be carried from 80 to 80.
一方、アンモニアの入ったボンベ2から調圧器56で1
1(/ / cdに圧力制御されたガスをマスフローコ
ントローラ6hで約200僅に流量制御して配管8Cへ
と流す。On the other hand, from the cylinder 2 containing ammonia, the pressure regulator 56
The gas whose pressure is controlled to 1 (/ / cd) is flowed into the pipe 8C by controlling the flow rate to a slight rate of about 200 cd using the mass flow controller 6h.
アンモニアガスは、81Ct4を含むガスと配管8C内
で混合され、下t’A 電4Mj 1 oから反応室内
へと吹き出す。The ammonia gas is mixed with the gas containing 81Ct4 in the pipe 8C, and is blown out from the lower t'A 4Mj 1 o into the reaction chamber.
この状態において、高周波電源18によって、13、5
6 M HZの高周波電力を下部電極10と上部電極1
1との間に印加すると、両電極間においてプラズマ放電
が発生する。それと同時に”r’t N’J=人口14
12と14bから、それぞれ光源16(Zと166によ
って光を電極間に照射する。In this state, 13, 5
6 MHz high frequency power is applied to the lower electrode 10 and the upper electrode 1.
1, plasma discharge occurs between both electrodes. At the same time, "r't N'J = population 14
Light is applied between the electrodes by light sources 16 (Z and 166) from 12 and 14b, respectively.
高周波電力は300〜500W(電極粍200叫の場合
)である。また、光源16α〜16hには水銀ランプを
用いた。The high frequency power is 300 to 500 W (in the case of 200 electrodes). Furthermore, mercury lamps were used as the light sources 16α to 16h.
図では光源と光導入口は、それぞれ二つ図示しであるが
、実際には90°づつ角度の異なる4方向から光を照射
した。In the figure, two light sources and two light introduction ports are shown, but in reality, light was irradiated from four directions at different angles of 90 degrees.
このプラズマと光によって8101.とNl(、の気相
反応が進み基板上に5ixty の膜が形成される。ま
た膜の成長速度は1000 X/1nit+程度であり
、光を照射しない場合に比べて約1.5倍の成長速度で
ある。またアンモニアの代りに9素ガスでもよい。With this plasma and light, 8101. The gas-phase reaction between Nl and Nl progresses and a film of 5ixty is formed on the substrate.The film growth rate is about 1000X/1nit+, which is about 1.5 times faster than when no light is irradiated. Also, 9 element gas may be used instead of ammonia.
従来のOVD法によりモノシランとアンモニアから81
XNY を作る場合には、モノシランガスが非常に高価
な為、製造コストに占めるガスの値段は約31IllI
である。81 from monosilane and ammonia by conventional OVD method.
When making XNY, monosilane gas is very expensive, so the gas price that accounts for the production cost is about 31
It is.
本発明ではモノシランガスの代りに1y当り10円以下
、すなわちモノシランの10分の1以−r″′)シリコ
ンハロゲン化物を用いるので製造コストは3貼近く安く
なる。In the present invention, silicon halide (less than 10 yen per y, that is, more than one-tenth of monosilane) is used in place of monosilane gas, so the manufacturing cost is reduced by about 3 sheets.
EliXNY 膜は集積回路に広く使われるが、その他
にも、太陽電池、光センサの反射防止111.¥やパッ
ジベージせンj換、液晶表示体の市、極配憩の被覆等に
利用でき応用範囲はきわめて広い。EliXNY films are widely used in integrated circuits, but are also used for antireflection in solar cells and optical sensors. It has an extremely wide range of applications as it can be used for replacing yen and pad pages, displaying liquid crystal displays, covering polar distribution, etc.
第1図は不発明の製造に用いる装置である。
1・・・・・・・・・キャリアガスのボンベ2・・・・
・・・・・アンモニアのボンベ3・・・・・・・・・パ
ージ用窒素
4・・・・・・・・・フレオンガスのボンベ5α〜5d
・・・・・・調圧器
6α〜6d・・・・・・マスフローコントローラ7・・
・・・・・・・ウォーターパス
8α〜8d・・・・・・配 管
9・・・・・・・・・シリコンハロゲン化物10・・・
・・・下部電極
11・・・・・・上部電極
12・・・・・・基 板
13・・・・・・ヒータ
14a〜14b・・・・・・光桿入口
15a〜15h・・・・・・レンズ系
16a〜16h・・・・・・光 源
1日・・・・・・高周波電源
19・・・・・・ストレーナ
20・・・・・・パルプ
21・・・・・・メカニカルブースタポンプ22・・・
・・・油回転ポンプ
以 上
出願人 株式会社1iT(訪γi7エ舎代理人 弁理士
最上 務FIG. 1 shows the apparatus used for manufacturing the invention. 1...Carrier gas cylinder 2...
・・・・・・Ammonia cylinder 3・・・・・・Purge nitrogen 4・・・・・・Freon gas cylinder 5α~5d
......Pressure regulator 6α to 6d...Mass flow controller 7...
......Water path 8α to 8d...Piping 9...Silicon halide 10...
... Lower electrode 11 ... Upper electrode 12 ... Substrate 13 ... Heaters 14a to 14b ... Light rod inlet 15a to 15h ...・Lens system 16a to 16h...Light source 1 day...High frequency power supply 19...Strainer 20...Pulp 21...Mechanical booster pump 22...
...Oil rotary pumps and above Applicant: 1iT Co., Ltd. (Visiting γi7Esha agent Patent attorney: Tsutomu Mogami)
Claims (1)
によるシリコン窒化側の製造方法において、シリコンの
ハロゲン化物、すなわち、5tat4゜B1Br4’、
あるいは81工4から蒸発する気体と窒素又は窒素化合
物の気体とを気相反応させ、適当に温度制御された基板
上に膜を成長させることを特徴とするシリコン窒化側の
製’jM方法。 2)¥JX化合物としてアンモニアを用いたことを特徴
とする牛1訃口d求の範囲第1項記載のシリコン窒化側
の製造方法。 3)気相反応を行なわせる手段として、プラズマおよび
光のエネルギーを同時に用いることを特徴とする特許請
求の範囲第1項記載のシリコン窒化側の製造方法。[Claims] 1) Nitrogen or M! In the method for producing silicon nitride using a gas phase reaction between a compound and a silicon compound, a silicon halide, that is, 5tat4°B1Br4',
Alternatively, a silicon nitriding method is characterized in that the gas evaporated from 81-4 is subjected to a gas phase reaction with nitrogen or a nitrogen compound gas, and a film is grown on a suitably temperature-controlled substrate. 2) The method for producing silicon nitride according to item 1, characterized in that ammonia is used as the JX compound. 3) The method for manufacturing silicon nitride according to claim 1, characterized in that plasma and light energy are simultaneously used as means for causing the gas phase reaction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19698983A JPS6089575A (en) | 1983-10-21 | 1983-10-21 | Production of silicon nitride film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19698983A JPS6089575A (en) | 1983-10-21 | 1983-10-21 | Production of silicon nitride film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6089575A true JPS6089575A (en) | 1985-05-20 |
Family
ID=16366977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19698983A Pending JPS6089575A (en) | 1983-10-21 | 1983-10-21 | Production of silicon nitride film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6089575A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2584098A1 (en) * | 1985-06-27 | 1987-01-02 | Air Liquide | Process for depositing a silicon coating on a metal article |
JPS6216511A (en) * | 1985-07-15 | 1987-01-24 | Mitsui Toatsu Chem Inc | Manufacture of semiconductor thin film |
JPS6223105A (en) * | 1985-07-24 | 1987-01-31 | Mitsui Toatsu Chem Inc | Filming process of semiconductor thin film |
EP0665306A1 (en) * | 1994-01-19 | 1995-08-02 | TOKYO ELECTRON AMERICA Inc. | Apparatus and method for igniting plasma in a process module |
US5766682A (en) * | 1991-12-26 | 1998-06-16 | Tsubouchi; Kazuo | Process for chemical vapor deposition of a liquid raw material |
WO2001029282A3 (en) * | 1999-10-20 | 2001-11-22 | Cvd Systems Inc | Fluid processing system |
US6355582B1 (en) * | 1999-09-17 | 2002-03-12 | Tokyo Electron Limited | Silicon nitride film formation method |
US6586056B2 (en) | 1997-12-02 | 2003-07-01 | Gelest, Inc. | Silicon based films formed from iodosilane precursors and method of making the same |
WO2005008763A3 (en) * | 2003-07-03 | 2005-05-12 | Micron Technology Inc | Methods of forming deuterated silicon nitride-containing materials |
-
1983
- 1983-10-21 JP JP19698983A patent/JPS6089575A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2584098A1 (en) * | 1985-06-27 | 1987-01-02 | Air Liquide | Process for depositing a silicon coating on a metal article |
JPS6216511A (en) * | 1985-07-15 | 1987-01-24 | Mitsui Toatsu Chem Inc | Manufacture of semiconductor thin film |
JPS6223105A (en) * | 1985-07-24 | 1987-01-31 | Mitsui Toatsu Chem Inc | Filming process of semiconductor thin film |
US5766682A (en) * | 1991-12-26 | 1998-06-16 | Tsubouchi; Kazuo | Process for chemical vapor deposition of a liquid raw material |
EP0665306A1 (en) * | 1994-01-19 | 1995-08-02 | TOKYO ELECTRON AMERICA Inc. | Apparatus and method for igniting plasma in a process module |
US5565036A (en) * | 1994-01-19 | 1996-10-15 | Tel America, Inc. | Apparatus and method for igniting plasma in a process module |
US6586056B2 (en) | 1997-12-02 | 2003-07-01 | Gelest, Inc. | Silicon based films formed from iodosilane precursors and method of making the same |
US6355582B1 (en) * | 1999-09-17 | 2002-03-12 | Tokyo Electron Limited | Silicon nitride film formation method |
WO2001029282A3 (en) * | 1999-10-20 | 2001-11-22 | Cvd Systems Inc | Fluid processing system |
WO2005008763A3 (en) * | 2003-07-03 | 2005-05-12 | Micron Technology Inc | Methods of forming deuterated silicon nitride-containing materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100510039B1 (en) | Copper film vapor phase deposition method | |
JPS6089575A (en) | Production of silicon nitride film | |
KR20010022638A (en) | Apparatus and method for the in-situ generation of dopants | |
JPS6276612A (en) | Manufacture of semiconductor thin film | |
JPH01143221A (en) | Manufacture of insulating thin film | |
US3919968A (en) | Reaction device for pyrolytic deposition of semiconductor material | |
JPH0310082A (en) | Method and device for forming deposited film | |
US3653991A (en) | Method of producing epitactic growth layers of semiconductor material for electrical components | |
JPS58156594A (en) | Preparation of hard coating film | |
JPS61229319A (en) | Thin film forming method | |
JPH02185026A (en) | Selective forming method of al thin-film | |
JPS62265198A (en) | Method for synthesizing diamond | |
JPS61149477A (en) | Formation of boron nitride film | |
JPS62228471A (en) | Formation of deposited film | |
JPS6086274A (en) | Preparation of polycrystalline silicon film | |
JP2002538067A (en) | Gas generator | |
JPH04354131A (en) | Semiconductor device manufacturing equipment | |
JPH0574758A (en) | Chemical vapor deposition apparatus | |
JPH04338629A (en) | Transforming apparatus | |
JPS61224318A (en) | Device and method for formation of vapor-phase thin film | |
JPH11330080A (en) | Hydrogen treatment method | |
JP3128586B2 (en) | Thin film growth equipment | |
JPS63182816A (en) | Equipment for manufacturing semiconductor by vapor growth method | |
JPS61114519A (en) | Vapor growth equipment | |
JPS6062110A (en) | Thin film forming equipment |