EP2564036A2 - Système de couplage pour une installation à énergie hybride - Google Patents

Système de couplage pour une installation à énergie hybride

Info

Publication number
EP2564036A2
EP2564036A2 EP11713824A EP11713824A EP2564036A2 EP 2564036 A2 EP2564036 A2 EP 2564036A2 EP 11713824 A EP11713824 A EP 11713824A EP 11713824 A EP11713824 A EP 11713824A EP 2564036 A2 EP2564036 A2 EP 2564036A2
Authority
EP
European Patent Office
Prior art keywords
coupling
heat
power
heat pump
coupling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11713824A
Other languages
German (de)
English (en)
Inventor
Cornelius Munz
Ekkehard Laqua
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2564036A2 publication Critical patent/EP2564036A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/10Gas turbines; Steam engines or steam turbines; Water turbines, e.g. located in water pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/30Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2101/00Electric generators of small-scale CHP systems
    • F24D2101/80Electric generators driven by external combustion engines, e.g. Stirling engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2103/00Thermal aspects of small-scale CHP systems
    • F24D2103/20Additional heat sources for supporting thermal peak loads

Definitions

  • the invention relates to a coupling system for a hybrid energy system, comprising a heat pump device and a cogeneration device with at least one coupling device for coupling the heat pump device and the cogeneration device according to the preamble of claim 1.
  • the invention relates to an energy transformation system with a heat pump device for generating heat and / or cold and a combined heat and power device for generating electricity and / or heat according to the preamble of claim 10.
  • the invention relates to a method for energy transformation with A coupling system according to the preamble of claim 12.
  • Combined heat and power devices are well known in the domestic and utility engineering of buildings. These devices generate both power and heat by supplying a fuel, such as oil or wood.
  • heat pumps are well known. These are thermodynamic machines that are powered by an auxiliary power and can increase or decrease the temperature of a medium. Heat pumps are used both as so-called chillers, for example as refrigerators, for lowering a temperature level and as heat machines for raising a temperature level. Such heat pumps can raise or lower a large proportion of ambient heat to a usable temperature level with a small proportion of added drive energy.
  • heat pumps reversibly, that is, to use the drive energy both for raising a temperature level, for example for heating or hot water preparation, as well as for lowering a temperature level, for example for air conditioning or cooling. This is possible by switching over the refrigeration cycle, for example by means of a 4-way valve.
  • a direct combination of these two technologies ie a hybrid energy plant from a combined heat and power plant and a heat pump, which is simultaneously or in principle able to generate electricity, heat and cold, is not yet known.
  • the invention has for its object to provide a device and a method which realizes a coupling for a heat pump device and a combined heat and power device, with a high overall efficiency and low resource consumption should be guaranteed in relation to already known non-coupled systems. This should continue to be used not only the waste heat of the engine heat pump as efficient as possible, but above all the environmental heat can be raised to a usable temperature level and / or lowered.
  • the inventive coupling system for a hybrid power plant comprising a heat pump device and a combined heat and power device with at least one coupling device for coupling the heat pump device and the cogeneration device, is characterized in that the at least one coupling device, an electrical coupling unit and / or a hydraulic Coupling unit, which are designed to be switchable for coupling the heat pump device and the cogeneration device.
  • the coupling device comprises a fuel-powered engine.
  • the coupling device comprises a gearbox coupled to the engine.
  • the coupling device comprises an electric motor coupled to the transmission in order to transmit a translated force to or from the electric machine via the engine.
  • the coupling device comprises a compressor coupled to the transmission in order to transmit a translated force to the compressor.
  • the coupling device comprises a control device for switching the coupling system.
  • control device comprises a motor control unit for controlling the motor.
  • control device comprises a power electronics unit for power-dependent control of the coupling system.
  • control device comprises an interface unit in order to realize a connection to further components.
  • the energy transformation system according to the invention with a heat pump device for generating heat and / or cold and a combined heat and power device for generating electricity and / or heat is characterized in that the heat pump device and the combined heat and power device via at least one inventive coupling system with each other are coupled.
  • the heat pump device is switchably coupled to the engine and / or the electric motor via the compressor and / or the transmission.
  • the method according to the invention for energy transformation with a coupling system according to the invention comprising the steps of operating a heat pump device and operating a combined heat and power device, is characterized in that the heat pump device and the cogeneration device are switchably coupled together and energy of the one device for the each other device is optionally provided.
  • the switching comprises switching between different operating modes.
  • the switching of the operating modes comprises a switching over of the following operating modes selected from the following group: power generation and / or heat generation and / or refrigeration.
  • the coupling is performed electrically or electrically and hydraulically.
  • the coupling is carried out reversibly, so that switching is made from an energy-generating operating mode into an energy-consuming operating mode
  • the different operating modes are: Single operation of the combined heat and power plant with electricity and heat generation;
  • the focus can be placed on electricity, heat or cooling.
  • the power modulation and power addition of the motor and the electric motor is advantageous.
  • the electric motor can take over the motor drive of the compressor of the heat pump.
  • This principle would correspond to a vehicle hybrid.
  • E-machine is understood here as an electric machine that can be operated both as a motor and as a generator. Due to the addition of power, a peak load boiler, a so-called booster, can be omitted. This is interesting both in terms of the required installation space and in terms of investment costs, especially for private users.
  • the electrical coupling the system can be operated in the smallest space.
  • a compact outdoor unit combined with a wall-mounted micro-cogeneration unit can cover the energy needs of an entire building.
  • the exhaust gas cooled by a heat exchanger of the engine can still be used as an additional heat source for the heat pump.
  • FIG. 1 is a schematic block diagram of the coupling system of a hybrid energy plant according to the invention
  • FIG. 4 is a block diagram of a second mode of operation of the coupling operation of FIG.
  • FIG. 5 is a block diagram of a third mode of operation of the coupling operation of
  • FIG. 6 shows a block diagram of a fourth operating mode of the coupling operation of FIG.
  • FIG. 7 shows a block diagram of a fifth operating mode of the coupling operation of FIG.
  • FIG. 10 shows a circuit diagram of a first hydraulic coupling
  • FIG. 11 shows a circuit diagram of a second hydraulic coupling.
  • FIG. 1 shows a schematic block diagram of a coupling system 100 for a hybrid power plant comprising a heat pump device 1 10 and a combined heat and power device 120 with at least one coupling device 130 for coupling the heat pump device 1 10 and the cogeneration device 120.
  • the at least one coupling device 130, an electrical coupling unit and / or a hydraulic coupling unit, which is suitable for coupling the heat pump Penvorraum 1 10 and the power-heat coupling device 120 are designed switchable.
  • the electrical coupling unit or the hydraulic coupling unit are not explicitly shown here.
  • the hybrid energy system has, on the one hand, a fuel supply 40 and a power supply 41 and, on the other hand, a discharge for the generated heat 42, the generated refrigeration 43 and the generated current 44.
  • the coupling device 130 comprises a fuel-powered engine 20, a motor 20 coupled to the engine 20 Transmission 21 and coupled to the transmission 21 electric motor 22 which is driven by the motor 20 and transmits a translated force to or from the electric motor 22.
  • the transmission 21 may be designed, for example, as a planetary gear or as a differential gear.
  • a compressor 23 of the heat pump device 110 is also coupled to the transmission 21 for communicating a translated force to the compressor 23.
  • the coupling device 130 comprises a control device 30, which comprises, inter alia, a motor control unit 31 for controlling the motor 20, a power electronics unit 32 for power-dependent control of the coupling system 100 and an interface unit 33 for connection to realize other components.
  • the energy transformation system according to the invention which is designed as a hybrid energy plant according to FIG. 1, with a heat pump device 110 for generating heat 42 and / or cold 43 and a cogeneration device 120 for generating current 44 and / or heat 42 includes the Coupling of the réellepumpenvor- direction 1 10 with the cogeneration device 120 via at least the coupling system 100.
  • the heat pump device 1 10 via the compressor 23 and / or the transmission 21 with the motor 20 and / or the electric motor 22nd switchable coupled.
  • the small double arrows between gear 21 and motor 20 or electric motor 22 and compressor 23 indicate a generally existing connection between these components, via which energy transport is possible.
  • FIGS. 2 to 7 each show block diagrams of the various operating modes of the coupling system 100 according to FIG. 1.
  • the components can be coupled via a suitable gear 21, which enables power branching and addition.
  • the components of the hybrid giestrom are shown shaded deposited.
  • FIGS. 8 to 11 the various coupling possibilities of the coupling system 100 are described.
  • FIG. 2 shows a block diagram of the standard individual operation of the cogeneration device 120.
  • the electric motor 22 is driven by the motor 20.
  • the motor 20 and the electric motor 22 are connected to each other via the gear 21.
  • current 44 is generated and at the same time the waste heat of the motor 20 is used to generate heat 42.
  • the arrow 50 here indicates the direction of the main energy flow from the engine 20 to the electric motor 23. In such an operating mode, the overall efficiency of the hybrid power plant according to the invention is approximately 90%.
  • FIG 3 shows a block diagram of a first operating mode of the coupling operation of the cogeneration device 120 and the heat pump 1 10.
  • the compressor 23 of the heat pump 1 10 is driven via the motor 40 operated with the fuel 40.
  • the waste heat of the engine 20 is also used in this operating mode to generate heat 42.
  • the heat pump 1 10 can be reversibly used, thus, in principle, the generation of heat 42 and cold 43 is possible. Possible applications for this are the heating of hot water and the cooling of a house in summer.
  • the arrow 51 indicates the direction of the main energy flow from the motor 20 to the heat pump 1 10.
  • FIG 4 shows a block diagram of a second operating mode of the coupling operation of the cogeneration device 120 and the heat pump 1 10.
  • the compressor 23 of the heat pump 1 10 is driven by the power 41 operated electric machine 22.
  • the arrow 52 indicates the direction of the main energy flow from the E-machine 23 to the heat pump 1 10.
  • the heat pump 1 10 uses in this mode of operation, the regenerative environmental heat.
  • the heat pump 1 10 can also be reversibly operated here and then generate cold 43.
  • the current 41 for operating the electric machine 22 can be fed, for example, from the power grid or from regenerative sources, for example a photovoltaic system.
  • FIG. 5 shows a block diagram of a third operating mode of the coupling operation of the cogeneration device 120 and the heat pump 1 10.
  • this operating mode there is a power addition of the two drive sources - motor 20 and electric motor 22 - before.
  • the motor 20 and the electric motor 22 are coupled to each other via the gear 21.
  • the maximum power of the compressor 23 of the heat pump 1 10 can thus be increased by adding both drive sources.
  • Such a power-modulating operation of the heat pump 110 can be realized either by modulating the motor 20 or the electric machine 22.
  • the engine 20 is further driven by a fuel 40 and the electric motor 22 by current 41.
  • both heat 42 and cold 43 can be generated.
  • the arrows 51 and 52 respectively denote the directions of main energy flows from the drive sources 20 and 23 to the heat pump 110.
  • FIG. 6 is a block diagram showing a fourth operation mode of the coupling operation of the cogeneration device 120 and the heat pump 1 10.
  • This operation mode is a mixing operation that can be set as needed.
  • the engine 20 is operated with fuel 40. A portion of its drive power can be diverted to the electric motor 22 in this case. The remainder is used to drive the compressor 23 of the heat pump 110.
  • the need for heat 42 and power 44 or the need for heat 42, cold 43 and power 44 can be variably covered, for example for air conditioning, hot water and power generation.
  • Another advantage of this mode of operation is the separate power control for the generation of heat 42 and power 44. It can both the supply of heat and at the same time the supply of electricity are regulated. This is not the case with conventional cogeneration devices.
  • the arrows 50 and 51 indicate the direction of the flow of energy from the engine 20 to the heat pump 1 10 and the engine 20 via the transmission 21 to the electric motor 22nd
  • FIG. 7 shows a block diagram of a fifth mode of operation of the coupling operation of the cogeneration device 120 and the heat pump 120. This is the so-called startup operation.
  • the electric machine 22 can be used as a starter for the motor 20 while supplying current 41.
  • the arrow 53 indicates the direction of the flow of energy from the electric motor 22 via the gear 21 to the motor 20.
  • FIGS. 8 to 11 each show circuit diagrams of the different coupling possibilities of the coupling system 100 according to the invention on the basis of various embodiments.
  • the components can be coupled via the transmission 21, which enables power branching and addition.
  • FIG. 8 shows a circuit diagram of a first electrical coupling ,
  • the components of the hybrid power plant via the central power electronics unit 32 are coupled together, wherein the power electronics unit 32, the power flow between power grid 64, heat pump - not explicitly shown here - and cogeneration 120 controls.
  • the power electronics 32 could still assume the function of an inverter. If the heat pump 1 10 does not have an inverter control, the inverter could be integrated into the power electronics 32.
  • Fig. 9 shows a circuit diagram of a second electrical coupling.
  • the power-heat coupling device 120, the power electronics 32 and the electric motor 22 are coupled to each other via the power grid 64.
  • the power grid 64 serves as a memory and as a coupling element.
  • the mode control has an information interface - not shown here - to the individual components 120, 32 and 22 and thus controls the power flow through the network.
  • FIGS. 10 and 11 each show a circuit diagram with a hydraulic coupling.
  • the individual components are coupled via a heat transfer fluid network with constant pressure.
  • the consumers that is to say the heat pump 110 and the electric machine 22 or the motor 20, are coupled via so-called hydrostats and can be varied in their power via a variable volume flow.
  • the hydrostat can also work as a hydraulic pump and supply the pressure network. It is also possible to perform a power addition and to couple two suppliers to the heat transfer fluid network.
  • the heat pump 1 10 could in this case also be driven directly from the hydraulic network via a pressure booster.
  • FIG. 10 shows a circuit diagram of a first hydraulic coupling, in which the compressor 23 of the heat pump 110 is coupled directly to the hydraulics of the cogeneration device 120.
  • 1 1 shows a circuit diagram of a second hydraulic coupling in which the heat pump 110 is designed as a so-called "stand-alone" device, in which case the coupling takes place via the power electronics 32 with the combined heat and power device 120.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

L'invention concerne un système de couplage (100) pour une installation à énergie hybride comprenant un dispositif de pompes à chaleur (110) et un dispositif de couplage chaleur-force (120) pourvu d'au moins un dispositif de couplage (130) pour coupler le dispositif de pompes à chaleur (110) au dispositif de couplage chaleur-force (120). Un but de l'invention est de fournir un dispositif et un procédé permettant d'effectuer un couplage pour un dispositif de pompes à chaleur (110) et un dispositif de couplage chaleur-force (120), avec la garantie d'un rendement total aussi élevé que possible et d'une consommation de ressources aussi basse que possible, comparativement aux installations non couplées déjà connues. L'invention est caractérisée en ce que ce dispositif de couplage (130) présente une unité de couplage électrique et/ou une unité de couplage hydraulique qui sont conçues de manière commutable pour permettre un couplage du dispositif de pompes à chaleur (110) et du dispositif de couplage chaleur-force (120). L'invention concerne également un système de transformation d'énergie pour produire de la chaleur et/ou du froid et un procédé de transformation d'énergie avec un système de couplage (100).
EP11713824A 2010-04-27 2011-04-12 Système de couplage pour une installation à énergie hybride Withdrawn EP2564036A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010018318A DE102010018318A1 (de) 2010-04-27 2010-04-27 Kopplungssystem für eine Hybridenergieanlage
PCT/EP2011/055704 WO2011134784A2 (fr) 2010-04-27 2011-04-12 Système de couplage pour une installation à énergie hybride

Publications (1)

Publication Number Publication Date
EP2564036A2 true EP2564036A2 (fr) 2013-03-06

Family

ID=44625778

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11713824A Withdrawn EP2564036A2 (fr) 2010-04-27 2011-04-12 Système de couplage pour une installation à énergie hybride

Country Status (6)

Country Link
US (1) US20130145762A1 (fr)
EP (1) EP2564036A2 (fr)
CN (1) CN103180552A (fr)
DE (1) DE102010018318A1 (fr)
RU (1) RU2012150405A (fr)
WO (1) WO2011134784A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014200270A1 (de) 2014-01-10 2015-07-16 Robert Bosch Gmbh Verdichtereinrichtung, Steuergerät, Klimatisierungseinrichtung mit solch einer Verdichtereinrichtung sowie Verfahren zum Betrieb der Verdichtereinrichtung
EP3327361A1 (fr) * 2016-11-28 2018-05-30 International Solar Energy Research Center Konstanz E.V. Centrale de cogénération et son procédé de fonctionnement
CN106640565A (zh) * 2016-12-14 2017-05-10 中国科学院理化技术研究所 一种利用热声发动机驱动热声热泵的系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093868A (en) * 1974-04-29 1978-06-06 Manning John I Method and system utilizing steam turbine and heat pump
DE2705869C2 (de) * 1977-02-11 1979-05-03 Motorheizung Gmbh, 3000 Hannover Wärmepumpenheizungssystem
DE2728273A1 (de) * 1977-06-23 1979-01-04 Ruhrgas Ag Verbrennungsmotorisch betriebene waermepumpenanordnung
DE2830421A1 (de) * 1978-07-11 1980-01-24 Kueppersbusch Waermepumpenanlage, deren im waermepumpenkreislauf liegender verdichter von einer verbrennungskraftmaschine angetrieben ist
DE2842893A1 (de) * 1978-10-02 1980-04-17 Kueppersbusch Waermepumpenheizungssystem
US4313305A (en) * 1979-09-18 1982-02-02 Dan Egosi Feedback energy conversion system
DE3024673A1 (de) * 1980-06-30 1982-01-28 Siemens AG, 1000 Berlin und 8000 München Blockheizkraftwerk
EP0152121A3 (fr) * 1981-07-02 1986-08-06 Borg-Warner Limited Pompe à chaleur à compresseur multi-étagé
DE3226429C2 (de) * 1982-07-15 1986-06-12 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zum Erzeugen von elektrischer Energie und Heizwärme sowie kombiniertes Wärmepumpenheizkraftwerk zur Durchführung des Verfahrens
JP4321587B2 (ja) * 2003-04-17 2009-08-26 トヨタ自動車株式会社 エネルギ回収システム
JP4622296B2 (ja) * 2004-04-26 2011-02-02 アイシン精機株式会社 複合動力源ヒートポンプ式空調装置
JP2005337599A (ja) * 2004-05-27 2005-12-08 Aisin Seiki Co Ltd 空調発電シテスム
KR100550574B1 (ko) * 2004-08-17 2006-02-10 엘지전자 주식회사 발전 공조 시스템
EP1691038A1 (fr) * 2004-12-17 2006-08-16 Hitachi, Ltd. Système et procédé d'alimentation en énergie thermique, et procédé de reconstruction du système
CN2854454Y (zh) * 2005-12-06 2007-01-03 东南大学 混合动力燃气热泵空调

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011134784A2 *

Also Published As

Publication number Publication date
WO2011134784A2 (fr) 2011-11-03
RU2012150405A (ru) 2014-06-10
US20130145762A1 (en) 2013-06-13
DE102010018318A1 (de) 2011-10-27
CN103180552A (zh) 2013-06-26
WO2011134784A3 (fr) 2014-03-20

Similar Documents

Publication Publication Date Title
DE19740398C2 (de) Kraft-Wärme-gekoppelte Einrichtung zur Energieversorgung
EP3138148B1 (fr) Installation de production combinée de chaleur et d'électricité pour une alimentation décentralisée en courant et en chaleur
DE10133733B4 (de) Kraft-Wärme-Kopplungssystem
DE102007063141A1 (de) Heizungsvorrichtung zum Beheizen eines Gebäudes mittels einer von einer Verbrennungskraftmaschine angetriebenen Wärmepumpe
EP0008680A2 (fr) Procédé de production d'énergie thermique en combinant une unité de puissance thermique avec une pompe à chaleur
EP2299098B1 (fr) Installation pour alimentation en énergie thermique
DE102005000998A1 (de) Einspeisung von Solarstrom in ein Wechselstrom - Inselnetz
WO2009077163A2 (fr) Système de chauffage producteur de courant
WO2011134784A2 (fr) Système de couplage pour une installation à énergie hybride
EP2492599B1 (fr) Installation de chauffage dotée d'une combustion de biomasse et d'une pompe à chaleur
EP2764298B1 (fr) Centrale de cogénération et méthode d'opération correspondante
DE202009010775U1 (de) Modulares KWK System für den simultanen Einsatz in Heizungsanlagen und/oder als Batterie-Ladestation und/oder Range Extender für Elektrofahrzeuge
CH705372B1 (de) Kompaktanlage zur Bereitstellung von Wärmeenergie an einen Verbraucher mit einem Heizsystem.
EP1895139B1 (fr) Système d'alimentation en énergie
DE202005009663U1 (de) Blockheizkraftwerk
AT512138B1 (de) Anlage zur Kraft-Wärmekopplung mit kombinierten Wärmespeichern
DE202008001386U1 (de) Heizanlage durch Anordnung eines Verbrennungsmotors mit Generator und Luft-Wasser Wärmepumpe
DE102014010789A1 (de) Energieversorgungsaggregat zur Bereitstellung elektrischer und thermischer Energie sowie Verfahren zur Bereitstellung von elektrischer und thermischer Energie
DE102012212040B4 (de) Wärmepumpenanlage sowie Verfahren zum Bereitstellen von Warmwasser
DE10127893A1 (de) Modulare Vorrichtung zur Energieerzeugung
EP2189730A2 (fr) Système d'alimentation d'un consommateur de chaleur et procédé de fonctionnement d'un tel système
DE19716299C1 (de) Blockheizkraftwerk
EP3327361A1 (fr) Centrale de cogénération et son procédé de fonctionnement
DE10233230A1 (de) 1. Leistungsgesteigerte Wärmepumpe 2. Gekoppelte Wärmepumpe-Expansionsmaschine 3. Vollmodulierte Wärmepumpe 4. Kombination 2.+3. / s. Tag-Nacht-Speicherung
DE19623874A1 (de) Verfahren und Einrichtung zur Ausnutzung der in einem flüssigen oder gasförmigen Primärenergieträger enthaltenen und durch Verbrennung freigesetzten Wärmeenergie mittels einer Kraft-Wärme-Kopplungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20140320

17P Request for examination filed

Effective date: 20140922

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160218