EP2561523B1 - Bistable magnetic actuator - Google Patents

Bistable magnetic actuator Download PDF

Info

Publication number
EP2561523B1
EP2561523B1 EP11722720.7A EP11722720A EP2561523B1 EP 2561523 B1 EP2561523 B1 EP 2561523B1 EP 11722720 A EP11722720 A EP 11722720A EP 2561523 B1 EP2561523 B1 EP 2561523B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
armature
generated
permanent magnet
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11722720.7A
Other languages
German (de)
French (fr)
Other versions
EP2561523A2 (en
Inventor
Jörg GASSMANN
Steffen Schnitter
Marcus Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Electric Dresden GmbH
Original Assignee
Johnson Electric Dresden GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Electric Dresden GmbH filed Critical Johnson Electric Dresden GmbH
Priority to SI201130735T priority Critical patent/SI2561523T1/en
Publication of EP2561523A2 publication Critical patent/EP2561523A2/en
Application granted granted Critical
Publication of EP2561523B1 publication Critical patent/EP2561523B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/24Parts rotatable or rockable outside coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2236Polarised relays comprising pivotable armature, pivoting at extremity or bending point of armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2272Polarised relays comprising rockable armature, rocking movement around central axis parallel to the main plane of the armature

Definitions

  • the invention relates to a bistable magnetic actuator with a polarized parallel circuit, wherein between the outer legs of a U-shaped soft iron yoke, a flat permanent magnet is integrated, which carries a soft iron middle leg and applied to the center leg rocker armature with a permanent magnetically generated magnetic flux, and wherein on each outer leg a separately controllable excitation winding Umschwenkimpulse for the rocker armature from a permanent magnetic self-holding pivotal position in the other provides.
  • a similar generic magnetic actuator is state of the art in the utility model DE 20 2004 012 292 U1 described.
  • Bistable, bipolar magnetic actuators can assume two stable swing states when de-energized. They often consist of a parallel circuit of two magnetic circuits made of soft iron parts for guiding a magnetic flux, one or more electromagnetic excitation windings and at least one permanent magnet, which generates forces via one or more air gaps on a magnet armature in the two magnetic circuits and tie these powerless in two stable layers can.
  • the pivoting of the magnet armature is essentially determined by the interaction between the flux generated by the excitation windings and the permanent magnet fluxes by the soft magnetic parallel circuits.
  • the invention has for its object to provide an energy-efficient bistable magnetic actuator with a simple low-weight and low-volume construction and high switching power density, which is particularly suitable for bistable relays high switching capacity.
  • the magnetic actuator according to the invention a particularly energy-efficient pivoting of the rocker armature is achieved from one pivotal position to the other, which is particularly advantageous for magnetic actuators, which must meet strict external conditions in space, power and control force.
  • adding magnetic fluxes are generated over the open armature air gap of that parallel circuit in which the actively controlled exciter winding is arranged according to the invention with a permanent magnetic magnetic flux opposing electromagnetic flux displaced the permanent magnet magnetic flux from the closed via the armature wing parallel circuit in the other parallel circuit.
  • a DC voltage pulse is applied to the excitation winding, which lies in the parallel circuit with the closed armature air gap, in such a way that the electromagnetic flux against the permanent magnetic magnetic flux acts, causing it commutes in the parallel circuit with the open armature air gap.
  • the resulting permanent magnetic force effect which is composed of the additional portion of the permanent magnet generated by the flow over the open armature air gap and from the commutated permanent magnetic magnetic flux, causes the switching of the rocker armature in its other stable switching position.
  • each of the two parallel magnetic circuits advantageously has a very low magnetic resistance at each closed armature air gap, since the permanent magnet arranged in the center leg is kept extremely flat due to its high coercive force and high remanence and thus represents a very low magnetic resistance.
  • the U-shaped yoke with its two outer legs is made in one piece, which additionally reduces the magnetic resistance over known arrangements with a composite U-shaped yoke.
  • the Wippankerlager works very efficiently by rolling friction on metallic surfaces.
  • the actuator has as a supporting part a U-shaped soft iron yoke 1, on the outer legs 2, 3 separately controllable exciter winding 4, 5 sit.
  • An extremely flat but strong permanent magnet 6 carries a Soft iron middle leg 7. This creates an E-shaped magnetic core.
  • On the middle leg 7 a slightly V-shaped bent rocker 8 is mounted.
  • the E-shaped magnetic core represents with the rocker armature starting from the center leg 7 is a parallel circuit of the armature air column.
  • At one end of the rocker arm 8 carries an actuator 9 for example, a contact system of a bipolar relay.
  • this permanently magnetically generated tributary 11 is weaker than the permanent magnetic magnetic flux 11 on the left side of the magnetic actuator, since a comparatively low permanent magnetically generated tributary 11 sets through the open air gap 12 to the rocker armature 8 due to its high magnetic resistance.
  • an electromagnetic flux 13 is briefly generated via the excitation current in the left parallel circuit. With a corresponding winding direction of the excitation winding 4 and polarity of the voltage pulse, the electromagnetic flux 13 is directed against the permanent-magnetic magnetic flux 10 in the left parallel circle, as shown in FIG Fig. 2 is shown by arrows.
  • the permanent magnet generated magnetic flux 10 is displaced from the left parallel circuit in the right parallel circuit. He commutes in the right parallel circle and exerts on the right wing of the rocker armature 8 from a magnetic attraction, the rocker armature 8 in a clockwise direction to turn around.
  • Fig. 3 the second stable position of the rocker armature 8 is shown.
  • the permanent magnetically generated magnetic flux 10 in the now right parallel circle fixes the rocker armature 8 in this second pivoting position.
  • a permanently magnetically generated tributary flows through the open armature air gap 12.
  • a counterclockwise swinging takes place in an equivalent manner with pulse-like energization of the field winding 5.
  • FIG. 4 a magnetic actuator for a bistable switching relay is shown in an exploded view.
  • the U-shaped soft iron yoke 1 is punched with its two yoke legs 2, 3 in one piece from a soft iron sheet and bent.
  • a permanent magnet 6 is arranged, which in turn carries a soft iron middle leg 7.
  • On the yoke legs 2, 3 sit energizing windings 4, 5, which are supported by an insulating body 14.
  • the excitation windings 4, 5 are suitably wound in a folded over at least one film hinge insulator 14 in a single operation to bring out the inner coil ends.
  • the four ends of the field windings 4, 5 are soldered to three winding terminals 15, the two inner winding ends being commonly connected to the middle terminal. In this way, the two field windings 4, 5 are separately controllable and flows in opposite directions from the exciter current.
  • On the middle leg 7 of the rocker armature 8 is cut-mounted.
  • Such an armature bearing is very low friction and therefore consumes only a small switching energy.
  • the magnetic force of the extremely thin but strong permanent magnet 6 is sufficient to hold all four ferromagnetic components 1, 6, 7 and 8, so a separate holder is not essential. Only the rocker armature 8 is guided laterally by the insulating body 14 and otherwise holds by the force of the permanent magnet 6.
  • a resilient actuator 9 On a wing of the rocker armature 8 is a resilient actuator 9 is arranged, which operates on a non-illustrated transmission element on a contact system of a switching relay. ever after switching position of the rocker armature 8 closes or opens the relay its primary circuit. But there are also other applications for almost any positioning tasks possible.
  • the magnetic actuator can be miniaturized very well and in particular builds very flat. Moreover, due to its few parts, it is inexpensive and lightweight. Switching from one switch position to the other requires, as to Figures 1 - 3 is stated, only little energy.
  • FIG. 5 is the magnetic actuator after Fig. 4 shown again in an assembled state in a perspective view, wherein the same reference numerals are used from the preceding drawings.
  • the attached to the rocker arm 8 actuator 9 is designed resiliently and depending on the direction of the attacking force has two different spring characteristics. In order to obtain an actuation with an initial force> 0, it is advantageous that the resilient actuator 9 biased on the rocker armature 8 is attached.
  • FIGS. 6 and 7 is also one asymmetric Umschwenkkraft generated with one and the same parallel magnetic circuit arrangement.
  • a pivoting movement of a rocker armature is carried out in one direction with a greater force than a pivoting movement in the other direction.
  • This may be useful, for example, for relays of high switching capacity where a possible welding of an actuated relay contact is to be achieved or where an increased bias voltage is to be applied to a relay contact.
  • This is achieved according to the invention while maintaining the symmetry of the mechanical arrangement of the magnetic actuator by means of an asymmetrical arrangement of the field windings.
  • the rocker armature should be tightened by the right parallel circuit of a magnetic core and swing over.
  • the permanent magnetically generated magnetic flux is displaced from the right outer leg into the left outer leg and adds there to the permanently magnetically generated tributary.
  • the rocker arm pivots counterclockwise, which now forms a permanently magnetically generated tributary on the right parallel circle and holds a permanent magnetically generated magnetic flux via the left parallel circle the rocker arm without power in another stable position. If the start of this movement is supported by an external force such as a spring, the coil 3 can be carried out with only a few turns.
  • this winding configuration is as in FIG. 6 and 7 represented by a winding process feasible, starting at the middle winding connection via the left to the right winding connection.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

Die Erfindung betrifft einen bistabilen Magnetaktor mit einem polarisierten Parallelkreis, wobei zwischen den Außenschenkeln eines U-förmigen Weicheisenjochs ein flacher Permanentmagnet integriert ist, der einen Weicheisenmittelschenkel trägt und einen auf dem Mittelschenkel gelagerten Wippanker mit einem dauermagnetisch erzeugten Magnetfluss beaufschlagt, und wobei auf jedem Außenschenkel eine getrennt ansteuerbare Erregerwicklung Umschwenkimpulse für den Wippanker von einer dauermagnetisch selbsthaltenden Schwenkstellung in die andere liefert. Ein ähnlicher gattungsbildender Magnetaktor ist zum Stand der Technik in der Gebrauchsmusterschrift DE 20 2004 012 292 U1 beschrieben.The invention relates to a bistable magnetic actuator with a polarized parallel circuit, wherein between the outer legs of a U-shaped soft iron yoke, a flat permanent magnet is integrated, which carries a soft iron middle leg and applied to the center leg rocker armature with a permanent magnetically generated magnetic flux, and wherein on each outer leg a separately controllable excitation winding Umschwenkimpulse for the rocker armature from a permanent magnetic self-holding pivotal position in the other provides. A similar generic magnetic actuator is state of the art in the utility model DE 20 2004 012 292 U1 described.

Bistabile, bipolare Magnetaktoren können im stromlosen Zustand zwei stabile Schwenkzustände einnehmen. Sie bestehen häufig aus einer Parallelschaltung zweier magnetischer Kreise aus Weicheisenteilen zur Führung eines magnetischen Flusses, einer oder mehreren elektromagnetischen Erregerwicklungen und mindestens einem Permanentmagnet, welcher über einen oder mehrere Luftspalte auf einen Magnetanker in den beiden Magnetkreisen Kräfte erzeugt und diesen in beiden stabilen Lagen leistungslos fesseln kann. Das Umschwenken des Magnetankers wird im Wesentlichen von der Wechselwirkung zwischen dem von den Erregerwicklungen generierten Fluss und den dauermagnetischen Flüssen durch die weichmagnetischen Parallelkreise bestimmt.Bistable, bipolar magnetic actuators can assume two stable swing states when de-energized. They often consist of a parallel circuit of two magnetic circuits made of soft iron parts for guiding a magnetic flux, one or more electromagnetic excitation windings and at least one permanent magnet, which generates forces via one or more air gaps on a magnet armature in the two magnetic circuits and tie these powerless in two stable layers can. The pivoting of the magnet armature is essentially determined by the interaction between the flux generated by the excitation windings and the permanent magnet fluxes by the soft magnetic parallel circuits.

Gemäß der bereits genannten gattungsgemäßen DE 20 20004 012 292 ist zum Stand der Technik für die Betätigung eines Gaswechselventils einer Verbrennungskraftmaschine ein auf dem Mittelschenkel wälzgelagerter Wippanker in flacher Bauart bekannt. Ein in den Mittelschenkel integrierter Permanentmagnet erzeugt eine Haltekraft, die den Wippanker in einer der beiden Schwenkstellungen hält, ohne dass ein Stromfluss erforderlich ist. Durch eine wechselweise Bestromung der beiden Erregerwicklungen mit wechselnder Polarität erfolgt ein wechselweises Umschwenken des Wippankers, indem der jeweilige zur bestromten Erregerwicklung gehörige Flügel des Wippankers infolge der Addition des dauermagnetisch erzeugten Nebenflusses über den offenen Ankerluftspalt und dem jeweils gleichgerichteten elektromagnetischen Fluss über den offenen Ankerluftspalt angezogen wird. Das Umschwenken erfolgt dabei entgegen der Haltekraft des dauermagnetisch erzeugten Magnetfluss durch den unbestromten Parallelkreis, der sich über den geschlossenen Ankerluftspalt ausgebildet und den Wippanker bis dahin in seiner Lage gefesselt hat.According to the aforementioned generic DE 20 20004 012 292 is known in the prior art for the operation of a gas exchange valve of an internal combustion engine on the center leg rolling bearing rocker armature in a flat design. An integrated in the middle leg Permanent magnet generates a holding force that holds the rocker armature in one of the two pivoting positions, without a current flow is required. By alternately energizing the two excitation windings with alternating polarity, an alternating swinging of the rocker armature by the respective current to the energized exciter winding wing of the rocker armature is attracted as a result of the addition of permanent magnetically generated tributary fluid over the open armature air gap and the rectified electromagnetic flux across the open armature air gap , The swiveling takes place counter to the holding force of the permanently magnetic magnetic flux generated by the unpowered parallel circuit, which has formed over the closed armature air gap and the rocker anchor has been tied up in its position until then.

Auf dem beschriebenen Prinzip beruhen viele bekannte Magnetaktoren für elektromagnetische Antriebssysteme mit einer umsteuerbaren oder mit zwei getrennt steuerbaren Erregerwicklungen, beispielsweise gemäß DE 6751 327 DE 1 938 723 U1 , DE 43 14 715 A1 , DE 696 03 026 T2 , EP 0 197 391 B2 . Es wird dabei immer die Erregerwicklung in demjenigen Parallelkreises bestromt, nach dessen Seite der Wippanker umschwenken soll, wobei der elektromagnetische Fluss gleichsinnig zum dauermagnetisch erzeugten Nebenfluss gerichtet ist. In jedem Fall muss aber die Haltekraft, die der dauermagnetisch erzeugte Magnetfluss auf den angezogenen Ankerflügel ausübt, überwunden werden, wozu ein erheblicher energetischer Aufwand erforderlich ist.On the described principle, many known magnetic actuators for electromagnetic drive systems with a reversible or with two separately controllable exciter windings, for example according to DE 6751 327 DE 1 938 723 U1 . DE 43 14 715 A1 . DE 696 03 026 T2 . EP 0 197 391 B2 , It is always energized the exciter winding in that parallel circuit, to the side of the rocker armature to swing, the electromagnetic flux is directed in the same direction to the permanent magnet generated tributary. In any case, but the holding force that exerts the permanent magnetic magnetic flux generated on the attracted angel wings, be overcome, for which a considerable energy expenditure is required.

Es sind ferner aus beispielsweise DE 33 23 481 A1 gepolte bistable Relais mit einem einmaschigen Magnetkreis und einem mit einem Permanentmagnet bestückten drehbeweglichen H-Ankerzug bekannt, bei denen durch das Magnetfeld einer Erregerwicklung der H-Ankerzug in seine zwei Schaltstellungen verschwenkbar ist. Zum Schalten des Relais wird das Magnetfeld jeweils durch Anlegen eines Spannungsimpulses umgepolt, wodurch der H-Ankerzug in die jeweils andere Schaltstellung verschwenkt. Aber auch hier wird der elektromagnetische Fluss auf Seiten des umzuschaltenden H-Ankerzugs erzeugt.It is also made, for example DE 33 23 481 A1 polarized bistable relays with a single-magnetic circuit and a fitted with a permanent magnet rotatable H-Ankerzug known in which by the magnetic field of a field winding of the H-armature is pivotable in its two switching positions. For switching the relay, the magnetic field is reversed by applying a voltage pulse, whereby the H-Ankerzug pivots in the other switching position. But here, too, the electromagnetic flux is generated on the part of the switchable H-armature.

Der Erfindung liegt die Aufgabe zugrunde, einen energieeffizienten bistabilen Magnetaktor mit einfachem gewichts- und volumenarmen Aufbau und hoher Umschalt- Leistungsdichte zu schaffen, der sich insbesondere für bistabile Relais hoher Schaltleistung eignet.The invention has for its object to provide an energy-efficient bistable magnetic actuator with a simple low-weight and low-volume construction and high switching power density, which is particularly suitable for bistable relays high switching capacity.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 erfüllt. Vorteilhafte Weiterbildungen geben die begleitenden Ansprüche an. Insbesondere soll in einer vorteilhaften weiteren Ausgestaltung mit ein und derselben Magnetkreisanordnung auch eine asymmetrische Umschwenkkraft erzeugbar sein.The object is achieved by the features of claim 1. Advantageous developments indicate the accompanying claims. In particular, in an advantageous further embodiment with one and the same magnetic circuit arrangement and an asymmetric Umschwenkkraft be generated.

Mit dem erfindungsgemäßen Magnetaktor wird ein besonders energieeffizientes Umschwenken des Wippankers von einer Schwenkstellung in die andere erreicht, was insbesondere für Magnetaktoren von Vorteil ist, welche strengen äußeren Rahmenbedingungen an Bauraum, Stellenergie und Stellkraft genügen müssen. Im Gegensatz zu den vorbekannten Aktoren, bei welchen aktive Reluktanzkräfte und damit Umschwenkkräfte durch vom Dauermagnet und der Erregerwicklung verursachte gleichgerichtete, sich addierende magnetische Flüsse über den offenen Ankerluftspalt desjenigen Parallelkreises erzeugt werden, in welchem die aktiv angesteuerte Erregerwicklung angeordnet ist, wird erfindungsgemäß mit einem dem dauermagnetischen Magnetfluss entgegen gerichteten elektromagnetischen Fluss der dauermagnetische Magnetfluss aus dem über den Ankerflügel geschlossenen Parallelkreis in den anderen Parallelkreis verdrängt. Hierzu wird an die Erregerwicklung, die im Parallelkreis mit dem geschlossenen Ankerluftspalt liegt, ein Gleichspannungsimpuls in der Weise gelegt, dass der elektromagnetische Fluss entgegen dem dauermagnetischen Magnetfluss wirkt, wodurch dieser in den Parallelkreis mit dem offenen Ankerluftspalt kommutiert. Die resultierende dauermagnetische Kraftwirkung, die sich aus dem zusätzlichen Anteil des dauermagnetisch erzeugten Nebenflusses über den offenen Ankerluftspalt und dem aus dem kommutierten dauermagnetischen Magnetfluss zusammensetzt, bewirkt das Umschalten des Wippankers in seine andere stabile Schaltstellung.With the magnetic actuator according to the invention, a particularly energy-efficient pivoting of the rocker armature is achieved from one pivotal position to the other, which is particularly advantageous for magnetic actuators, which must meet strict external conditions in space, power and control force. In contrast to the previously known actuators in which active reluctance forces and thus Umschwenkkräfte caused by the permanent magnet and the exciter winding rectified, adding magnetic fluxes are generated over the open armature air gap of that parallel circuit in which the actively controlled exciter winding is arranged according to the invention with a permanent magnetic magnetic flux opposing electromagnetic flux displaced the permanent magnet magnetic flux from the closed via the armature wing parallel circuit in the other parallel circuit. For this purpose, a DC voltage pulse is applied to the excitation winding, which lies in the parallel circuit with the closed armature air gap, in such a way that the electromagnetic flux against the permanent magnetic magnetic flux acts, causing it commutes in the parallel circuit with the open armature air gap. The resulting permanent magnetic force effect, which is composed of the additional portion of the permanent magnet generated by the flow over the open armature air gap and from the commutated permanent magnetic magnetic flux, causes the switching of the rocker armature in its other stable switching position.

Es sei herausgestellt, dass jeder der beiden parallelen Magnetkreise vorteilhaft bei jeweils geschlossenem Ankerluftspalt einen sehr geringen magnetischen Widerstand besitzt, da der im Mittelschenkel angeordnete Permanentmagnet aufgrund seiner hohen Koerzitivfeldstärke und hohen Remanenz extrem flach gehalten ist und so einen sehr geringen magnetischen Widerstand darstellt. Das U-förmige Joch mit seinen beiden Außenschenkeln ist einteilig hergestellt, wodurch zusätzlich der magnetische Widerstand gegenüber bekannten Anordnungen mit einem zusammengesetzten U-förmigen Joch sinkt. Das Wippankerlager arbeitet durch Rollreibung auf metallischen Oberflächen sehr effizient.It should be pointed out that each of the two parallel magnetic circuits advantageously has a very low magnetic resistance at each closed armature air gap, since the permanent magnet arranged in the center leg is kept extremely flat due to its high coercive force and high remanence and thus represents a very low magnetic resistance. The U-shaped yoke with its two outer legs is made in one piece, which additionally reduces the magnetic resistance over known arrangements with a composite U-shaped yoke. The Wippankerlager works very efficiently by rolling friction on metallic surfaces.

Die Erfindung soll anhand eines Ausführungsbeispiels näher erläutert werden. In den zugehörigen Zeichnungen zeigen:

Fig. 1 bis Fig. 3
Wirkungsweise eines erfindungsgemäßen Magnetaktors,
Fig. 4
einen Magnetaktor in einer Explosionsdarstellung,
Fig. 5
den Magnetanker in perspektivischer Ansicht und
Fig. 6 und Fig. 7
eine Variante einer asymmetrischen Erzeugung einer Umschaltkraft.
The invention will be explained in more detail with reference to an embodiment. In the accompanying drawings show:
Fig. 1 to Fig. 3
Operation of a Magnetaktors invention,
Fig. 4
a magnetic actuator in an exploded view,
Fig. 5
the magnet armature in perspective view and
Fig. 6 and Fig. 7
a variant of an asymmetric generation of a switching force.

In den Figuren 1 - 3 ist die Wirkungsweise eines Magnetaktors schematisch dargestellt. Der Aktor hat als tragenden Teil ein U-förmiges Weicheisenjoch 1, auf dessen Außenschenkeln 2, 3 getrennt ansteuerbare Erregerwicklung 4, 5 sitzen. Ein extrem flacher, aber kräftiger Permanentmagnet 6 trägt einen Weicheisenmittelschenkel 7. Auf diese Weise entsteht ein E-förmiger Magnetkern. Auf dem Mittelschenkel 7 ist ein leicht V-förmig abgebogener Wippanker 8 gelagert. Der E-förmige Magnetkern stellt mit dem Wippanker ausgehend vom Mittelschenkel 7 eine Parallelschaltung der Ankerluftspalte dar. An einem Ende trägt der Wippanker 8 ein Betätigungsglied 9 für zum Beispiel ein Kontaktsystem eines bipolaren Relais. In der in Figur 1 und 2 gezeigten Stellung des Wippankers 8 bildet sich im linken Parallelkreis ein dauermagnetischer Magnetfluss 10 über den Permanentmagnet 6, den Weicheisen-Mittelschenkel 7, den linken Flügel des Wippankers 8, den linken Weicheisen-Außenschenkel 2, das Joch 1 und zurück zum Permanentmagnet 6 aus. Auf den linken Flügel des Wippankers 8 wirkt eine dauermagnetische Haltekraft. Über den rechten Parallelkreis fließt ein dauermagnetisch erzeugter Nebenfluss 11, der das Bestreben hat, den Luftspalt12 zwischen dem rechten Flügel des Ankers 6 und dem linken Außenschenkel 3 zu verringern, also den rechten Flügel des Wippankers 6 anzuziehen. Dieser dauermagnetisch erzeugte Nebenfluss 11 ist jedoch schwächer als der dauermagnetische Magnetfluss 11 auf der linken Seite des Magnetaktors, da sich durch den offenen Luftspalt 12 zum Wippanker 8 durch dessen hohen magnetischen Widerstand ein vergleichsweise geringer dauermagnetisch erzeugter Nebenfluss 11 einstellt.In the Figures 1 - 3 the operation of a magnetic actuator is shown schematically. The actuator has as a supporting part a U-shaped soft iron yoke 1, on the outer legs 2, 3 separately controllable exciter winding 4, 5 sit. An extremely flat but strong permanent magnet 6 carries a Soft iron middle leg 7. This creates an E-shaped magnetic core. On the middle leg 7 a slightly V-shaped bent rocker 8 is mounted. The E-shaped magnetic core represents with the rocker armature starting from the center leg 7 is a parallel circuit of the armature air column. At one end of the rocker arm 8 carries an actuator 9 for example, a contact system of a bipolar relay. In the in FIGS. 1 and 2 shown position of the rocker armature 8 is formed in the left parallel circle a permanent magnetic magnetic flux 10 via the permanent magnet 6, the soft iron center leg 7, the left wing of the rocker armature 8, the left soft iron outer leg 2, the yoke 1 and back to the permanent magnet 6. On the left wing of the rocker armature 8 a permanent magnetic holding force acts. About the right parallel circuit flows a permanent magnet generated tributary 11, which has the tendency to reduce the air gap 12 between the right wing of the armature 6 and the left outer leg 3, so attract the right wing of the rocker armature 6. However, this permanently magnetically generated tributary 11 is weaker than the permanent magnetic magnetic flux 11 on the left side of the magnetic actuator, since a comparatively low permanent magnetically generated tributary 11 sets through the open air gap 12 to the rocker armature 8 due to its high magnetic resistance.

Wird jetzt gemäß Fig. 2 ein Spannungsimpuls auf die linke Erregerwicklung 4 gegeben, so wird über den Erregerstrom im linken Parallelkreis kurzzeitig ein elektromagnetischer Fluss 13 generiert. Bei entsprechender Wickelrichtung der Erregerwicklung 4 und Polarität des Spannungsimpulses ist der elektromagnetische Fluss 13 dem dauermagnetischen Magnetfluss 10 im linken Parallelkreis entgegen gerichtet, wie dies in Fig. 2 durch Pfeile dargestellt ist. Der dauermagnetische erzeugte Magnetfluss 10 wird vom linken Parallelkreis in den rechten Parallelkreis verdrängt. Er kommutiert in den rechten Parallelkreis und übt auf den rechten Flügel des Wippankers 8 eine magnetische Anziehungskraft aus, die den Wippanker 8 im Uhrzeigersinn umschwenken lässt. In Fig. 3 ist die zweite stabile Stellung des Wippankers 8 dargestellt. Der dauermagnetisch erzeugte Magnetfluss 10 im nunmehr rechten Parallelkreis fixiert den Wippanker 8 in dieser zweiten Schwenkstellung. Im linken Parallelkreis bildet sich wiederum ein dauermagnetisch erzeugter Nebenfluss über den offenen Ankerluftspalt 12 aus. Ein Umschwenken im Gegenuhrzeigersinn erfolgt in äquivalenter Weise unter impulsartiger Bestromung der Erregerwicklung 5.Will now according to Fig. 2 given a voltage pulse to the left field winding 4, an electromagnetic flux 13 is briefly generated via the excitation current in the left parallel circuit. With a corresponding winding direction of the excitation winding 4 and polarity of the voltage pulse, the electromagnetic flux 13 is directed against the permanent-magnetic magnetic flux 10 in the left parallel circle, as shown in FIG Fig. 2 is shown by arrows. The permanent magnet generated magnetic flux 10 is displaced from the left parallel circuit in the right parallel circuit. He commutes in the right parallel circle and exerts on the right wing of the rocker armature 8 from a magnetic attraction, the rocker armature 8 in a clockwise direction to turn around. In Fig. 3 the second stable position of the rocker armature 8 is shown. The permanent magnetically generated magnetic flux 10 in the now right parallel circle fixes the rocker armature 8 in this second pivoting position. In the left parallel circuit, in turn, a permanently magnetically generated tributary flows through the open armature air gap 12. A counterclockwise swinging takes place in an equivalent manner with pulse-like energization of the field winding 5.

In Figur 4 ist ein Magnetaktor für ein bistabiles Schaltrelais in einer Explosionszeichnung dargestellt. Das U-förmige Weicheisenjoch 1 ist mit seinen beiden Jochschenkeln 2, 3 einteilig aus einem Weicheisenblech gestanzt und gebogen. Auf den Mittelteil des Jochs ist ein Permanentmagnet 6 angeordnet, der seinerseits einen Weicheisenmittelschenkel 7 trägt. Auf den Jochschenkeln 2, 3 sitzen Erregerwicklungen 4, 5, die von einem Isolierkörper 14 getragen werden. Die Erregerwicklungen 4, 5 werden zweckmäßigerweise in einem über mindestens ein Filmscharnier zusammengeklappten Isolierkörper 14 in einem Arbeitsgang unter Herausführung der inneren Wicklungsenden gewickelt. Die vier Enden der Erregerwicklungen 4, 5 werden an drei Wicklungsanschlüssen 15 gelötet, wobei die beiden inneren Wicklungsenden gemeinsam an den mittleren Anschluss geführt sind. Auf diese Weise sind die beiden Erregerwicklungen 4, 5 getrennt steuerbar und gegensinnig vom Erregerstrom durchflossen. Auf dem Mittelschenkel 7 ist der Wippanker 8 schneidengelagert. Eine solche Ankerlagerung ist sehr reibungsarm und verbraucht demzufolge nur eine geringe Umschaltenergie. Die Magnetkraft des extrem dünnen, aber kräftigen Permanentmagneten 6 reicht aus, um alle vier ferromagnetischen Bauteile 1, 6, 7 und 8 zu halten, weshalb eine gesonderte Halterung nicht unbedingt erforderlich ist. Lediglich der Wippanker 8 wird durch den Isolierkörper 14 seitlich geführt und hält sich ansonsten durch die Kraft des Permanentmagneten 6. An einem Flügel des Wippankers 8 ist ein federndes Betätigungsglied 9 angeordnet, welches über ein nicht näher dargestelltes Übertragungselement auf ein Kontaktsystem eines Schaltrelais arbeitet. Je nach Schaltstellung des Wippankers 8 schließt oder öffnet das Relais seinen primären Stromkreis. Es sind aber auch andere Anwendungen für nahezu beliebige Stellaufgaben möglich.In FIG. 4 a magnetic actuator for a bistable switching relay is shown in an exploded view. The U-shaped soft iron yoke 1 is punched with its two yoke legs 2, 3 in one piece from a soft iron sheet and bent. On the middle part of the yoke, a permanent magnet 6 is arranged, which in turn carries a soft iron middle leg 7. On the yoke legs 2, 3 sit energizing windings 4, 5, which are supported by an insulating body 14. The excitation windings 4, 5 are suitably wound in a folded over at least one film hinge insulator 14 in a single operation to bring out the inner coil ends. The four ends of the field windings 4, 5 are soldered to three winding terminals 15, the two inner winding ends being commonly connected to the middle terminal. In this way, the two field windings 4, 5 are separately controllable and flows in opposite directions from the exciter current. On the middle leg 7 of the rocker armature 8 is cut-mounted. Such an armature bearing is very low friction and therefore consumes only a small switching energy. The magnetic force of the extremely thin but strong permanent magnet 6 is sufficient to hold all four ferromagnetic components 1, 6, 7 and 8, so a separate holder is not essential. Only the rocker armature 8 is guided laterally by the insulating body 14 and otherwise holds by the force of the permanent magnet 6. On a wing of the rocker armature 8 is a resilient actuator 9 is arranged, which operates on a non-illustrated transmission element on a contact system of a switching relay. ever after switching position of the rocker armature 8 closes or opens the relay its primary circuit. But there are also other applications for almost any positioning tasks possible.

Der Magnetaktor lässt sich sehr gut Miniaturisieren und baut insbesondere sehr flach. Aufgrund seiner wenigen Einzelteile wird er überdies kostengünstig und leicht. Das Umschalten von einer Schaltstellung in die andere erfordert, wie zu den Figuren 1 - 3 dargelegt ist, nur wenig Energie.The magnetic actuator can be miniaturized very well and in particular builds very flat. Moreover, due to its few parts, it is inexpensive and lightweight. Switching from one switch position to the other requires, as to Figures 1 - 3 is stated, only little energy.

In Figur 5 ist der Magnetaktor nach Fig. 4 nochmals in einer perspektivischer Ansicht im zusammengebauten Zustand dargestellt, wobei dieselben Bezugszeichen aus den voranstehenden Zeichnungen verwendet werden. Hervorzuheben ist, dass das am Wippanker 8 befestigtes Betätigungsglied 9 federnd gestaltet ist und je nach Richtung der angreifenden Kraft zwei verschiedene Federkennlinien aufweist. Um eine Betätigung mit einer initialen Kraft > 0 zu erhalten, ist dabei vorteilhaft das federnde Betätigungsglied 9 vorgespannt am Wippanker 8 befestigt.In FIG. 5 is the magnetic actuator after Fig. 4 shown again in an assembled state in a perspective view, wherein the same reference numerals are used from the preceding drawings. It should be emphasized that the attached to the rocker arm 8 actuator 9 is designed resiliently and depending on the direction of the attacking force has two different spring characteristics. In order to obtain an actuation with an initial force> 0, it is advantageous that the resilient actuator 9 biased on the rocker armature 8 is attached.

Gemäß einer weiteren Ausgestaltung nach den Figuren 6 und 7 ist mit ein und derselben parallelen Magnetkreisanordnung auch eine asymmetrische Umschwenkkraft erzeugbar. Mit dieser Variante wird erreicht, dass eine Schwenkbewegung eines Wippankers nach einer Richtung mit einer größeren Kraft ausgeführt wird als eine Schwenkbewegung nach der anderen Richtung. Dies kann zum Beispiel für Relais großer Schaltleistung nützlich sein, bei denen ein mögliches Verschweißen eines betätigten Relaiskontaktes gelöst werden soll oder bei denen eine erhöhte Vorspannung auf einen Relaiskontakt aufgebracht werden soll. Erreicht wird dies erfindungsgemäß unter Beibehalten der Symmetrie der mechanischen Anordnung des Magnetaktors mit Hilfe einer asymmetrischen Anordnung der Erregerwicklungen.
Gemäß Fig. 6 soll der Wippanker vom rechten Parallelkreis eines Magnetkerns angezogen werden und umschwenken. Es ist dies diejenige Aufgabe, von der angenommen werden soll, dass der Wippanker eine größere Kraft zum Umschwenken aufbringen soll als zur anderen Seite. Der dauermagnetisch erzeugte Magnetfluss und der dauermagnetisch erzeugte Nebenfluss sind jeweils durch vollschwarze Pfeile symbolisiert. Sie entsprechen den in Fig. 2 gezeichneten dauermagnetischen Flüssen, was bedeutet, dass der dauermagnetisch erzeugte Magnetfluss im linken Parallelkreis aufgrund des geschlossenen magnetischen Kreises stärker ist als der dauermagnetisch erzeugte Nebenfluss im rechten Parallelkreis, in welchem der Ankerluftspalt zu überwinden ist. Auf die Erregerwicklungen 1 und 2 wird zwecks Umschwenkens des Wippankers ein Gleichspannungsimpuls gegeben. Die notwendige Beschaltung der Erregerwicklungen 1 und 2, ihre Wickelrichtung sowie die Polung des Gleichspannungsimpulses symbolisiert die unteren Darstellung von Figur 6. Durch den Gleichspannungsimpuls wird ein elektromagnetischer Fluss im Magnetaktor erzeugt, symbolisiert durch die umrandeten kleinen Pfeile, der sich über beide Parallelkreise schließt, im rechten Außenschenkel zum dauermagnetisch erzeugten Nebenfluss gleichgerichtet ist und im linken Außenschenkel dem dauermagnetisch erzeugten Magnetfluss gegengerichtet ist. Zusätzlich zur Verdrängung des dauermagnetisch erzeugten Magnetfluss aus dem linken Parallelkreis, wie bereits zu den Figuren 1 - 3 erläutert, unterstützt nun, im Gegensatz zur symmetrischen Wicklung, der elektromagnetisch generierte Fluss aus Spule 2 durch seine dem dauermagnetisch erzeugten Nebenfluss gleichgerichteten Feldlinien denselben und es resultiert so eine erheblich gesteigerte Umschaltkraft. Der Wippanker schwenkt im Uhrzeigersinn mit stärkerer Kraft um, als bei symmetrisch angeordneten Wicklungen. Da der Dauermagnet nicht vom Spulenfluss durchsetzt wird, kann er demzufolge nicht entmagnetisiert werden.
According to a further embodiment of the FIGS. 6 and 7 is also one asymmetric Umschwenkkraft generated with one and the same parallel magnetic circuit arrangement. With this variant it is achieved that a pivoting movement of a rocker armature is carried out in one direction with a greater force than a pivoting movement in the other direction. This may be useful, for example, for relays of high switching capacity where a possible welding of an actuated relay contact is to be achieved or where an increased bias voltage is to be applied to a relay contact. This is achieved according to the invention while maintaining the symmetry of the mechanical arrangement of the magnetic actuator by means of an asymmetrical arrangement of the field windings.
According to Fig. 6 the rocker armature should be tightened by the right parallel circuit of a magnetic core and swing over. This is the task from which It should be assumed that the rocker armature should apply a greater force to pivot than to the other side. The permanent magnetic generated magnetic flux and the permanent magnet generated tributary are each symbolized by solid black arrows. They correspond to those in Fig. 2 drawn permanent magnetic fluxes, which means that the permanent magnetically generated magnetic flux in the left parallel circuit due to the closed magnetic circuit is stronger than the permanent magnet generated tributary in the right parallel circle, in which the armature air gap is overcome. On the exciter windings 1 and 2, a DC pulse is given for the purpose of swinging the rocker armature. The necessary wiring of the excitation windings 1 and 2, their winding direction and the polarity of the DC pulse symbolizes the lower part of FIG. 6 , By the DC pulse an electromagnetic flux is generated in the magnetic actuator, symbolized by the outlined small arrows, which closes on both parallel circles, is rectified in the right outer leg to the permanent magnet generated tributary and is aligned in the left outer leg of the permanent magnetically generated magnetic flux. In addition to the displacement of the permanently magnetically generated magnetic flux from the left parallel circuit, as already to the Figures 1 - 3 explained, now supports, in contrast to the symmetrical winding, the electromagnetically generated flux from coil 2 by its the permanent magnetically generated tributary rectified field lines the same and it thus results in a significantly increased switching force. The rocker arm pivots clockwise with greater force than symmetrically arranged windings. Since the permanent magnet is not penetrated by the coil flow, it can not be demagnetized accordingly.

Anhand der Figur 7 soll das Umschwenken in die andere Schwenkstellung erläutert werden, der Wippanker soll also vom linken Magnetkreis angezogen werden. Die dauermagnetische Flüsse entsprechen denjenigen zu Fig. 3. Auf die Erregerwicklungen 3 wird zwecks Umschaltens des Wippankers ein Gleichspannungsimpuls gegeben. Die Beschaltung der Erregerwicklungen 3, die Wickelrichtung sowie die Polung des Gleichspannungsimpulses symbolisiert wiederum die untere Darstellung in Figur 7. Durch den Gleichspannungsimpuls wird ein elektromagnetischer Fluss im rechten Parallelkreis erzeugt, symbolisiert durch die umrandeten kleinen Pfeile, der sich über den Mittelschenkel schließt und dem dauermagnetisch erzeugten Magnetfluss im rechten Parallelkreis gegengerichtet ist. Hierdurch wird der dauermagnetisch erzeugte Magnetfluss vom rechten Außenschenkel in den linken Außenschenkel verdrängt und addiert sich dort zu dem dauermagnetisch erzeugten Nebenfluss. Der Wippanker schwenkt im Gegenuhrzeigersinn um, wodurch sich nunmehr ein dauermagnetisch erzeugter Nebenfluss über den rechten Parallelkreis ausbildet und ein dauermagnetisch erzeugter Magnetfluss über den linken Parallelkreis den Wippanker leistungslos in einer anderen stabilen Lage hält. Wenn der Start dieser Bewegung durch eine äußere Kraft z.B. eine Feder unterstützt wird, kann die Spule 3 mit nur wenigen Windungen ausgeführt werden.Based on FIG. 7 should the swinging be explained in the other pivot position, the rocker armature should therefore be attracted to the left magnetic circuit. The permanent magnetic fluxes correspond to those too Fig. 3 , On the excitation windings 3 is given a DC voltage pulse in order to switch over the rocker armature. The wiring of the exciter windings 3, the winding direction and the polarity of the DC pulse again symbolizes the lower illustration in FIG FIG. 7 , By the DC pulse an electromagnetic flux is generated in the right parallel circle, symbolized by the outlined small arrows, which closes over the center leg and the permanently magnetic magnetic flux generated in the right parallel circle is aligned. As a result, the permanent magnetically generated magnetic flux is displaced from the right outer leg into the left outer leg and adds there to the permanently magnetically generated tributary. The rocker arm pivots counterclockwise, which now forms a permanently magnetically generated tributary on the right parallel circle and holds a permanent magnetically generated magnetic flux via the left parallel circle the rocker arm without power in another stable position. If the start of this movement is supported by an external force such as a spring, the coil 3 can be carried out with only a few turns.

Auch für eine Wicklungskonfiguration mit einer Zusatzwicklung werden, wie zeichnerisch dargestellt, nur drei Wicklungsanschlüsse benötigt, wobei jeweils nur an zwei Pole ein Steuergleichspannungsimpuls gelegt wird. Zugleich ist diese Wicklungskonfiguration wie in Figur 6 und 7 dargestellt durch einen Wicklungsvorgang realisierbar, beginnend beim mittleren Wicklungsanschluss über den linken zum rechten Wicklungsanschluss.Also, for a winding configuration with an additional winding, as shown in the drawing, only three winding terminals are required, in each case only a control DC voltage pulse is applied to two poles. At the same time, this winding configuration is as in FIG. 6 and 7 represented by a winding process feasible, starting at the middle winding connection via the left to the right winding connection.

LISTE DER BEZUGSZEICHENLIST OF REFERENCE SIGNS

  1. 1 U-förmiges Weicheisenjoch1 U-shaped soft iron yoke
  2. 2 linker Jochschenkel2 left yoke legs
  3. 3 rechter Jochschenkel3 right yoke legs
  4. 4 linke Erregerwicklung4 left excitation winding
  5. 5 rechte Erregerwicklung5 right excitation winding
  6. 6 Permanentmagnet6 permanent magnet
  7. 7 Weicheisenmittelschenkel7 soft iron middle legs
  8. 8 Wippanker8 rocker anchors
  9. 9 Betätigungsglied9 actuator
  10. 10 dauermagnetisch erzeugter Magnetfluss durch einen Parallelkreis10 permanent magnetically generated magnetic flux through a parallel circuit
  11. 11 dauermagnetisch erzeugter Nebenfluss durch einen Parallelkreis11 permanently magnetically generated tributary flow through a parallel circuit
  12. 12 Ankerluftspalt12 anchor air gap
  13. 13 elektromagnetischer Fluss durch den Magnetkreis13 electromagnetic flux through the magnetic circuit
  14. 14 Isolierkörper für die Erregerwicklungen14 insulating body for the excitation windings
  15. 15 Wicklungsanschlüsse für die Erregerwicklungen15 winding connections for the exciter windings

Claims (7)

  1. Bistable magnetic actuator having a polarized magnetic circuit and parallel working air gaps (12), with a flat permanent magnet (6) being integrated between the outer legs (2, 3) of a U-shaped soft iron yoke (1), which magnet carries a soft iron central leg (7) and applies a magnetic flux generated by the permanent magnet to a rocker armature (8) supported by the soft iron central leg (7), and with a separately controllable excitation winding (4, 5) on each outer leg (2, 3) providing pivoting pulses for the rocker armature (8) to change from one permanent-magnetically latched rocker position to the other, characterized by a wiring configured such that when a magnetic flux (10) is generated by the excitation winding (4) of the same magnetic circuit but in a direction opposite to the magnetic flux (13) generated by the permanent magnet, the magnetic flux (13) generated by the permanent magnet and leading through the magnetic circuit closed by the rocking armature (8) commutates into the parallel magnetic circuit branch of the electromagnetically unexcited excitation winding (5), thereby pivoting the rocking armature (8) with the assistance of the secondary flux (11) generated by the permanent magnet in this parallel circuit (10).
  2. Bistable magnetic actuator according to claim 1, characterized in that an additional excitation winding is applied to one of the outer legs (2, 3), which winding is wired and wound such as to be excited at the same time as the excitation winding (4, 5) on the other outer leg (2, 3) to generate an assisting electromagnetic flux in the same direction as the magnetic flux (10) generated by the permanent magnet, in order to pivot the rocking armature (8) towards this magnetic circuit, thereby obtaining a force intensification in this direction.
  3. Bistable magnetic actuator according to claim 1 or 2, characterized in that it is applied in switching relays of high switching capacity.
  4. Bistable magnetic actuator according to any of the claims 1 to 3, characterized in that the U-shaped soft iron yoke (1) is manufactured as a one-piece punched and bent soft iron part.
  5. Bistable magnetic actuator according to any of the claims 1 to 4, characterized in that the excitation windings (4, 5) wound in one process are seated on a two-piece insulating body (14) linked by at least one film hinge.
  6. Bistable magnetic actuator according to any of the claims 1 to 5, characterized in that an actuation member (9) attached to the rocking armature (8) is designed to be resilient and has two different characteristic curves of resilience depending on the direction of the applied force.
  7. Bistable magnetic actuator according to claim 6, characterized in that the resilient actuation member (9) is attached to the rocking armature (8) in a preloaded manner.
EP11722720.7A 2010-04-21 2011-04-06 Bistable magnetic actuator Active EP2561523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201130735T SI2561523T1 (en) 2010-04-21 2011-04-06 Bistable magnetic actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010017874A DE102010017874B4 (en) 2010-04-21 2010-04-21 Bistable magnetic actuator
PCT/DE2011/000371 WO2011131167A2 (en) 2010-04-21 2011-04-06 Bistable magnetic actuator

Publications (2)

Publication Number Publication Date
EP2561523A2 EP2561523A2 (en) 2013-02-27
EP2561523B1 true EP2561523B1 (en) 2015-11-11

Family

ID=44116185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11722720.7A Active EP2561523B1 (en) 2010-04-21 2011-04-06 Bistable magnetic actuator

Country Status (9)

Country Link
US (1) US8461951B2 (en)
EP (1) EP2561523B1 (en)
CN (1) CN102859618B (en)
BR (1) BR112013008688A2 (en)
DE (1) DE102010017874B4 (en)
ES (1) ES2558749T3 (en)
RU (1) RU2547815C2 (en)
SI (1) SI2561523T1 (en)
WO (1) WO2011131167A2 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487759B2 (en) 2009-09-30 2013-07-16 Apple Inc. Self adapting haptic device
US10013058B2 (en) 2010-09-21 2018-07-03 Apple Inc. Touch-based user interface with haptic feedback
US10120446B2 (en) 2010-11-19 2018-11-06 Apple Inc. Haptic input device
CN103295847B (en) * 2012-03-01 2016-12-07 德昌电机(深圳)有限公司 Driving means and there is the relay of this driving means
US9343931B2 (en) 2012-04-06 2016-05-17 David Deak Electrical generator with rotational gaussian surface magnet and stationary coil
US9178509B2 (en) 2012-09-28 2015-11-03 Apple Inc. Ultra low travel keyboard
WO2015020663A1 (en) 2013-08-08 2015-02-12 Honessa Development Laboratories Llc Sculpted waveforms with no or reduced unforced response
US9779592B1 (en) 2013-09-26 2017-10-03 Apple Inc. Geared haptic feedback element
WO2015047356A1 (en) 2013-09-27 2015-04-02 Bodhi Technology Ventures Llc Band with haptic actuators
WO2015047343A1 (en) * 2013-09-27 2015-04-02 Honessa Development Laboratories Llc Polarized magnetic actuators for haptic response
US10126817B2 (en) 2013-09-29 2018-11-13 Apple Inc. Devices and methods for creating haptic effects
CN105683865B (en) 2013-09-30 2018-11-09 苹果公司 Magnetic actuator for haptic response
US9317118B2 (en) 2013-10-22 2016-04-19 Apple Inc. Touch surface for simulating materials
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
US9501912B1 (en) 2014-01-27 2016-11-22 Apple Inc. Haptic feedback device with a rotating mass of variable eccentricity
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
DE102015209639A1 (en) 2014-06-03 2015-12-03 Apple Inc. Linear actuator
EP3195088A2 (en) 2014-09-02 2017-07-26 Apple Inc. Haptic notifications
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
AU2016100399B4 (en) 2015-04-17 2017-02-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US9843248B2 (en) * 2015-06-04 2017-12-12 David Deak, SR. Rocker action electric generator
US10566888B2 (en) 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
CN105244152B (en) * 2015-10-28 2017-09-12 国家电网公司 One kind mixing adjustable type REgulatable reactor
US10039080B2 (en) 2016-03-04 2018-07-31 Apple Inc. Situationally-aware alerts
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
DE102016107410A1 (en) 2016-04-21 2017-10-26 Johnson Electric Germany GmbH & Co. KG Bistable actuator for a polarized electromagnetic relay
DE202016102110U1 (en) 2016-04-21 2016-07-22 Johnson Electric Germany GmbH & Co. KG Actuator for a polarized electromagnetic small relay with high current carrying capacity
EP3297004B1 (en) * 2016-09-15 2020-04-08 Fas Medic S.A. Electromagnetic actuator with rocking armature
DE102017202182A1 (en) * 2017-02-10 2018-08-16 Micro-Epsilon Messtechnik Gmbh & Co. Kg Reluctance actuator
US10969186B2 (en) 2017-03-08 2021-04-06 Strum, Ruger & Company, Inc. Fast action shock invariant magnetic actuator for firearms
US10900732B2 (en) 2017-03-08 2021-01-26 Sturm, Ruger & Company, Inc. Electromagnetic firing system for firearm with firing event tracking
US10458736B2 (en) 2017-03-08 2019-10-29 Sturm, Ruger & Company, Inc. Dynamic variable force trigger mechanism for firearms
US10228208B2 (en) 2017-03-08 2019-03-12 Sturm, Ruger & Company, Inc. Dynamic variable force trigger mechanism for firearms
US10240881B1 (en) 2017-03-08 2019-03-26 Louis M. Galie Fast action shock invariant magnetic actuator for firearms
US11300378B2 (en) 2017-03-08 2022-04-12 Sturm, Ruger & Company, Inc. Electromagnetic firing system for firearm with interruptable trigger control
US10670361B2 (en) 2017-03-08 2020-06-02 Sturm, Ruger & Company, Inc. Single loop user-adjustable electromagnetic trigger mechanism for firearms
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
EP3704785A4 (en) 2017-10-30 2021-08-11 WePower Technologies LLC Magnetic momentum transfer generator
CN107911002A (en) * 2017-10-31 2018-04-13 西安交通大学 A kind of bistable electromagnetic steering engine and start method based on E shape iron yokes
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
FR3087935B1 (en) 2018-10-26 2021-05-14 Moving Magnet Tech BISTABLE SINGLE POLE BALLISTIC ACTUATOR
DE102019107223A1 (en) 2019-03-21 2020-09-24 Johnson Electric Germany GmbH & Co. KG Electric switch
DE102019107222A1 (en) 2019-03-21 2020-09-24 Johnson Electric Germany GmbH & Co. KG Electric push button switch
US11501938B2 (en) * 2019-07-09 2022-11-15 Xiamen Hongfa Electroacoustic Co., Ltd. Magnetic latching relay
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US10976824B1 (en) 2019-09-26 2021-04-13 Apple Inc. Reluctance haptic engine for an electronic device
US11973391B2 (en) 2019-11-21 2024-04-30 Wepower Technologies Llc Tangentially actuated magnetic momentum transfer generator
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators
WO2022214209A1 (en) 2021-04-09 2022-10-13 Sonnensee GmbH Multistable element
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device
CN113838709B (en) * 2021-09-22 2023-10-27 沈阳铁路信号有限责任公司 Bistable locomotive on-board electromagnetic relay
DE102022116459A1 (en) 2022-07-01 2024-01-04 Rapa Automotive Gmbh & Co. Kg BISTABLE ACTUATOR WITH CENTER YOKE

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE512812A (en) * 1951-08-10
DE1938723U (en) * 1963-06-04 1966-05-18 Hagenuk Neufeldt Kuhnke Gmbh SINGLE-COIL, POLARIZED ELECTROMAGNETIC DRIVE SYSTEM, PREFERABLY FOR ALTERNATING CURRENT ALARM.
US3315104A (en) * 1964-04-16 1967-04-18 Square D Co Magnetic impulse generator
DE6751327U (en) 1968-08-10 1969-01-23 Trix Vereinigte Spielwarenfabr ELECTROMAGNETIC DRIVE FOR TRACKS OF PLAY AND MODEL TRACKS
SU362357A1 (en) * 1971-01-07 1972-12-13 Авторы изобретени TWO-POSITION ELECTROMAGNET
SU496417A1 (en) * 1974-02-04 1975-12-25 Научно-Производственное Объединение "Киеварматура" Two-way solenoid valve actuator
DE3323481A1 (en) 1983-06-30 1985-01-03 W. Gruner GmbH Relaisfabrik, 7209 Wehingen Relay
JPS61150110A (en) * 1984-12-24 1986-07-08 Matsushita Electric Ind Co Ltd Magnetic head
JPS61218025A (en) 1985-03-25 1986-09-27 松下電工株式会社 Polar relay
US4912438A (en) * 1987-10-22 1990-03-27 Nec Corporation Electromagnetic relay
SU1767548A1 (en) * 1990-08-08 1992-10-07 Специальное Конструкторское Бюро Космического Приборостроения Института Космических Исследований Ан Ссср Two-position electromagnet
DE4314715C2 (en) 1993-05-04 1997-01-09 Siemens Ag Rocker armature with bearing spring in an electromagnetic relay
US5805039A (en) 1995-08-07 1998-09-08 Siemens Electromechanical Components, Inc. Polarized electromagnetic relay
CN1108619C (en) 1997-03-07 2003-05-14 欧姆龙公司 Electromagnetic relay
DE19820821C1 (en) * 1998-05-09 1999-12-16 Inst Mikrotechnik Mainz Gmbh Electromagnetic relay with a rocker anchor
UA70574A (en) * 2003-12-09 2004-10-15 Borys Volodymyrovych Klymenko Two-position electromagnet two-position electromagnet
DE202004012292U1 (en) 2004-08-05 2004-12-09 Trw Automotive Gmbh Electromagnetic servo drive, especially for operating combustion engine gas exchange valve, has electromagnetic device with two magnetic circuits, each with electromagnet(s) forming pole surfaces

Also Published As

Publication number Publication date
DE102010017874A1 (en) 2011-10-27
ES2558749T3 (en) 2016-02-08
US20130076462A1 (en) 2013-03-28
EP2561523A2 (en) 2013-02-27
WO2011131167A3 (en) 2011-12-29
SI2561523T1 (en) 2016-03-31
US8461951B2 (en) 2013-06-11
BR112013008688A2 (en) 2022-03-03
RU2547815C2 (en) 2015-04-10
CN102859618B (en) 2016-05-04
WO2011131167A2 (en) 2011-10-27
RU2012139664A (en) 2014-05-27
DE102010017874B4 (en) 2013-09-05
CN102859618A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
EP2561523B1 (en) Bistable magnetic actuator
EP1859462B1 (en) Magnetic actuating device
EP1430490A1 (en) Electromagnetic actuator
DE10240774A1 (en) Electromagnetic linear actuator has permanent magnet for holding force that reacts against spring
EP2880696B1 (en) Actuator device
EP2686854B1 (en) Electromagnetic actuator device
DE10207828A1 (en) Solenoid magnet has stator and excitation coil, with armature including permanent magnet polarized at right angles to direction of motion of armature
DE102012107922A1 (en) Electromagnetic actuator device
EP3443571B1 (en) Electromagnetic actuating device which is monostable in the currentless state and use of such an actuating device
WO2014086535A1 (en) Electromagnetic actuating apparatus
DE602005002604T2 (en) Electromagnetic actuator with moving coil
DE102009039562B4 (en) Bistable electromagnetic actuator
EP1615242B1 (en) Electromagnetic actuator
DE10143307A1 (en) Electromagnetic actuator
DE102011081893B3 (en) Magnetic actuator and method for its operation
AT518231B1 (en) Poled electromechanical relay with controllable power consumption
DE202004012292U1 (en) Electromagnetic servo drive, especially for operating combustion engine gas exchange valve, has electromagnetic device with two magnetic circuits, each with electromagnet(s) forming pole surfaces
EP2743940B1 (en) Electromagnetic actuator
DE102012106330A1 (en) Coil core for electromagnetic drive used for relay, has anchor end that is located on movable armature of drive and is provided with permanent magnet
DE102016107410A1 (en) Bistable actuator for a polarized electromagnetic relay
DE102012103796A1 (en) Electromagnetic actuator
DE2320317C3 (en) Electromagnetic relay with a pot magnet with memory characteristics
WO2024003121A1 (en) Bistable actuator with a central yoke
DE10357001B4 (en) Magnetic linear actuator
DE102010050755A1 (en) Multi-stable electromagnetic adjusting device e.g. actuator has permanent magnet unit provided such that permanent magnet flux is guided across air gap between projections formed in guide sections

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120901

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011008338

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01F0007122000

Ipc: H01F0007140000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 51/22 20060101ALI20150312BHEP

Ipc: H01F 7/14 20060101AFI20150312BHEP

Ipc: H01F 7/122 20060101ALI20150312BHEP

Ipc: H01H 50/24 20060101ALI20150312BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150428

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150721

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R231

Ref document number: 502011008338

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 760818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008338

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20151126

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2558749

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160311

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160212

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160812

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200312

Year of fee payment: 10

Ref country code: SI

Payment date: 20200306

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200325

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 760818

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210406

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20211130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220505

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: JOHNSON ELECTRIC GERMANY GMBH & CO. KG

Effective date: 20230301

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230420 AND 20230426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200406

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20230612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230421

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240528