WO2022214209A1 - Multistable element - Google Patents

Multistable element Download PDF

Info

Publication number
WO2022214209A1
WO2022214209A1 PCT/EP2021/086529 EP2021086529W WO2022214209A1 WO 2022214209 A1 WO2022214209 A1 WO 2022214209A1 EP 2021086529 W EP2021086529 W EP 2021086529W WO 2022214209 A1 WO2022214209 A1 WO 2022214209A1
Authority
WO
WIPO (PCT)
Prior art keywords
bistable
springs
spring
flat
spring element
Prior art date
Application number
PCT/EP2021/086529
Other languages
French (fr)
Inventor
Semen VARTANOV
Oleksii IVANOV
Original Assignee
Sonnensee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonnensee GmbH filed Critical Sonnensee GmbH
Priority to EP21843599.8A priority Critical patent/EP4320368A1/en
Publication of WO2022214209A1 publication Critical patent/WO2022214209A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C5/00Bracelets; Wrist-watch straps; Fastenings for bracelets or wrist-watch straps
    • A44C5/0084Bracelets in the form of a ring, band or tube of rigid material
    • A44C5/0092Bracelets in the form of a ring, band or tube of rigid material essentially made from metal
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/008Materials for manufacturing jewellery having shape memory behavior

Definitions

  • the invention belongs to the field of flat springs with different operating conditions, which are used as components of bracelets, so far having the following shortcomings: Design limitations that make it difficult or in some cases impossible to integrate the spring into a product because there are no options for mounting external elements or known solutions lead to changes in the spring properties and reduction of its service life.
  • the multistable element according to the invention has two bistable flat springs held together by two flat rigid plates (2) located at the opposite ends and par- allel to the roll-up axis (A) of the springs (Fig. 2a). This leaves a rectangular gap (3) between the flat springs, as can be seen on Figure 1.
  • Fig. 1 shows: bistable element in unbent state: 1 - bistable springs; 2 - rigid plate; 3 - gap between bistable springs; 4 - welds; 5 - polymer layer; 6 - optional kink lines on bistable springs; 7 - kink lines at the ends of the spring.
  • Bistable springs have the shape of an elongated (metal) plate, which has a (uniformly) curved/arched shape transverse to its longitudinal direction B (Fig. 3). Due to this shape, bistable springs are characterized by form stability in two different states. As known, for example, from toy slap bracelets, a bistable spring is form sta- ble when it is linearly oriented, as shown in Fig. 1. When a first bending resistance is overcome, the spring rolls/bends into a form stable second state with a defined radius (see Fig. 2a).
  • the rigid plates are attached to the bistable springs by laser welding with a curved shape seam (4) that overlaps the plate to a depth equal to the width of a spring.
  • the edges of all parts in areas of connection preferably have rounded chamfers.
  • the part of the bistable spring that lies on the plate is flattened.
  • the kink line (7) located at end portions of the bistable spring is formed. An end portion can be described as a part of the bistable spring close to the rigid plates, in particular in a transition zone to a part of the bistable spring that is connected to the rigid plate.
  • a kink is preferably a narrow, straight section of a spring element where the original curve in a cross-sectional view becomes a straight line. Looking at the spring from the side, it may look like a wave. On the whole surface of the springs except the ends, an elastic polymer layer (5) may be applied, which not only serves for damping the bending/unbending process and prolonging the life of the spring, but also decreases the noise when the element is operated.
  • the bistable springs can have additional kink lines (6). The kink lines are provided to separate individual sections of the bistable spring. Consequently, activation of an individual section only leads to a change of shape for that activated part whereby separated sections of the bistable spring remain in their original (elongated) alignment.
  • kink lines are provided on each end of at least one bistable spring next to the rigid plates.
  • the two bistable springs are decoupled and a transition of a bending force is not transmitted from one spring to the other. Consequently, both springs need to be activated (e.g. pressed against) to allow for the bistable element to actually change into a rolled form.
  • the combination of at least two bistable springs with kink lines at the ends and their connection by rigid plates has the following technical advantages:
  • Slap bracelets (hence a single bistable spring) tend to leave the linear stable state and change to the bent stable state already in case of slight vibrations or touches as well as in case of punctual straightening of the bent/arched shape transversely to its longitudinal direction.
  • the influenced spring nevertheless retains its flat orientation/state, since the second (non-influenced) spring offers sufficient resistance to the urge of the first spring to change its state.
  • the interconnected springs can be identical.
  • the second spring thus stabilizes the first spring in its linear state. Only when both/all springs are manipulated, the multistable spring, hence the bistable element, changes its shape/stable state into a bent stable state (Fig. 2a).
  • the element In the unbent/linear state, the element has one of the stable states and thus has an almost flat shape, as can be seen on Fig. 1 .
  • the height (h) of the arch in cross-section, perpendicular to the main axis B of the whole element, is less than the height (H) of a single bistable spring with similar dimensions (Fig. 3) in width as the two individual bistable springs combined. This may be important for bracelets with small thickness and for wide bracelets.
  • the element In the collapsed state, the element is in the second stable state and has a curved shape with a defined radius, as shown in Fig. 2a. During the transition from one stable state to the other, the element may be in a metastable transition position, as shown on Fig. 2b. Multi-stable element (Fig. 2a) in collapsed form (Fig. 2b - metastable transition position).
  • the element passes from one state to the other only by external influence to overcome its stable form.
  • the force required to bring the multi-stable element from one state to the other and the radius of the shape that the element takes in the collapsed state depends on the parameters of the bistable springs, such as the type of material, geometric shape of the spring and the gap between them, the places and number of kink lines, parameters of the laminating layer, processing parameters. These are determined in the design and manufacturing phase, in connection with the technical requirements of the whole bracelet construction.
  • the bistable element can be repeatedly transferred from one state to another by external action, e.g. by fixing the flat plate on one side of the element and applying force to the plate on the other side of the element, perpendicular to the bending axis A of the bistable springs and to the main axis B of the whole element.
  • the element takes a curved shape with a defined radius each time it goes into the collapsed state, and a straight shape along its longitudinal axis B in the unbent state, which it retains. When transitioning from one state to the other, the element can take metastable transitional states due to additional predetermined kink lines on the springs.
  • the multistable element can be equipped, among other things, with an elastic sheathing, which can be fixed through the gap between the springs, and also with hard external elements, which are fixed to the flat plates.
  • an elastic sheathing which can be fixed through the gap between the springs
  • hard external elements which are fixed to the flat plates.
  • the functionality of the element, as well as the service life is maintained to 100000 times of bending or more.
  • the multi-stable element (bistable element) consists of at least two bistable (flat) springs and two (flat) rigid plates attached to them parallel to the bending axis of the bistable springs, one plate being attached to the two springs on one side and the other plate on the other side so that there is preferably a gap between the springs.
  • the connection points between the elements are preferably laser welded, preferably with a curved seam so that the end of the spring is flattened and overlaps the plate to a depth equal to the width of a spring. This creates a particularly stable connection between the springs and the plates, which nevertheless does not adversely affect the bending property.
  • the open (working) parts of the springs have preferably an elastic polymer coating and/or preferably additional kink lines.
  • the element can be repeatedly transferred from one stable to the other stable state by external action, by fixing the flat plate on one side of the element and applying force to the plate on the other side of the element, perpendicular to the bending axis A of the bistable springs and to the main axis B of the whole element.
  • the element retains a straight shape when unfolded and a curved, ring-like shape when bent.
  • the height of the arch in cross section, perpendicular to the main axis B (Fig. 3a/3b) of the whole element, is preferably less than the height of the arch of a bistable spring with similar dimensions as described above.
  • the noise level of the element during transition from one state to the other is lower than that of a single bistable spring with similar dimensions.
  • the element can take a (dynamic) metastable transition states.
  • bistable element into flat constructions is increased, thanks to the height of the arch in the cross-section, perpendicular to the main axis B of the whole element, which is less than the height of the arch of a bistable spring with similar dimensions.

Abstract

The present invention relates to a spring element having two bistable flat springs (1) and two flat connecting elements (2) which are arranged at the longitudinal ends of the bistable flat springs, which are aligned parallel to one another, and connect them to one another.

Description

Multistable element
The invention belongs to the field of flat springs with different operating conditions, which are used as components of bracelets, so far having the following shortcomings: Design limitations that make it difficult or in some cases impossible to integrate the spring into a product because there are no options for mounting external elements or known solutions lead to changes in the spring properties and reduction of its service life.
The multistable element according to the invention has two bistable flat springs held together by two flat rigid plates (2) located at the opposite ends and par- allel to the roll-up axis (A) of the springs (Fig. 2a). This leaves a rectangular gap (3) between the flat springs, as can be seen on Figure 1.
Fig. 1 shows: bistable element in unbent state: 1 - bistable springs; 2 - rigid plate; 3 - gap between bistable springs; 4 - welds; 5 - polymer layer; 6 - optional kink lines on bistable springs; 7 - kink lines at the ends of the spring. Bistable springs have the shape of an elongated (metal) plate, which has a (uniformly) curved/arched shape transverse to its longitudinal direction B (Fig. 3). Due to this shape, bistable springs are characterized by form stability in two different states. As known, for example, from toy slap bracelets, a bistable spring is form sta- ble when it is linearly oriented, as shown in Fig. 1. When a first bending resistance is overcome, the spring rolls/bends into a form stable second state with a defined radius (see Fig. 2a).
In the embodiment according to the invention, the rigid plates are attached to the bistable springs by laser welding with a curved shape seam (4) that overlaps the plate to a depth equal to the width of a spring. The edges of all parts in areas of connection preferably have rounded chamfers. The part of the bistable spring that lies on the plate is flattened. Preferably the kink line (7) located at end portions of the bistable spring is formed. An end portion can be described as a part of the bistable spring close to the rigid plates, in particular in a transition zone to a part of the bistable spring that is connected to the rigid plate.
Basically, a kink is preferably a narrow, straight section of a spring element where the original curve in a cross-sectional view becomes a straight line. Looking at the spring from the side, it may look like a wave. On the whole surface of the springs except the ends, an elastic polymer layer (5) may be applied, which not only serves for damping the bending/unbending process and prolonging the life of the spring, but also decreases the noise when the element is operated. The bistable springs can have additional kink lines (6). The kink lines are provided to separate individual sections of the bistable spring. Consequently, activation of an individual section only leads to a change of shape for that activated part whereby separated sections of the bistable spring remain in their original (elongated) alignment.
According to a preferred embodiment kink lines are provided on each end of at least one bistable spring next to the rigid plates. Thereby the two bistable springs are decoupled and a transition of a bending force is not transmitted from one spring to the other. Consequently, both springs need to be activated (e.g. pressed against) to allow for the bistable element to actually change into a rolled form. The combination of at least two bistable springs with kink lines at the ends and their connection by rigid plates has the following technical advantages:
1 . Slap bracelets (hence a single bistable spring) tend to leave the linear stable state and change to the bent stable state already in case of slight vibrations or touches as well as in case of punctual straightening of the bent/arched shape transversely to its longitudinal direction.
Insofar as only one of the at least two interconnected bistable springs is influenced in this described way, the influenced spring nevertheless retains its flat orientation/state, since the second (non-influenced) spring offers sufficient resistance to the urge of the first spring to change its state. This is particularly supported by the above described decoupling due to kink lines located at the ends of bistable springs in front of the rigid plates which isolate the influence at the central part of the first spring from its ends. In this case, the interconnected springs can be identical.
The second spring thus stabilizes the first spring in its linear state. Only when both/all springs are manipulated, the multistable spring, hence the bistable element, changes its shape/stable state into a bent stable state (Fig. 2a).
This increases the overall shape stability and reduces the sensitivity to trigger the shape change by point pressure.
2. In the unbent/linear state, the element has one of the stable states and thus has an almost flat shape, as can be seen on Fig. 1 . In this case, the height (h) of the arch in cross-section, perpendicular to the main axis B of the whole element, is less than the height (H) of a single bistable spring with similar dimensions (Fig. 3) in width as the two individual bistable springs combined. This may be important for bracelets with small thickness and for wide bracelets.
In the collapsed state, the element is in the second stable state and has a curved shape with a defined radius, as shown in Fig. 2a. During the transition from one stable state to the other, the element may be in a metastable transition position, as shown on Fig. 2b. Multi-stable element (Fig. 2a) in collapsed form (Fig. 2b - metastable transition position).
3. The element passes from one state to the other only by external influence to overcome its stable form. The force required to bring the multi-stable element from one state to the other and the radius of the shape that the element takes in the collapsed state depends on the parameters of the bistable springs, such as the type of material, geometric shape of the spring and the gap between them, the places and number of kink lines, parameters of the laminating layer, processing parameters. These are determined in the design and manufacturing phase, in connection with the technical requirements of the whole bracelet construction.
4. The bistable element can be repeatedly transferred from one state to another by external action, e.g. by fixing the flat plate on one side of the element and applying force to the plate on the other side of the element, perpendicular to the bending axis A of the bistable springs and to the main axis B of the whole element.
5. The element takes a curved shape with a defined radius each time it goes into the collapsed state, and a straight shape along its longitudinal axis B in the unbent state, which it retains. When transitioning from one state to the other, the element can take metastable transitional states due to additional predetermined kink lines on the springs.
6. In addition, the multistable element can be equipped, among other things, with an elastic sheathing, which can be fixed through the gap between the springs, and also with hard external elements, which are fixed to the flat plates. In this case, the functionality of the element, as well as the service life is maintained to 100000 times of bending or more.
Description of the invention
The multi-stable element (bistable element) consists of at least two bistable (flat) springs and two (flat) rigid plates attached to them parallel to the bending axis of the bistable springs, one plate being attached to the two springs on one side and the other plate on the other side so that there is preferably a gap between the springs. The connection points between the elements are preferably laser welded, preferably with a curved seam so that the end of the spring is flattened and overlaps the plate to a depth equal to the width of a spring. This creates a particularly stable connection between the springs and the plates, which nevertheless does not adversely affect the bending property. The open (working) parts of the springs have preferably an elastic polymer coating and/or preferably additional kink lines. The element can be repeatedly transferred from one stable to the other stable state by external action, by fixing the flat plate on one side of the element and applying force to the plate on the other side of the element, perpendicular to the bending axis A of the bistable springs and to the main axis B of the whole element. In this case, the element retains a straight shape when unfolded and a curved, ring-like shape when bent.
It stands out in that an influence at the middle part of one bistable spring is isolated from an influence at the ends of the bistable spring on the opposite side of the kink lines and vice versa - the impact on the ends of the spring does not affect its middle part. Accordingly, it is possible to rigidly fix the bistable spring by their ends onto the plates and even at least partially flatten them. The impact on a middle part of one spring will not be transmitted to another bistable spring connected via the rigid plates.
Various structural elements can be attached to the flat plates while maintaining the service life of the springs. The height of the arch in cross section, perpendicular to the main axis B (Fig. 3a/3b) of the whole element, is preferably less than the height of the arch of a bistable spring with similar dimensions as described above. The noise level of the element during transition from one state to the other is lower than that of a single bistable spring with similar dimensions. During the transition from one state to another, the element can take a (dynamic) metastable transition states.
1. There are wide possibilities of fixing various external parts to the element, thanks to the flat plates and the preferred gap between the springs, which also allow the multistable element to be incorporated into the housings of other products, in particular, bracelets. 2. The service life of the bistable springs is maintained by the special design of the element, in addition to the extended fastening options of external parts.
3. The possibilities of incorporating the bistable element into flat constructions is increased, thanks to the height of the arch in the cross-section, perpendicular to the main axis B of the whole element, which is less than the height of the arch of a bistable spring with similar dimensions.
4. Quiet noise when folding thanks to the laminated layer on the open part of the springs and the smaller height (h) compared to a single bistable spring with a width of two parallel springs. 5. The bistable element only changes its state if both bistable springs are manipulated.
Links
RU2547815C2 - Bistable Electromagnetic Drive - Google Patents
US20130321759A1 - Slap Bracelet Eyeglasses - Google Patents
US20120324945A1 - Dual function bracelet - Google Patents Bistability - Wikipedia (wikipedia.org) https://ry.wikipedia.org/wiki/%D0%91 %D0%B8%D1 %81%D1 %82%D0%B0%D0%B1
%D0%B8%D0%BB%D1 %8C%D0%BD%D0%BE%D1 %81 %D1 %82%D1 %8C
Multistabilitv - Wikipedia
Metastable state - Wikipedia (wikipedia. orq)

Claims

Claims
1 . Spring element with
- at least two bistable springs and
- two flat connecting elements, which are arranged at the longitudinal ends of the bistable flat springs aligned parallel to each other and connecting the two bistable springs to each other characterized in that at least one, preferably two, kink line is arranged on each bistable spring subdividing each of the bistable springs into at least two areas, at least one of the areas is separately, thus individually, releasable from a linear state into a curved state.
2. Spring element according to claim 1 characterized in that that bistable springs are flattened at the ends.
3. Spring element according to claim 1 characterized in that that a gap is provided between the parallel aligned bistable flat springs.
4. Spring element according to claim 1 characterized in that p that the bending axes of the flat springs extend transversely to the longitudinal direction of the flat springs.
5. Spring element according to claim 1 characterized in that that the flat springs and the connecting elements are point-connected.
6. Spring element according to claim 1 characterized in that that the spot connection is laser welded.
7. Spring element according to claim 1 characterized in that that the flat springs and the connecting elements are connected by a curved laser weld.
8. Spring element according to claim 1 characterized in that that the connecting elements are designed as flat rigid plates.
9. Spring element according to claim 1 characterized in that that the connecting elements and the flat springs overlap to a depth equal to the width of a flat spring.
10. Spring element according to claim 1 characterized in that the kink lines are arranged on the individual end portions of the bistable springs next to the connection part of the individual bistable spring with each flat connecting element separating the part of the bistable spring that is attached to the flat connecting element from the rest of the bistable spring.
PCT/EP2021/086529 2021-04-09 2021-12-17 Multistable element WO2022214209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21843599.8A EP4320368A1 (en) 2021-04-09 2021-12-17 Multistable element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102021108940.9 2021-04-09
DE102021108940 2021-04-09
EP21173821 2021-05-14
EP21173821.6 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022214209A1 true WO2022214209A1 (en) 2022-10-13

Family

ID=83546030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/086529 WO2022214209A1 (en) 2021-04-09 2021-12-17 Multistable element

Country Status (2)

Country Link
EP (1) EP4320368A1 (en)
WO (1) WO2022214209A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120324945A1 (en) 2011-06-21 2012-12-27 Koeppel Ronald H Dual function bracelet
US20130321759A1 (en) 2012-06-01 2013-12-05 Catherine M Allen Slap Bracelet Eyeglasses
RU2547815C2 (en) 2010-04-21 2015-04-10 Джонсон Электрик Дрезден Гмбх Bistable electromagnetic drive
US20170209132A1 (en) * 2016-01-21 2017-07-27 The Cleveland Clinic Foundation System, method, and apparatus for assisting with submucosal dissections
CA2978545A1 (en) * 2017-09-08 2019-03-08 Cc Global Solutions Inc. Band with illumination portion
US20200292128A1 (en) * 2019-03-11 2020-09-17 Kiarash Ahi Mobile Phone Holder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2547815C2 (en) 2010-04-21 2015-04-10 Джонсон Электрик Дрезден Гмбх Bistable electromagnetic drive
US20120324945A1 (en) 2011-06-21 2012-12-27 Koeppel Ronald H Dual function bracelet
US20130321759A1 (en) 2012-06-01 2013-12-05 Catherine M Allen Slap Bracelet Eyeglasses
US20170209132A1 (en) * 2016-01-21 2017-07-27 The Cleveland Clinic Foundation System, method, and apparatus for assisting with submucosal dissections
CA2978545A1 (en) * 2017-09-08 2019-03-08 Cc Global Solutions Inc. Band with illumination portion
US20200292128A1 (en) * 2019-03-11 2020-09-17 Kiarash Ahi Mobile Phone Holder

Also Published As

Publication number Publication date
EP4320368A1 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
JP5508109B2 (en) Steering support frame
CN103869677B (en) Utilize the assembling device of the deformation of elastic arm
WO2013124971A1 (en) Vehicle suspension arm
WO2014147754A1 (en) Suspension link and method for manufacturing same
WO2013108354A1 (en) Panel joining structure
JP4897672B2 (en) Spring assembly
EP2952371A1 (en) Torsion beam, torsion beam assembly, torsion beam-type suspension device
WO2022214209A1 (en) Multistable element
JP5374732B2 (en) Manufacturing method of shunt resistor
EP2537692B1 (en) Stabiliser and manufacturing method for producing same
CN207195515U (en) Leaf spring Anti-error structure
EP0450225B1 (en) Joint to connect together components of spectacles
KR102372112B1 (en) Assembly of elements such as bracelet links
US7370841B2 (en) Rocking fulcrum member
CN102349019B (en) Rotation mechanism for eyeglasses and eyeglasses having the same
JP6308638B1 (en) Reinforcing bracket for building
JP5692346B1 (en) Press-fit connector terminal and manufacturing method thereof
CN105172514A (en) Torsion profile for a twist beam axle and correspondingly equipped vehicle
JP5024235B2 (en) Optical device
JP7413340B2 (en) Stabilizer manufacturing method
US8027126B2 (en) Magnetic head suspension
JPWO2015005188A1 (en) Actuator
JP2009048091A (en) Eyeglass frame
JP5441246B2 (en) Load cell and method for producing strain cell for load cell
WO2011024449A1 (en) Acceleration sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18286136

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202392802

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2021843599

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021843599

Country of ref document: EP

Effective date: 20231109