EP2561193B1 - Verfahren und system zur überwachung des ölstandes in einem tank eines flugzeugmotors - Google Patents

Verfahren und system zur überwachung des ölstandes in einem tank eines flugzeugmotors Download PDF

Info

Publication number
EP2561193B1
EP2561193B1 EP11730375.0A EP11730375A EP2561193B1 EP 2561193 B1 EP2561193 B1 EP 2561193B1 EP 11730375 A EP11730375 A EP 11730375A EP 2561193 B1 EP2561193 B1 EP 2561193B1
Authority
EP
European Patent Office
Prior art keywords
measurements
oil
aircraft
engine
oil level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11730375.0A
Other languages
English (en)
French (fr)
Other versions
EP2561193A1 (de
Inventor
François DEMAISON
Xavier Flandrois
Jean-Rémi Masse
Gilles Massot
Julien Ricordeau
Ouadir Hmad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP2561193A1 publication Critical patent/EP2561193A1/de
Application granted granted Critical
Publication of EP2561193B1 publication Critical patent/EP2561193B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M11/12Indicating devices; Other safety devices concerning lubricant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics

Definitions

  • the present invention relates to the general field of aeronautics.
  • It relates more particularly to monitoring the oil consumption of an aircraft engine in operation, such as for example a turbomachine.
  • a second technique used in some maintenance calculators by the airlines consists in measuring the level of oil contained in the tank before each take-off and after each landing of the aircraft. The oil levels thus measured are then compared with each other in order to estimate the oil consumption on the mission of the aircraft.
  • EP 2 072 762 describes another technique for monitoring the consumption of oil.
  • this technique requires the use of relatively accurate oil level sensors.
  • this technique does not take into account the amount of oil circulating out of the tank, which can vary according to different parameters (viscosity of the oil, engine speed, etc.).
  • the present invention provides an alternative to the aforementioned techniques for obtaining a reliable estimate of the oil consumption of an engine.
  • the invention takes into account the oil level in the tank for estimating the oil consumption of the engine, and is advantageously placed at iso-conditions of engine speed and oil temperature (ie in similar conditions) to make the measured oil levels comparable to each other.
  • the aggregated measurements according to the invention are coherent and comparable with one another, and make it possible to easily evaluate the engine oil consumption.
  • the invention is based on measurements collected during at least two operational phases of the mission of the aircraft.
  • these two phases of operation will correspond to a taxi phase (the taxi phase includes, in the sense of the invention, the taxi phase before take-off and the taxi phase after landing) and to a cruise phase of the mission of the 'aircraft.
  • the estimate of engine oil consumption is not limited to only two measurements taken before take-off and after landing of the aircraft, but oil level measurements are also used. other phases of operation of the aircraft, and possibly on several missions of the aircraft.
  • the invention thus makes it possible to apply a technique of the "trend monitoring” type (monitoring of trend in French) to the monitoring of the oil consumption of an engine.
  • the monitoring of the oil level is automated and requires little or no human intervention. This limits the inaccuracies.
  • the invention is particularly advantageous when discrete resolution sensors are used to measure the oil level in the tank.
  • measurements representative of changes in the oil level occurring over a period shorter than a predetermined time limit are excluded.
  • the measurements corresponding to aberrant oil levels are eliminated, such as for example a measurement greater than the maximum content of the reservoir, etc.
  • the aggregation of the measurements comprises the detection of at least one filling of the tank between two successive missions of the aircraft.
  • the aggregation of the measurements can also include the correction of at least one measurement of the oil level according to a difference existing between the oil temperature associated with this measurement and the reference temperature.
  • the aggregation of the measurements comprises the application of a linear regression to the selected measurements.
  • This regression makes it possible to smooth the curve of the measurements so as to overcome measurement inaccuracies or differences that may appear for example from one mission to another or between the different phases of operation.
  • the aggregated measurements are compared with a predetermined threshold representative of an abnormal consumption of oil by the engine.
  • the measurements are aggregated over several missions of the aircraft and the aggregated measurements are compared with a reference curve (eg a straight line) representative of a normal consumption of oil by the engine.
  • a reference curve eg a straight line
  • This distribution makes it possible to speed up the processing of the ground measurements and to limit the quantity of measurements transmitted during the mission by the aircraft.
  • the figure 1 represents, in its environment, a monitoring system 1 of the oil level contained in a tank of an operating aircraft engine (not shown), according to the invention, in a particular embodiment.
  • the aircraft engine is for example a turbojet engine. It will be noted, however, that the invention applies to other aircraft engines and in particular other turbomachines, such as a turboprop, etc.
  • the means implemented by the monitoring system 1 are distributed over two entities, namely on the aircraft 2 propelled by the engine and on a ground device 3 hosted for example by the airline operating the aircraft 2.
  • the monitoring system 1 is able to monitor the level of oil contained in a tank 21 of a turbojet engine of the aircraft 2.
  • This oil level is measured, in a manner known per se, by a resistive sensor 22 with a discrete resolution.
  • a resistive sensor 22 delivers a discrete measurement having a predefined resolution (eg 0.25 qt or 0.27 liter).
  • the discrete measurement delivered by the sensor remains the same.
  • the absolute measurement of the oil level contained in the reservoir 21 is not precisely known, but as soon as a variation of the oil level is detected by the sensor, the latter is at least equal to the resolution of the sensor. .
  • the aircraft 2 is furthermore equipped with a computer 23, comprising means for processing the measurements made by the sensor 22. according to the invention. These means will be described later with reference to the figure 2 .
  • the measurements processed by the computer 23 are sent to the device on the ground 3 by means of communication 24 equipping the aircraft 2.
  • These means 24 include in particular an ACARS unit (Airline Communications, Addressing and Reporting System), able to communicate according to the ARINC standard via a link 4 with the ground device 3.
  • ACARS unit Airline Communications, Addressing and Reporting System
  • the ground device 3 here has the hardware architecture of a computer. It notably comprises communication means 21, including an ACARS unit able to receive and decode the messages sent by the aircraft 2, a processor 32, a random access memory 33, a read-only memory 34 and a non-volatile memory 35.
  • communication means 21 including an ACARS unit able to receive and decode the messages sent by the aircraft 2, a processor 32, a random access memory 33, a read-only memory 34 and a non-volatile memory 35.
  • the read-only memory 34 constitutes a recording medium readable by the processor 32 and on which is recorded a computer program comprising instructions for carrying out certain steps of the monitoring method according to the invention described later with reference to FIG. figure 3 .
  • the steps implemented by the aircraft 2 correspond strictly to the acquisition of measurements of the oil level contained in the tank 21 and to the extraction of the relevant measurements to monitor the oil consumption of the turbojet engine. . They will be described with reference to the figure 2 .
  • the sensor 22 periodically performs measurements of the oil level in the reservoir 21 of the turbojet engine (step E10).
  • the rotational speed of the turbojet engine is characterized here by the parameter N2, which designates the speed of rotation of the high pressure compressor shaft of the turbojet engine.
  • the rotational speed can be characterized by other operating parameters of the turbojet, such as for example the parameter N1 which designates the rotational speed of the low-pressure compressor shaft of the turbojet engine.
  • the senor 22 being a discrete sensor, the measurement it delivers can remain the same for a long time (eg one hour) if the factors that influence the oil level in the tank do not vary.
  • the term "segment” refers to a set of identical consecutive measurements delivered by the sensor 22. Also, in order to limit the amount of memory necessary to store the measurements delivered by the sensor, it is sufficient to memorize, for each segment, the value of the level oil measured by the sensor 22 on this segment, the beginning of the segment and its duration, the minimum and maximum oil temperatures reached on this segment, and the corresponding rotational speeds.
  • all measurements taken by the sensor 22 can be stored.
  • an extraction of the relevant measurements is carried out in accordance with the invention. This extraction is carried out as and when the mission of the aircraft in order firstly to optimize the processing times of the measurements and secondly to limit the quantity of stored measurements.
  • This extraction consists in filtering the measurements in order to select only the relevant measurements allowing to evaluate the oil consumption of the turbojet and detect abnormal consumption.
  • the treatments making it possible to extract the relevant measurements that can differ according to the phase of the flight during which the measurements were made we first identify the phase of the flight in which the aircraft is located (eg engine with the stopping, starting, taxi before take-off, take-off, climb, cruise, descent, taxi after landing, stopping the engine, etc.) (step E20).
  • the phase of the flight in which the aircraft is located eg engine with the stopping, starting, taxi before take-off, take-off, climb, cruise, descent, taxi after landing, stopping the engine, etc.
  • the phases of the flight can be identified according to the rotational speed of the turbojet and in particular the parameters N1 and / or N2 mentioned above, as well as the previous flight phase.
  • a timed state machine may be used to follow a motor speed gauge.
  • the rotation speed of the turbojet engine (here characterized by the parameter N2) is approximately 60% of its maximum speed, and has higher peaks when the pilot of the aircraft accelerates.
  • the oil level in the tank 21 drops slightly after acceleration before returning to its level before acceleration a few seconds after returning to a normal rotation. The measurements made during a peak of the parameter N2 are therefore not representative of the actual oil consumption of the turbojet engine.
  • N2Ref a reference rotational speed of the turbojet engine, denoted N2Ref, corresponding to the rotation regime most commonly encountered during the first phase, is defined.
  • mission of the aircraft For example, N2Ref is taken as equal to about 60% of the maximum speed of the turbojet engine.
  • a second treatment applied to the measurements made by the sensor 22 during the taxi phase consists in excluding the aberrant measurements, that is to say, the measurements which do not correspond strictly to a physical reality but which come from errors of measure (step E60).
  • the aberrant measurements that is to say, the measurements which do not correspond strictly to a physical reality but which come from errors of measure (step E60).
  • step E60 measurements corresponding to segments of short duration shorter than a predetermined limit duration are also excluded.
  • This treatment is intended to exclude oil level variations due to bends made by the pilot of the aircraft or to sudden braking: they result in an acceleration or deceleration of the aircraft. motor speed relative to the ground, thus causing a momentary inclination of the oil surface in the tank.
  • step E60 only the measurements corresponding to changes in the oil level due to changes in temperature are retained.
  • the measurements associated with an oil temperature close to a predetermined reference temperature TRef are then selected.
  • the temperature most commonly reached by the oil contained in the reservoir 21, for example 100 ° C., is preferably chosen as the reference temperature TRef.
  • step E70 the segments whose minimum and maximum temperatures associated are on both sides of the reference temperature.
  • the segments whose minimum and maximum temperatures are relatively close to the reference temperature, that is to say, lower or higher by a predetermined difference of the order of a few degrees Celsius.
  • step E70 The oil level measurements selected in step E70 are then transmitted to the communication means 31 of the ground device 3 by the communication means 24 of the aircraft 2, via the ACARS link 4 (step E80).
  • the oil level measurements are coded for example in messages conforming to the standard ARINC, known to those skilled in the art. Each measurement is associated in this message with the corresponding oil temperature and the phase of the flight during which it was carried out (here phase taxi or cruise).
  • ARINC the standard ARINC
  • Steps E10 to E80 are repeated during each mission of the aircraft.
  • these steps consist essentially of aggregating the measurements sent by the aircraft 2 during one or more missions, and to determine the oil consumption of the turbojet engine according to the measurements thus aggregated in order to detect in particular a consumption abnormal.
  • Aggregating means gathering the measurements in such a way as to form a single set of points (eg a curve) that is coherent and representative of the actual evolution of the oil level of the reservoir during the missions.
  • the measurements obtained on a mission during taxi phases before take-off and taxi after landing and during the cruise phase are ordered chronologically.
  • the way in which the measurements obtained on separate missions of the aircraft are aggregated may differ according to the type of monitoring envisaged (for example averaged over several flights, or daily, weekly, monthly, etc.).
  • the aggregation may consist in particular of averaging the measurements taken during a mission in order to obtain an average oil level on the mission, or to chronologically order the measurements obtained on different missions in order to evaluate the evolution oil level during several successive missions of the aircraft.
  • step F10 For each mission of the aircraft, following receipt of the selected measurements for the taxi phase (step F10), it is first determined if some of these measures require a correction due to the existence of a difference between the oil temperatures associated with these measurements and the reference temperature (step F20).
  • the ground device 3 corrects the measurements concerned by adding a deviation ⁇ Q determined according to the model, as a function of the temperature difference ⁇ T that they have with respect to the reference temperature.
  • the ground device 3 classifies, for the mission in question, the measurements selected (and possibly corrected) for the taxi phase and the measurements selected for the cruise phase in chronological order (step F40). This gives the evolution of the oil level of the tank 21 for each mission of the aircraft.
  • a linear regression is also applied to the measurements thus ordered in order to smooth the curve obtained.
  • the measurements classified chronologically on each mission are then aggregated on several missions of the aircraft (step F40), that is to say here, classified in the order of the successive missions of the aircraft.
  • the curve obtained may have "recesses", that is to say, sudden changes in the oil level between two successive missions of the aircraft. These recesses essentially correspond to fills of the tank 21 between two successive missions of the aircraft.
  • the ground device 3 detects these fills of the tank 21 (step F50). For this, it compares the oil level variations appearing at the junction between two successive missions of the aircraft with a predetermined threshold to detect sudden changes.
  • ground device 3 here compensates for these fillings in order to overcome their influence on the evolution of the oil level. This compensation is achieved by subtracting the amount of oil added when filling the tank. It allows to "align" the aggregated measurements on the various phases and on the different missions of the aircraft.
  • a linear regression applied to the points of the set C makes it possible to obtain the average oil consumption of the turbojet engine on the missions considered.
  • This average consumption is given by the coefficient of direction of the line CRef obtained after linear regression (represented on the figure 4 ).
  • the residual of the regression and the number of points make it possible to determine the quality of the consumption thus estimated.
  • This average consumption can then be compared with one or more reference thresholds, corresponding for example to the minimum oil consumption and the maximum oil consumption tolerated for the engine.
  • thresholds are provided by the engine manufacturer.
  • the set of points C is furthermore compared with the line CRef (step F60). In the course of this comparison, it is intended to detect a break in the alignment of the points of the set C with respect to the average consumption of the engine, a rupture that is often symptomatic of an anomaly in the oil consumption.
  • the line CRef constitutes a reference curve in the sense of the invention representative of a normal evolution of the consumption of oil by the engine. In fact, in general, the oil consumption of an engine varies little. Also, a deviation from the right CRef makes it possible to diagnose an abnormal consumption of oil by the engine (step F70).
  • the recess 5 represented on the figure 4 is identified by the invention as representative of abnormal consumption. A more advanced investigation will determine whether it is a real anomaly in the engine oil consumption or a measurement fault if the deviation from the reference curve is not confirmed in the weather.
  • other reference data can be compared to the aggregate measurement curve according to the type of anomalies that are to be detected. For example, we can compare the line Cref obtained by linear regression on the points of the set C with a line obtained by linear regression on aggregated measurements during past missions. A break in the directing coefficients of these lines is then symptomatic of an anomaly in oil consumption.
  • the aggregation of the measurements on several missions of the aircraft consists in a chronological classification of the measures selected for the various missions.
  • the monitoring may consist of evaluating the average oil level in the tank 21 (the average being performed on several missions of the aircraft).
  • a linear regression can then be applied to aggregate measurements to estimate the engine's oil consumption on the mission. The residual of the regression and the number of points make it possible to determine the quality of the consumption thus estimated.
  • the diagnosis can also be advantageously improved by comparing the monitoring of consumption on several engines of the same aircraft.
  • a variation of the consumption of the same order of magnitude will be imputed on the different flight conditions, while a single-engine evolution is considered to be symptomatic of an anomaly in oil consumption.
  • an abnormal consumption of oil is detected by comparing the evolution of the oil level on several successive missions of the aircraft with a reference curve.
  • the oil consumption can be estimated by making a difference between two successive aggregated oil level measurements to directly compare the oil consumption with a reference oil consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Claims (13)

  1. Verfahren zur Überwachung des Standes von in einem Behälter (21) eines Luftfahrzeugtriebwerks enthaltenem Öl, umfassend:
    - für wenigstens zwei vorbestimmte Betriebsphasen des Triebwerks, im Laufe wenigstens eines Fluges des Luftfahrzeugs:
    ∘ den Erhalt (E10) einer Vielzahl von Messungen eines Ölstandes des Behälters, wobei jede Messung einer Öltemperatur und einer Drehzahl des Triebwerks zugeordnet ist,
    ∘ die Auswahl (E50-E70) von Messungen, die für Änderungen des Ölstandes repräsentativ sind und die Öltemperaturen nahe einer Referenztemperatur sowie Drehzahlen des Triebwerks nahe einer Referenzdrehzahl zugeordnet sind,
    - die Aggregation (F40) der bei den Betriebsphasen und im Laufe des wenigstens einen Fluges des Luftfahrzeugs ausgewählten Messungen, und
    - den Vergleich (F60) der aggregierten Messungen mit Referenzdaten, um einen anormalen Ölverbrauch des Triebwerks zu erkennen (F70).
  2. Überwachungsverfahren nach Anspruch 1, bei dem die beiden vorbestimmten Betriebsphasen des Triebwerks einer Roll-Phase und einer Reiseflug-Phase des Fluges des Luftfahrzeugs (E30) entsprechen.
  3. Überwachungsverfahren nach Anspruch 1 oder 2, bei dem im Laufe der Auswahl der Messungen die Messungen ausgeschlossen werden (E60), die für Änderungen des Ölstandes, welche über eine geringere Dauer als eine vorbestimmte Grenzdauer aufgetreten sind, repräsentativ sind.
  4. Überwachungsverfahren nach einem der Ansprüche 1 bis 3, bei dem im Laufe der Auswahl der Messungen die Messungen des Ölstandes ausgeschlossen werden (E60), die über einem vorbestimmten Grenzölstand liegen.
  5. Überwachungsverfahren nach einem der Ansprüche 1 bis 3, bei dem im Laufe der Auswahl der Messungen die Messungen ausgeschlossen werden (E60), die für Änderungen des Ölstandes, welche größer als eine vorbestimmte Grenzänderung sind, repräsentativ sind.
  6. Überwachungsverfahren nach einem der Ansprüche 1 bis 5, bei dem die Aggregation der Messungen die Erfassung (F50) wenigstens eines Befüllens des Behälters zwischen zwei aufeinanderfolgenden Flügen des Luftfahrzeugs umfasst.
  7. Überwachungsverfahren nach einem der Ansprüche 1 bis 6, bei dem die Aggregation der Messungen die Korrektur (F30) wenigstens einer Messung des Ölstandes in Abhängigkeit einer Differenz zwischen der dieser Messung zugeordneten Öltemperatur und der Referenztemperatur umfasst.
  8. Überwachungsverfahren nach einem der Ansprüche 1 bis 7, bei dem die Aggregation der Messungen die Anwendung einer linearen Regression auf die Messungen umfasst.
  9. Überwachungsverfahren nach einem der Ansprüche 1 bis 8, bei dem die aggregierten Messungen in Bezug auf eine vorbestimmte Schwelle, die für einen anormalen Ölverbrauch durch das Triebwerk repräsentativ ist, verglichen werden.
  10. Überwachungsverfahren nach einem der Ansprüche 1 bis 9, bei dem die Messungen über mehrere Flüge des Luftfahrzeugs aggregiert werden (F40) und die aggregierten Messungen mit einer Referenzkurve, die für einen normalen Ölverbrauch durch das Triebwerk repräsentativ ist, verglichen werden.
  11. Überwachungsverfahren nach einem der Ansprüche 1 bis 10, bei dem:
    - der Erhalt (E10) und die Auswahl (E30-E50) der Messungen im Laufe des Fluges des Luftfahrzeugs (2) vollzogen werden, und
    - die Aggregation (F20-F50) der Messungen und der Vergleich (F60) durch eine bodenseitige Vorrichtung (3), an die die ausgewählten Messungen gesendet worden sind, durchgeführt werden.
  12. System zur Überwachung (1) des Standes von in einem Behälter (21) eines Luftfahrzeugtriebwerks enthaltenem Öl, umfassend:
    - Mittel, die für wenigstens zwei vorbestimmte Betriebsphasen des Triebwerks, im Laufe wenigstens eines Fluges des Luftfahrzeugs aktiviert werden:
    ∘ um eine Vielzahl von Messungen eines Ölstandes des Behälters zu erhalten, wobei jede Messung einer Öltemperatur und einer Drehzahl des Triebwerks zugeordnet ist, und
    ∘ um Messungen auszuwählen, die für Änderungen des Ölstandes repräsentativ sind und die Öltemperaturen nahe einer Referenztemperatur sowie Drehzahlen des Triebwerks nahe einer Referenzdrehzahl zugeordnet sind,
    - Mittel zum Aggregieren der bei den Betriebsphasen und im Laufe des wenigstens einen Fluges des Luftfahrzeugs ausgewählten Messungen, und
    - Mittel zum Vergleichen der aggregierten Messungen mit Referenzdaten, um einen anormalen Ölverbrauch des Triebwerks zu erkennen.
  13. Überwachungssystem nach Anspruch 12, bei dem:
    - die Mittel zum Erhalten der Vielzahl von Messungen und zum Auswählen der Messungen, die für Änderungen des Ölstandes repräsentativ sind, an Bord des Luftfahrzeugs (2) untergebracht sind, und
    - die Mittel zum Aggregieren der ausgewählten Messungen und zum Vergleichen der aggregierten Messungen mit Referenzdaten in eine bodenseitige Vorrichtung (3) integriert sind,
    wobei das Luftfahrzeug ferner Mittel zum Senden der ausgewählten Messungen an die bodenseitige Vorrichtung umfasst.
EP11730375.0A 2010-04-19 2011-04-14 Verfahren und system zur überwachung des ölstandes in einem tank eines flugzeugmotors Active EP2561193B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1052954A FR2958911B1 (fr) 2010-04-19 2010-04-19 Procede et systeme de surveillance du niveau d'huile contenue dans un reservoir d'un moteur d'aeronef
PCT/FR2011/050854 WO2011131892A1 (fr) 2010-04-19 2011-04-14 Procede et systeme de surveillance du niveau d'huile contenue dans un reservoir d'un moteur d'aeronef

Publications (2)

Publication Number Publication Date
EP2561193A1 EP2561193A1 (de) 2013-02-27
EP2561193B1 true EP2561193B1 (de) 2015-09-30

Family

ID=42262256

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11730375.0A Active EP2561193B1 (de) 2010-04-19 2011-04-14 Verfahren und system zur überwachung des ölstandes in einem tank eines flugzeugmotors

Country Status (8)

Country Link
US (1) US9540974B2 (de)
EP (1) EP2561193B1 (de)
CN (1) CN102859133B (de)
BR (1) BR112012026634B1 (de)
CA (1) CA2796739C (de)
FR (1) FR2958911B1 (de)
RU (1) RU2557838C2 (de)
WO (1) WO2011131892A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746680B2 (en) 2006-11-16 2020-08-18 General Electric Company Sensing system and method
US10260388B2 (en) 2006-11-16 2019-04-16 General Electric Company Sensing system and method
EP2573338B1 (de) * 2011-09-20 2017-07-19 Safran Aero Boosters SA Überfüllungskontrolle eines Schmiersystems für einen Flugzeugmotor
US8850876B2 (en) * 2012-07-19 2014-10-07 Honeywell International Inc. Methods and systems for monitoring engine oil temperature of an operating engine
FR2993608B1 (fr) * 2012-07-23 2018-07-06 Safran Aircraft Engines Methode de surveillance du colmatage d'un filtre sur turbomachine
CN104343491B (zh) * 2013-07-24 2017-03-08 中国国际航空股份有限公司 一种发动机滑油添加探测系统及方法
CN104343490B (zh) * 2013-07-24 2017-10-03 中国国际航空股份有限公司 一种发动机滑油监控系统及方法
CN104343492B (zh) * 2013-08-02 2017-02-15 上海杰之能软件科技有限公司 飞机及其发动机滑油监控方法及系统
FR3029258B1 (fr) * 2014-12-01 2017-01-13 Snecma Procede de surveillance d'une vanne de pressurisation de reservoir pour turbomachine
FR3030624B1 (fr) * 2014-12-18 2017-01-13 Snecma Procede et dispositif d'obtention d'une pression differentielle de reference d'un fluide traversant un filtre d'un moteur d'aeronef
FR3035919B1 (fr) * 2015-05-05 2017-05-26 Snecma Procede et dispositif de surveillance d'une consommation d'huile contenue dans un reservoir d'un moteur d'aeronef
BE1023406B1 (fr) * 2016-01-21 2017-03-09 Safran Aero Boosters S.A. Turbomachine d'aéronef
US11192660B2 (en) 2016-02-11 2021-12-07 Honeywell International Inc. Method and system for APU oil level indication
US10378692B2 (en) * 2016-02-11 2019-08-13 Honeywell International Inc. Method and system for APU oil level indication
WO2017151847A1 (en) * 2016-03-03 2017-09-08 General Electric Company Sensing system and method
WO2018102036A2 (en) * 2016-11-30 2018-06-07 General Electric Company Sensing system and method
FR3074573B1 (fr) * 2017-12-01 2021-01-22 Safran Aircraft Engines Procede de mesure par ultrasons
FR3079873B1 (fr) * 2018-04-04 2020-05-08 Safran Aircraft Engines Ensemble moteur pour aeronef presentant un chemin d'alimentation d'un reservoir de compartiment inter-veines d'une turbomachine
CN109240327B (zh) * 2018-09-11 2021-10-12 陕西千山航空电子有限责任公司 一种固定翼飞机飞行阶段识别方法
US11293313B2 (en) * 2018-09-19 2022-04-05 Saudi Arabian Oil Company Turbomachinery lubrication system improvement gravity rundown tanks
FR3093768B1 (fr) * 2019-03-13 2021-07-02 Safran Aircraft Engines Procédé et système de surveillance d’un état d’un réducteur d’une turbine à gaz
US11125603B2 (en) 2019-05-10 2021-09-21 Pratt & Whitney Canada Corp. Fault detection system and method for liquid level sensing device
US11193810B2 (en) 2020-01-31 2021-12-07 Pratt & Whitney Canada Corp. Validation of fluid level sensors
JP7298531B2 (ja) * 2020-03-31 2023-06-27 いすゞ自動車株式会社 異常原因特定装置及び異常原因特定方法
CN111964748B (zh) * 2020-08-07 2023-05-09 四川泛华航空仪表电器有限公司 一种基于飞机油量传感器浸油高度的油量选择处理方法
EP3964703A1 (de) * 2020-09-02 2022-03-09 Caterpillar Energy Solutions GmbH Motorschmierölverbrauch und zustandsüberwachung
GB202015023D0 (en) 2020-09-23 2020-11-04 Rolls Royce Plc System and method for determining high oil consumption in gas turbine engine
FR3120917B1 (fr) * 2021-03-19 2023-03-24 Safran Aircraft Engines Surveillance d’une vanne anti fuite dans un turboréacteur
CN113756009A (zh) * 2021-10-25 2021-12-07 浙江理工大学 一种针织圆纬机用加油机油位数据控制方法及装置
US11959386B2 (en) 2022-04-04 2024-04-16 Rtx Corporation Monitoring fluid consumption of gas turbine engine during an engine cycle
CN115218986B (zh) * 2022-09-07 2022-12-09 中航(成都)无人机系统股份有限公司 一种飞机油量计算方法、装置、设备及存储介质
FR3140946B1 (fr) * 2022-10-17 2024-09-13 Safran Aircraft Engines Procédé de détection d’un mode de fonctionnement d’une machine tournante, notamment pour un aéronef en cours de vol

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006260A (en) * 1975-01-29 1977-02-01 Wells A. Webb Method and apparatus for evaporation of moisture from fruit and vegetable particles
SU665115A1 (ru) * 1976-07-05 1979-05-30 Предприятие П/Я А-7240 Устройство дл контрол падени давлени масла в газотурбинном двигателе
DE2903910A1 (de) * 1978-02-08 1979-08-09 Sperry Rand Nv Maehdrescher
US4466231A (en) * 1982-08-30 1984-08-21 Sperry Corporation Automatic sieve and chaffer adjustment in a combine harvester
DE3733619A1 (de) * 1987-10-05 1989-04-13 Deere & Co Verfahren zum gleichmaessigen verteilen eines zu trennenden guts in einer trenneinrichtung und mittel zu seiner ausfuehrung
US5273134A (en) * 1991-01-11 1993-12-28 Dana Corporation Oil consumption measurement system for internal combustion engine
DE4118896C2 (de) * 1991-06-08 1994-12-15 Mahle Gmbh Vorrichtung zur Überwachung und Anzeige eines Pegels
AU658066B2 (en) * 1992-09-10 1995-03-30 Deere & Company Neural network based control system
US5282386A (en) * 1992-09-22 1994-02-01 General Motors Corporation Apparatus and technique for fluid level determination in automatic transmissions
US5319963A (en) * 1993-05-19 1994-06-14 Chrysler Corporation Method of predicting transmission oil temperature
JPH0828337A (ja) * 1994-07-19 1996-01-30 Unisia Jecs Corp 内燃機関の燃料温度検出装置における自己診断装置
DE19504650C1 (de) * 1995-02-13 1996-04-04 Daimler Benz Ag Einrichtung zur Getriebetemperaturerfassung
DE19506059A1 (de) * 1995-02-22 1996-08-29 Deere & Co Verfahren zur automatischen Regelung wenigstens eines Abschnitts der Gutbearbeitung in einer Erntemaschine
US5857162A (en) * 1995-06-30 1999-01-05 General Motors Corporation Automatic transmission hot mode management
DE19602599C2 (de) * 1996-01-25 2002-07-11 Daimler Chrysler Ag Verfahren zur Bestimmung einer Flüssigkeitsmenge, insbesondere der Motorölmenge, in einem Kraftfahrzeug
CA2213019C (en) * 1996-08-30 2004-03-16 Honda Giken Kogyo Kabushiki Kaisha System for estimating temperature of vehicle hydraulically-operated transmission
US6076030A (en) * 1998-10-14 2000-06-13 Carnegie Mellon University Learning system and method for optimizing control of autonomous earthmoving machinery
DE19808197C2 (de) * 1998-02-27 2001-08-09 Mtu Aero Engines Gmbh System und Verfahren zur Diagnose von Triebwerkszuständen
JP3067742B2 (ja) * 1998-10-07 2000-07-24 日産自動車株式会社 トルクコンバータの過熱防止装置
US6226974B1 (en) * 1999-06-25 2001-05-08 General Electric Co. Method of operation of industrial gas turbine for optimal performance
DE19931844A1 (de) * 1999-07-09 2001-01-11 Claas Selbstfahr Erntemasch Einrichtung zur Verstellung der Sieböffnungsweite an Mähdreschern
US6364602B1 (en) * 2000-01-06 2002-04-02 General Electric Company Method of air-flow measurement and active operating limit line management for compressor surge avoidance
DE60102242T2 (de) * 2000-06-29 2005-01-27 Aspen Technology, Inc., Cambridge Rechnerverfahren und gerät zur beschränkung einer nicht-linearen gleichungsnäherung eines empirischen prozesses
DE10044916B4 (de) * 2000-09-12 2013-03-14 Volkswagen Ag Verfahren zur Messung und Anzeige des Ölstands in einem Kraftfahrzeug
DE10061041A1 (de) * 2000-12-08 2002-06-13 Daimler Chrysler Ag Verfahren zum Bestimmen einer Nachfüllmenge, insbesondere einer Motorölnachfüllmenge
DE10064860A1 (de) * 2000-12-23 2002-06-27 Claas Selbstfahr Erntemasch Einrichtung zur Optimierung der Überladung von Erntegut an landwirtschaftlichen Fahrzeugen
US6506010B1 (en) * 2001-04-17 2003-01-14 General Electric Company Method and apparatus for compressor control and operation in industrial gas turbines using stall precursors
US6632136B2 (en) * 2001-06-05 2003-10-14 Deere & Company Remote adjustment mechanism for a combine harvester cleaning element
US6794766B2 (en) * 2001-06-29 2004-09-21 General Electric Company Method and operational strategy for controlling variable stator vanes of a gas turbine power generator compressor component during under-frequency events
US6553300B2 (en) * 2001-07-16 2003-04-22 Deere & Company Harvester with intelligent hybrid control system
DE10147733A1 (de) * 2001-09-27 2003-04-10 Claas Selbstfahr Erntemasch Verfahren und Vorrichtung zur Ermittlung einer Erntemaschineneinstellung
WO2003029629A1 (en) * 2001-10-01 2003-04-10 Camfil Ab Arrangement at gas turbine
JP4295936B2 (ja) * 2001-10-25 2009-07-15 ヤマハ発動機株式会社 船外機操作装置,および船内ネットワークシステム
DE10162354A1 (de) * 2001-12-18 2003-07-03 Claas Selbstfahr Erntemasch Verfahren zur Verlustbestimmung an landwirtschaftlichen Erntemaschinen
US6865890B2 (en) * 2002-06-07 2005-03-15 Ronald Steven Walker Software system for verification of gas fuel flow
US20050187643A1 (en) * 2004-02-19 2005-08-25 Pavilion Technologies, Inc. Parametric universal nonlinear dynamics approximator and use
US7142971B2 (en) * 2003-02-19 2006-11-28 The Boeing Company System and method for automatically controlling a path of travel of a vehicle
DE10360597A1 (de) * 2003-12-19 2005-07-28 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zur Regelung von Arbeitsorganen eines Mähdreschers
US7840317B2 (en) * 2004-08-16 2010-11-23 Matos Jeffrey A Method and system for controlling a hijacked aircraft
US7519569B1 (en) * 2004-11-10 2009-04-14 Raytheon Company System, apparatus, and method to dynamically allocate resources
US7281414B2 (en) * 2004-11-30 2007-10-16 Hyundai Motor Company Apparatus, a method, and measuring sensors for scanning states of engine oil
DE102004059543A1 (de) * 2004-12-09 2006-06-29 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
RU2287074C2 (ru) * 2004-12-20 2006-11-10 Открытое акционерное общество "Авиадвигатель" Устройство управления маслосистемой газотурбинного двигателя
CN1985100B (zh) * 2005-01-18 2010-12-08 日本精工株式会社 滚动装置
DE102005014278A1 (de) * 2005-03-24 2006-10-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Ermittlung eines Ziel-Einstellwerts
DE102005026159A1 (de) * 2005-06-06 2007-01-25 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung einer Erntemaschine
DE102005047335A1 (de) * 2005-09-30 2007-04-12 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende Erntemaschine und Betriebsverfahren dafür
US20070156311A1 (en) * 2005-12-29 2007-07-05 Elcock Albert F Communication of automotive diagnostic data
GB0604860D0 (en) * 2006-03-10 2006-04-19 Cnh Belgium Nv Improvements in or relating to material stream sensors
JP4163727B2 (ja) * 2006-08-31 2008-10-08 本田技研工業株式会社 内燃機関のオイルレベル検出装置
US7930044B2 (en) * 2006-09-07 2011-04-19 Fakhruddin T Attarwala Use of dynamic variance correction in optimization
US10018613B2 (en) * 2006-11-16 2018-07-10 General Electric Company Sensing system and method for analyzing a fluid at an industrial site
US10746680B2 (en) * 2006-11-16 2020-08-18 General Electric Company Sensing system and method
US7572180B2 (en) * 2007-02-13 2009-08-11 Cnh America Llc Distribution leveling for an agricultural combine
CA2688471C (en) * 2007-06-05 2017-01-17 Astrium Limited Remote testing system and method
US7729870B2 (en) * 2007-09-05 2010-06-01 Yizhong Sun Methods for detecting oil deterioration and oil level
US8340928B2 (en) * 2007-09-05 2012-12-25 Yizhong Sun Sensor and method for detecting oil deterioration and oil level
DE102007055074A1 (de) * 2007-11-16 2009-05-20 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende landwirtschaftliche Arbeitsmaschine
EP2072762B1 (de) * 2007-12-21 2012-05-30 Techspace Aero SA Methode zur Verbrauchskontrolle und Aufdeckung von Leckagen in einem System zur Schmierung einer Strömungsmaschine
MX2011000092A (es) * 2008-06-26 2011-05-30 Cambrian Energy Dev Llc Aparato y metodo para operar un motor con inyeccion de fluido no combustible.
DE102009009767A1 (de) * 2009-02-20 2010-08-26 Claas Selbstfahrende Erntemaschinen Gmbh Fahrerassistenzsystem für landwirtschaftliche Arbeitsmaschine
US8616005B1 (en) * 2009-09-09 2013-12-31 Dennis James Cousino, Sr. Method and apparatus for boosting gas turbine engine performance
US8992838B1 (en) * 2011-02-02 2015-03-31 EcoVapor Recovery Systems, LLC Hydrocarbon vapor recovery system
DE102011052282A1 (de) * 2011-07-29 2013-01-31 Claas Selbstfahrende Erntemaschinen Gmbh Reinigungssensor zur Steuerung der Erntegut- und Gebläsedruckverteilung
US20140082108A1 (en) * 2012-09-14 2014-03-20 Vadim Savvateev Digital club networks

Also Published As

Publication number Publication date
FR2958911B1 (fr) 2012-04-27
US9540974B2 (en) 2017-01-10
FR2958911A1 (fr) 2011-10-21
CN102859133A (zh) 2013-01-02
CA2796739C (fr) 2017-10-17
BR112012026634A2 (pt) 2016-07-12
CN102859133B (zh) 2015-07-01
BR112012026634B1 (pt) 2020-12-22
CA2796739A1 (fr) 2011-10-27
EP2561193A1 (de) 2013-02-27
RU2557838C2 (ru) 2015-07-27
RU2012148901A (ru) 2014-05-27
WO2011131892A1 (fr) 2011-10-27
US20130218399A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
EP2561193B1 (de) Verfahren und system zur überwachung des ölstandes in einem tank eines flugzeugmotors
CA2749214C (fr) Procede et systeme de surveillance de phenomenes vibratoires survenant dans un moteur a turbine a gaz d'aeronef en fonctionnement
EP3039497B1 (de) Überwachung eines flugzeugmotors zur vorausplanung von wartungsoperationen
EP2591212B1 (de) Verfahren und vorrichtung zum erkennen einer umlaufenden strömungsablösung bei einem turbomaschinenverdichter
EP3732457B1 (de) Verfahren und vorrichtung zur überwachung eines lagers einer drehvorrichtung
EP2072762A1 (de) Methode zur Verbrauchskontrolle und Aufdeckung von Leckagen in einem System zur Schmierung einer Strömungsmaschine
EP2536921B1 (de) Verfahren und vorrichtung zur korrektur einer druckmessung eines gasstroms in einem flugzeugmotor
CA2870614C (fr) Turbomachine comportant un systeme de surveillance comprenant un module d'engagement d'une fonction de protection de la turbomachine et procede de surveillance
EP2072399B1 (de) Verfahren und System zur Kennzeichnung und Zählung von Überschreitungen eines Schwellwerts durch einen Funktionsparameter eines Flugzeugstriebwerks
EP2966526A1 (de) Verfahren und system zur zusammenführung von überwachungsindikatoren einer vorrichtung
EP3044435B1 (de) Verfahren zur überwachung eines verkokungsgrades bei abdichtungen durch eine gasgeneratorwelle
EP3938910B1 (de) Fehlerlokalisierung innerhalb eines redondanten erfassungssystems
FR2768509A1 (fr) Procede de determination des vibrations du rotor d'une machine tournante, equipement pour machine tournante et machine tournante equipee
EP2034409A1 (de) Verfahren zur Verwaltung von Störungen und Ausfällen mit Speicherung dieser Ausfälle für ein Kraftfahrzeug
FR3035919A1 (fr) Procede et dispositif de surveillance d'une consommation d'huile contenue dans un reservoir d'un moteur d'aeronef
WO2022101092A1 (fr) Dispositif de calcul d'usure d'un balai d'essuyage
EP3785000B1 (de) Verfahren und system zur verarbeitung eines von einem sensor gelieferten temperaturmesssignals
EP3044445B1 (de) Überwachung eines verkokungsgrades bei dynamischen dichtungen durch einen anlasser
FR3003986A1 (fr) Procede de detection et de prise en compte d'un changement abrupt d'au moins un indicateur de surveillance d'un dispositif.
EP3947920B1 (de) Verfahren und system zur überwachung eines systems zur betätigung eines bauteils einer turbomaschine
EP2541505B1 (de) Verfahren zur Überwachung eines Luftfahrzeugs durch Schwingungserfassung
EP3729003B1 (de) Detektion und unterbringung von intermittierenden offenen schaltungen an einem motorsensor eines flugzeugturbinentriebwerks
EP4281743A1 (de) Verfahren zur zustandsüberwachung von mechanischen komponenten auf einer wellenleitung, zugehörige überwachungsvorrichtung und system
FR2993608A1 (fr) Methode de surveillance du colmatage d'un filtre sur turbomachine
FR3133647A1 (fr) Procédé de surveillance de la qualité d’huile contenue dans un circuit d’huile d’un moteur d’aéronef, dispositif de surveillance associé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 752551

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011020478

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151230

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151231

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 752551

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011020478

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

26N No opposition filed

Effective date: 20160701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160414

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160414

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240321

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240320

Year of fee payment: 14

Ref country code: IT

Payment date: 20240320

Year of fee payment: 14

Ref country code: FR

Payment date: 20240320

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 14