RU2557838C2 - Способ и система для контроля уровня масла, содержащегося в баке двигателя летательного аппарата - Google Patents

Способ и система для контроля уровня масла, содержащегося в баке двигателя летательного аппарата Download PDF

Info

Publication number
RU2557838C2
RU2557838C2 RU2012148901/06A RU2012148901A RU2557838C2 RU 2557838 C2 RU2557838 C2 RU 2557838C2 RU 2012148901/06 A RU2012148901/06 A RU 2012148901/06A RU 2012148901 A RU2012148901 A RU 2012148901A RU 2557838 C2 RU2557838 C2 RU 2557838C2
Authority
RU
Russia
Prior art keywords
measurements
oil
aircraft
engine
oil level
Prior art date
Application number
RU2012148901/06A
Other languages
English (en)
Other versions
RU2012148901A (ru
Inventor
Франсуа ДЕМЕЗОН
Ксавье ФЛАНДРУА
Жан-Реми МАСС
Жилль МАССО
Жюльен РИКОРДО
Уадир МАД
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2012148901A publication Critical patent/RU2012148901A/ru
Application granted granted Critical
Publication of RU2557838C2 publication Critical patent/RU2557838C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M11/12Indicating devices; Other safety devices concerning lubricant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Способ предназначен для контроля уровня масла, содержащегося в баке двигателя летательного аппарата, и согласно изобретению содержит этапы, на которых:
- для, по меньшей мере, двух заранее определенных фаз работы двигателя, в течение, по меньшей мере, одного полета летательного аппарата:
получают множество измерений уровня масла в баке, причем каждое измерение связано с температурой масла и с оборотами двигателя; и
выбирают измерения, представляющие изменения уровня масла и связанные с температурами масла, которые близки к опорной температуре, и с оборотами двигателя, которые близки к опорным оборотам;
- объединяют (F40) измерения, выбранные по фазам работы в течение упомянутого, по меньшей мере, одного полета летательного аппарата; и
- сравнивают (F60) объединенные измерения с опорными данными для идентификации (F70) аномального расхода масла двигателя. Технический результат изобретения - повышение достоверности оценки расхода масла двигателем. 2 н. и 11 з.п. ф-лы, 4 ил.

Description

УРОВЕНЬ ТЕХНИКИ
Настоящее изобретение относится, в целом, к области авиации.
В частности, оно относится к контролю расхода масла работающего авиационного двигателя, например турбинного двигателя.
Для оценивания расхода масла авиационного двигателя известен подход подсчета количества канистр масла, заливаемых в бак двигателя в ходе планового обслуживания двигателя (например, между последовательными полетами). Количество масла, соответствующее количеству канистр, заливаемых при каждой заправке, регистрируется в листе, и скользящее среднее вычисляется по множеству заправок для получения оценки среднего расхода масла двигателя. Затем оценка сравнивается с заранее определенным опорным порогом для выявления аномального расхода масла двигателем.
Этот подход осуществляется в большинстве авиакомпаний вручную. Кроме того, он не учитывает разность между уровнями масла в баке между началом и окончанием периода, по которому вычисляется среднее, и это может приводить к погрешностям в оценке расхода масла.
Второй подход, который применяют авиакомпании на определенных компьютерах обслуживания, состоит в измерении уровня масла, содержащегося в баке, перед каждым взлетом и после каждой посадки летательного аппарата. Затем уровни масла, измеренные таким образом, сравниваются для оценивания расхода масла за полет летательного аппарата.
Таким образом, можно понять, что для получения достоверной оценки расхода масла двигателя этот подход требует использования достаточно точных датчиков уровня масла. Кроме того, этот подход не учитывает количество масла, которое циркулирует вне бака, причем это количество может изменяться в зависимости от различных параметров (вязкости масла, оборотов двигателя и т.д.).
ЗАДАЧА И СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение предлагает альтернативу вышеупомянутым подходам, что позволяет получить достоверную оценку расхода масла двигателем.
В частности, изобретение предусматривает способ контроля уровня масла, содержащегося в баке авиационного двигателя, причем способ содержит этапы, на которых:
- для, по меньшей мере, двух заранее определенных фаз работы двигателя, в течение, по меньшей мере, одного полета летательного аппарата:
получают множество измерений уровня масла в баке, причем каждое измерение связано с температурой масла и с оборотами двигателя; и
выбирают измерения, представляющие изменения уровня масла и связанные с температурами масла, которые близки к опорной температуре, и с оборотами двигателя, которые близки к опорным оборотам;
- объединяют измерения, выбранные по фазам работы и в течение упомянутого, по меньшей мере, одного полета летательного аппарата; и
- сравнивают объединенные измерения с опорными данными для идентификации аномального расхода масла двигателя.
Соответственно, изобретение также предусматривает систему контроля для контроля уровня масла, содержащегося в баке авиационного двигателя, причем система содержит:
- средства, которые активируются для, по меньшей мере, двух заранее определенных фаз работы двигателя в течение, по меньшей мере, одного полета летательного аппарата:
для получения множества измерений уровня масла в баке, причем каждое измерение связано с температурой масла и с оборотами двигателя; и
для выбора измерений, представляющих изменения уровня масла, причем измерения связаны с температурами масла, близкими к опорной температуре, и с оборотами двигателя, которые близки к опорным оборотам;
- средства для объединения измерений, выбранных по фазам работы и в течение упомянутого, по меньшей мере, одного полета летательного аппарата; и
- средства для сравнения объединенных измерений с опорными данными для идентификации аномального расхода масла двигателя.
Таким образом, изобретение учитывает уровень масла в баке для оценивания расхода масла двигателя, и это преимущественно осуществляется путем работы в условиях ISO (т.е. эквивалентных) - в отношении режима двигателя и температуры масла (т.е. в аналогичных условиях), чтобы сделать измеренные уровни масла взаимно сравнимыми.
При работе в условиях ISO в отношении оборотов и температуры гарантируется, что параметры, отличающиеся от уровня масла в баке и оказывающие влияние на реальный расход масла двигателем (например, количество масла, находящегося вне масляного бака, известное как "избыточная подача", или расширение/сжатие масла), оказывают аналогичное влияние на расход масла. В результате, целесообразно исключить оценивание этих параметров для получения достоверной оценки расхода масла двигателем: можно оценивать расход масла двигателя на основании разностей между уровнями масла (т.е. путем сравнения уровней масла непосредственно друг с другом).
Таким образом, нет необходимости прибегать к сложным моделям, например модели избыточной подачи или модели удержания масла в картерах, в целях регулировки уровней масла до их сравнения с опорными данными. Измерения, объединенные в соответствии с изобретением, являются согласованными и взаимно сравнимыми, что облегчает оценивание расхода масла двигателя.
Кроме того, изобретение основано на измерениях, собранных на, по меньшей мере, двух фазах работы в течение полета летательного аппарата. Предпочтительно эти фазы работы соответствуют фазе руления в смысле, предусмотренном данным изобретением (эта фаза руления охватывает как фазу руления перед взлетом, так и фазу руления после посадки), и крейсерской фазе в течение полета летательного аппарата.
В результате, оценка расхода масла двигателя не ограничивается только двумя измерениями, произведенными перед взлетом и после посадки летательного аппарата, но также предусматривает использование измерений уровня масла, произведенных на других фазах работы летательного аппарата, и, возможно, по множеству полетов летательного аппарата.
Это способствует повышению точности оценивания расхода масла двигателя и позволяет выявлять не только аномальный расход масла, который имеет место в течение короткого промежутка времени, но и аномальный расход масла, который имеет место в течение длительного времени. Таким образом, изобретение можно применять к контролю тенденций при осуществлении контроля расхода масла двигателя.
Кроме того, изобретение позволяет автоматизировать контроль уровня масла и требует минимального вмешательства человека или вовсе не требует его. Это позволяет свести погрешности к минимуму.
Следует понимать, что изобретение обеспечивает особые преимущества, когда датчики, используемые для измерения уровня масла в баке, являются датчиками, имеющими дискретное разрешение.
В конкретной реализации изобретения, при выборе измерений, измерения, представляющие изменения уровня масла, полученные в течение времени, более короткого, чем заранее определенная предельная длительность, исключаются.
Это устраняет изменения в уровнях масла, которые являются нормальными, вследствие конкретных событий, происходящих на фазе работы, например, поворота или торможения летательного аппарата, которые приводят к единомоментному и мгновенному повышению или снижению уровня масла в баке.
Кроме того, при выборе измерений можно также исключить измерения уровня масла, превышающего заранее определенный предельный уровень масла, или представляющие изменения уровня масла, превышающие заранее определенное предельное изменение.
В результате, измерения, соответствующие уровням масла, которые отклоняются от нормы, исключаются, например измерение, превышающее максимальную емкость бака, и т.д.
В конкретной реализации изобретения объединение измерений включает в себя обнаружение, по меньшей мере, одной заправки бака между двумя последовательными полетами летательного аппарата.
Таким образом, можно учитывать заправку масляного бака между двумя последовательными полетами летательного аппарата, когда это может оказывать влияние на уровень масла, и могут приводить к различиям уровня, которые нельзя отнести к какой-либо аномалии в расходе масла.
Кроме того, объединение измерений также может включать в себя корректировку, по меньшей мере, одного измерения уровня масла в зависимости от разности, которая существует между температурой масла, связанной с этим измерением, и опорной температурой.
Это позволяет учитывать малые разности температуры, которые существуют между уровнями масла, измеренными на различных фазах работы, которые принимаются во внимание, или измеренными в рамках одной фазы работы.
Эта коррекция позволяет несколько смягчить ограничения в отношении температур, близких к опорной температуре. Понятие температур "близких к опорной температуре" может охватывать более значительные температурные отклонения, например до 40°C.
В конкретной реализации объединение измерений включает в себя применение линейной регрессии к выбранным измерениям.
Регрессия служит для сглаживания кривой измерений таким образом, чтобы она была нечувствительна к погрешностям или разностям, которые могут возникать, например, между полетами или между разными фазами работы.
Кроме того, можно для получения среднего расхода масла двигателя, задаваемого наклоном прямой, полученной путем осуществления регрессии. Это осуществляется по более или менее длительному периоду (и, таким образом, по большему или меньшему количеству измерений) в зависимости от типа отслеживания расхода, который желательно осуществлять.
В конкретной реализации, объединенные измерения сравниваются с заранее определенным порогом, представляющим аномальный расход масла двигателем.
Таким образом, можно выявлять единомоментную аномалию в расходе масла.
Согласно варианту измерения объединяются по множеству полетов летательного аппарата, и объединенные измерения сравниваются с опорной кривой (например, прямой), представляющей нормальный расход масла для двигателя.
Это позволяет выявлять аномалии, проявляющиеся в течение долгого времени, например, после нескольких полетов летательного аппарата.
В конкретной реализации способ контроля, отвечающий изобретению, предусматривает, что:
- измерения получаются и выбираются в течение полета летательного аппарата; и
- измерения объединяются и сравниваются наземным устройством, на которое были отправлены выбранные измерения.
Соответственно, в этой конкретной реализации, в системе контроля согласно изобретению:
- средства для получения множества измерений и для выбора измерений, представляющих изменения уровня масла, находятся на борту летательного аппарата; и
- средства для объединения выбранных измерений и для сравнения объединенных измерений с опорными данными встроены в наземное устройство;
летательный аппарат дополнительно включает в себя средства для отправки выбранных измерений на наземное устройство.
Это пропорциональное распределение служит для ускорения обработки измерений на земле и для ограничения количества измерений, передаваемых в течение полета летательным аппаратом.
В других реализациях можно также предусмотреть, что способ и система контроля согласно изобретению представляют все или некоторые из вышеуказанных характеристик в комбинации.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Другие характеристики и преимущества настоящего изобретения явствуют из нижеследующего описания, приведенного со ссылкой на прилагаемые чертежи, которые демонстрируют вариант осуществления, не носящий ограничительного характера. На фигурах:
фиг. 1 - схематическое представление частного варианта осуществления системы контроля в соответствии с изобретением в ее окружении;
фиг. 2 и 3 - блок-схемы операций, демонстрирующие основные этапы способа контроля согласно изобретению, в частной реализации, где он осуществляется системой, показанной на фиг. 1; и
фиг. 4 - пример контроля уровня масла согласно изобретению путем проведения сравнения с опорной прямой.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТА ОСУЩЕСТВЛЕНИЯ
На фиг. 1 показана, в ее окружении, система 1 для контроля уровня масла, содержащегося в баке работающего авиационного двигателя (не показан), в соответствии с частным вариантом осуществления изобретения.
В порядке примера, авиационный двигатель представляет собой турбореактивный двигатель. Тем не менее, следует понимать, что изобретение применимо к другим авиационным двигателям и, в частности, к другим турбинным двигателям, например турбовинтовому двигателю и т.д.
В описанном здесь варианте осуществления средства, реализованные системой 1 контроля распределены между двумя объектами, а именно, летательным аппаратом 2, который приводится в движение двигателем, и наземным устройством 3, например, находящимся в распоряжении авиакомпании, эксплуатирующей летательный аппарат 2.
Это предположение, тем не менее, не является ограничительным, и система 1 контроля может располагаться только на борту летательного аппарата 2 или быть целиком установленной в наземном устройстве 3.
В соответствии с изобретением система 1 контроля пригодна для контроля уровня масла, содержащегося в баке 21 турбореактивного двигателя летательного аппарата 2.
Этот уровень масла известным образом измеряется резистивным датчиком 22, который имеет дискретное разрешение. Такой датчик доставляет дискретное измерение с заранее заданным разрешением (например, 0,25 кварты (qt) или 0,27 литра (л)). Другими словами, при условии, что уровень масла, измеренный датчиком 22, не изменяется, по меньшей мере, на величину, равную разрешению датчика, дискретное измерение, доставляемое датчиком, остается идентичным. Таким образом, абсолютная мера уровня масла, содержащегося в баке 21, в точности неизвестна, и всякий раз, когда датчик регистрирует изменение уровня масла, это изменение не меньше разрешения датчика.
Тем не менее, следует отметить, что изобретение применимо к датчикам уровня масла других типов, разрешение которых может быть непрерывным или дискретным.
Летательный аппарат 2 также снабжен вычислителем 23, имеющим средства для обработки измерений, произведенных датчиком 22 в соответствии с изобретением. Эти средства описаны ниже со ссылкой на фиг. 2.
Измерения, обрабатываемые вычислителем 23, отправляются на наземное устройство 3 средствами 24 связи летательного аппарата 2. В этом примере эти средства 24 включают в себя, в частности, адресно-отчетную систему авиационной связи (ACARS) авиакомпании, пригодную для связи с использованием стандарта ARINC по линии связи 4 с наземным устройством 3. Такое средство известно специалистам в данной области техники, и его дополнительное описание здесь не приведено.
Наземное устройство 3 в этом примере представляет аппаратную архитектуру вычислителя. В частности, оно содержит средства 21 связи, включающие в себя блок ACARS, пригодный для приема и декодирования сообщений, отправляемых летательным аппаратом 2, процессор 32, оперативную память (ОЗУ) 33, постоянное запоминающее устройство (ПЗУ) 34 и энергонезависимую память 35.
ПЗУ 34 образует носитель записи, считываемый процессором 32, на котором записана компьютерная программа, включающая в себя инструкции для выполнения определенных этапов способа контроля согласно изобретению, описанных ниже со ссылкой на фиг. 3.
Далее, со ссылкой на фиг. 2 и 3 приведено описание основных этапов способа контроля согласно изобретению в частной реализации, где этапы реализуются системой 1, показанной на фиг. 1 для контроля уровня масла, содержащегося в баке 21 турбореактивного двигателя летательного аппарата 2.
Как упомянуто выше, в описанной здесь реализации, определенные этапы способа контроля реализуются на борту летательного аппарата 2, тогда как другие этапы реализуются наземным устройством 3.
Этапы, реализуемые на борту летательного аппарата 2, соответствуют, в частности, получению измерений уровня масла, содержащегося в баке 21 и выделению соответствующих измерений, для обеспечения возможности отслеживать расход масла турбореактивного двигателя. Эти этапы описаны со ссылкой на фиг. 2.
Этапы, реализуемые наземным устройством 3, описаны ниже со ссылкой на фиг. 3.
Согласно фиг. 2, в течение полета летательного аппарата 2, датчик 22 периодически производит измерения уровня масла, содержащегося в баке 21 турбореактивного двигателя (этап E10).
Эти измерения сохраняются в памяти вычислителя 23 (не показан) в связи как с температурой масла на момент измерения (температурой, измеренной известным датчиком температуры), так и с оборотами турбореактивного двигателя. В этом примере обороты турбореактивного двигателя представлены параметром N2, который указывает обороты вала компрессора высокого давления турбореактивного двигателя.
Согласно варианту обороты могут быть представлены другими рабочими параметрами турбореактивного двигателя, например параметром N1, который указывает обороты вала компрессора низкого давления турбореактивного двигателя.
В описанном здесь примере, поскольку датчик 22 является дискретным датчиком, следует понимать, что доставляемое им измерение может оставаться одинаковым в течение длительного периода (например, 1 час (ч)), если факторы, влияющие на уровень масла в баке, не будут изменяться. Термин "сегмент" используется здесь для обозначения набора последовательных измерений, идентичных друг другу, доставляемых датчиком 22. Таким образом, для ограничения объема памяти, необходимого для хранения измерений, доставляемых датчиком, достаточно, для каждого сегмента, сохранять значение уровня масла, измеренного датчиком 22 для этого сегмента, начало сегмента и его длительность, минимальную и максимальную температуры масла, достигаемые на протяжении этого сегмента, и соответствующие значения оборотов.
Согласно варианту можно сохранять все измерения, произведенные датчиком 22.
Параллельно с получением измерений уровня масла, оборотов и температуры масла релевантные измерения выделяются в соответствии с изобретением. Это выделение осуществляется постепенно в течение полета летательного аппарата, во-первых, для оптимизации времени, необходимого для обработки измерений и, во-вторых, для ограничения количества сохраняемых измерений.
Это выделение состоит в фильтрации измерений для выбора только релевантных измерений, что позволяет оценивать расход масла турбореактивного двигателя и выявлять расход, который является аномальным.
С этой целью также преимущественно ограничивать объем данных, отправляемых на наземное устройство 3 по линии связи 4 ACARS.
Обработка для выделения релевантных измерений может отличаться в зависимости от фазы полета, в течение которого производятся измерения, начиная с этапа идентификации фазы полета, применимой к летательному аппарату (например, двигатель остановлен, запуск, руление перед взлетом, взлет, набор высоты, крейсерский полет, снижение, руление после посадки, остановка двигателя и т.д.) (этап E20).
Фазы полета можно идентифицировать в зависимости от оборотов турбореактивного двигателя и, в частности, в зависимости от вышеупомянутых параметров N1 и/или N2, и также как функцию предыдущей фазы полета. Кроме того, для отслеживания характеристики оборотов двигателя можно использовать механизм программируемых состояний.
В описанной здесь реализации только те измерения уровня масла, которые производятся на фазе руления (перед взлетом и после посадки) или на крейсерской фазе, используются для оценивания расхода масла турбореактивного двигателя (этап E30).
Другие измерения не считаются релевантными (этап E40).
Далее описана обработка, предусмотренная для выделения релевантных измерений, произведенных на фазе руления. Эта обработка является результатом наблюдений, сделанных авторами настоящего изобретения при анализе необработанных данных, собранных в ходе реальных полетов самолета.
Таким образом, было установлено, в частности, что при рулении обороты турбореактивного двигателя (представленные здесь параметром N2) составляют около 60% его максимальных оборотов, и представляет более высокие пики, когда пилот летательного аппарата выполняет ускорение. При пиковых значениях параметра N2 уровень масла в баке 21 немного падает после ускорения, прежде чем вернуться к своему уровню до ускорения, спустя несколько секунд после возвращения к нормальным оборотам. Измерения, произведенные при пиковых значениях параметра N2, таким образом, не представляют реальный расход масла турбореактивного двигателя.
Для исключения измерений уровня масла, соответствующих фазе, в течение которой летательный аппарат ускоряется, задается и записывается опорное значение N2Ref оборотов турбореактивного двигателя, и эти обороты соответствуют оборотам, которые чаще всего имеют место в течение полета летательного аппарата. Например, величина N2Ref принимается равной около 60% максимальных оборотов турбореактивного двигателя.
Затем из измерений, доставляемых датчиком 22, идентифицируются измерения, представляющие изменение уровня масла и связанные с параметром N2, близкие к опорному значению оборотов N2Ref (этап E50). Это необходимо для исключения всех сегментов, которые соответствуют высоким пикам параметра N2 и которые не являются релевантными для отслеживания расхода масла турбореактивного двигателя. Это приводит к работе в условиях ISO в отношении оборотов турбореактивного двигателя.
Другая обработка, применяемая к измерениям, произведенным датчиком 22 при рулении, состоит в исключении измерений, которые отклоняются от нормы, т.е. измерений, которые, собственно говоря, не соответствуют физической реальности, но происходят из погрешностей измерений (этап E60). С этой целью исключенные измерения включают в себя, в частности, измерения уровня масла, превышающего заранее определенный предельный уровень масла (например, емкость бака 21), и измерения, представляющие изменения уровня масла, превышающие заранее определенное предельное изменение (например, в два или три раза превышающие разрешение датчика, поскольку, при рулении, изменения уровня масла, в общем случае, равны разрешению датчика).
Наконец, на этапе E60, также исключаются измерения, которые соответствуют сегментам малой длительности, т.е. меньшей заранее определенной предельной длительности. Целью этой обработки является исключение изменений уровня масла, обусловленных тем, что пилот совершает маневр, в котором летательный аппарат поворачивает, или внезапно применяет тормоза: такие события приводят к увеличению или снижению скорости двигателя относительно земли, в результате чего поверхность масла в баке мгновенно наклоняется.
Таким образом, в конце этапа E60, сохраняются только те измерения, которые соответствуют изменениям уровня масла, которые обусловлены изменениями температуры.
Для работы в условиях ISO в отношении температуры затем выбираются измерения, которые связаны с температурой масла, близкой к заранее определенной опорной температуре TRef (этап E70).
В качестве опорной температуры TRef предпочтительно выбирать температуру, которой обычно достигает масло, содержащееся в баке 21, например 100°C.
Различные критерии можно применять для оценивания, является ли температура масла «близкой» к опорной температуре TRef. Например, можно гарантировать, что температура, связанная с измерением, находится в диапазоне [TRef-α; TRef+β], который задается вокруг опорной температуры TRef, где α и β обозначают положительные или равные нулю действительные числа, которые зависят, в частности, от температуры TRef (TRef=100°C и α=β=4°C).
Следует отметить, что можно предусмотреть использование более высоких значений для α и β при условии, что осуществляется коррекция уровня масла, как подробно описано ниже, причем коррекция осуществляется при обработке наземным устройством 3.
В описанном здесь примере, где сохраняются сегменты, соответствующие идентичным измерениям уровня масла, предпочтительно, на этапе E70, выбирать сегменты, для которых соответствующие минимальная и максимальная температуры располагаются по обе стороны от опорной температуры. Согласно варианту можно также выбирать сегменты, в которых минимальная и максимальная температуры сравнительно близки к опорной температуре, т.е. в пределах заранее определенного положительного или отрицательного отклонения порядка нескольких градусов Цельсия.
Естественно, можно предусмотреть другую обработку с целью сокращения количества измерений, отправляемых на наземное устройство 3, необходимо достичь компромисса между релевантностью отправляемых измерений, количеством измерений, необходимым для достоверного оценивания расхода масла, и объемом информации, передаваемой на наземное устройство 3.
Затем измерения уровня масла, выбранные на этапе E70, передаются на средства 31 связи наземного устройства 3 средствами 24 связи летательного аппарата 2, по линии связи 4 ACARS (этап E80).
С этой целью измерения уровня масла (т.е., в этом примере, выбранные сегменты) кодируются, например, в виде сообщений, согласующихся со стандартом ARINC, известных специалисту в данной области техники. Каждое измерение связывается в сообщении с соответствующей температурой масла и с фазой полета, в течение которой она была измерена (в этом примере, фазой руления или крейсерской фазой). Согласно варианту для кодирования сообщений можно использовать стандарты, отличные от стандарта ARINC.
В описанной здесь реализации предусмотрено использование обработки для выделения релевантных измерений, произведенных на крейсерской фазе, которая аналогична обработке, предусмотренной для использования на фазе руления, таким образом, этапы E50-E80 также осуществляются для измерений, доставляемых датчиком 22 на крейсерской фазе. Тем не менее, следует отметить, что поскольку крейсерская фаза является фазой сравнительно стабильной в отношении оборотов турбореактивного двигателя, такая обработка сводится, по существу, к исключению измерений, которые соответствуют кратковременным изменениям, и к выбору измерений, связанных с температурами, близкими к опорной температуре.
Согласно варианту можно предусмотреть другую обработку, специфичную для крейсерской фазы, например получение статистических характеристик (например, среднее значение, среднеквадратического отклонения, минимального и максимального значений) оборотов для каждого сегмента, или корректировку уровня масла в зависимости от температуры относительно опорной температуры.
Этапы E10-E80 повторяются в течение каждого полета летательного аппарата.
Далее, со ссылкой на фиг. 3, следует описание этапов способа контроля, реализуемых наземным устройством 3.
Как упомянуто выше, эти этапы состоят, по существу, в объединении измерений, отправляемых летательным аппаратом 2 в течение одного или более полетов, и в определении расхода масла турбореактивного двигателя в зависимости от объединенных, таким образом, измерений, в частности для выявления расхода, который является аномальным.
Термин "объединение" используется здесь в смысле комбинирования измерений таким образом, чтобы сформировать единый согласованный набор точек (например, кривую), представляющий реальное изменение уровня масла в баке во время полетов.
Таким образом, измерения, полученные в полете на фазах руления перед взлетом и после посадки, и измерения, произведенные на крейсерской фазе, хронологически упорядочиваются.
Напротив, способы объединения измерений, полученных во время разных полетов летательного аппарата, могут отличаться в зависимости от желаемого типа отслеживания (например, с усреднением по нескольким полетам, проводимые ежедневно, еженедельно, ежемесячно и т.д.). Таким образом, объединение может состоять, в частности, в усреднении измерений, произведенных в течение одного полета для получения среднего уровня масла для этого полета, или в расположении измерений, полученных в течение разных полетов в хронологическом порядке для оценивания изменения уровня масла в течение нескольких последовательных полетов летательного аппарата.
В описанной здесь реализации желательно оценивать изменение уровня масла по нескольким последовательным полетам летательного аппарата. Количество полетов, объединяемых в целях отслеживания, изменяется в зависимости от предполагаемого режима отслеживания, т.е. в зависимости от того, осуществляется ли отслеживание ежедневно, еженедельно, ежемесячно и т.д. Чем больше рассматриваемое количество полетов, тем выше точность диагностики, осуществляемой на основе анализа изменения уровня масла, что, в частности, позволяет идентифицировать медленные явления, приводящие к аномальному повышению расхода масла двигателя. Напротив, отслеживание, осуществляемое по малому количеству полетов, позволяет выявить быстротекущие явления.
Для объединения измерений из множества полетов летательного аппарата процедура осуществляется в две фазы:
- для каждого полета объединение измерений, выбранных на фазах руления (перед взлетом и после посадки) и на крейсерской фазе, принятых средством 31 связи наземного устройства 3 (этапы F10 и F30); и
- объединение по множеству полетов.
В частности, для каждого полета летательного аппарата, после приема измерений, выбранных для фазы руления (этап F10), первоначально производится определение, нужно ли корректировать какие-либо измерения вследствие разности между температурами масла, связанными с измерениями, и опорной температурой (этап F20).
Как упомянуто выше, на этапе E70 можно принимать отклонения большей или меньшей величины относительно опорной температуры TRef. В частности, можно предусмотреть большие отклонения (например, порядка 30°C), когда ни одна из температур, связанных с измерениями, произведенными датчиком 22, не равна или не равна приблизительно опорной температуре.
Естественно, приемлемое отклонение температуры задается заранее и зависит от коррекции, которую может осуществлять наземное устройство 3. В этом примере эта коррекция осуществляется на основании простой модели, определенной эмпирически, которая связывает отклонение ΔT температуры от опорной температуры TRef с отклонением ΔQ уровня масла. Например:
ΔQ=0,0341417×ΔT.
Естественно, можно предусмотреть другие модели.
Наземное устройство 3 корректирует нужные измерения, прибавляя к ним отклонение ΔQ, которое определяется с использованием модели, в зависимости от отклонения температуры ΔT, причем измерения присутствуют относительно опорной температуры.
Произведя эту коррекцию, наземное устройство 3 действует для нужного полета для размещения выбранных измерений (возможно, после коррекции), относящихся к фазам руления, и выбранных измерений, относящихся к крейсерской фазе, в хронологическом порядке (этап F40). Это позволяет получить изменение уровня масла в баке 21 для каждого полета летательного аппарата.
Согласно варианту реализации линейная регрессия также применяется к упорядоченным таким образом измерениям для сглаживания результирующей кривой.
Затем измерения в хронологическом порядке для каждого полета объединяются для множества полетов летательного аппарата (этап F40), т.е., в этом примере, они классифицируются в порядке последовательных полетов летательного аппарата.
В зависимости от рассматриваемого количества полетов, при объединении измерений, результирующая кривая может представить "ступенчатые изменения", т.е. резкие изменения уровня масла между двумя последовательными полетами летательного аппарата. Эти ступенчатые изменения соответствуют, по существу, заправке бака 21 между двумя последовательными полетами летательного аппарата.
Для обеспечения правильного анализа расхода масла двигателя наземное устройство 3 выявляет события заправки бака 21 (этап F50). С этой целью оно сравнивает изменения уровня масла, происходящие на стыке между двумя последовательными полетами летательного аппарата, с заранее определенным порогом для выявления резких изменений.
Кроме того, в этом примере, наземное устройство 3 компенсирует такие операции заправки для исключения их влияния на изменение уровня масла. Эта компенсация осуществляется путем вычитания количества масла, добавленного при заправке бака. Это позволяет "выровнять" измерения, объединенные на различных фазах и в различных полетах летательного аппарата.
В итоге этой компенсации получается набор C объединенных измерений, представляющих изменение уровня масла (без учета дозаправки бака), охватывающий множество последовательных полетов летательного аппарата. Пример такого набора показан в виде последовательности точек на фиг. 4 (набора точек C).
Линейная регрессия, применяемая к точкам в наборе C, дает средний расход масла турбореактивного двигателя по рассматриваемым полетам. Этот средний расход задается наклоном прямой CRef, полученной с помощью линейной регрессии (показанной на фиг. 4). Остаточные члены регрессии и количество точек позволяют определить величину значения расхода, оцененного таким образом.
Затем этот средний расход можно сравнивать с одним или более опорными порогами, например, соответствующими, соответственно, минимальному расходу масла и максимальному расходу масла, приемлемым для двигателя. Такие пороги обеспечивает производитель двигателей.
В описанном здесь примере набор точек C также сравнивается с прямой CRef (этап F60). Это сравнение позволяет выявить нарушение непрерывности в выравнивании точек в наборе C относительно среднего расхода двигателя, причем такое нарушение непрерывности часто является признаком аномалии в расходе масла.
Прямая CRef образует опорную кривую в смысле, предусмотренном изобретением, которая представляет нормальное изменение расхода масла двигателя. Вообще говоря, расход масла двигателя изменяется мало. Таким образом, отклонение от прямой CRef свидетельствует об аномальном расходе масла двигателем (этап F70).
В порядке примера, ступенчатое изменение 5, показанное на фиг. 4, идентифицируется согласно изобретению как представляющее расход, который является аномальным. Более тщательное исследование можно использовать для определения, имеет ли место реальная аномалия в расходе масла двигателем или ошибка измерения, если отклонение от опорной кривой не подтверждается со временем.
Согласно варианту другие опорные данные можно сравнивать с кривой объединенных измерений в зависимости от типов аномалии, которые желательно выявить. Например, прямую CRef, полученную посредством линейной регрессии на точках набора C, можно сравнивать с прямой, полученной посредством линейной регрессии на измерениях, объединенных в течение предыдущих полетов. Тогда нарушение непрерывности в наклоне этих прямых будет признаком аномалии в расходе масла.
Кроме того, в описанной здесь реализации объединение измерений по нескольким полетам летательного аппарата состоит в классификации выбранных измерений для различных полетов в хронологическом порядке.
Согласно варианту отслеживание может состоять в оценивании среднего уровня масла в баке 21 (среднее берется по нескольким полетам летательного аппарата). Затем линейная регрессия может применяться к объединенным измерениям для оценивания расхода масла двигателем на протяжении полета. Остаточные члены регрессии и количество точек можно использовать для определения величины полученного таким образом значения расхода.
В другом варианте можно сравнивать средний уровень масла на протяжении полета с опорными порогами, представляющими нормальный уровень масла в баке 21 и т.д.
Можно также преимущественно улучшать диагностику путем сравнения отслеживания расхода по множеству двигателей на данном летательном аппарате. Таким образом, в порядке примера, если все двигатели демонстрируют изменение расхода одного и того же порядка величины, это можно объяснить условиями полета, тогда как, если изменение наблюдается только на одном двигателе, это можно расценивать как признак аномалии в его расходе масла.
Кроме того, в описанной здесь реализации аномальный расход масла выявляется путем сравнения изменения уровня масла по нескольким последовательным полетам летательного аппарата с опорной кривой. Согласно варианту можно оценивать расход масла на основании разности между двумя последовательными объединенными измерениями, полученными из измерений уровня масла, для сравнения расхода масла непосредственно с опорным расходом масла.

Claims (13)

1. Способ контроля уровня масла, содержащегося в баке (21) двигателя летательного аппарата, причем способ содержит этапы, на которых
- для, по меньшей мере, двух заранее определенных фаз работы двигателя, в течение, по меньшей мере, одного полета летательного аппарата
- получают (Е10) множество измерений уровня масла в баке, причем каждое измерение связано с температурой масла и с оборотами двигателя, и
- выбирают (Е50-Е70) измерения, представляющие изменения уровня масла и связанные с температурами масла, которые близки к опорной температуре, и с оборотами двигателя, которые близки к опорным оборотам,
- объединяют (F40) измерения, выбранные по фазам работы и в течение упомянутого, по меньшей мере, одного полета летательного аппарата, и
- сравнивают (F60) объединенные измерения с опорными данными для идентификации (F70) аномального расхода масла двигателя.
2. Способ контроля по п.1, в котором две заранее определенные фазы работы двигателя соответствуют фазе руления и крейсерской фазе в полете летательного аппарата (Е30).
3. Способ контроля по п.1, в котором, при выборе измерений, измерения, представляющие изменения уровня масла, полученные в течение времени, более короткого, чем заранее определенная предельная длительность, исключают (Е60).
4. Способ контроля по п.1, в котором, при выборе измерений, измерения уровня масла, превышающего заранее определенный предельный уровень масла, исключают (Е60).
5. Способ контроля по п.1, в котором, при выборе измерений, измерения, представляющие изменения уровня масла, превышающие заранее определенное предельное изменение, исключают (Е60).
6. Способ контроля по п.1, в котором объединение измерений включает в себя обнаружение (F50), по меньшей мере, одной заправки бака между двумя последовательными полетами летательного аппарата.
7. Способ контроля по п.1, в котором объединение измерений включает в себя корректировку (F30), по меньшей мере, одного измерения уровня масла в зависимости от разности, которая существует между температурой масла, связанной с измерением, и опорной температурой.
8. Способ контроля по п.1, в котором объединение измерений включает в себя применение линейной регрессии к измерениям.
9. Способ контроля по п.1, в котором объединенные измерения сравнивают с заранее определенным порогом, представляющим аномальный расход масла двигателем.
10. Способ контроля по п.1, в котором измерения объединяют (F40) по множеству полетов летательного аппарата, и объединенные измерения сравнивают (F60) с опорной кривой, представляющей нормальный расход масла двигателем.
11. Способ контроля по п.1, в котором
- измерения получают (Е10) и выбирают (Е30-Е50) в течение полета летательного аппарата (2), и
- измерения объединяют (F20-F50) и сравнивают (F60) посредством наземного устройства (3), на которое были отправлены выбранные измерения.
12. Система контроля (1) для контроля уровня масла, содержащегося в баке (21) авиационного двигателя, причем система содержит
- средства, которые активируются для, по меньшей мере, двух заранее определенных фаз работы двигателя в течение, по меньшей мере, одного полета летательного аппарата
- для получения множества измерений уровня масла в баке, причем каждое измерение связано с температурой масла и с оборотами двигателя, и
- для выбора измерений, представляющих изменения уровня масла, причем измерения связаны с температурами масла, близкими к опорной температуре, и с оборотами двигателя, которые близки к опорным оборотам,
- средства для объединения измерений, выбранных по фазам работы и в течение упомянутого, по меньшей мере, одного полета летательного аппарата, и
- средства для сравнения объединенных измерений с опорными данными для идентификации аномального расхода масла двигателя.
13. Система контроля по п.12, в которой
- средства для получения множества измерений и для выбора измерений, представляющих изменения уровня масла, находятся на борту летательного аппарата (2), и
- средства для объединения выбранных измерений и для сравнения объединенных измерений с опорными данными встроены в наземное устройство (3),
летательный аппарат дополнительно включает в себя средства для отправки выбранных измерений на наземное устройство.
RU2012148901/06A 2010-04-19 2011-04-14 Способ и система для контроля уровня масла, содержащегося в баке двигателя летательного аппарата RU2557838C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1052954 2010-04-19
FR1052954A FR2958911B1 (fr) 2010-04-19 2010-04-19 Procede et systeme de surveillance du niveau d'huile contenue dans un reservoir d'un moteur d'aeronef
PCT/FR2011/050854 WO2011131892A1 (fr) 2010-04-19 2011-04-14 Procede et systeme de surveillance du niveau d'huile contenue dans un reservoir d'un moteur d'aeronef

Publications (2)

Publication Number Publication Date
RU2012148901A RU2012148901A (ru) 2014-05-27
RU2557838C2 true RU2557838C2 (ru) 2015-07-27

Family

ID=42262256

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012148901/06A RU2557838C2 (ru) 2010-04-19 2011-04-14 Способ и система для контроля уровня масла, содержащегося в баке двигателя летательного аппарата

Country Status (8)

Country Link
US (1) US9540974B2 (ru)
EP (1) EP2561193B1 (ru)
CN (1) CN102859133B (ru)
BR (1) BR112012026634B1 (ru)
CA (1) CA2796739C (ru)
FR (1) FR2958911B1 (ru)
RU (1) RU2557838C2 (ru)
WO (1) WO2011131892A1 (ru)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746680B2 (en) 2006-11-16 2020-08-18 General Electric Company Sensing system and method
US10260388B2 (en) 2006-11-16 2019-04-16 General Electric Company Sensing system and method
EP2573338B1 (fr) * 2011-09-20 2017-07-19 Safran Aero Boosters SA Contrôle du sur-remplissage d'un système de lubrification d'un moteur d'aéronef
US8850876B2 (en) * 2012-07-19 2014-10-07 Honeywell International Inc. Methods and systems for monitoring engine oil temperature of an operating engine
FR2993608B1 (fr) * 2012-07-23 2018-07-06 Safran Aircraft Engines Methode de surveillance du colmatage d'un filtre sur turbomachine
CN104343490B (zh) * 2013-07-24 2017-10-03 中国国际航空股份有限公司 一种发动机滑油监控系统及方法
CN104343491B (zh) * 2013-07-24 2017-03-08 中国国际航空股份有限公司 一种发动机滑油添加探测系统及方法
CN104343492B (zh) * 2013-08-02 2017-02-15 上海杰之能软件科技有限公司 飞机及其发动机滑油监控方法及系统
FR3029258B1 (fr) * 2014-12-01 2017-01-13 Snecma Procede de surveillance d'une vanne de pressurisation de reservoir pour turbomachine
FR3030624B1 (fr) * 2014-12-18 2017-01-13 Snecma Procede et dispositif d'obtention d'une pression differentielle de reference d'un fluide traversant un filtre d'un moteur d'aeronef
FR3035919B1 (fr) * 2015-05-05 2017-05-26 Snecma Procede et dispositif de surveillance d'une consommation d'huile contenue dans un reservoir d'un moteur d'aeronef
BE1023406B1 (fr) * 2016-01-21 2017-03-09 Safran Aero Boosters S.A. Turbomachine d'aéronef
US11192660B2 (en) 2016-02-11 2021-12-07 Honeywell International Inc. Method and system for APU oil level indication
US10378692B2 (en) * 2016-02-11 2019-08-13 Honeywell International Inc. Method and system for APU oil level indication
WO2017151847A1 (en) * 2016-03-03 2017-09-08 General Electric Company Sensing system and method
EP3548718B1 (en) * 2016-11-30 2024-02-07 Westinghouse Air Brake Technologies Corporation Sensing system and method
FR3074573B1 (fr) * 2017-12-01 2021-01-22 Safran Aircraft Engines Procede de mesure par ultrasons
FR3079873B1 (fr) * 2018-04-04 2020-05-08 Safran Aircraft Engines Ensemble moteur pour aeronef presentant un chemin d'alimentation d'un reservoir de compartiment inter-veines d'une turbomachine
CN109240327B (zh) * 2018-09-11 2021-10-12 陕西千山航空电子有限责任公司 一种固定翼飞机飞行阶段识别方法
US11293313B2 (en) * 2018-09-19 2022-04-05 Saudi Arabian Oil Company Turbomachinery lubrication system improvement gravity rundown tanks
FR3093768B1 (fr) * 2019-03-13 2021-07-02 Safran Aircraft Engines Procédé et système de surveillance d’un état d’un réducteur d’une turbine à gaz
US11125603B2 (en) * 2019-05-10 2021-09-21 Pratt & Whitney Canada Corp. Fault detection system and method for liquid level sensing device
US11193810B2 (en) 2020-01-31 2021-12-07 Pratt & Whitney Canada Corp. Validation of fluid level sensors
JP7298531B2 (ja) * 2020-03-31 2023-06-27 いすゞ自動車株式会社 異常原因特定装置及び異常原因特定方法
CN111964748B (zh) * 2020-08-07 2023-05-09 四川泛华航空仪表电器有限公司 一种基于飞机油量传感器浸油高度的油量选择处理方法
EP3964703A1 (en) 2020-09-02 2022-03-09 Caterpillar Energy Solutions GmbH Engine lubrication oil consumption and condition monitoring
GB202015023D0 (en) 2020-09-23 2020-11-04 Rolls Royce Plc System and method for determining high oil consumption in gas turbine engine
FR3120917B1 (fr) * 2021-03-19 2023-03-24 Safran Aircraft Engines Surveillance d’une vanne anti fuite dans un turboréacteur
CN113756009A (zh) * 2021-10-25 2021-12-07 浙江理工大学 一种针织圆纬机用加油机油位数据控制方法及装置
US11959386B2 (en) * 2022-04-04 2024-04-16 Rtx Corporation Monitoring fluid consumption of gas turbine engine during an engine cycle
CN115218986B (zh) * 2022-09-07 2022-12-09 中航(成都)无人机系统股份有限公司 一种飞机油量计算方法、装置、设备及存储介质
FR3140946A1 (fr) * 2022-10-17 2024-04-19 Safran Aircraft Engines Procédé de détection d’un mode de fonctionnement d’une machine tournante, notamment pour un aéronef en cours de vol

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU665115A1 (ru) * 1976-07-05 1979-05-30 Предприятие П/Я А-7240 Устройство дл контрол падени давлени масла в газотурбинном двигателе
DE4118896A1 (de) * 1991-06-08 1992-12-10 Mahle Gmbh Vorrichtung zur ueberwachung bzw. anzeige
US5273134A (en) * 1991-01-11 1993-12-28 Dana Corporation Oil consumption measurement system for internal combustion engine
DE10044916A1 (de) * 2000-09-12 2002-03-21 Volkswagen Ag Verfahren zur Messung und Anzeige des Ölstands in einem Kraftfahrzeug
DE10061041A1 (de) * 2000-12-08 2002-06-13 Daimler Chrysler Ag Verfahren zum Bestimmen einer Nachfüllmenge, insbesondere einer Motorölnachfüllmenge
RU2287074C2 (ru) * 2004-12-20 2006-11-10 Открытое акционерное общество "Авиадвигатель" Устройство управления маслосистемой газотурбинного двигателя
EP1900912A2 (en) * 2006-08-31 2008-03-19 HONDA MOTOR CO., Ltd. Oil level detection system of internal combustion engine
EP2072762A1 (fr) * 2007-12-21 2009-06-24 Techspace Aero SA Méthode de contrôle de la consommation et de détection de fuites dans un système de lubrification de turbomachine

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006260A (en) * 1975-01-29 1977-02-01 Wells A. Webb Method and apparatus for evaporation of moisture from fruit and vegetable particles
FR2416636A1 (fr) * 1978-02-08 1979-09-07 Sperry Rand Nv Moissonneusebatteuse
US4466231A (en) * 1982-08-30 1984-08-21 Sperry Corporation Automatic sieve and chaffer adjustment in a combine harvester
DE3733619A1 (de) * 1987-10-05 1989-04-13 Deere & Co Verfahren zum gleichmaessigen verteilen eines zu trennenden guts in einer trenneinrichtung und mittel zu seiner ausfuehrung
AU658066B2 (en) * 1992-09-10 1995-03-30 Deere & Company Neural network based control system
US5282386A (en) * 1992-09-22 1994-02-01 General Motors Corporation Apparatus and technique for fluid level determination in automatic transmissions
US5319963A (en) * 1993-05-19 1994-06-14 Chrysler Corporation Method of predicting transmission oil temperature
JPH0828337A (ja) * 1994-07-19 1996-01-30 Unisia Jecs Corp 内燃機関の燃料温度検出装置における自己診断装置
DE19504650C1 (de) * 1995-02-13 1996-04-04 Daimler Benz Ag Einrichtung zur Getriebetemperaturerfassung
DE19506059A1 (de) * 1995-02-22 1996-08-29 Deere & Co Verfahren zur automatischen Regelung wenigstens eines Abschnitts der Gutbearbeitung in einer Erntemaschine
US5857162A (en) * 1995-06-30 1999-01-05 General Motors Corporation Automatic transmission hot mode management
DE19602599C2 (de) * 1996-01-25 2002-07-11 Daimler Chrysler Ag Verfahren zur Bestimmung einer Flüssigkeitsmenge, insbesondere der Motorölmenge, in einem Kraftfahrzeug
CA2213019C (en) * 1996-08-30 2004-03-16 Honda Giken Kogyo Kabushiki Kaisha System for estimating temperature of vehicle hydraulically-operated transmission
US6076030A (en) * 1998-10-14 2000-06-13 Carnegie Mellon University Learning system and method for optimizing control of autonomous earthmoving machinery
DE19808197C2 (de) * 1998-02-27 2001-08-09 Mtu Aero Engines Gmbh System und Verfahren zur Diagnose von Triebwerkszuständen
JP3067742B2 (ja) * 1998-10-07 2000-07-24 日産自動車株式会社 トルクコンバータの過熱防止装置
US6226974B1 (en) * 1999-06-25 2001-05-08 General Electric Co. Method of operation of industrial gas turbine for optimal performance
DE19931844A1 (de) * 1999-07-09 2001-01-11 Claas Selbstfahr Erntemasch Einrichtung zur Verstellung der Sieböffnungsweite an Mähdreschern
US6364602B1 (en) * 2000-01-06 2002-04-02 General Electric Company Method of air-flow measurement and active operating limit line management for compressor surge avoidance
JP4918207B2 (ja) * 2000-06-29 2012-04-18 アスペン テクノロジー インコーポレイテッド 経験的プロセスの非線形近似器を制約するコンピュータ装置とその方法
DE10064860A1 (de) * 2000-12-23 2002-06-27 Claas Selbstfahr Erntemasch Einrichtung zur Optimierung der Überladung von Erntegut an landwirtschaftlichen Fahrzeugen
US6506010B1 (en) * 2001-04-17 2003-01-14 General Electric Company Method and apparatus for compressor control and operation in industrial gas turbines using stall precursors
US6632136B2 (en) * 2001-06-05 2003-10-14 Deere & Company Remote adjustment mechanism for a combine harvester cleaning element
US6794766B2 (en) * 2001-06-29 2004-09-21 General Electric Company Method and operational strategy for controlling variable stator vanes of a gas turbine power generator compressor component during under-frequency events
US6553300B2 (en) * 2001-07-16 2003-04-22 Deere & Company Harvester with intelligent hybrid control system
DE10147733A1 (de) * 2001-09-27 2003-04-10 Claas Selbstfahr Erntemasch Verfahren und Vorrichtung zur Ermittlung einer Erntemaschineneinstellung
US7051534B2 (en) * 2001-10-01 2006-05-30 Camfil Ab Gas turbine arrangement having an integrated filter housing and compressor bleed duct
JP4295936B2 (ja) * 2001-10-25 2009-07-15 ヤマハ発動機株式会社 船外機操作装置,および船内ネットワークシステム
DE10162354A1 (de) * 2001-12-18 2003-07-03 Claas Selbstfahr Erntemasch Verfahren zur Verlustbestimmung an landwirtschaftlichen Erntemaschinen
US6865890B2 (en) * 2002-06-07 2005-03-15 Ronald Steven Walker Software system for verification of gas fuel flow
US20050187643A1 (en) * 2004-02-19 2005-08-25 Pavilion Technologies, Inc. Parametric universal nonlinear dynamics approximator and use
US7142971B2 (en) * 2003-02-19 2006-11-28 The Boeing Company System and method for automatically controlling a path of travel of a vehicle
DE10360597A1 (de) * 2003-12-19 2005-07-28 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren und Vorrichtung zur Regelung von Arbeitsorganen eines Mähdreschers
US7840317B2 (en) * 2004-08-16 2010-11-23 Matos Jeffrey A Method and system for controlling a hijacked aircraft
US7519569B1 (en) * 2004-11-10 2009-04-14 Raytheon Company System, apparatus, and method to dynamically allocate resources
DE102005057077B4 (de) * 2004-11-30 2011-04-14 Hyundai Motor Co. Vorrichtung zum Scannen von Zuständen von Motoröl
DE102004059543A1 (de) * 2004-12-09 2006-06-29 Claas Selbstfahrende Erntemaschinen Gmbh Landwirtschaftliche Arbeitsmaschine
EP1840395B1 (en) * 2005-01-18 2013-04-24 NSK Ltd. Rolling device
DE102005014278A1 (de) * 2005-03-24 2006-10-05 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Ermittlung eines Ziel-Einstellwerts
DE102005026159A1 (de) * 2005-06-06 2007-01-25 Claas Selbstfahrende Erntemaschinen Gmbh Verfahren zur Steuerung einer Erntemaschine
DE102005047335A1 (de) * 2005-09-30 2007-04-12 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende Erntemaschine und Betriebsverfahren dafür
US20070156311A1 (en) * 2005-12-29 2007-07-05 Elcock Albert F Communication of automotive diagnostic data
GB0604860D0 (en) * 2006-03-10 2006-04-19 Cnh Belgium Nv Improvements in or relating to material stream sensors
US7930044B2 (en) * 2006-09-07 2011-04-19 Fakhruddin T Attarwala Use of dynamic variance correction in optimization
US10018613B2 (en) * 2006-11-16 2018-07-10 General Electric Company Sensing system and method for analyzing a fluid at an industrial site
US10746680B2 (en) * 2006-11-16 2020-08-18 General Electric Company Sensing system and method
US7572180B2 (en) * 2007-02-13 2009-08-11 Cnh America Llc Distribution leveling for an agricultural combine
US8145966B2 (en) * 2007-06-05 2012-03-27 Astrium Limited Remote testing system and method
US8340928B2 (en) * 2007-09-05 2012-12-25 Yizhong Sun Sensor and method for detecting oil deterioration and oil level
US7729870B2 (en) * 2007-09-05 2010-06-01 Yizhong Sun Methods for detecting oil deterioration and oil level
DE102007055074A1 (de) * 2007-11-16 2009-05-20 Claas Selbstfahrende Erntemaschinen Gmbh Selbstfahrende landwirtschaftliche Arbeitsmaschine
CA2766395A1 (en) * 2008-06-26 2010-01-07 Cambrian Energy Development Llc Apparatus and method for operating an engine with non-fuel fluid injection
DE102009009767A1 (de) * 2009-02-20 2010-08-26 Claas Selbstfahrende Erntemaschinen Gmbh Fahrerassistenzsystem für landwirtschaftliche Arbeitsmaschine
US8616005B1 (en) * 2009-09-09 2013-12-31 Dennis James Cousino, Sr. Method and apparatus for boosting gas turbine engine performance
US8992838B1 (en) * 2011-02-02 2015-03-31 EcoVapor Recovery Systems, LLC Hydrocarbon vapor recovery system
DE102011052282A1 (de) * 2011-07-29 2013-01-31 Claas Selbstfahrende Erntemaschinen Gmbh Reinigungssensor zur Steuerung der Erntegut- und Gebläsedruckverteilung
US20140082108A1 (en) * 2012-09-14 2014-03-20 Vadim Savvateev Digital club networks

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU665115A1 (ru) * 1976-07-05 1979-05-30 Предприятие П/Я А-7240 Устройство дл контрол падени давлени масла в газотурбинном двигателе
US5273134A (en) * 1991-01-11 1993-12-28 Dana Corporation Oil consumption measurement system for internal combustion engine
DE4118896A1 (de) * 1991-06-08 1992-12-10 Mahle Gmbh Vorrichtung zur ueberwachung bzw. anzeige
DE10044916A1 (de) * 2000-09-12 2002-03-21 Volkswagen Ag Verfahren zur Messung und Anzeige des Ölstands in einem Kraftfahrzeug
DE10061041A1 (de) * 2000-12-08 2002-06-13 Daimler Chrysler Ag Verfahren zum Bestimmen einer Nachfüllmenge, insbesondere einer Motorölnachfüllmenge
RU2287074C2 (ru) * 2004-12-20 2006-11-10 Открытое акционерное общество "Авиадвигатель" Устройство управления маслосистемой газотурбинного двигателя
EP1900912A2 (en) * 2006-08-31 2008-03-19 HONDA MOTOR CO., Ltd. Oil level detection system of internal combustion engine
EP2072762A1 (fr) * 2007-12-21 2009-06-24 Techspace Aero SA Méthode de contrôle de la consommation et de détection de fuites dans un système de lubrification de turbomachine

Also Published As

Publication number Publication date
CN102859133B (zh) 2015-07-01
US20130218399A1 (en) 2013-08-22
RU2012148901A (ru) 2014-05-27
WO2011131892A1 (fr) 2011-10-27
BR112012026634B1 (pt) 2020-12-22
FR2958911B1 (fr) 2012-04-27
CA2796739C (fr) 2017-10-17
EP2561193A1 (fr) 2013-02-27
CA2796739A1 (fr) 2011-10-27
FR2958911A1 (fr) 2011-10-21
EP2561193B1 (fr) 2015-09-30
CN102859133A (zh) 2013-01-02
US9540974B2 (en) 2017-01-10
BR112012026634A2 (pt) 2016-07-12

Similar Documents

Publication Publication Date Title
RU2557838C2 (ru) Способ и система для контроля уровня масла, содержащегося в баке двигателя летательного аппарата
RU2388661C2 (ru) Способ контроля двигателя самолета
AU2014206171B2 (en) System and method for monitoring lubricant of an engine
FR3005454A1 (fr) Procede pour diagnostiquer une defaillance d'un systeme de prelevement d'air
EP2829697B1 (en) System and method for detecting addition of engine lubricant
FR2894046A1 (fr) Procede de detection d'une erreur d'entree d'un des parametres de decollage dans un systeme de management de vol
FR3004422A1 (fr) Procede pour predire une anomalie dans un circuit d'air de soutirage
FR2905778A1 (fr) Procede de verification de pertinence d'une valeur de masse d'un aeronef
FR3004547A1 (fr) Procede et dispositif de detection automatique d'une mesure erronee d'une temperature totale sur un aeronef.
FR3084057A1 (fr) Procede et dispositif de determination predictive de parametres caractaristiques du fonctionnement d'un aeronef a voilure tournante pour la realisation d'une manoeuvre predeterminee
FR3002035A1 (fr) Procede de controle des niveaux de fluide hydraulique dans un aeronef
US10288518B2 (en) Method for monitoring an aircraft engine in operation during a flight
US11467052B2 (en) System and method for detecting faulty engine anti-ice sensor

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner