EP2561032A1 - Pompe à chaleur à absorption présentant un agent de sorption comprenant un sel de lithium et un sel organique d'un même anion - Google Patents

Pompe à chaleur à absorption présentant un agent de sorption comprenant un sel de lithium et un sel organique d'un même anion

Info

Publication number
EP2561032A1
EP2561032A1 EP11714568A EP11714568A EP2561032A1 EP 2561032 A1 EP2561032 A1 EP 2561032A1 EP 11714568 A EP11714568 A EP 11714568A EP 11714568 A EP11714568 A EP 11714568A EP 2561032 A1 EP2561032 A1 EP 2561032A1
Authority
EP
European Patent Office
Prior art keywords
heat pump
absorption heat
pump according
refrigerant
sorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11714568A
Other languages
German (de)
English (en)
Inventor
Matthias Seiler
Rolf Schneider
Olivier Zehnacker
Marc-Christoph Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to EP11714568A priority Critical patent/EP2561032A1/fr
Publication of EP2561032A1 publication Critical patent/EP2561032A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/14Sorption machines, plants or systems, operating continuously, e.g. absorption type using osmosis

Definitions

  • Absorption heat pump with sorbent comprising a lithium salt and an organic salt with the same anion
  • the invention is directed to an absorption heat pump with improved gassing width of the working medium.
  • Classic heat pumps are based on a cycle of a refrigerant via an evaporator and a condenser.
  • a refrigerant is evaporated, wherein heat is removed from a first medium by the heat of vaporization absorbed by the refrigerant. The evaporated
  • Refrigerant is then pressurized to a higher pressure and condensed at a higher temperature than the vaporization in the condenser, releasing the heat of vaporization and releasing heat to a second medium at a higher temperature level. Subsequently, the liquefied refrigerant is relieved to the pressure of the evaporator.
  • Refrigerant, the evaporator and the condenser of a conventional heat pump nor a sorbent, an absorber and a desorber In the absorber, the vaporized refrigerant is absorbed at the pressure of evaporation in the sorbent and then desorbed in the desorber at the higher pressure of the condensation by supplying heat back from the sorbent.
  • Sorbent requires less mechanical energy than the compression of the refrigerant vapor in a traditional heat pump, rather than the consumption of mechanical Energy occurs for the desorption of the refrigerant
  • the size of the circulation of sorbent via absorber and desorber required to operate an absorption heat pump is essentially determined by the
  • Absorptive heat pump determines, under working medium, the mixture of sorbent and refrigerant in the
  • Outgassing range the difference in the content of refrigerant between low-refrigerant and high-refrigerant
  • Absorption heat pumps use a working medium that uses water as the refrigerant and lithium bromide as
  • Working medium may not fall below, because otherwise it can lead to the crystallization of lithium bromide and thereby to a solidification of the working medium.
  • WO 2005/113702 describes absorption heat pumps which use a working medium with an ionic liquid
  • WO 2006/134015 describes in Example VII a) the use of the ionic liquids 1-ethyl-3-methylimidazoliummethylsulfonat, 1-ethyl-3-methylimidazoliumacetat, and 1-ethyl-3-methylimidazoliumhydroxid as additives for a
  • No. 6,155,057 describes the addition of organic salts containing an alkylammonium ion or a heterocyclic cation to working media containing a lithium halide sorbent in order to avoid crystallization of the sorbent.
  • organic salt have the same anion with a molar mass of at most 200 g / mol, a higher
  • the subject of the invention is therefore a
  • Absorption heat pump comprising an absorber, a
  • Desorber a condenser, an evaporator, a
  • volatile refrigerant and a sorbent comprising a lithium salt and at least one organic salt having an organic cation Q + , wherein lithium salt and organic salt have the same anion, the anion has a molar mass of at most 200 g / mol and is not a halide and the organic cation Q + has a molar mass of at most 200 g / mol.
  • the absorption heat pump according to the invention comprises an absorber, a desorber, a condenser, a
  • Absorption heat pump is a mixture of sorbent and refrigerant.
  • Absorption heat pump is vaporous in the absorber
  • absorption heat pump includes all devices that absorb heat at a low temperature level and at a higher
  • Absorptive heat pumps according to the invention thus include both absorption chillers and absorption heat pumps in the narrower sense, in which absorber and evaporator are operated at a lower working pressure than desorber and condenser, as well as absorption heat transformers in which absorber and evaporator at a higher
  • Working pressure can be operated as a desorber and a condenser.
  • absorption chillers the intake of
  • Evaporative heat in the evaporator used to cool a medium.
  • absorption heat pumps in the narrower sense, the heat released in the condenser and / or absorber is used to heat a medium.
  • Absorption heat transformers the absorption heat released in the absorber is used for heating a medium, wherein the heat of absorption at a higher
  • the absorption heat pump is operated as an absorption chiller and in the evaporator, heat from one to
  • the absorption heat pump according to the invention comprises a sorbent comprising a lithium salt and at least one organic salt having an organic cation Q + .
  • Lithium salt and organic salt have the same anion.
  • the proportion of lithium salt and organic salt in the sorbent is preferably more than 50% by weight and more preferably more than 80% by weight.
  • Sorbent may contain other lithium salts in addition to the lithium salt, which have an anion other than the organic salt.
  • the proportion of lithium salts with deviating anion in the total amount on lithium salts less than 20 wt .-%, more preferably less than 10 wt .-%.
  • the sorbent preferably contains lithium salt and organic salt in a molar ratio for which the melting point of the lithium salt-organic salt mixture is lower than the melting points of the lithium salt and the organic salt. More preferably, the sorbent contains lithium salt and organic salt in a molar ratio that does not deviate more than 25% from the molar ratio of a eutectic mixture of lithium salt and organic salt. With the preferred molar ratios of lithium salt and organic salt, a particularly large Ausgasungsumble of the working medium is achieved and the working medium can in the
  • Temperature range can be used.
  • the organic cation Q + has a molar mass of at most 200 g / mol, and preferably at most 165 g / mol.
  • the use of one or more organic salts whose organic cation Q + has a low molar mass according to the invention is essential for achieving a large outgassing width of the working medium.
  • R 1 R 2 N + C (NR 3 R 4 ) (NR 5 R 6 ) (IV)
  • R 1 R 2 N + C (NR 3 R 4 ) (XR 5 ) (V) in which R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are the same or different and
  • Hydrogen a linear or branched aliphatic or olefinic hydrocarbon radical, a
  • Hydrocarbon radical an alkylaryl radical, a
  • R ' is an aliphatic or olefinic
  • Hydrocarbon radical is,
  • R 7 is a linear or branched alkylene radical containing 2 or 3 carbon atoms, n is from 1 to 3,
  • R 8 is hydrogen or a linear or branched one
  • X is an oxygen atom or a sulfur atom, and wherein at least one and preferably each of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 is other than hydrogen.
  • heteroaromatic cations having at least one quaternary nitrogen atom in the ring, which carries a radical R 1 as defined above, preferably nitrogen atom-substituted derivatives of pyrrole, pyrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, Pyrimidine, pyrazine, indole, quinoline, isoquinoline, cinnoline, quinoxaline or phthalazine.
  • the organic cation contains Q +
  • the organic cation Q + is preferably a 1, 3-dialkylimidazolium ion,
  • each other are hydrogen, alkyl or hydroxyethyl and R 4 is an alkyl radical.
  • the organic cation is Q + one
  • organic cation Q + 1, 3-dimethylimidazolium, 1-ethyl
  • the organic salt is a choline salt.
  • the organic salt is preferably up to one
  • Organic salts are used which are immiscible with water and are stable to hydrolysis. hydrolysis
  • Lithium salt and organic salt contain the same anion, which has a molar mass of at most 200 g / mol and is not a halide.
  • the anion can be single, double or multiple negatively charged and is
  • Limiting the molar mass of the anion to less than 200 g / mol improves the outgassing width of the working medium.
  • lithium salt and organic salt are anions of monovalent inorganic acids, preferably nitrate, nitrite and cyanate, as well as anions of monovalent organic acids, preferably of
  • Carboxylic acids such as formate, acetate, propionate and benzoate.
  • mono- and dianions of divalent inorganic acids preferably sulfate, hydrogen sulfate, carbonate and bicarbonate, as well as mono- and dianions of divalent organic acids, preferably oxalate, succinate and malonate.
  • mono-, di- and trianions of trivalent inorganic acids preferably oxalate, succinate and malonate.
  • phosphate preferably phosphate, hydrogen phosphate and
  • Dihydrogen phosphate also suitable are partial esters of di- and trivalent inorganic acids, preferably methyl sulfate, methyl phosphate and dimethyl phosphate.
  • Methyl phosphate, dimethyl phosphate, hydrogen phosphate and dihydrogen phosphate, especially acetate Methyl phosphate, dimethyl phosphate, hydrogen phosphate and dihydrogen phosphate, especially acetate.
  • the common anion of lithium salt and organic salt has a pK b of greater than 5, and preferably greater than 7.
  • the absorption heat pump according to the invention contains as refrigerant preferably water, methanol, ethanol,
  • 2-propanol trifluoroethanol, sulfur dioxide, carbon dioxide or ammonia, more preferably water, ethanol,
  • the organic salt and the refrigerant are chosen such that a 35 ° C saturated solution of the lithium salt in the refrigerant has a higher vapor pressure than a mixture of the organic salt and the refrigerant with the same
  • Weight percentage of refrigerant Preferably, water, methanol, ethanol, 2-propanol or trifluoroethanol and more preferably water is used as the refrigerant.
  • Examples of this embodiment are 1-ethyl-3-methylimidazolium nitrate as an organic salt,
  • the absorption heat pump according to the invention can in
  • Working medium in addition to sorbent and refrigerant still contain additives, preferably corrosion inhibitors and / or wetting-demanding additives.
  • additives preferably corrosion inhibitors and / or wetting-demanding additives.
  • Corrosion inhibitors is preferably from 10 to
  • Wetting-requiring additives is preferably 10 to 50,000 ppm, more preferably 100 to 10,000 ppm, based on the mass of the sorbent.
  • nonionic surfactants preference is given to using one or more surfactants from the group of nonionic surfactants, zwitterionic surfactants and cationic surfactants.
  • Suitable nonionic surfactants are alkylamine alkoxylates, amidoamines, alkanolamides, alkylphosphine oxides, alkyl N-glucamides, alkylglucosides, bile acids, alkyl alkoxylates, sorbitan esters, sorbitan ester ethoxylates, fatty alcohols,
  • Fatty acid ethoxylates, ester ethoxylates and polyether siloxanes Fatty acid ethoxylates, ester ethoxylates and polyether siloxanes.
  • Suitable zwitterionic surfactants are betaines,
  • Alkylglycines Alkylglycines, sultaines, amphopropionates, amphoacetates, tertiary amine oxides and silicobetaines.
  • Suitable cationic surfactants are quaternary ammonium salts having one or two substituents of 8 to 20
  • Tetraalkylammonium salts alkylpyridinium salts, esterquats, diamidoamine quats, imidazolinium quats, alkoxyalkyl quats, benzyl quats and silicone quats.
  • the alkylpyridinium salts esterquats, diamidoamine quats, imidazolinium quats, alkoxyalkyl quats, benzyl quats and silicone quats.
  • nonionic surfactants of the general formula R (OCH 2 CHR ') m OH with m from 4 to 40, wherein R is an alkyl radical having 8 to 20
  • the wetting-requiring additive comprises a polyether-polysiloxane copolymer containing more than 10% by weight of [Si (CH 3 ) 2 O] units and more than 10% by weight of [CH 2 CHR-O] units in which R is hydrogen or methyl.
  • a polyether-polysiloxane copolymer containing more than 10% by weight of [Si (CH 3 ) 2 O] units and more than 10% by weight of [CH 2 CHR-O] units in which R is hydrogen or methyl.
  • A is a bivalent radical of the formula - [CH 2 CHR 3 -O] r -
  • B is a bivalent radical of the formula - [Si (CH 3 ) 2 ⁇ 0] s -
  • ZOAR are 2 and the remaining radicals R 1 are methyl
  • R 2 is hydrogen or an aliphatic or olefinic alkyl radical or acyl radical having 1 to 20 carbon atoms
  • R 3 is hydrogen or methyl.
  • the wetting-requiring additives are known to the person skilled in the art as additives for aqueous solutions and can be prepared by processes known from the prior art.
  • the absorption heat pump according to the invention are in the absorber and / or desorber, the refrigerant-containing vapor phase and the
  • Sorbent-containing liquid phase by a semipermeable membrane separated, wherein the semipermeable membrane for the refrigerant is permeable and impermeable to the sorbent.
  • the semipermeable membrane is a solution-diffusion membrane.
  • a solution-diffusion membrane has virtually no pores.
  • the selective permeability of the membrane for the refrigerant in a solution-diffusion membrane is due to the refrigerant dissolving in the material of the membrane and diffusing through the membrane while the sorbent is insoluble in the material of the membrane.
  • Absorption heat pump can therefore be determined by the skilled person by simple experiments on the solubility of refrigerant and sorbent in the material of the membrane.
  • any non-porous membrane may be used as the solution-diffusion membrane
  • the material for the solution diffusion membranes is a hydrophilic or hydrophilic
  • polyvinyl alcohol polyimide, polybenzimidazole, polybenzimidazolone,
  • Polyethylene glycol poly (octyl-methylsiloxane), polysiloxane, poly-alkyl-siloxane, polydialkylsiloxane, polyester-polyether block copolymer, polysulfone, sulfonated
  • Polyethersulfone, polycarbonate, polymethyl methacrylate, Polyacrylic acid or polyacrylonitrile contains. Likewise, mixtures or copolymers of two or more of these polymers can be used. Particularly preferred
  • Polydimethylsiloxane or a polyester-polyether block copolymer Polydimethylsiloxane or a polyester-polyether block copolymer.
  • the semipermeable membrane is a microporous membrane.
  • Microporous membranes in the sense of the invention are membranes which have pores with a smallest diameter in the range of 0.3 nm to 100 ⁇ m, which reach through the membrane.
  • the membrane has pores in the range of 0.3 nm to 0.1 ⁇ m.
  • a microporous membrane is used, which is not wetted by the working medium of sorbent and refrigerant.
  • wetting stands for a contact angle between working medium and microporous
  • the contact angle between the working medium and the microporous membrane is more than 120 degrees, more preferably more than 140 degrees.
  • a flow of the liquid can also be at a side of the liquid working medium on the side of the liquid working medium increased at the opposite side of the steam side
  • Absorption heat pump can therefore be determined by the expert by determining the contact angle between the working medium and the membrane.
  • a hydrophobic microporous membrane is preferably used as the semipermeable membrane.
  • Suitable hydrophobic Microporous membranes are known to those skilled in the technical field of functional clothing as waterproof and
  • Polyvinylidene fluoride or fluoroalkyl modified polymers used. Likewise, mixtures or copolymers of two or more of these polymers can be used.
  • inorganic hydrophobic microporous membranes or composite membranes with an inorganic hydrophobic microporous material for example
  • Membranes whose pores are formed by silicalite or hydrophobized silica.
  • the semipermeable membrane is disposed on a porous support layer.
  • a mechanically stable membrane unit can be achieved with a thin semi-permeable membrane. This allows a faster
  • the support layer is disposed on the side of the semipermeable membrane adjacent to the vapor phase. Such an arrangement of the support layer leads to a lower
  • the porous support layer may consist of both inorganic and organic materials.
  • the membrane is preferably arranged on a porous support layer of a hydrophobic polymer, in particular of a polyolefin, a polyester or polyvinylidene fluoride.
  • the support layer may additionally contain reinforcements, for example by fabric layers.
  • the semipermeable membrane is arranged in the form of hollow fibers. The execution of the membrane in the form of hollow fibers allows a
  • the absorption heat pump according to the invention is
  • the absorption heat pump according to the invention has
  • an additional heat exchanger with the heat between the low-refrigerant working fluid, which is supplied from the desorber to the absorber and the
  • refrigerant-rich working medium which is supplied from the absorber to the desorber, is replaced.
  • a countercurrent heat exchanger is used.
  • the polymeric material is preferably a polyamide, a polyimide or polyetheretherketone.
  • the polyamide used is preferably polyamide II.
  • As the polyimide a polyimide of benzophenone tetracarboxylic dianhydride and a mixture of tolylene diisocyanate and
  • Trade name P84 is available from Evonik Fibers.
  • a polymeric material corrosion of the heat exchanging surfaces can be avoided.
  • a polyamide By using a polyamide, a polyimide or polyetheretherketone can simultaneously a high Heat transfer coefficient can be achieved, which allows a compact design of the absorption heat pump.
  • the maximum achievable Ausgasungsbreite was determined for the operation of an absorption chiller with a pressure in the evaporator and absorber of 10 mbar, a temperature in the absorber of 35 ° C, a pressure in the desorber and condenser of 70 mbar and a maximum temperature in the desorber of 80 ° C. ,
  • the sorbent was with
  • Working medium that can be used in the operation of the absorption chiller is the mixture with a
  • EMIMOAc 1-ethyl-3-methylimidazolium acetate
  • EMIMNO3 1-ethyl-3-methylimidazolium nitrate
  • HMIMC1 1-methylimidazolium chloride
  • HMIMOAc 1-methylimidazolium acetate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

L'invention concerne une pompe à chaleur à absorption, présentant un agent de sorption comprenant un sel de lithium et au moins un sel organique présentant un cation organique Q+, le sel de lithium et le sel organique présentant le même anion, l'anion ayant une masse molaire d'au maximum 200 g/mol et n'étant pas un halogénure, et le cation organique Q+ ayant une masse molaire d'au maximum 200 g/mol. La pompe à chaleur selon l'invention présente une amplitude de dégazage améliorée du milieu de travail formé de l'agent de refroidissement et de l'agent de sorption.
EP11714568A 2010-04-20 2011-04-18 Pompe à chaleur à absorption présentant un agent de sorption comprenant un sel de lithium et un sel organique d'un même anion Withdrawn EP2561032A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11714568A EP2561032A1 (fr) 2010-04-20 2011-04-18 Pompe à chaleur à absorption présentant un agent de sorption comprenant un sel de lithium et un sel organique d'un même anion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10160434A EP2380941A1 (fr) 2010-04-20 2010-04-20 Pompe à chaleur à absorption dotée d'un sorbant comprenant un sel de chlorure et un sel organique doté d'un anion équivalent
PCT/EP2011/056104 WO2011131606A1 (fr) 2010-04-20 2011-04-18 Pompe à chaleur à absorption présentant un agent de sorption comprenant un sel de lithium et un sel organique d'un même anion
EP11714568A EP2561032A1 (fr) 2010-04-20 2011-04-18 Pompe à chaleur à absorption présentant un agent de sorption comprenant un sel de lithium et un sel organique d'un même anion

Publications (1)

Publication Number Publication Date
EP2561032A1 true EP2561032A1 (fr) 2013-02-27

Family

ID=42664741

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10160434A Withdrawn EP2380941A1 (fr) 2010-04-20 2010-04-20 Pompe à chaleur à absorption dotée d'un sorbant comprenant un sel de chlorure et un sel organique doté d'un anion équivalent
EP11714568A Withdrawn EP2561032A1 (fr) 2010-04-20 2011-04-18 Pompe à chaleur à absorption présentant un agent de sorption comprenant un sel de lithium et un sel organique d'un même anion

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10160434A Withdrawn EP2380941A1 (fr) 2010-04-20 2010-04-20 Pompe à chaleur à absorption dotée d'un sorbant comprenant un sel de chlorure et un sel organique doté d'un anion équivalent

Country Status (7)

Country Link
US (1) US20130031931A1 (fr)
EP (2) EP2380941A1 (fr)
JP (1) JP5449618B2 (fr)
KR (1) KR101378242B1 (fr)
CN (1) CN102822310A (fr)
TW (1) TW201204822A (fr)
WO (1) WO2011131606A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088389B1 (fr) * 2008-02-05 2017-05-10 Evonik Degussa GmbH Machine de refroidissement à absorption
EP2087930A1 (fr) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Procédé d'absorption d'une matière volatile dans un produit d'absorption liquide
DE102009000543A1 (de) 2009-02-02 2010-08-12 Evonik Degussa Gmbh Verfahren, Absorptionsmedien und Vorrichtung zur Absorption von CO2 aus Gasmischungen
DE102009047564A1 (de) 2009-12-07 2011-06-09 Evonik Degussa Gmbh Arbeitsmedium für eine Absorptionskältemaschine
EP2380940A1 (fr) * 2010-04-20 2011-10-26 Evonik Degussa GmbH Pompe à chaleur à absorption dotée d'un sorbant comprenant du chlorure de lithium et un sel de chlorure organique
CN103189466B (zh) * 2010-11-08 2016-01-06 赢创德固赛有限公司 用于吸收式热泵的工作介质
DE102011077377A1 (de) 2010-11-12 2012-05-16 Evonik Degussa Gmbh Verfahren zur Absorption von sauren Gasen aus Gasmischungen
CA2855855A1 (fr) 2011-11-14 2013-05-23 Evonik Degussa Gmbh Procede et dispositif servant a separer des gaz acides a partir d'un melange gazeux
DE102012200907A1 (de) 2012-01-23 2013-07-25 Evonik Industries Ag Verfahren und Absorptionsmedium zur Absorption von CO2 aus einer Gasmischung
DE102012207509A1 (de) 2012-05-07 2013-11-07 Evonik Degussa Gmbh Verfahren zur Absorption von CO2 aus einer Gasmischung
EP3017013A4 (fr) * 2013-05-28 2017-01-25 Yanjie Xu Système de réfrigération à doubles réfrigérants et fluides actifs liquides
DE102015004266A1 (de) 2015-04-01 2016-10-06 Hans-Jürgen Maaß Verfahren und Vorrichtung zur Speicherung von Energie zur Wärme-und Kälteerzeugung mit Salzschmelzen
DE102015212749A1 (de) 2015-07-08 2017-01-12 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
US10549818B2 (en) * 2015-12-24 2020-02-04 Keppel Offshore & Marine Technology Centre Pte Ltd Low motion semi-submersible
DE102016106234B4 (de) * 2016-04-06 2022-03-03 Fahrenheit Gmbh Adsorptionswärmepumpe und Verfahren zum Betreiben einer Adsorptionswärmepumpe
WO2017205807A1 (fr) * 2016-05-26 2017-11-30 Yazaki Corporation Mélanges eutectiques de liquides ioniques dans des refroidisseurs à absorption
EP3257569A1 (fr) 2016-06-14 2017-12-20 Evonik Degussa GmbH Procede de deshumidification des melanges gazeux humides
EP3257568B1 (fr) 2016-06-14 2019-09-18 Evonik Degussa GmbH Procede de deshumidification de melanges gazeux humides par des liquides ioniques
EP3257843A1 (fr) 2016-06-14 2017-12-20 Evonik Degussa GmbH Procédé pour préparer un sel tres pur d'imidazolium
DE102016210484A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016210481B3 (de) 2016-06-14 2017-06-08 Evonik Degussa Gmbh Verfahren zum Reinigen einer ionischen Flüssigkeit
DE102016210478A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren zur Entfeuchtung von feuchten Gasgemischen
DE102016210483A1 (de) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Verfahren und Absorptionsmittel zur Entfeuchtung von feuchten Gasgemischen
JP7201161B2 (ja) * 2017-09-04 2023-01-10 日立ジョンソンコントロールズ空調株式会社 吸収式冷凍機用作動媒体及びこれを用いた吸収式冷凍機
CA3070981A1 (fr) 2017-09-29 2019-04-04 Research Triangle Institute Procedes et appareil pour la production d'hydrogene
WO2020114576A1 (fr) 2018-12-04 2020-06-11 Evonik Operations Gmbh Processus pour déshumidifier des mélanges de gaz humides
JP7189322B2 (ja) * 2019-01-15 2022-12-13 矢崎総業株式会社 吸収式冷凍機における吸収剤として使用するためのイオン液体添加剤
KR20220097978A (ko) 2019-11-08 2022-07-08 피어스크래프트 아이피 리미티드 지면 효과 크래프트
CN111426092A (zh) * 2020-03-26 2020-07-17 中南大学 余热吸收制冷循环方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524587A (en) * 1967-01-10 1985-06-25 Kantor Frederick W Rotary thermodynamic apparatus and method
JPS5991188A (ja) * 1982-11-17 1984-05-25 Mitsubishi Heavy Ind Ltd 吸収液
NL8403517A (nl) * 1984-11-19 1986-06-16 Rendamax Ag Absorptie-resorptie warmtepomp.
JPS6273055A (ja) * 1985-09-25 1987-04-03 日本鋼管株式会社 吸収式ヒ−トポンプ
US5186009A (en) * 1987-04-14 1993-02-16 Gas Research Institute Aqueous absorption fluids
US5255534A (en) * 1992-06-25 1993-10-26 Gas Research Institute System and process for operating and absorption cycle around a crystallization curve of the solution
JP2776200B2 (ja) * 1993-05-25 1998-07-16 日本鋼管株式会社 吸収式製氷蓄冷装置
US6155057A (en) * 1999-03-01 2000-12-05 Arizona Board Of Regents Refrigerant fluid crystallization control and prevention
DE102004024967A1 (de) * 2004-05-21 2005-12-08 Basf Ag Neue Absorptionsmedien für Absorptionswärmepumpen, Absorptionskältemaschinen und Wärmetransformatoren
DE102005028451B4 (de) 2005-06-17 2017-02-16 Evonik Degussa Gmbh Verfahren zum Transport von Wärme
US8506839B2 (en) * 2005-12-14 2013-08-13 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquids and water as working fluids
EP2380940A1 (fr) * 2010-04-20 2011-10-26 Evonik Degussa GmbH Pompe à chaleur à absorption dotée d'un sorbant comprenant du chlorure de lithium et un sel de chlorure organique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011131606A1 *

Also Published As

Publication number Publication date
JP2013525727A (ja) 2013-06-20
EP2380941A1 (fr) 2011-10-26
CN102822310A (zh) 2012-12-12
US20130031931A1 (en) 2013-02-07
KR101378242B1 (ko) 2014-03-27
KR20130023214A (ko) 2013-03-07
JP5449618B2 (ja) 2014-03-19
WO2011131606A1 (fr) 2011-10-27
TW201204822A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
EP2561032A1 (fr) Pompe à chaleur à absorption présentant un agent de sorption comprenant un sel de lithium et un sel organique d'un même anion
WO2011131552A1 (fr) Pompe à chaleur par absorption présentant un sorbant comprenant du chlorure de lithium et un sel de chlorure organique
EP2088389B1 (fr) Machine de refroidissement à absorption
EP2923158B1 (fr) Pompe à chaleur à absorption et sorbant pour une pompe à chaleur à absorption comprenant de l'acide méthanosulfonique
DE102009047564A1 (de) Arbeitsmedium für eine Absorptionskältemaschine
EP2638123A1 (fr) Fluide de travail pour pompes à chaleur à absorption
DE102005028451B4 (de) Verfahren zum Transport von Wärme
EP2636715B1 (fr) Support de travail pour pompes à chaleur à absorption
EP2087930A1 (fr) Procédé d'absorption d'une matière volatile dans un produit d'absorption liquide
WO2013050230A1 (fr) Fluide de travail pour pompes à chaleur à absorption
EP3257568A1 (fr) Procede de deshumidification de melanges gazeux humides par des liquides ioniques
Wang et al. Exploring the spinning and operations of multibore hollow fiber membranes for vacuum membrane distillation
KR20180035131A (ko) 막증류용 여과막 및 그 제조방법
EP2735821A1 (fr) Procédé d'extraction d'énergie thermique à partir d'un milieu
US10239024B2 (en) Method for the production of a filtration membrane having a mean molecular weight cut-off of < 1000 g/mol
JP2022517053A (ja) 吸収式冷凍機における吸収剤として使用するためのイオン液体添加剤
CN112944719A (zh) 一种化学吸收制冷循环用复配工质对和应用方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151103