EP2539381A1 - Procédé pour produire des particules de polymères hydroabsorbantes - Google Patents

Procédé pour produire des particules de polymères hydroabsorbantes

Info

Publication number
EP2539381A1
EP2539381A1 EP11703228A EP11703228A EP2539381A1 EP 2539381 A1 EP2539381 A1 EP 2539381A1 EP 11703228 A EP11703228 A EP 11703228A EP 11703228 A EP11703228 A EP 11703228A EP 2539381 A1 EP2539381 A1 EP 2539381A1
Authority
EP
European Patent Office
Prior art keywords
conveyor belt
water
polymer particles
circulating
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11703228A
Other languages
German (de)
English (en)
Inventor
Rüdiger Funk
Thomas Pfeiffer
Matthias Weismantel
Stefan Blei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP11703228A priority Critical patent/EP2539381A1/fr
Publication of EP2539381A1 publication Critical patent/EP2539381A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/04Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the belts being all horizontal or slightly inclined

Definitions

  • the present invention relates to a process for producing water-absorbing polymer particles, wherein an aqueous polymer gel is dried in a circulating air belt dryer on a circulating conveyor belt and the surface of the conveyor belt has a plurality of elevations or depressions, which are suitable to limit the mobility of the aqueous polymer Geis in the transverse direction.
  • Water-absorbing polymer particles are used in the manufacture of diapers, tampons, sanitary napkins and other sanitary articles, but also as water-retaining agents in agricultural horticulture.
  • the water-absorbing polymer particles are also referred to as superabsorbers.
  • the preparation of water-absorbing polymer particles is described in the monograph "Modern Superabsorbent Polymer Technology", FL Buchholz and AT Graham, Wiley-VCH, 1998, pages 71 to 103.
  • the aqueous polymer gels obtained by polymerization are typically dried by means of a circulating air belt dryer As a result, as the drying progresses, the conveyor belt is no longer covered with polymer gel over the entire conveyor belt width, and at the edge areas, part of the drying air flows unused through the conveyor belt (by-pass ).
  • the object of the present invention was to provide an improved process for drying aqueous polymer gels by means of a circulating air belt dryer.
  • the object has been achieved by a process for producing water-absorbing polymer particles by polymerization of a monomer solution or suspension comprising a) at least one ethylenically unsaturated, acid group-carrying monomer which may be at least partially neutralized,
  • e) optionally one or more water-soluble polymers comprising drying the resulting aqueous polymer gel in a circulating air belt dryer by means of a circulating conveyor belt, grinding, classification, and optionally thermal surface post-crosslinking, characterized in that the surface of the conveyor belt has a plurality of elevations or depressions suitable
  • the mobility of the aqueous polymer gels in the transverse direction must be limited.
  • the present invention is based on the finding that the shrinkage of the polymer gels during drying can be reduced without causing increased cracking.
  • the reason for this is probably that the polymer gel to be dried has a temperature above the glass transition temperature TG during drying. Above the glass transition temperature TG, polymers are rubbery and tacky.
  • the elevations and depressions to be used according to the invention are able to absorb the tensile forces that occur and the tackiness of the polymer gel particles prevents the formation of cracks.
  • Recirculating belt dryers suitable for the process according to the invention are described, for example, in the monograph "Modern Superabsorbent Polymer Technology", FL Buchholz and AT Graham, Wiley-VCH, 1998, pages 89 to 92.
  • the shape of the elevations or depressions to be used according to the process of the invention is subject to no restriction.
  • Suitable elevations are mandrels with a height of preferably 0.01 to 5 cm, more preferably 0.05 to 2 cm, most preferably 0.1 to 1 cm.
  • the mandrels may be nails or screws driven through the conveyor belt from the back or attached to the surface of the conveyor belt.
  • Suitable depressions are longitudinal and transverse grooves, for example, with a depth of 0.1 to 2 cm and a width of 0.1 to 2 cm.
  • the number and dimensioning of the elevations or depressions to be used in the method according to the invention can be determined by the skilled person by appropriate experiments.
  • circulating belt dryers with conveyor belts whose product-contacting surfaces are made of a stainless steel are used in the process according to the invention.
  • Stainless steels usually have a chromium content of 10.5 to 13 wt .-% chromium.
  • the high chromium content leads to a protective passivation of chromium dioxide on the steel surface.
  • Other alloying components increase corrosion resistance and improve mechanical properties.
  • Particularly suitable steels are austenitic steels with, for example, at least 0.08% by weight of carbon.
  • the austenitic steels advantageously contain further alloy constituents, preferably niobium or titanium.
  • the preferred stainless steels are steels with the material number 1.43xx or 1.45xx according to DIN EN 10020, where xx can be a natural number between 0 and 99.
  • Particularly preferred materials are the steels with the material numbers 1 .4301, 1 .4541 and 1 .4571, in particular steel with the material number 1 .4301.
  • the revolving conveyor belt usually has a plurality of openings.
  • the circulating conveyor belt transversely to the transport direction a plurality of arranged in staggered rows slots having a length of preferably 5 to 50 mm, more preferably 10 to 40 mm, most preferably 15 to 30 mm, a Width of preferably 0.5 to 5 mm, more preferably 1 to 4 mm, most preferably 1, 5 to 3 mm, and a length to width ratio of preferably 2 to 20, more preferably 5 to 15, most preferably 8 to 12, has.
  • the width of the circulating air belt dryer is preferably from 1 to 10 m, more preferably from 2 to 7.5 m, most preferably from 3 to 5 m.
  • the length of the circulating air belt dryer is preferably from 10 to 8 m, more preferably from 30 to 60 m, most preferably from 40 to 50 m.
  • the conveyor belt speed of the circulating air belt dryer is preferably from 0.005 to 0.05 m / s, particularly preferably from 0.01 to 0.35 m / s, very particularly preferably from 0.015 to 0.025 m / s.
  • the residence time on the circulating air belt dryer is preferably from 10 to 120 minutes, particularly preferably from 20 to 90 minutes, very particularly preferably from 30 to 60 minutes.
  • the water content of the polymer gel bed in the feed zone is preferably from 25 to 90 wt .-%, particularly preferably from 35 to 70 wt .-%, most preferably from 40 to 60 wt .-%.
  • the average particle size of the aqueous polymer gels is preferably from 0.1 to 10 mm, more preferably from 0.5 to 5 mm, most preferably from 1 to 2 mm.
  • the height of the polymer gel bed on the conveyor belt of the circulating air belt dryer in the feed zone is preferably from 2 to 20 cm, particularly preferably from 5 to 15 cm, very particularly preferably from 8 to 12 cm.
  • the gas inlet temperatures of the circulating air belt dryer are preferably from 150 to 200.degree. C., particularly preferably from 160 to 190.degree. C., very particularly preferably from 170 to 180.degree.
  • the gas stream used for drying may contain water vapor.
  • the water vapor content should not exceed a value which corresponds to a dew point of preferably at most 50 ° C., particularly preferably at most 40 ° C., very particularly preferably at most 30 ° C.
  • the water content of the polymer gel after drying on the circulating air belt dryer is preferably from 0.5 to 15% by weight, more preferably from 1 to
  • the water-absorbing polymer particles are prepared by polymerization of a monomer solution or suspension and are usually water-insoluble.
  • the monomers a) are preferably water-soluble, i. the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 35 g / 100 g of water.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).
  • Impurities can have a significant influence on the polymerization. Therefore, the raw materials used should have the highest possible purity. It is therefore often advantageous to purify the monomers a) specifically. Suitable purification processes are described, for example, in WO 2002/055469 A1, WO 2003/078378 A1 and WO 2004/035514 A1.
  • a suitable monomer a) is, for example, an acrylic acid purified according to WO 2004/035514 A1 with 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203% by weight.
  • % Propionic acid 0.0001% by weight furfurale, 0.0001% by weight maleic anhydride,
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • the monomers a) usually contain polymerization inhibitors, preferably hydroquinone half ethers, as a storage stabilizer.
  • the monomer solution preferably contains up to 250 ppm by weight, preferably at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular
  • hydroquinone half-ether in each case based on the unneutralized monomer a).
  • an ethylenically unsaturated, acid group-carrying monomer having a corresponding content of hydroquinone half-ether can be used to prepare the monomer solution.
  • hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or alpha-tocopherol (vitamin E).
  • Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be radically copolymerized into the polymer chain, and functional groups which can form covalent bonds with the acid groups of the monomer a). Furthermore, polyvalent metal salts which can form coordinative bonds with at least two acid groups of the monomer a) are also suitable as crosslinking agents b).
  • Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be incorporated in the polymer network in free-radically polymerized form.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1, di- and triacrylates, as in EP 0 547 847 A1, EP 0 559 476 A1, EP 0 632 068 A1, WO 93/21237 A1, WO 2003/104299 A1, WO 2003/104300 A1, WO 2003/104301 A1 and DE 103 31 450 A1, mixed acrylates which, in addition to acrylate groups, contain further ethylenically unsaturated groups, such as in
  • Preferred crosslinkers b) are pentaerythritol triallyl ether, tetraallyloxyethane, methylenebismethacrylamide, 15-tuply ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO 2003/104301 A1.
  • Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
  • diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol.
  • Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerol, in particular the triacrylate of 3-times ethoxylated glycerol.
  • the amount of crosslinker b) is preferably from 0.05 to 1, 5 wt .-%, particularly preferably 0.1 to 1 wt .-%, most preferably 0.3 to 0.6 wt .-%, each based on Monomer a).
  • the centrifuge retention capacity decreases and the absorption under a pressure of 21.0 g / cm 2 (AUL 0.3 psi) passes through a maximum.
  • initiators c) it is possible to use all compounds which generate free radicals under the polymerization conditions, for example thermal initiators, redox initiators, photoinitiators.
  • Suitable redox initiators are sodium peroxodisulfate / ascorbic acid, hydrogen peroxide / ascorbic acid, sodium peroxodisulfate / sodium bisulfite and hydrogen peroxide / sodium bisulfite.
  • Preference is given to using mixtures of thermal initiators and redox initiators, such as sodium peroxodisulfate / hydrogen peroxide / ascorbic acid.
  • the reducing component used is preferably a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite.
  • Such mixtures are available as Brüggolite® FF6 and Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE).
  • acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, ethylenically unsaturated monomers d) which can be copolymerized with the ethylenically unsaturated acid group-carrying monomers a) are lat, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate.
  • water-soluble polymers e it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose, such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, preferably starch, starch derivatives and modified cellulose.
  • an aqueous monomer solution is used.
  • the water content of the monomer solution is preferably from 40 to 75 wt .-%, particularly preferably from 45 to 70 wt .-%, most preferably from 50 to 65 wt .-%.
  • monomer suspensions i. Monomer solutions with excess monomer a), for example sodium acrylate, use. With increasing water content, the energy expenditure increases during the subsequent drying and with decreasing water content, the heat of polymerization can only be dissipated insufficiently.
  • the monomer solution may be polymerized prior to polymerization by inerting, i. Flow through with an inert gas, preferably nitrogen or carbon dioxide, are freed of dissolved oxygen.
  • an inert gas preferably nitrogen or carbon dioxide
  • the oxygen content of the monomer solution before polymerization is reduced to less than 1 ppm by weight, more preferably less than 0.5 ppm by weight, most preferably less than 0.1 ppm by weight.
  • Suitable reactors are, for example, kneading reactors or belt reactors.
  • the aqueous polymer gel formed in the polymerization of an aqueous monomer solution or suspension is continuously comminuted by, for example, counter-rotating stirring shafts, as described in WO 2001/038402 A1.
  • the polymerization on the belt is described, for example, in DE 38 25 366 A1 and US Pat. No. 6,241,928.
  • an aqueous polymer gel is formed, which must be comminuted in a further process step, for example in an extruder or kneader.
  • the comminuted aqueous polymer gel obtained by means of a kneader can additionally be extruded.
  • the acid groups of the resulting aqueous polymer gels are usually partially neutralized.
  • the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution or preferably as a solid.
  • the degree of neutralization is preferably from 25 to 95 mol%, particularly preferably from 30 to 80 mol%, very particularly preferably from 40 to 75 mol%, the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates and mixtures thereof.
  • alkali metal salts and ammonium salts can be used.
  • Sodium and potassium are particularly preferred as alkali metals, but most preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the aqueous polymer gel is at least partially neutralized after the polymerization, the aqueous polymer gel is preferably comminuted mechanically, for example by means of an extruder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed in.
  • the gel mass obtained can be extruded several times for homogenization.
  • the aqueous polymer gel is then dried with a circulating air belt dryer until the residual moisture content is preferably 0.5 to 15% by weight, particularly preferably 1 to 10% by weight, very particularly preferably 2 to 8% by weight, the residual moisture content being the EDANA recommended test method no. WSP 230.2-05 "Moisture Content". If the residual moisture content is too high, the dried polymer gel has too low a glass transition temperature T g and is difficult to process further. If the residual moisture content is too low, the dried polymer gel is too brittle and in the subsequent comminution steps undesirably large quantities of polymer particles having too small a particle size ("fines") are produced. , particularly preferably from 35 to 70 wt .-%, most preferably from 40 to 60 wt .-%.
  • the dried polymer gel is then ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills, can be used.
  • the average particle size of the polymer fraction separated as a product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the mean particle size of the product fraction can be determined by means of the EDANA recommended test method No. WSP 220.2-05 "Particles Size distribution ", whereby the mass fractions of the sieve fractions are cumulatively applied and the average particle size is determined graphically, the average particle size being the value of the mesh size which results for accumulated 50% by weight.
  • the proportion of particles having a particle size of at least 150 ⁇ m is preferably at least 90% by weight, more preferably at least 95% by weight, very particularly preferably at least 98% by weight. Polymer particles with too small particle size lower the permeability (SFC). Therefore, the proportion of too small polymer particles ("fines") should be low.
  • Too small polymer particles are therefore usually separated and recycled to the process. This preferably occurs before, during or immediately after the polymerization, i. before drying the aqueous polymer gel.
  • the polymer particles that are too small can be moistened with water and / or aqueous surfactant before or during the recycling.
  • the recycled too small polymer particles are surface postcrosslinked or otherwise coated, for example with fumed silica. If a kneading reactor is used for the polymerization, the too small polymer particles are preferably added during the last third of the polymerization.
  • the proportion of particles having a particle size of at most 850 ⁇ m is preferably at least 90% by weight, particularly preferably at least 95% by weight, very particularly preferably at least 98% by weight.
  • the proportion of particles having a particle size of at most 600 ⁇ m is preferably at least 90% by weight, more preferably at least 95% by weight, most preferably at least 98% by weight.
  • Polymer particles with too large particle size reduce the swelling rate. Therefore, the proportion of polymer particles too large should also be low.
  • Suitable surface postcrosslinkers are compounds containing groups that can form covalent bonds with at least two carboxylate groups of the polymer particles.
  • Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols, as described in DE 33 14 019 A1, DE 35 23 617 A1 and EP 0 450 922 A2, or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and US Pat. No. 6,239,230.
  • DE 40 20 780 C1 cyclic carbonates in DE 198 07 502 A1
  • 2-Oxazolidinone and its derivatives such as 2-hydroxyethyl-2-oxazolidinone, in DE 198 07 992 C1 bis- and poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1, 3-oxazine and its Derivatives, in DE 198 54 574 A1 N-acyl-2-Oxazolidinone, in
  • DE 102 04 937 A1 describes cyclic ureas, in DE 103 34 584 A1 bicyclic amidoacetals, in EP 1 199 327 A2 oxetanes and cyclic ureas and in WO 2003/031482 A1 morpholine-2,3-dione and its derivatives as suitable surface postcrosslinkers ,
  • Preferred surface postcrosslinkers are ethylene carbonate, ethylene glycol diglycidyl ether, reaction products of polyamides with epichlorohydrin and mixtures of propylene glycol and 1,4-butanediol.
  • Very particularly preferred surface postcrosslinkers are 2-hydroxyethyl-2-oxazolidinone, 2-oxazolidinone and 1,3-propanediol. Furthermore, it is also possible to use surface postcrosslinkers which contain additional polymerisable ethylenically unsaturated groups, as described in DE 37 13 601 A1.
  • the amount of surface postcrosslinker is preferably from 0.001 to 2% by weight, particularly preferably from 0.02 to 1% by weight, completely more preferably 0.05 to
  • polyvalent cations are applied to the particle surface in addition to the surface postcrosslinkers before, during or after the surface postcrosslinking.
  • polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations, such as the cations of aluminum, iron,
  • chloride, bromide, sulfate, hydrogen sulfate, carbonate, bicarbonate, nitrate, phosphate, hydrogen phosphate, dihydrogen phosphate and carboxylate, such as acetate, citrate and lactate, are possible.
  • Aluminum sulfate and aluminum acetate are preferred.
  • polyamines can also be used as polyvalent cations.
  • the amount of polyvalent cation used is, for example, 0.001 to 1.5% by weight, preferably 0.005 to 1% by weight, particularly preferably 0.02 to 0.8% by weight. in each case based on the polymer particles.
  • the surface postcrosslinking is usually carried out so that a solution of the surface postcrosslinker is sprayed onto the dried polymer particles. Subsequent to spraying, the polymer particles coated with surface postcrosslinker are thermally dried, whereby the surface postcrosslinking reaction can take place both during and after drying.
  • the spraying of a solution of the surface postcrosslinker is preferably carried out in mixers with agitated mixing tools, such as screw mixers, disc mixers and paddle mixers.
  • agitated mixing tools such as screw mixers, disc mixers and paddle mixers.
  • horizontal mixers such as paddle mixers
  • vertical mixers very particularly preferred are vertical mixers.
  • horizontal mixer and vertical mixer via the storage of the mixing shaft ie horizontal mixer have a horizontally mounted mixing shaft and vertical mixer have a vertically mounted mixing shaft.
  • Suitable mixers are, for example, Horizontal Pflugschar® mixers (Gebr.
  • the surface postcrosslinkers are typically used as an aqueous solution.
  • the penetration depth of the surface postcrosslinker into the polymer particles can be adjusted by the content of nonaqueous solvent or total solvent amount.
  • solvent for example isopropanol / water, 1,3-propanediol / water and propylene glycol / water, the mixing mass ratio preferably being from 20:80 to 40:60.
  • the temperature of the water-absorbing polymer particles in the dryer is preferably from 100 to 250 ° C, more preferably from 130 to 220 ° C, most preferably from 150 to 200 ° C.
  • the residence time in the dryer is preferably from 10 to 120 minutes, more preferably from 10 to 90 minutes, most preferably from 30 to 60 minutes.
  • the degree of filling of the dryer is preferably from 30 to 80%, more preferably from 40 to 75%, most preferably from 50 to 70%.
  • the degree of filling of the dryer can be adjusted by the height of the drain weir. Subsequently, the surface-postcrosslinked polymer particles can be classified again, wherein too small and / or too large polymer particles are separated and recycled to the process.
  • the surface-postcrosslinked polymer particles can be coated or post-moistened for further improvement of the properties.
  • the post-wetting is preferably carried out at 30 to 80 ° C, more preferably at 35 to 70 ° C, most preferably at 40 to 60 ° C. If the temperatures are too low, the water-absorbing polymer particles tend to clump together and at higher temperatures water is already noticeably evaporating.
  • the amount of water used for the rewetting is preferably from 1 to 10 wt .-%, particularly preferably from 2 to 8 wt .-%, most preferably from 3 to 5 wt .-%.
  • Suitable coatings for improving the swelling rate and the permeability are, for example, inorganic inert substances, such as water insoluble metal salts, organic polymers, cationic polymers and di- or polyvalent metal cations.
  • Suitable coatings for dust binding are, for example, polyols.
  • Suitable coatings against the undesirable tendency for the polymer particles to cake are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20.
  • the water-absorbing polymer particles produced by the process according to the invention have a moisture content of preferably 0 to 15 wt .-%, particularly preferably 0.2 to 10 wt .-%, most preferably 0.5 to 8 wt .-%, wherein the Moisture content according to the EDANA recommended test method No. WSP 230.2-05 "Moisture Content".
  • the water-absorbing polymer particles prepared according to the method of the invention have a centrifuge retention capacity (CRC) of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 22 g / g, more preferably at least 24 g / g, most preferably at least 26 g / g, up.
  • CRC centrifuge retention capacity
  • the centrifuge retention capacity (CRC) of the water-absorbing polymer particles is usually less than 60 g / g. Centrifuge retention capacity (CRC) will be determined according to the EDANA recommended test method
  • an acrylic acid / sodium acrylate solution was prepared so that the degree of neutralization was 75 mol%.
  • the solids content of the monomer solution was 40.9% by weight.
  • Polyethylene glycol 400 diacrylate (diacrylate starting from a polyethylene glycol having an average molecular weight of 400 g / mol) was used as the polyethylenically unsaturated crosslinker. The amount used was 2 kg of crosslinker per t of monomer solution.
  • the throughput of the monomer solution was 20 t / h.
  • the reaction solution had a temperature of 23.5 ° C. at the inlet.
  • the individual components were metered in the following amounts continuously into a reactor of the type List Contikneter with a volume of 6.3 m 3 (LIST AG, Arisdorf, CH):
  • the monomer solution was rendered inert with nitrogen.
  • the obtained aqueous polymer gel was used for the following experiments.
  • aqueous polymer gel from Example 1 were introduced into a drying pan and dried for 370 minutes at 175 ° C in a convection oven.
  • the drying pan consisted of a 5 cm high stainless steel frame with an internal dimension of 23.7 x 23.7 cm and a replaceable PTFE base plate.
  • the PTFE base plate was square and was inserted precisely into the stainless steel frame.
  • the stainless steel frame was previously sprayed with PTFE spray to avoid possible adhesion.
  • the aqueous polymer gel in the drying pan was weighted with a suitable stainless steel plate before drying to prevent the edges of the polymer gel from bending up during drying.
  • the stainless steel plate had parallel rows of slots with an opening of 2 x 20 mm.
  • the polymer gel shrank three-dimensionally during drying. For the evaluation of the shrinkage only the two-dimensional or area shrinkage was determined. For this purpose, the dried polymer gel was placed as a complete block on a black base, photographed from a distance of 56 cm from the top and recorded the percentage shrinkage via a pixel evaluation.
  • Example 2 The procedure was as in Example 2. 1 .245 g of polymer gel from Example 1 were used and the smooth PTFE bottom plate was replaced by a PTFE bottom plate with 17 rectangular longitudinal grooves. The longitudinal grooves were 5.0 mm deep and 8.0 mm wide.
  • Example 2 The procedure was as in Example 2. There were used 1.246 g of polymer gel from Example 1 and the smooth PTFE bottom plate was replaced by a PTFE bottom plate with 17 rectangular longitudinal and transverse grooves. The longitudinal and transverse channels were each 5.0 mm deep and 8.0 mm wide.
  • the shrinkage was 6%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

L'invention concerne un procédé pour produire des particules de polymères hydroabsorbantes, selon lequel un gel polymère aqueux est séché dans un séchoir à bande transporteuse à circulation d'air sur une bande transporteuse circulante. Selon l'invention, la surface de la bande transporteuse présente une pluralité de parties saillantes ou de parties en creux qui sont appropriées pour limiter la mobilité du gel polymère aqueux dans le sens transversal.
EP11703228A 2010-02-24 2011-02-15 Procédé pour produire des particules de polymères hydroabsorbantes Withdrawn EP2539381A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11703228A EP2539381A1 (fr) 2010-02-24 2011-02-15 Procédé pour produire des particules de polymères hydroabsorbantes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10154521 2010-02-24
PCT/EP2011/052193 WO2011104139A1 (fr) 2010-02-24 2011-02-15 Procédé pour produire des particules de polymères hydroabsorbantes
EP11703228A EP2539381A1 (fr) 2010-02-24 2011-02-15 Procédé pour produire des particules de polymères hydroabsorbantes

Publications (1)

Publication Number Publication Date
EP2539381A1 true EP2539381A1 (fr) 2013-01-02

Family

ID=44279193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11703228A Withdrawn EP2539381A1 (fr) 2010-02-24 2011-02-15 Procédé pour produire des particules de polymères hydroabsorbantes

Country Status (4)

Country Link
EP (1) EP2539381A1 (fr)
JP (1) JP2013520539A (fr)
CN (1) CN102762617A (fr)
WO (1) WO2011104139A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104152A1 (fr) 2010-02-24 2011-09-01 Basf Se Procédé pour produire des particules de polymères hydroabsorbantes
CN104093753A (zh) * 2012-02-06 2014-10-08 巴斯夫欧洲公司 制备吸水聚合物颗粒的方法
KR20150067998A (ko) * 2013-12-11 2015-06-19 한화케미칼 주식회사 고흡수성 수지 제조 장치 및 이를 이용한 고흡수성 수지 제조 방법

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018690B2 (ja) 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
JPS58180233A (ja) 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収剤
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
DE3713601A1 (de) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
US5004761A (en) 1987-07-28 1991-04-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Process for continuously preparing acrylic polymer gel
WO1990015830A1 (fr) 1989-06-12 1990-12-27 Weyerhaeuser Company Polymere hydrocolloidal
CA2038779A1 (fr) 1990-04-02 1991-10-03 Takumi Hatsuda Methode de production d'un granulat fluide stable
DE4020780C1 (fr) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
DK0530438T3 (da) 1991-09-03 1997-08-18 Hoechst Celanese Corp Superabsorberende polymer med forbedrede absorptionsegenskaber
DE4138408A1 (de) 1991-11-22 1993-05-27 Cassella Ag Hydrophile, hochquellfaehige hydrogele
JP3045422B2 (ja) 1991-12-18 2000-05-29 株式会社日本触媒 吸水性樹脂の製造方法
EP0559476B1 (fr) 1992-03-05 1997-07-16 Nippon Shokubai Co., Ltd. Méthode de préparation d'une résine absorbante
GB9208449D0 (en) 1992-04-16 1992-06-03 Dow Deutschland Inc Crosslinked hydrophilic resins and method of preparation
US5574121A (en) 1993-06-18 1996-11-12 Nippon Shokubai Co., Ltd. Process for preparing an absorbent resin crosslinked with a mixture of trimethylolpropane diacrylate and triacrylate
DE19543368C2 (de) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19646484C2 (de) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19807502B4 (de) 1998-02-21 2004-04-08 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen, daraus hergestellte Hydrogele und deren Verwendung
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6503979B1 (en) 1998-02-26 2003-01-07 Basf Aktiengesellschaft Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones
TW460528B (en) 1998-04-28 2001-10-21 Nippon Catalytic Chem Ind Method for production of shaped hydrogel of absorbent resin
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
DE19928448A1 (de) 1999-06-23 2000-12-28 Mahle Filtersysteme Gmbh Ringfilter aus sternförmig gefaltetem Filterbahnmaterial
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
DE19955861A1 (de) 1999-11-20 2001-05-23 Basf Ag Verfahren zur kontinuierlichen Herstellung von vernetzten feinteiligen gelförmigen Polymerisaten
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
WO2002032962A2 (fr) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Procedes et compositions des proteines humaines 80090, 52874, 52880, 63497, et 33425 et leurs utilisations
CN1230410C (zh) 2001-01-12 2005-12-07 施拖克豪森有限公司 生产和提纯(甲基)丙烯酸的连续法
JP2003064112A (ja) * 2001-08-29 2003-03-05 Toagosei Co Ltd プレポリマーの製造方法
US7183360B2 (en) 2001-10-05 2007-02-27 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10211686A1 (de) 2002-03-15 2003-10-02 Stockhausen Chem Fab Gmbh (Meth)Acrylsäurekristall und Verfahren zur Herstellung und Aufreinigung von wässriger (Meth)Acrylsäure
DE10225943A1 (de) 2002-06-11 2004-01-08 Basf Ag Verfahren zur Herstellung von Estern von Polyalkoholen
AU2003238476A1 (en) 2002-06-11 2003-12-22 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated trimethylolpropane
ES2263988T3 (es) 2002-06-11 2006-12-16 Basf Aktiengesellschaft Esteres de (met)acrilato de glicerina polialcoxilada.
DE10247240A1 (de) 2002-10-10 2004-04-22 Basf Ag Verfahren zur Herstellung von Acrylsäure
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
US20080082068A1 (en) * 2006-10-02 2008-04-03 Jian Qin Absorbent articles comprising carboxyalkyl cellulose fibers having permanent and non-permanent crosslinks
ATE474858T1 (de) * 2007-01-16 2010-08-15 Basf Se Herstellung von superabsorbierenden polymeren
CN201258188Y (zh) * 2008-08-22 2009-06-17 袁柏安 一种火电厂燃煤输送装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011104139A1 *

Also Published As

Publication number Publication date
JP2013520539A (ja) 2013-06-06
WO2011104139A1 (fr) 2011-09-01
CN102762617A (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
EP2539382B1 (fr) Procédé pour produire des particules de polymères hydroabsorbantes
EP2922580B1 (fr) Procédé de préparation de super-absorbants à base de matières premières renouvelables
EP2951212B1 (fr) Procédé de production de particules polymeres absorbant l'eau présentant une grande rapidite de gonflement et une capacite de retention apres centrifugation elevee, le lit de gel gonfle presentant simultanement une grande permeabilite
EP2438096B1 (fr) Procédé de production de particules de polymère hydroabsorbantes
EP2731975B1 (fr) Procédé de préparation de particules polymères absorbant l'eau ayant une vitesse de gonflement élevée
EP2291416A1 (fr) Procédé de préparation en continu de particules polymères absorbant l'eau
EP2300060B1 (fr) Procédé de fabrication de particules polymères absorbant l'eau
EP2257574A1 (fr) Procédé pour produire des particules polymères hydrophiles ayant une faible capacité de rétention après centrifugation
EP3140325A1 (fr) Procédé de production de particules de polymères absorbant l'eau
WO2011131526A1 (fr) Procédé de préparation de particules polymères absorbant l'eau
EP2274087B1 (fr) Procédé de production de particules polymères hydro-absorbantes
WO2010133460A1 (fr) Procédé de revêtement pour particules polymères hydrophiles
EP2288645B1 (fr) Procédé pour la post-réticulation thermique continue de surface de particules polymériques absorbant l'eau
EP2300061B1 (fr) Procédé de post-réticulation de surface de particules de polymère hydrophiles
EP2539381A1 (fr) Procédé pour produire des particules de polymères hydroabsorbantes
EP2705075B1 (fr) Procédé de production de particules polymères absorbant l'eau
EP2861633B1 (fr) Procédé de préparation de particules polymères absorbant l'eau
EP2714104B1 (fr) Procédé de production de particules polymères absorbant l'eau
EP2485773B1 (fr) Utilisation de condensat de vapeur de chauffage pour la production de particules polymères qui absorbent l'eau
EP2861631B1 (fr) Procédé de fabrication de particules de polymère absorbant l'eau dans un réacteur de polymérisation comprenant au moins deux arbres rotatifs parallèles
EP3697457B1 (fr) Procédé de production de superabsorbants
EP2485774B1 (fr) Procédé de production en continu de particules polymères qui absorbent l'eau
EP2714103B1 (fr) Procédé de production continue de particules polymères hydroabsorbantes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140724

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GIEGER, THOMAS

Inventor name: WEISMANTEL, MATTHIAS

Inventor name: PFEIFFER, THOMAS

Inventor name: HEIDE, WILFRIED

Inventor name: BROCKMEYER, ANDREAS

Inventor name: BLEI, STEFAN

Inventor name: FUNK, RUEDIGER

Inventor name: BRAIG, VOLKER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141204