EP2538238A1 - Vorrichtung und Verfahren zur Detektion von Rädern - Google Patents

Vorrichtung und Verfahren zur Detektion von Rädern Download PDF

Info

Publication number
EP2538238A1
EP2538238A1 EP11450079A EP11450079A EP2538238A1 EP 2538238 A1 EP2538238 A1 EP 2538238A1 EP 11450079 A EP11450079 A EP 11450079A EP 11450079 A EP11450079 A EP 11450079A EP 2538238 A1 EP2538238 A1 EP 2538238A1
Authority
EP
European Patent Office
Prior art keywords
frequency
measuring beam
vehicle
wheels
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11450079A
Other languages
English (en)
French (fr)
Other versions
EP2538238B1 (de
Inventor
Oliver Nagy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kapsch TrafficCom AG
Original Assignee
Kapsch TrafficCom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kapsch TrafficCom AG filed Critical Kapsch TrafficCom AG
Priority to PL11450079T priority Critical patent/PL2538238T3/pl
Priority to SI201130107T priority patent/SI2538238T1/sl
Priority to ES11450079.6T priority patent/ES2444629T3/es
Priority to EP11450079.6A priority patent/EP2538238B1/de
Priority to PT114500796T priority patent/PT2538238E/pt
Priority to DK11450079.6T priority patent/DK2538238T3/en
Priority to CA2774865A priority patent/CA2774865A1/en
Priority to AU2012203248A priority patent/AU2012203248B2/en
Priority to US13/489,088 priority patent/US8937571B2/en
Priority to CN2012101925123A priority patent/CN102841339A/zh
Priority to ZA2012/04490A priority patent/ZA201204490B/en
Priority to PCT/EP2012/061645 priority patent/WO2012175470A1/de
Priority to SI201230286T priority patent/SI2724175T1/sl
Priority to PT127295376T priority patent/PT2724175E/pt
Priority to US14/127,875 priority patent/US9507014B2/en
Priority to NZ617610A priority patent/NZ617610B2/en
Priority to EP12729537.6A priority patent/EP2724175B1/de
Priority to RU2013156821/07A priority patent/RU2577516C2/ru
Priority to CN201280030339.5A priority patent/CN103620439A/zh
Priority to CA2835530A priority patent/CA2835530A1/en
Priority to ES12729537.6T priority patent/ES2544736T3/es
Priority to DK12729537.6T priority patent/DK2724175T3/en
Priority to AU2012274174A priority patent/AU2012274174B2/en
Priority to HUE12729537A priority patent/HUE025253T2/en
Priority to PL12729537T priority patent/PL2724175T3/pl
Priority to RU2012125816/28A priority patent/RU2012125816A/ru
Priority to CL2012001702A priority patent/CL2012001702A1/es
Publication of EP2538238A1 publication Critical patent/EP2538238A1/de
Application granted granted Critical
Publication of EP2538238B1 publication Critical patent/EP2538238B1/de
Priority to CL2013003644A priority patent/CL2013003644A1/es
Priority to ZA2013/09739A priority patent/ZA201309739B/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present invention relates to a method for detecting wheels of a vehicle, which runs on a road in a direction of travel and the wheels of which project downwardly from the vehicle body and at least partially exposed laterally at the height of the vehicle body.
  • Detecting vehicle wheels is of interest in many applications.
  • the detection of wheels can be detected with certainty the driving of a certain traffic area, for example for border surveillance or to trigger certain actions, such as triggering an alarm, switching on a lighting, opening a cabinet, taking a photo for monitoring purposes, etc.
  • toll rates are based on the number of axles of vehicles, so detecting wheels (wheel axles) can also be an important basis for road toll or parking fee systems.
  • the invention has for its object to provide methods and devices for wheel detection, which are easier to implement than the known solutions.
  • the invention is based on the recognition that the horizontal component of the tangential velocity of a rotating wheel at a certain predetermined height during the entire passage of the wheel - ie when the wheel is "cut” at this height - remains constant and - if the wheel is not straight on Height of its axis is taken - is different from the body speed, so that a simple rectangular pulse detection is sufficient to detect a rotating wheel safely.
  • a bundled measuring beam is used to generate the smallest possible impact or measuring point on the vehicle body or the rotating wheel.
  • a smallest possible impact point or measuring point allows the neglect of other measurement influences, such as occur in the measurement of the lateral projection portion of the vehicle motion vector: A too large impact or measurement point would by the different projection angles to a broadening of the frequency range in the received signal lead.
  • This bundling can be achieved for example by means of a laser beam as a measuring beam or by extreme High-frequency radar beams, preferably in the range of over 70 GHz, as they are used as long-range radar sensors in the vehicle area for collision or Lane Warning:
  • Such high-frequency radar can be strongly bundled with appropriate directional antennas, antenna arrays or radar lenses, so their impact area on the body or The wheel has a diameter of a few centimeters.
  • bundled measuring beam is understood in the present description accordingly a measuring beam having a beam expansion (aperture angle) of a few degrees, preferably ⁇ 1 ° (corresponds to ⁇ 0.00024 sr), so over the distance between Lidar- or Radar device and scanned vehicle impact area is achieved on the vehicle with a maximum diameter in the centimeter range, preferably ⁇ 5 cm, more preferably ⁇ 2 cm.
  • the detection of the rectangular pulse in the recorded reception frequency profile can be achieved in a particularly simple manner by detecting two successive, alternating frequency jumps, between which a substantially constant frequency prevails.
  • the invention provides a device for detecting wheels of a vehicle, which runs on a road in a direction of travel and the wheels of which protrude downward from the vehicle body and at least partially exposed laterally at the height of the vehicle body, and which is characterized by: a Doppler lidar or radar device which emits a focused electromagnetic measurement beam with a known time profile of its frequency onto a target and records the time profile of the frequency of the measurement beam reflected by the target relative to the known course, wherein the measuring beam is oriented from the side of the roadway to a range of predetermined height above the roadway and obliquely to the direction of travel, and a downstream evaluation device which detects a occurring within the period of passage of a vehicle body rectangular pulse in the recorded history as a wheel.
  • a Doppler lidar or radar device which emits a focused electromagnetic measurement beam with a known time profile of its frequency onto a target and records the time profile of the frequency of the measurement beam reflected by the target relative to the known course, wherein the measuring beam is oriented from the
  • the vehicle 1 has wheels 4, which protrude downwards over the body 5 of the vehicle 2 and thereby - at least partially - exposed on the sides of the body in recesses thereof, ie from the side are visible.
  • a Doppler Lidar- or radar device 6 sends a bundled Lidar- or radar measuring beam 7 obliquely to the direction of travel 3 from the side of the lane 1 just above the road surface, so that the measuring beam 7 hits a passing vehicle 1 approximately in the area of its wheels 4 ,
  • the Doppler Lidar- or radar device 6 evaluates, as known in the art, the receiving frequency of the reflected from the vehicle 1 and its wheels 4 measuring beam 7, wherein from the Doppler effect frequency shift between sent and reflected measuring beam 7 the (projected) component v p of the velocity v of the vehicle 1 or the tangential velocity v t ( FIG. Fig. 2 ) of the wheel 4 at the impact point 7 'of the measuring beam 7 can be determined. Subsequently, the wheels 4 of the vehicle 1 can be detected from this information, as will be explained in more detail later.
  • the device 6 is also followed by an evaluation device 8, which carries out the corresponding evaluations of the reception frequency of the measuring beam 7. Lidar / radar device 6 and evaluation device 8 thus together form a device 9 for detecting wheels 4 of a vehicle 1.
  • the Doppler lidar / radar device 6 may be of any type known in the art, whether with a continuous, modulated or pulsed measuring beam 7.
  • a Doppler frequency shift between the natural frequencies (“carrier frequencies”) may be used.
  • a Doppler shift between the pulse rates or modulation frequencies of the emitted and reflected measuring beam 7 can be measured. All such egg gen, carrier, pulse or modulation frequencies are understood by the term used herein "receiving frequency" of the measuring beam 7, i.
  • reception frequency encompasses any frequency of the measuring beam 7 that can be influenced by a Doppler effect.
  • the nature of the measuring beam 7 itself is arbitrary, as long as it is an electromagnetic wave, be it visible light or infrared light as in a lidar device or radio waves (radio waves), especially microwaves, in a radar device.
  • the measuring beam 7 is strongly bundled, so that its impact point 7 'on the body 5 or the wheel 4 an extremely small diameter in the range of a few centimeters, preferred ⁇ 2 cm, has.
  • the bundling of the measuring beam 7 is a bundle of nearly parallel light or radar beams, as may preferably be obtained with a laser.
  • a corresponding bundling can be achieved by using radar waves of very high frequency, preferably over 70 GHz, which have approximately light properties and can be focused like light, for example by radar lenses.
  • Such directional antennas such as antenna arrays and patch antennas with parallel as possible, small-diameter radiation characteristic generates a corresponding radar measuring beam.
  • radars from the automotive sector such as those installed in vehicles as collision and distance warning devices.
  • collimated measuring beams 7 have a bundling or divergence range (aperture angle) of less than 1 ° (corresponding to a solid angle of less than about 0.00024 sr).
  • Fig. 2 shows the scanning progressions of a measuring beam 7 bundled in such a manner that hits the vehicle 1 or its wheels 4 in a substantially point-like manner during passage of the vehicle 1 past the device 9.
  • six different scanning progressions H1 to H6 are shown by way of example; It is understood that only a single scanning curve H1-H6 occurs at a vehicle passage through a bundled measuring beam 7.
  • FIG. 2 shows the reception frequency f of the reflected measuring beam 7 continuously recorded with respect to the scanning progressions H1-H6 by the lidar / radar device 6 over time.
  • the Doppler shift ⁇ f of the reception frequency f with respect to the transmission frequency is proportional to the velocity component v p of the respective sampled parts of the vehicle 1 or wheel 4 Fig. 3
  • Receiving frequency curves E1 - E6 shown are therefore synonymous with speed gradients.
  • the reception frequency curve E2 for each wheel 4 shows a peak 10 of 2vp above the body-rectangular pulse R ,
  • a rectangular pulse 11 which occurs within the period T p of the passage of the vehicle body 5, ie during the body pulse R, the occurrence of a wheel 4 can thus be respectively detected or detected.
  • the wheel pulses 11 are superimposed on the body pulses R and only if they occur during the duration T p of the body pulses R, they indicate a wheel.
  • two successive flanks or jumps 12, 13 occurring in an alternating direction can be detected, between which a substantially constant frequency prevails.
  • the reception frequency profile E5 shows the special case that the measuring beam 7 hits the wheels 4 exactly at the level of their axis, where no tangential speed of the wheel projectable in the direction of the measuring beam 7 is present, so that the wheels 4 are not detectable. This situation should be avoided.
  • the reception frequency characteristic E6 scans the wheels 4 at a height between their underside and their axis and is similar to that of E4, only with reversed changes 11-13. This situation should also be avoided by selecting the scanning height, since this is no longer the case it is ensured that the body 5 is also scanned, ie the body pulse R occurs.
  • the width of the pulse 11 corresponds to the cutting width of the wheel 4 at height h of the respective Abtastverlaufs, and the height of the pulse 11 is directly proportional to the height h.
  • the transmission frequency of the radar / lidar device 6 or measuring beam 7 is constant, i. their time course is a constant course.
  • the device 6 emits a measuring beam 7 with a non-constant transmission frequency response, for example, in the case of frequency hopping method in which the frequency is constantly - after a predetermined or known pattern - changes.
  • the recorded reception frequency profiles E1-E6 are recorded relative to the previously known time profile of the transmission frequency of the measuring beam 7, be it constant or alternating, that is to say. referenced or normalized so that the effect of known transmission frequency characteristics can be compensated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Verfahren zur Detektion von Rädern (4) eines Fahrzeugs (1), das auf einer Fahrbahn (2) in einer Fahrtrichtung fährt und dessen Räder (4) von der Fahrzeugkarosserie (5) nach unten vorragen und auf Höhe der Fahrzeugkarosserie (5) zumindest teilweise seitlich freiliegen, mit den Schritten: Aussenden eines gebündelten elektromagnetischen Messstrahls (7) mit einem bekannten zeitlichen Verlauf seiner Frequenz von der Seite der Fahrbahn (2) her auf einen Bereich vorgegebener Höhe über der Fahrbahn (2) und schräg zur Fahrtrichtung (3), Empfangen des von einem passierenden Fahrzeug (1) reflektierten Messstrahls (7) und Aufzeichnen des zeitlichen Verlaufs seiner Frequenz relativ zum bekannten Verlauf, und Detektieren eines innerhalb des Zeitraums (T p ) der Passage der Fahrzeugkarosserie (5) auftretenden Rechteckimpulses (11) im aufgezeichneten Verlauf als Rad (4).

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Detektion von Rädern eines Fahrzeugs, das auf einer Fahrbahn in einer Fahrtrichtung fährt und dessen Räder von der Fahrzeugkarosserie nach unten vorragen und auf Höhe der Fahrzeugkarosserie zumindest teilweise seitlich freiliegen.
  • Das Detektieren von Fahrzeugrädern ist bei zahlreichen Anwendungen von Interesse. So kann aus dem Erkennen von Rädern mit Sicherheit das Befahren einer bestimmten Verkehrsfläche erkannt werden, beispielsweise zur Grenzüberwachung oder zur Auslösung bestimmter Aktionen, wie das Auslösen eines Alarms, Einschalten einer Beleuchtung, Öffnen eines Schrankens, Aufnehmen eines Fotos zu Überwachungszwecken usw. Auch moderne Verkehrsgebührensysteme stellen häufig zur Gebührenbemessung auf die Achsanzahl von Fahrzeugen ab, sodass das Detektieren von Rädern (Radachsen) auch eine wichtige Grundlage für Straßenmaut- oder Parkgebührensysteme sein kann.
  • Aus der DE 10 2008 037 233 A1 ist es bekannt, Räder eines sich bewegenden Fahrzeugs aufgrund ihrer gegenüber dem restlichen Fahrzeug unterschiedlichen horizontalen Komponente der Tangentialgeschwindigkeit, die eine entsprechende Doppler-Frequenzverschiebung eines Radar-Messstrahls bewirkt, zu detektieren. Dazu wird ein Radar-Geschwindigkeitsmesser verwendet, welcher mit einer Radar-Strahlungskeule den unteren Bereich passierender Fahrzeuge bestrahlt und aus dem zurückerhaltenen Empfangsfrequenzgemisch ein einziges Geschwindigkeitsmesssignal mittelt, das an den Orten der Räder Signalmaxima zeigt. Eine automatische Detektion solcher Maxima in einem Signalverlauf erfordert eine signalanalytische Extremwertsuche und ist dementsprechend aufwändig. Darüber hinaus können z.B. Lücken zwischen einem Zugfahrzeug und seinem Anhänger Signalminima und damit zwischenliegende "falsche" Maxima vortäuschen, welche zu einer fehlerhaften Raddetektion führen.
  • Die Erfindung setzt sich zum Ziel, Verfahren und Vorrichtungen zur Raddetektion zu schaffen, welche einfacher realisierbar sind als die bekannten Lösungen.
  • Dieses Ziel wird in einem ersten Aspekt der Erfindung mit einem Verfahren erreicht, das sich auszeichnet durch die Schritte
  • Aussenden eines gebündelten elektromagnetischen Messstrahls mit einem bekannten zeitlichen Verlauf seiner Frequenz von der Seite der Fahrbahn her auf einen Bereich vorgegebener Höhe über der Fahrbahn und schräg zur Fahrtrichtung,
  • Empfangen des von einem passierenden Fahrzeug reflektierten Messstrahls und Aufzeichnen des zeitlichen Verlaufs seiner Frequenz relativ zum bekannten Verlauf, und
  • Detektieren eines innerhalb des Zeitraums der Passage der Fahrzeugkarosserie auftretenden Rechteckimpulses im aufgezeichneten Verlauf als Rad.
  • Die Erfindung beruht auf der Erkenntnis, dass die Horizontalkomponente der Tangentialgeschwindigkeit eines sich drehenden Rades auf einer bestimmten vorgegebenen Höhe während der gesamten Passage des Rades - d.h. wenn das Rad auf dieser Höhe "geschnitten" wird - konstant bleibt und - soferne das Rad nicht gerade auf Höhe seiner Achse getroffen wird - von der Karosseriegeschwindigkeit verschieden ist, sodass eine einfache Rechteckimpulsdetektion genügt, um ein drehendes Rad sicher zu detektieren. Dazu wird ein gebündelter Messstrahl eingesetzt, um einen möglichst kleinen Auftreff- bzw. Messpunkt auf der Fahrzeugkarosserie bzw. dem sich drehenden Rad zu erzeugen. Ein möglichst kleiner Auftreff- bzw. Messpunkt erlaubt die Vernachlässigung von anderen Messeinflüssen, wie sie beispielsweise bei der Messung des seitlichen Projektions-Anteils des Fahrzeug-Bewegungsvektors auftreten: Ein zu großer Auftreff- bzw. Messpunkt würde durch die unterschiedlichen Projektionswinkel zu einer Verbreiterung des Frequenzbereichs im Empfangssignal führen. Diese Bündelung kann beispielsweise mit Hilfe eines Laserstrahls als Messstrahl erreicht werden oder durch extrem hochfrequente Radarstrahlen, bevorzugt im Bereich von über 70 GHz, wie sie z.B. als Langstrecken-Radarsensoren im Fahrzeugbereich für Kollisions- oder Spurwarnassistenten Verwendung finden: Derartig hochfrequente Radarstrahlen können mit entsprechenden Richtantennen, Antennenarrays oder Radarlinsen stark gebündelt werden, sodass ihr Auftreffbereich auf der Karosserie bzw. dem Rad einen Durchmesser von wenigen Zentimetern hat.
  • Unter dem Begriff "gebündelter" Messstrahl wird in der vorliegenden Beschreibung demgemäß ein Messstrahl verstanden, der eine Strahlaufweitung (Öffnungswinkel) von wenigen Grad hat, bevorzugt < 1° (entspricht < 0,00024 sr), sodass über die Entfernung zwischen Lidar- bzw. Radargerät und abgetastetem Fahrzeug ein Auftreffbereich auf dem Fahrzeug mit einem maximalen Durchmesser im Zentimeterbereich erreicht wird, bevorzugt < 5 cm, besonders bevorzugt < 2 cm.
  • Die Detektion des Rechteckimpulses im aufgezeichneten Empfangsfrequenzverlauf lässt sich auf besonders einfache Weise dadurch erreichen, dass zwei aufeinanderfolgende, abwechselnde Frequenzsprünge, zwischen denen eine im Wesentlichen konstante Frequenz herrscht, detektiert werden.
  • In einem zweiten Aspekt schafft die Erfindung eine Vorrichtung zur Detektion von Rädern eines Fahrzeugs, das auf einer Fahrbahn in einer Fahrtrichtung fährt und dessen Räder von der Fahrzeugkarosserie nach unten vorragen und auf Höhe der Fahrzeugkarosserie zumindest teilweise seitlich freiliegen, und die gekennzeichnet ist durch:
    ein Doppler-Lidar- oder -Radargerät, das einen gebündelten elektromagnetischen Messstrahl mit einem bekannten zeitlichen Verlauf seiner Frequenz auf ein Ziel aussendet und den zeitlichen Verlauf der Frequenz des vom Ziel reflektierten Messstrahls relativ zum bekannten Verlauf aufzeichnet,
    wobei der Messstrahl von der Seite der Fahrbahn her auf einen Bereich vorgegebener Höhe über der Fahrbahn und schräg zur Fahrtrichtung orientiert ist, und
    eine nachgeordnete Auswerteeinrichtung, welche einen innerhalb des Zeitraums der Passage einer Fahrzeugkarosserie auftretenden Rechteckimpuls im aufgezeichneten Verlauf als Rad detektiert.
  • Hinsichtlich der Vorteile der erfindungsgemäßen Vorrichtung wird auf die obigen Ausführungen zum erfindungsgemäßen Verfahren verwiesen.
  • Weitere Merkmale und Vorteile des Verfahrens und der Vorrichtung der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die begleitenden Zeichnungen, in denen zeigt:
    • Fig. 1 eine der Vorrichtung der Erfindung in einer schematischen Perspektivansicht;
    • Fig. 2 mehrere beispielhafte Abtastverläufe eines gebündelten Messstrahls an einem passierenden Fahrzeug;
    • Fig. 3 Zeitdiagramme der ermittelten Empfangsfrequenz- bzw. Geschwindigkeitsverläufe zu den Abtastverläufen von Fig. 2; und
    • Fig. 4 die Geschwindigkeitsverläufe an einem sich drehenden Rad im Detail.
  • In Fig. 1 bewegt sich ein Fahrzeug 1 auf einer Fahrbahn 2 in einer Fahrtrichtung 3. Das Fahrzeug 1 besitzt Räder 4, welche nach unten über die Karosserie 5 des Fahrzeugs 2 vorragen und dabei - zumindest teilweise - an den Seiten der Karosserie in Ausnehmungen derselben freiliegen, d.h. von der Seite her sichtbar sind.
  • Ein Doppler-Lidar- oder Radargerät 6 sendet einen gebündelten Lidar- oder Radar-Messstrahl 7 schräg zur Fahrtrichtung 3 von der Seite der Fahrbahn 1 her knapp über die Fahrbahnoberfläche aus, sodass der Messstrahl 7 ein passierendes Fahrzeug 1 etwa im Bereich seiner Räder 4 trifft.
  • Das Doppler-Lidar- bzw. Radargerät 6 wertet, wie in der Technik bekannt, die Empfangsfrequenz des vom Fahrzeug 1 bzw. seinen Rädern 4 reflektierten Messstrahls 7 aus, wobei aus der dopplereffektbedingten Frequenzverschiebung zwischen ausgesandtem und reflektiertem Messstrahl 7 die in Richtung des Messstrahls 7 liegende (projizierte) Komponente vp der Geschwindigkeit v des Fahrzeugs 1 bzw. der Tangentialgeschwindigkeit vt (Fig. 2) des Rades 4 am Auftreffpunkt 7' des Messstrahls 7 ermittelt werden kann. In weiterer Folge können aus dieser Information die Räder 4 des Fahrzeugs 1 detektiert werden, wie später noch ausführlicher erläutert wird. Zu diesem Zweck ist dem Gerät 6 auch eine Auswerteeinrichtung 8 nachgeschaltet, welche die entsprechenden Auswertungen der Empfangsfrequenz des Messstrahls 7 vornimmt. Lidar/Radar-Gerät 6 und Auswerteeinrichtung 8 bilden somit zusammen eine Vorrichtung 9 zur Detektion von Rädern 4 eines Fahrzeugs 1.
  • Das Doppler-Lidar/Radar-Gerät 6 kann an sich von jeder in der Technik bekannten Art sein, sei es mit einem kontinuierlichen, modulierten oder einem gepulsten Messstrahl 7. Bei einem kontinuierlichen Messstrahl 7 kann eine Dopplerfrequenzverschiebung zwischen den Eigenfrequenzen ("Trägerfrequenzen") des ausgesandten und des reflektierten Messstrahl 7 z.B. durch Interferenzmessung ermittelt werden. Bei einem gepulsten oder modulierten Messstrahl kann eine Dopplerverschiebung zwischen den Impulsraten bzw. Modulationsfrequenzen des ausgesandten und des reflektierten Messstrahls 7 gemessen werden. Alle solche Ei gen-, Träger-, Impuls- oder Modulationsfrequenzen werden unter dem hier verwendeten Begriff der "Empfangsfrequenz" des Messstrahls 7 verstanden, d.h. der Begriff Empfangsfrequenz umfasst jedwede durch einen Dopplereffekt beeinflussbare Frequenz des Messstrahls 7.
  • Grundsätzlich ist auch die Natur des Messstrahls 7 selbst beliebig, solange es sich um eine elektromagnetische Welle handelt, sei es sichtbares Licht oder Infrarotlicht wie bei einem Lidargerät oder Radiowellen (Funkwellen), insbesondere Mikrowellen, bei einem Radargerät.
  • Der Messstrahl 7 ist stark gebündelt, sodass sein Auftreffpunkt 7' auf der Karosserie 5 bzw. dem Rad 4 einen äußerst geringen Durchmesser im Bereich von einigen Zentimetern, bevorzugt < 2 cm, hat. Je nach Entfernung des Geräts 6 von der Fahrbahn 2 sind dazu bestimmte Anforderungen an die Bündelung des Messstrahls 7 zu stellen: Im Idealfall ist der Messstrahl 7 ein Bündel nahezu paralleler Licht- bzw. Radarstrahlen, wie es bevorzugt mit einem Laser erhalten werden kann. Doch auch bei einem Radar-Messstrahl lässt sich eine entsprechende Bündelung erreichen, indem Radarwellen sehr hoher Frequenz, bevorzugt über 70 GHz, verwendet werden, welche annähernd Lichteigenschaften haben und sich wie Licht bündeln lassen, z.B. durch Radarlinsen. Auch der Einsatz von Richtantennen, z.B. Antennenarrays und Patchantennen mit möglichst paralleler, kleindurchmessriger Abstrahlcharakteristik erzeugt einen entsprechenden Radar-Messstrahl. Besonders geeignet sind hierfür Radargeräte aus dem Automobilbereich, wie sie z.B. in Fahrzeugen als Kollisions- und Abstandswarngeräte eingebaut werden. Solche gebündelten Messstrahlen 7 haben eine Bündelung bzw. einen Divergenz- oder Auffächerungsbereich (Öffnungswinkel) von weniger als 1° (entspricht einem Raumwinkel von weniger als ca. 0,00024 sr).
  • Fig. 2 zeigt die Abtastverläufe eines derart gebündelten Messstrahls 7, der im wesentlichen punktförmig auf das Fahrzeug 1 bzw. dessen Räder 4 auftrifft, während der Vorbeifahrt (Passage) des Fahrzeugs 1 an der Vorrichtung 9. Zu Erläuterungszwecken sind beispielhaft sechs unterschiedliche Abtastverläufe H1 bis H6 gezeigt; es versteht sich, dass durch einen gebündelten Messstrahl 7 bei einer Fahrzeugpassage jeweils nur ein einziger Abtastverlauf H1 - H6 auftritt.
  • Fig. 3 zeigt die zu den Abtastverläufen H1 - H6 vom Lidar/Radar-Gerät 6 fortlaufend erfasste Empfangsfrequenz f des reflektierten Messstrahls 7 über der Zeit. Die Dopplerverschiebung Δf der Empfangsfrequenz f gegenüber der Sendefrequenz ist proportional zur Geschwindigkeitskomponente vp der jeweils abgetasteten Teile des Fahrzeugs 1 bzw. Rades 4. Die in Fig. 3 dargestellten Empfangsfrequenzverläufe E1 - E6 sind daher gleichbedeutend mit Geschwindigkeitsverläufen.
  • Aus dem Empfangsfrequenzverlauf E1 von Fig. 3 ist ersichtlich, dass beim Abtastverlauf H1, welcher die Karosserie 5 des Fahrzeugs 1 außerhalb der Räder 4 trifft, während Dauer Tp der Karossieriepassage eine weitgehend konstante Empfangsfrequenzverschiebung Δf des Messstrahls 7 und damit Geschwindigkeitskomponente vp gemessen wird, welche sich als Rechteckimpuls R im Empfangsfrequenzverlauf äußert.
  • Für den Abtastverlauf H2, welcher die Räder 4 an ihrer obersten Stelle berührt, wo ihre Tangentialgeschwindigkeit vt sich zur Fahrzeuggeschwindigkeit v addiert, zeigt der Empfangsfrequenzverlauf E2 für jedes Rad 4 eine Spitze ("peak") 10 von 2vp über dem Karosserie-Rechteckimpulses R.
  • Wenn der Messstrahl 7 die Räder 4 auf einer Höhe zwischen der Radachse und der Radoberseite schneidet, wie bei den Abtastverläufen an H3 und H4, wird bei der Passage eines Rades 4 entsprechend der Projektion vp seiner Tangentialgeschwindigkeit vt auf die Messstrahlrichtung eine sich gegenüber dem Karosserie-Impuls R nochmals sprunghaft verändernde Dopplerverschiebung und damit Empfangsfrequenz bzw. Geschwindigkeit gemessen, wie durch die Rechteck-Impulse 11 der Verläufe E3 und E4 veranschaulicht. Jeder Impuls 11 umfasst jeweils eine ansteigende Flanke 12 und eine darauffolgende abfallende Flanke 13, d.h. zwei aufeinanderfolgende abwechselnde Frequenz-"Sprünge".
  • Aus der Detektion eines Rechteckimpulses 11, der innerhalb des Zeitraums Tp der Passage der Fahrzeugkarosserie 5, d.h. während des Karosserie-Impulses R auftritt, kann somit jeweils das Auftreten eines Rades 4 erkannt bzw. detektiert werden. Die Rad-Impulse 11 sind den Karosserie-Impulsen R superponiert und nur dann, wenn sie während der Dauer Tp der Karosserie-Impulse R auftreten, zeigen sie ein Rad an. Als besonders einfaches Detektionskriterium für einen Rad-Rechteckimpuls 11 können zwei aufeinanderfolgende in abwechselnder Richtung auftretende Flanken bzw. Sprünge 12, 13 detektiert werden, zwischen denen eine im Wesentlichen konstante Frequenz herrscht.
  • Der Empfangsfrequenzverlauf E5 zeigt den Sonderfall, dass der Messstrahl 7 die Räder 4 genau auf Höhe ihrer Achse trifft, wo keine in Richtung des Messstrahls 7 projizierbare Tangentialgeschwindigkeit des Rades vorhanden ist, sodass die Räder 4 nicht detektierbar sind. Diese Situation sollte vermieden werden.
  • Der Empfangsfrequenzverlauf E6 tastet die Räder 4 auf einer Höhe zwischen ihrer Unterseite und ihrer Achse ab und ähnelt jenem von E4, nur mit umgekehrten Änderungen 11 - 13. Auch diese Situation sollte durch entsprechende Wahl der Abtasthöhe vermieden werden, da hier nicht mehr in jedem Fall sichergestellt ist, dass auch die Karosserie 5 abgetastet wird, d.h. der Karosserie-Impuls R auftritt.
  • Fig. 4 zeigt analytisch das Ausmaß des Versatzes 11 bei der Passage eines Rades 4 in Abhängigkeit der Höhe h des jeweiligen Abtastverlaufes H1 bis H6 gegenüber der Radachse A, beispielsweise am Abtastverlauf H4. Sei R der Radius des Rades 4 und r ein beliebiger Radius innerhalb des Rades 4, dann ist die Tangentialgeschwindigkeit vt(r) auf einem Radius r proportional diesem Radius r, u.zw. gemäß v t r = r R v t
    Figure imgb0001
  • Die in Fahrtrichtung 3 liegende Horizontalkomponente vth(r) der Tangentialgeschwindigkeit vt(r) unter einem Winkel α ist eine Sinus-Projektion entsprechend v th r = r R v t sin α
    Figure imgb0002
  • Mit sin α = h r
    Figure imgb0003

    ergibt sich die Tangentialgeschwindigkeits-Horizontalkomponente vth(r) damit zu v th r = v t h R
    Figure imgb0004
  • Die Tangentialgeschwindigkeits-Horizontalkomponente vth(r) des Abtastverlaufs und - während das Rad 4 abgetastet wird - über diese Höhe h konstant.
  • Die Breite des Impulses 11 entspricht der Schnittbreite des Rades 4 auf Höhe h des jeweiligen Abtastverlaufs, und die Höhe des Impulses 11 ist direkt proportional der Höhe h.
  • Bislang wurde davon ausgegangen, dass die Sendefrequenz des Radar/Lidar-Geräts 6 bzw. Messstrahls 7 konstant ist, d.h. ihr zeitlicher Verlauf ein konstanter Verlauf ist. Es ist jedoch auch möglich, dass das Gerät 6 einen Messstrahl 7 mit einem zeitlich nicht-konstanten Sendefrequenzverlauf aussendet, beispielsweise im Falle von Frequency-Hopping-Verfahren, bei denen die Frequenz ständig - nach einem vorgegebenen bzw. bekannten Muster - wechselt. Die aufgezeichneten Empfangsfrequenzverläufe E1 - E6 werden relativ zu dem vorbekannten zeitlichen Verlauf der Sendefrequenz des Messstrahls 7 - sei er konstant oder wechselnd - aufgezeichnet, d.h. auf diesen referenziert bzw. normiert, so dass der Effekt von bekannten Sendefrequenzverläufen kompensiert werden kann.
  • Die Erfindung ist demgemäß nicht auf die dargestellten Ausführungsformen beschränkt, sondern umfasst alle Varianten und Modifikationen, die in den Rahmen der angeschlossenen. Ansprüche fallen.

Claims (8)

  1. Verfahren zur Detektion von Rädern (4) eines Fahrzeugs (1), das auf einer Fahrbahn (2) in einer Fahrtrichtung fährt und dessen Räder (4) von der Fahrzeugkarosserie (5) nach unten vorragen und auf Höhe der Fahrzeugkarosserie (5) zumindest teilweise seitlich freiliegen, gekennzeichnet durch die Schritte:
    Aussenden eines gebündelten elektromagnetischen Messstrahls (7) mit einem bekannten zeitlichen Verlauf seiner Frequenz von der Seite der Fahrbahn (2) her auf einen Bereich vorgegebener Höhe über der Fahrbahn (2) und schräg zur Fahrtrichtung (3),
    Empfangen des von einem passierenden Fahrzeug (1) reflektierten Messstrahls (7) und Aufzeichnen des zeitlichen Verlaufs seiner Frequenz relativ zum bekannten Verlauf, und
    Detektieren eines innerhalb des Zeitraums (Tp) der Passage der Fahrzeugkarosserie (5) auftretenden Rechteckimpulses (11) im aufgezeichneten Verlauf als Rad (4).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Messstrahl (7) ein Radarstrahl im Frequenzbereich über 70 GHz ist, der mit Hilfe einer Richtantenne gebündelt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Messstrahl (7) ein Laserstrahl ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Rechteckimpuls (11) durch Detektieren zweier aufeinanderfolgender abwechselnder Frequenzsprünge (12, 13), zwischen denen eine im wesentlichen konstante Frequenz herrscht, detektiert wird.
  5. Vorrichtung zur Detektion von Rädern (4) eines Fahrzeugs (1), das auf einer Fahrbahn (2) in einer Fahrtrichtung (3) fährt und dessen Räder (4) von der Fahrzeugkarosserie (5) nach unten vorragen und auf Höhe der Fahrzeugkarosserie (5) zumindest teilweise seitlich freiliegen, gekennzeichnet durch
    ein Doppler-Lidar- oder -Radargerät (6), das einen gebündelten elektromagnetischen Messstrahl (7) mit einem bekannten zeitlichen Verlauf seiner Frequenz auf ein Ziel aussendet und den zeitlichen Verlauf der Frequenz des vom Ziel reflektierten Messstrahls (7) relativ zum bekannten Verlauf aufzeichnet,
    wobei der Messstrahl (7) von der Seite der Fahrbahn (2) her auf einen Bereich vorgegebener Höhe über der Fahrbahn (2) und schräg zur Fahrtrichtung (3) orientiert ist, und
    eine nachgeordnete Auswerteeinrichtung (8), welche einen innerhalb des Zeitraums (Tp) der Passage einer Fahrzeugkarosserie (5) auftretenden Rechteckimpuls (11) im aufgezeichneten Verlauf als Rad (4) detektiert.
  6. Vorrichtung nach Anspruch 5 mit einem Doppler-Radargerät (6), dessen Messtrahl (7) ein Radarstrahl im Frequenzbereich über 70 GHz ist und das eine Richtantenne zur Bündelung des Radarstrahls besitzt.
  7. Vorrichtung nach Anspruch 5 mit einem Doppler-Lidargerät (6), dessen Messstrahl (7) ein Laserstrahl ist.
  8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Auswerteeinrichtung (8) den Rechteckimpuls (11) anhand zweier aufeinanderfolgender abwechselnder Frequenzsprünge (12, 13), zwischen denen eine im wesentlichen konstante Frequenz herrscht, detektiert.
EP11450079.6A 2011-06-21 2011-06-21 Vorrichtung und Verfahren zur Detektion von Rädern Not-in-force EP2538238B1 (de)

Priority Applications (29)

Application Number Priority Date Filing Date Title
PL11450079T PL2538238T3 (pl) 2011-06-21 2011-06-21 Urządzenie i sposób wykrywania kół pojazdu
SI201130107T SI2538238T1 (sl) 2011-06-21 2011-06-21 Naprava in postopek za zaznavanje koles
ES11450079.6T ES2444629T3 (es) 2011-06-21 2011-06-21 Dispositivo y procedimiento para detectar ruedas
EP11450079.6A EP2538238B1 (de) 2011-06-21 2011-06-21 Vorrichtung und Verfahren zur Detektion von Rädern
PT114500796T PT2538238E (pt) 2011-06-21 2011-06-21 Método e dispositivo para a deteção de rodas
DK11450079.6T DK2538238T3 (en) 2011-06-21 2011-06-21 Devices and method for detection of wheels
CA2774865A CA2774865A1 (en) 2011-06-21 2012-04-24 Method and apparatus for detecting wheels
AU2012203248A AU2012203248B2 (en) 2011-06-21 2012-05-31 Method and apparatus for detecting wheels
US13/489,088 US8937571B2 (en) 2011-06-21 2012-06-05 Method and apparatus for detecting vehicle wheels
CN2012101925123A CN102841339A (zh) 2011-06-21 2012-06-12 用于检测车轮的方法和设备
ZA2012/04490A ZA201204490B (en) 2011-06-21 2012-06-18 Method and apparatus for detecting wheels
AU2012274174A AU2012274174B2 (en) 2011-06-21 2012-06-19 Method and device for detecting a rotating wheel
PT127295376T PT2724175E (pt) 2011-06-21 2012-06-19 Método e dispositivo para a deteção de uma roda em rotação
US14/127,875 US9507014B2 (en) 2011-06-21 2012-06-19 Method and device for detecting a rotating wheel
PCT/EP2012/061645 WO2012175470A1 (de) 2011-06-21 2012-06-19 Verfahren und vorrichtung zur detektion eines sich drehenden rades
EP12729537.6A EP2724175B1 (de) 2011-06-21 2012-06-19 Verfahren und vorrichtung zur detektion eines sich drehenden rades
RU2013156821/07A RU2577516C2 (ru) 2011-06-21 2012-06-19 Способ и устройство для обнаружения вращающегося колеса
CN201280030339.5A CN103620439A (zh) 2011-06-21 2012-06-19 用于对转动的车轮进行检测的方法和设备
CA2835530A CA2835530A1 (en) 2011-06-21 2012-06-19 Method and device for detecting a rotating wheel
ES12729537.6T ES2544736T3 (es) 2011-06-21 2012-06-19 Procedimiento y dispositivo para detectar una rueda en rotación
DK12729537.6T DK2724175T3 (en) 2011-06-21 2012-06-19 Method and device for detection of a rotating wheels
SI201230286T SI2724175T1 (sl) 2011-06-21 2012-06-19 Postopek in naprava za zaznavanje vrtečega se kolesa
HUE12729537A HUE025253T2 (en) 2011-06-21 2012-06-19 Procedure and apparatus for detecting rotating wheel
PL12729537T PL2724175T3 (pl) 2011-06-21 2012-06-19 Sposób i urządzenie do wykrywania obracającego się koła
NZ617610A NZ617610B2 (en) 2011-06-21 2012-06-19 Method and device for detecting a rotating wheel
RU2012125816/28A RU2012125816A (ru) 2011-06-21 2012-06-20 Способ и устройство детектирования колес
CL2012001702A CL2012001702A1 (es) 2011-06-21 2012-06-21 Metodo y aparato para detectar las ruedas de un vehiculo que esta circulando en una carretera en una direccion de viaje y cuyas ruedas se proyectan hacia abajo de la carroceria del vehiculo y esta expuesto al menos parcialmente lateralmente en el nivel de la carroceria del vehiculo, donde el aparato comprende un dispositivo doppler lidar o radar
CL2013003644A CL2013003644A1 (es) 2011-06-21 2013-12-19 Metodo para detectar una rueda girando de un vehiculo que esta viajando en un camino en una direccion de desplazamiento que comprende los pasos de emitir un haz de medicion electromagnetico que tiene una progresion temporal conocida de su frecuencia, recibir un haz medicion reflejado y registrar la progresion temporal de sus frecuencias relativas; y aparato.
ZA2013/09739A ZA201309739B (en) 2011-06-21 2013-12-23 Method and device for detecting a rotating wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11450079.6A EP2538238B1 (de) 2011-06-21 2011-06-21 Vorrichtung und Verfahren zur Detektion von Rädern

Publications (2)

Publication Number Publication Date
EP2538238A1 true EP2538238A1 (de) 2012-12-26
EP2538238B1 EP2538238B1 (de) 2013-11-13

Family

ID=44681462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11450079.6A Not-in-force EP2538238B1 (de) 2011-06-21 2011-06-21 Vorrichtung und Verfahren zur Detektion von Rädern

Country Status (13)

Country Link
US (1) US8937571B2 (de)
EP (1) EP2538238B1 (de)
CN (1) CN102841339A (de)
AU (1) AU2012203248B2 (de)
CA (1) CA2774865A1 (de)
CL (1) CL2012001702A1 (de)
DK (1) DK2538238T3 (de)
ES (1) ES2444629T3 (de)
PL (1) PL2538238T3 (de)
PT (1) PT2538238E (de)
RU (1) RU2012125816A (de)
SI (1) SI2538238T1 (de)
ZA (1) ZA201204490B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440765A (zh) * 2013-08-30 2013-12-11 深圳市捷顺科技实业股份有限公司 一种车辆检测方法及装置
CN111043977A (zh) * 2018-10-15 2020-04-21 黑拉有限责任两合公司 用于确定第一车辆相对于第二车辆的相对参数的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2682779T1 (sl) * 2012-07-06 2015-01-30 Kapsch Trafficcom Ag Postopek za zaznavanje kolesa vozila
EP2910968B1 (de) * 2014-02-19 2017-01-25 Kapsch TrafficCom AG Vorrichtung und Verfahren zur Detektion einer Radachse eines Fahrzeugs
US10274593B2 (en) * 2015-10-02 2019-04-30 Panasonic Corporation Object detection device and object detection method
JP6650344B2 (ja) * 2015-10-02 2020-02-19 パナソニック株式会社 物体検出装置及び物体検出方法
CN106183662B (zh) * 2016-07-08 2018-10-30 深圳市元征科技股份有限公司 轮胎状态检测方法及装置
CN112888961A (zh) * 2018-10-12 2021-06-01 京瓷株式会社 电子设备、电子设备的控制方法以及电子设备的控制程序
CN113049846A (zh) * 2019-12-27 2021-06-29 伟摩有限责任公司 用于测量拖车车轮转速的系统和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037233A1 (de) 2008-08-09 2010-03-25 Rtb Gmbh & Co. Kg Fahrzeugklassifikator mit einer Einrichtung zur Erkennung eines zollenden Rades

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2577516C2 (ru) * 2011-06-21 2016-03-20 Капш Траффикком Аг Способ и устройство для обнаружения вращающегося колеса

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037233A1 (de) 2008-08-09 2010-03-25 Rtb Gmbh & Co. Kg Fahrzeugklassifikator mit einer Einrichtung zur Erkennung eines zollenden Rades

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440765A (zh) * 2013-08-30 2013-12-11 深圳市捷顺科技实业股份有限公司 一种车辆检测方法及装置
CN111043977A (zh) * 2018-10-15 2020-04-21 黑拉有限责任两合公司 用于确定第一车辆相对于第二车辆的相对参数的方法

Also Published As

Publication number Publication date
CL2012001702A1 (es) 2014-11-14
US8937571B2 (en) 2015-01-20
EP2538238B1 (de) 2013-11-13
ZA201204490B (en) 2013-02-27
PL2538238T3 (pl) 2014-04-30
DK2538238T3 (en) 2014-02-17
AU2012203248A1 (en) 2013-01-17
ES2444629T3 (es) 2014-02-26
RU2012125816A (ru) 2013-12-27
PT2538238E (pt) 2014-02-11
AU2012203248B2 (en) 2014-01-16
CN102841339A (zh) 2012-12-26
SI2538238T1 (sl) 2014-03-31
US20120326913A1 (en) 2012-12-27
CA2774865A1 (en) 2012-12-21

Similar Documents

Publication Publication Date Title
EP2538238B1 (de) Vorrichtung und Verfahren zur Detektion von Rädern
EP2698648B1 (de) Verfahren zur Klassifizierung von fahrenden Fahrzeugen
EP2724175B1 (de) Verfahren und vorrichtung zur detektion eines sich drehenden rades
EP2538239B1 (de) Verfahren und Vorrichtung zur Detektion von Rädern
EP2910968B1 (de) Vorrichtung und Verfahren zur Detektion einer Radachse eines Fahrzeugs
EP2936196B1 (de) Verfahren zum einstellen einer detektionsschwelle für ein empfangssignal eines frequenzmodulations-dauerstrich-radarsensors eines kraftfahrzeugs abhängig vom rauschpegel, radarsensor und kraftfahrzeug
EP1478942B1 (de) Radarsensor für kraftfahrzeuge mit einer auf die strassenoberfläche gerichteten antennennebenkeule
EP1728097B1 (de) Radarsystem f r kraftfahrzeuge
DE4140716C2 (de) System zum Erfassen und Bestimmen der Entfernung eines Zielfahrzeugs
EP2682778B1 (de) Verfahren zur Detektion eines Rades eines Fahrzeugs
EP2391908B1 (de) Verfahren zur detektion von niederschlag mit einem radarortungsgerät für kraftfahrzeuge
EP2537044B1 (de) Fahrbahnintegrierter radarsensor
EP2698646A1 (de) Verfahren zur Klassifizierung von fahrenden Fahrzeugen durch Verfolgung einer Positionsgröße des Fahrzeuges
EP2804014B1 (de) Vorrichtung und Verfahren zum Bestimmen eines Fahrzeugmerkmals
DE112010005194T5 (de) Hinderniserfassungsvorrichtung
DE102009000469A1 (de) Verfahren zur Detektion von Niederschlag mit einem Radarortungsgerät für Kraftfahrzeuge
EP2682779B1 (de) Verfahren zur Detektion eines Rades eines Fahrzeugs
WO2017080787A1 (de) Seitliche leitplankenerkennung über einen abstandssensor im kfz
EP3809157B1 (de) Entfernungsmessender optoelektronischer sensor und verfahren zur erfassung eines zielobjekts
EP0636900A2 (de) Verfahren zur Geschwindigkeitsmessung und Klassifizierung von Fahrzeugen mittels eines Verkehrsradargerätes
DE10316313A1 (de) System zur automatischen Abstandsregelung
WO2008006654A1 (de) Radarsensor mit mehreren sende- und empfangskanälen
EP2878971B1 (de) Verfahren zur Geschwindigkeitsmessung eines sich auf einer Straße bewegenden Kraftfahrzeuges
DE102006005501A1 (de) Ortungssystem für Kraftfahrzeuge
EP2743723A1 (de) Verfahren zur Detektion eines Rades eines Fahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 13/58 20060101ALI20130218BHEP

Ipc: G08G 1/04 20060101ALI20130218BHEP

Ipc: G08G 1/01 20060101ALI20130218BHEP

Ipc: G01S 13/91 20060101ALI20130218BHEP

Ipc: G01S 7/41 20060101AFI20130218BHEP

Ipc: G01S 17/88 20060101ALI20130218BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 640786

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011001616

Country of ref document: DE

Effective date: 20140109

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140129

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20140214

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2444629

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140226

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20131113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 15641

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001616

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E019968

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011001616

Country of ref document: DE

Effective date: 20140814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140621

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20160620

Year of fee payment: 6

Ref country code: CH

Payment date: 20160620

Year of fee payment: 6

Ref country code: GB

Payment date: 20160621

Year of fee payment: 6

Ref country code: NO

Payment date: 20160623

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160620

Year of fee payment: 6

Ref country code: HU

Payment date: 20160615

Year of fee payment: 6

Ref country code: DK

Payment date: 20160620

Year of fee payment: 6

Ref country code: SI

Payment date: 20160526

Year of fee payment: 6

Ref country code: PT

Payment date: 20160620

Year of fee payment: 6

Ref country code: PL

Payment date: 20160609

Year of fee payment: 6

Ref country code: BE

Payment date: 20160620

Year of fee payment: 6

Ref country code: SK

Payment date: 20160620

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160628

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170621

Year of fee payment: 7

Ref country code: FR

Payment date: 20170621

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170622

Year of fee payment: 7

Ref country code: SE

Payment date: 20170620

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170725

Year of fee payment: 7

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170630

Ref country code: NO

Ref legal event code: MMEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171221

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 15641

Country of ref document: SK

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20180213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170622

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170622

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011001616

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180622

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 640786

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180621

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180622