WO2008006654A1 - Radarsensor mit mehreren sende- und empfangskanälen - Google Patents

Radarsensor mit mehreren sende- und empfangskanälen Download PDF

Info

Publication number
WO2008006654A1
WO2008006654A1 PCT/EP2007/055772 EP2007055772W WO2008006654A1 WO 2008006654 A1 WO2008006654 A1 WO 2008006654A1 EP 2007055772 W EP2007055772 W EP 2007055772W WO 2008006654 A1 WO2008006654 A1 WO 2008006654A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
signal
channels
radar sensor
radar
Prior art date
Application number
PCT/EP2007/055772
Other languages
English (en)
French (fr)
Inventor
Joerg Hilsebecher
Wolf Steffens
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2008006654A1 publication Critical patent/WO2008006654A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the invention relates to a radar sensor having a plurality of channels fed from a common RF source for transmitting and receiving RF signals.
  • Such radar sensors are used for example in so-called ACC systems (Adaptive Cruise Control) for motor vehicles and then serve to measure the distances and relative speeds of preceding vehicles, so that an adaptive
  • the plurality of channels may be directional channels, each of which is assigned one or more antenna elements which differ from channel to channel in their main emission direction and / or main sensitivity direction, thereby enabling angle-resolving radar location. This makes it possible, for example, to differentiate between vehicles ahead on their own lane and vehicles on secondary lanes.
  • the antenna elements may, for example, be individual antennas or patches, which are arranged offset with respect to the optical axis of a common radar lens.
  • the antenna elements may also be so-called phased Arrays of several sub-elements act, which transmission signals are supplied with such a phase relationship that results in the desired directional characteristic by interference.
  • the same antenna elements or optionally also separate antenna elements can be used.
  • EPfI 380 854 A2 describes a static FMCW multi-beam radar.
  • the term "static" in this context means that the directions of the radar beams generated by the individual antenna elements are fixed in time, so that by parallel evaluation of the signals supplied by the individual antenna elements, the entire
  • Tracking angle range of the angle-resolving radar sensor can be monitored simultaneously.
  • the frequency of the transmission signals supplied to the individual antenna elements is ramped.
  • the signal received by each individual antenna element is mixed with the transmission signal supplied to this antenna element.
  • an intermediate frequency signal whose frequency indicates the frequency difference between the transmitted signal and the received signal. This frequency difference is due to the Doppler effect of the relative speed of the located object dependent, but is due to the modulation of the transmitted signal from the
  • the intermediate frequency signals are digitized and recorded over a period of time approximately equal to a single frequency ramp.
  • the signal curve thus obtained is then decomposed into its frequency spectrum by fast Fourier transformation.
  • each located object is distinguished by a single peak whose frequency position depends on the distance and the relative speed of the object in question. If the transmitted signals are modulated alternately with frequency ramps with different ramp slopes, for example with a rising and a falling ramp, then for a single object, the distance and the spectra obtained for the two ramps can be determined from the position of the peaks Determine the relative speed of the object uniquely. If several objects are located simultaneously, a modulation of the transmitted signals with at least one further frequency ramp is required for an unambiguous assignment of the peaks to the respective objects.
  • a spectrum is obtained on each frequency ramp in which the located objects emerge in the form of a peak.
  • the amplitude and phase of the intermediate frequency signal for example at the apex of the peak, is somewhat different from channel to channel.
  • the differences in amplitude and phase, collectively referred to as complex amplitude, result from the different directional characteristics of the
  • Antenna elements and are dependent on the azimuth angle of the object in question.
  • the complex amplitude shows a characteristic dependence on the azimuth angle, which can be represented in an antenna diagram.
  • the distance and the relative velocity of the object enter the complex amplitude only in the form of a phase factor which is the same for all channels.
  • the azimuth angle of the object in question can be determined. To put it simply, the azimuth angle is sought, in which the complex amplitudes measured in each case at the peak of the peak best fit the associated antenna diagrams.
  • the same frequency-modulated transmission signal is supplied to all the antenna elements.
  • the same antenna elements are used for transmission and reception (monostatic antenna concept).
  • Each antenna element then receives a radar echo not only from the signal it has sent itself, but also from the signals transmitted by the other antenna elements. All these signals, provided they originate from the same object, have the same frequency and are superimposed on the receiving antenna element to form a sum signal.
  • interference can lead to an extensive extinction of the signal in a channel, so that the accuracy and reliability of the radar location is impaired.
  • the different channels serve to optimize the location for long, medium and short ranges.
  • one channel may operate as a long-range sensor whose antenna element or elements produce a relatively sharply focused radar lobe, while in another channel a more fanned radar lobe is created to detect a larger tracking angle range in the nearer approach of the vehicle.
  • the antenna elements differ in this case primarily in their areal extent and thus in their numerical aperture.
  • the object of the invention is therefore to provide a radar sensor with several simultaneously active channels, are avoided in the unwanted interference effects between the different channels.
  • This object is achieved in a radar sensor of the type mentioned in that at least one of the channels transmitter side has a modulator that modulates the signal supplied by the RF source signal in a specific manner for the channel in question.
  • the signals are distinguishable from one another at the receiving end by their channel-specific modulation so that the undesired interference and blooming effects are suppressed.
  • all but one channel should have channel-specific modulation. It is useful if the received signals are shifted by the modulation in a frequency band that does not overlap or as little as possible with the corresponding frequency bands for the other channels.
  • Evaluation of the received signal or derived therefrom intermediate frequency signals is then considered only the frequency band relevant for the relevant channel, and the evaluation system is then blind to the signals from other channels because these signals lie in other frequency bands.
  • the channel-specific modulation is added to the ramp-shaped modulation, which can already take place in the RF source and thus is the same for all channels.
  • the position of the signal generated by a radar object in the frequency spectrum is, as explained above, dependent on the relative speed of the object and therefore at certain relative speeds also in the so-called DC range of the spectrum, ie in the frequency range in the vicinity of the frequency zero , be shifted or even in the range of negative frequencies.
  • Signal components in the DC range can not be detected or evaluated with conventional FMCW radar sensors.
  • the conventional FMCW method since only the absolute value of the real part of the
  • Figure 1 is a block diagram of a radar sensor according to an embodiment of the
  • FIG. 2 is a sketch for explaining the operation of the radar sensor according to Figure 1;
  • FIG. 3 shows an antenna diagram for a channel of the radar sensor according to FIG. 1;
  • Figure 4 is a frequency / time diagram for modulated signals transmitted in different channels of the radar sensor of Figure 1;
  • FIG. 5 shows a spectrum of a radar signal received in one of the channels
  • Figure 6 is a sketch illustrating the structure of an angle-resolving radar sensor according to another embodiment of the invention.
  • FIG. 7 shows a circuit diagram for the radar sensor according to FIG. 6.
  • FIG. 1 shows a block diagram of an FMCW radar sensor with two simultaneously activatable channels 10 and 12.
  • a bistatic antenna concept is realized, i. h., Each of the two channels 10, 12 is assigned a respective transmitting antenna 14 and a separate receiving antenna 16.
  • the transmitting antenna 14 of the channel 10 is supplied from a serving as an RF source local oscillator 18, a ramp-shaped modulated high-frequency signal whose Frequency in the order of 76 GHz.
  • the signal transmitted by the transmitting antenna 14 is received by the receiving antenna 16 of this channel after reflection on a radar target, not shown, and supplied to a mixer 20. There, the received signal is mixed with the signal supplied by the oscillator 18, and it is thus generated an intermediate frequency signal Zl whose frequency is the
  • Frequency difference between the transmitted signal and the received signal corresponds.
  • the intermediate frequency signal Zl is then evaluated in an evaluation circuit, not shown here in the usual way for FMCW radar systems.
  • the channel 12 has a similar construction as the channel 10, but here a modulator 22 is inserted between the local oscillator 18 and the transmitting antenna 12, which is the
  • Signal of the oscillator 18 is modulated with a provided by a local oscillator 24 modulation signal.
  • the radiated from the transmitting antenna 14 in the channel 12 signal is shifted to a higher frequency band.
  • a demodulator 26 is inserted, which also receives the modulation signal generated by the local oscillator 24 and at the signal received by the antenna performs an inverse to the modulation of the modulator in demodulation before the signal in the mixer 20 is mixed with the signal of the oscillator 20 and thus an intermediate frequency signal Z2 is generated.
  • FIG. 2 symbolically shows the transmission antennas belonging to the two channels 10 and 12, which are designated here for better distinction with 14-10 and 14-12.
  • Both antennas like the associated receive antennas 16 (not shown in FIG. 2), are located in the focal plane of a microwave lens 28, which focuses the emitted radar radiation and focuses the received radiation back onto the receive antenna.
  • the transmitting antenna 14-10 is extended flat and therefore generates a relatively sharply focused radar beam 30-10 for locating objects that are within a relatively narrow angular range, but at a relatively large distance.
  • the transmitting antenna 14-12 has a smaller extension and generates a further fanned Radarkeulen 30-12, with the lower distance range objects can be located, which are within a larger angular range.
  • the radar sensor for example, mounted on the front of a motor vehicle and directed forward, so can be located with the Radarkeule 30-10 vehicles ahead, especially those in their own lane, while with the Radarkeule 30-12 and the edge development, z. As crash barriers, parking vehicles on the roadside and the like can be located.
  • the receiving antennas 16, not shown in FIG. 2, are dimensioned and arranged analogously to the transmitting antennas 14.
  • the different antennas may be arranged offset from one another in front of the common microwave lens 28 in the direction perpendicular to the plane of the drawing in FIG. Due to the different
  • the transmitting antenna 14-12 is arranged interleaved in the transmission antenna then consisting of several elements 14-10.
  • FIG. 2 also shows an object 32 which is located in the overlapping region of both radar beams 30 - 10 and 30 - 12 and is thus located in both channels of the radar sensor.
  • Figure 3 shows an antenna diagram for the channel 12, which is responsible for the localization in the vicinity.
  • the curve 34 drawn as a solid line indicates the amplitude of the radar echo received by an object as a function of the azimuth angle j of the object.
  • this curve has a relatively flat maximum at the azimuth angle 0, and it falls approximately symmetrically on both sides, with relatively weak side lobes, relatively gently, so that even at higher azimuth angles still high Sensitivity is achieved.
  • the receiving antenna 16 for the channel 12 receives not only the signal sent from the transmitting antenna 14-12 and reflected at the object 32, but also the reflected signal transmitted from the transmitting antenna 14-10 belonging to the other channel.
  • FIG. 4 shows the signals transmitted by the transmit antennas 14 of both channels in a frequency / time diagram.
  • the curve 38-10 gives the frequency response of the im
  • Channel 10 transmitted signal which is identical to the signal supplied by the local oscillator 18. It can be seen that the frequency is modulated in a ramp, with an alternating sequence of rising and falling ramps with the magnitude of the same slope.
  • the curve 38-12 indicates the signal transmitted in the channel 12. This signal has the same ramped modulation as that of the oscillator 18 is derived, but in addition due to the effect of the modulator 22 is shifted in frequency. This frequency shift Df is so large that the frequency band in which the frequency of the signal transmitted in the channel 12 varies does not overlap with the corresponding frequency band for the channel 10.
  • FIG. 5 shows the spectrum of the object constellation shown in FIG.
  • the dashed line curve 40 in Figure 5 indicates the spectrum in the event that the channel 10 would be turned off, so you received only the signal sent from the transmitting antenna 14-12 signal.
  • This spectrum has a peak at a frequency fl, which is determined by the distance and the relative speed of the object 32.
  • fl the frequency of the transmitted signal by Df, but this frequency increase by the demodulator 26 is reversed, so that the frequency of the intermediate frequency signal Z2 only the difference between the frequency of the received signal and the frequency of the local oscillator 18 is dependent.
  • the curve 42 drawn in FIG. 5 as a thin continuous line indicates the spectrum which would be obtained if only the signal from the transmitting antenna 14-10 were received in the channel 10. However, this signal has not been modulated on the transmitter side, but nevertheless, when received in the channel 12, is demodulated by the demodulator 26 and thereby reduced in frequency by Df. Consequently, the corresponding peak in the spectrum is now at a frequency f2, outside the range F of the spectrum used for the signal evaluation.
  • Signal strength in channel 10 is higher than in channel 12.
  • FIG. 6 shows an example of a four-channel angle-resolving monostatic radar sensor.
  • the channels are here designated 1, 2, 3 and 4 and symbolized by mutually angularly offset radar beams 46.
  • Each radar beam is generated by an antenna 48, for example a patch antenna, which serves both to transmit and to receive.
  • the antennas 48 are offset from the optical axis of the microwave lens
  • the radar beams 46 are radiated in slightly different directions.
  • Figure 7 shows a circuit diagram for the radar sensor according to Figure 6.
  • the local oscillator 18 generates a ramp-shaped modulated high-frequency signal, the - optionally after modulation - the antennas
  • the signal of the oscillator 18 is re-modulated via a circulator 50 fed to the antenna 48.
  • the circulator 50 is used in a known manner to separate the transmitted signal from the signal received via the antenna 48, so that only the received signal reaches the mixer 20 for generating the intermediate frequency signal.
  • a diode 52 is arranged in each case in the line leading from the oscillator 18 to the circulator 50, which serves as a modulator.
  • the bias voltage (bias) of the diode 52 is modulated here by means of an auxiliary oscillator 54.
  • Series capacitances 56 in front of and behind the diode 52 ensure that the bias current only from the local oscillator 54 flows to a NF mass 58, while the RF signal without NF component reaches the circulator 50.
  • a diode 60 serving as a demodulator is arranged in each of the channels 2, 3 and 4.
  • Associated series capacitances and an MF ground are arranged in a manner analogous to that of the diode 52 in accordance with the polarity direction of the diode 60.
  • the bias for the diodes 52 and 60 is generated by the same local oscillator 54, so that the demodulation corresponds exactly to the modulation in the respective channel.
  • auxiliary oscillators 54 associated with the channels 2, 3 and 4 have different frequencies from each other, so that the modulation and demodulation are each channel-specific.
  • the modulation effected by the diode 52 is predominantly an amplitude modulation by nature, which, however, leads to sidebands in the frequency spectrum.
  • the majority of the oscillator energy flows in the first sideband, so that the antenna 48, for example in
  • a relatively strong RF signal can be supplied, which is shifted from the frequency of the local oscillator 18 by a channel-specific amount Df.

Abstract

Radarsensor mit mehreren aus einer gemeinsamen HF-Quelle (18) gespeisten Kanälen (1, 5 2, 3, 4; 10, 12) zum Senden und Empfangen von HF-Signalen, dadurch gekennzeichnet, daß zumindest einer der Kanäle (2, 3, 4; 12) senderseitig einen Modulator (22; 52) aufweist, der das von der HF-Quelle (18) gelieferte Signal in einer für den betreffenden Kanal spezifischen Weise moduliert.

Description

Beschreibung
Titel
Radarsensor mit mehreren Sende- und Empfangskanälen
Stand der Technik
Die Erfindung betrifft einen Radarsensor mit mehreren aus einer gemeinsamen HF- Quelle gespeisten Kanälen zum Senden und Empfangen von HF-Signalen.
Solche Radarsensoren werden beispielsweise in sogenannten ACC-Systemen (Adaptive Cruise Control) für Kraftfahrzeuge eingesetzt und dienen dann dazu, die Abstände und Relativgeschwindigkeiten vorausfahrender Fahrzeuge zu messen, so daß eine adaptive
Abstands- und Geschwindigkeitsregelung ermöglicht wird.
Bei den mehreren Kanälen kann es sich beispielsweise um Richtungskanäle handeln, denen jeweils ein oder mehrere Antennenelemente zugeordnet sind, die sich in ihrer Haupt- Abstrahlrichtung und/oder Haupt-Empfindlichkeitsrichtung von Kanal zu Kanal unterscheiden, so daß eine winkelauflösende Radarortung ermöglicht wird. Dies erlaubt es beispielsweise, zwischen vorausfahrenden Fahrzeugen auf der eigenen Spur und Fahrzeugen auf Nebenspuren zu unterscheiden.
Bei den Antennenelementen kann es sich beispielsweise um einzelne Antennen oder Patches handeln, die versetzt in bezug auf die optische Achse einer gemeinsamen Radarlinse angeordnet sind. Die Richtcharakteristik jedes Antennenelements, speziell die
Richtung der größten Strahlenintensität bzw. der größten Empfindlichkeit, ist dann durch den Versatz des betreffenden Elements gegenüber der optischen Achse gegeben. Wahlweise kann es sich bei den Antennenelementen jedoch auch um sogenannte Phased Arrays aus mehreren Unterelementen handeln, denen Sendesignale mit einer solchen Phasenbeziehung zugeführt werden, daß sich durch Interferenz die gewünschte Richtcharakteristik ergibt. Zum Senden und zum Empfang der Radarsignale können dieselben Antennenelemente oder wahlweise auch getrennte Antennenelemente benutzt werden.
Als Beispiel für einen winkelauflösenden Radarsensor beschreibt EPfI 380 854 A2 ein statisches FMCW-Mehrstrahlradar. Der Begriff "statisch" bedeutet in diesem Zusammenhang, daß die Richtungen der von den einzelnen Antennenelementen erzeugten Radarstrahlen zeitlich unveränderlich sind, so daß durch parallele Auswertung der von den einzelnen Antennenelementen gelieferten Signale der gesamte
Ortungswinkelbereich des winkelauflösenden Radarsensors simultan überwacht werden kann.
Bei einem FMCW-Radar (Frequency Modulated Continuous Wave) ist die Frequenz der den einzelnen Antennenelementen zugeführten Sendesignale rampenförmig moduliert. Das von jedem einzelnen Antennenelement empfangene Signal wird mit dem Sendesignal gemischt, das diesem Antennenelement zugeführt wird. Auf diese Weise erhält man ein Zwischenfrequenzsignal, dessen Frequenz den Frequenzunterschied zwischen dem gesendeten Signal und dem empfangenen Signal angibt. Dieser Frequenzunterschied ist aufgrund des Doppler-Effekts von der Relativgeschwindigkeit des georteten Objekts abhängig, ist jedoch aufgrund der Modulation des gesendeten Signals auch von der
Signallaufzeit und damit vom Abstand des Objekts abhängig.
Die Zwischenfrequenzsignale werden digitalisiert und über eine Zeitspanne, die etwa einer einzelnen Frequenzrampe entspricht, aufgezeichnet. Der so erhaltene Signalverlauf wird dann durch Schnelle Fouriertransformation in sein Frequenzspektrum zerlegt. In diesem Spektrum zeichnet sich jedes geortete Objekt durch einen einzelnen Peak ab, dessen Frequenzlage vom Abstand und der Relativgeschwindigkeit des betreffenden Objekts abhängig ist. Wenn die gesendeten Signale abwechselnd mit Frequenzrampen mit unterschiedlichen Rampensteigungen moduliert werden, beispielsweise mit einer steigenden und einer fallenden Rampe, so lassen sich für ein einzelnes Objekt aus der Lage der Peaks in den für die beiden Rampen erhaltenen Spektren der Abstand und die Relativgeschwindigkeit des Objekts eindeutig bestimmen. Wenn mehrere Objekte gleichzeitig geortet werden, so ist für eine eindeutige Zuordnung der Peaks zu den jeweiligen Objekten eine Modulation der gesendeten Signale mit mindestens einer weiteren Frequenzrampe erforderlich.
Für jeden Kanal erhält man auf jeder Fequenzrampe ein Spektrum, in dem sich die georteten Objekte in der Form eines Peaks abzeichnen. Für die zu einem einzelnen Objekt gehörenden Peaks ist dabei die Amplitude und Phase des Zwischenfrequenzsignals, beispielsweise am Scheitel des Peaks, von Kanal zu Kanal etwas verschieden. Die Unterschiede in der Amplitude und Phase, zusammenfassend auch als komplexe Amplitude bezeichnet, resultieren aus den unterschiedlichen Richtcharakteristiken der
Antennenelemente und sind vom Azimutwinkel des betreffenden Objekts abhängig.
Für jedes einzelne Antennenelement zeigt die komplexe Amplitude eine charakteristische Abhängigkeit vom Azimutwinkel, die sich in einem Antennendiagramm darstellen läßt. Der Abstand und die Relativgeschwindigkeit des Objekts geht in die komplexe Amplitude nur in der Form eines Phasenfaktors ein, der für alle Kanäle gleich ist. Durch
Vergleich der komplexen Amplituden in den verschiedenen Kanälen läßt sich daher der Azimutwinkel des betreffenden Objekts bestimmen. Vereinfacht gesagt wird dazu der Azimutwinkel gesucht, bei dem die jeweils am Scheitel des Peaks gemessenen komplexen Amplituden am besten zu den zugehörigen Antennendiagrammen passen.
Bei dem bekannten Radarsensor wird sämtlichen Antennenelmenten dasselbe frequenzmodulierte Sendesignal zugeführt. Als Beispiel kann angenommen werden, daß zum Senden und für den Empfang dieselben Antennenelemente verwendet werden (monostatisches Antennenkonzept). Jedes Antennenelement empfängt dann ein Radarecho nicht nur von dem von ihm selbst gesendeten Signal, sondern auch von den von den anderen Antennenelementen gesendeten Signalen. All diese Signale haben, sofern sie von demselben Objekt stammen, dieselbe Frequenz und überlagern sich am empfangenden Antennenelement zu einem Summensignal. Dabei kann es bei bestimmten Objektkonstellationen durch Interferenz zu einer weitgehenden Auslöschung des Signals in einem Kanal kommen, so daß die Genauigkeit und Zuverlässigkeit der Radarortung beeinträchtigt wird. - A -
Bei anderen bekannten Radarsensoren dienen die verschieden Kanäle dazu, die Ortung für lange, mittlere und kurze Reichweiten optimieren. Beispielsweise kann ein Kanal als langreichweitiger Sensor arbeiten, dessen Antennenelement oder -demente eine relativ scharf gebündelte Radarkeule erzeugen, während in einem anderen Kanal eine weiter aufgefächerte Radarkeule erzeugt wird, um im näheren Vorfeld des Fahrzeugs einen größeren Ortungswinkelbereich zu erfassen. Die Antennenelemente unterscheiden sich in diesem Fall vornehmlich in ihrer flächigen Ausdehnung und damit in ihrer numerischen Apertur.
Auch bei Radarsensoren dieses Typs kann es durch Interferenzeffekte zu einer unerwünschten Signalunterdrückung oder -auslöschung kommen. Besonders problematisch ist hier, daß die Gefahr besteht, daß in einem Kanal mit verhältnismäßig geringer Signalstärke das empfangende Signal von einem Signal eines anderen Kanals überstrahlt wird und deshalb nicht mehr detektierbar ist.
Eine mögliche Lösung dieses Problems besteht darin, daß die verschiedenen Kanäle im Zeitmultiplex betrieben werden, so daß zu jedem Zeitpunkt nur ein einziger Kanal sendet und empfängt. Bei Radarsensoren für Kraftfahrzeuge hat dies jedoch den Nachteil, daß das Verkehrsgeschehen nur mit entsprechend geringerer zeitlicher Auflösung verfolgt werden kann.
Offenbarung der Erfindung
Aufgabe der Erfindung ist es deshalb, einen Radarsensor mit mehreren gleichzeitig aktiven Kanälen zu schaffen, bei dem unerwünschte Interferenzeffekte zwischen den verschiedenen Kanälen vermieden werden.
Diese Aufgabe wird bei einem Radarsensor der eingangs genannten Art dadurch gelöst, daß mindestens einer der Kanäle senderseitig einen Modulator aufweist, der das von der HF-Quelle gelieferte Signal in einer für den betreffenden Kanal spezifischen Weise moduliert.
Dadurch, daß das gesendete Signal in jedem Kanal in einer spezifischen Weise moduliert wird, durch Frequenzmodulation, Amplitudenmodulation und/oder Phasenmodulation, sind die Signale empfangsseitig anhand ihrer kanalspezifischen Modulation voneinander unterscheidbar, so daß die unerwünschten Interferenz- und Überstrahlungseffekte unterdrückt werden.
Vorteilhafte Ausgestaltungen und Weiterbildungen sind in den Unteransprüchen angegeben.
Um bei einem Radarsensor mit drei oder mehr Kanälen eine vollständige Kanaltrennung zu erreichen, sollten alle Kanäle bis auf einen eine kanalspezifische Modulation aufweisen. Dabei ist es zweckmäßig, wenn die empfangenen Signale durch die Modulation in ein Frequenzband verschoben werden, das mit den entsprechenden Frequenzbändern für die anderen Kanäle nicht oder möglichst wenig überlappt. Bei der
Auswertung der empfangenen Signals bzw. der daraus abgeleiteten Zwischenfrequenzsignale wird dann jeweils nur das für den betreffenden Kanal relevante Frequenzband betrachtet, und das Auswertungssystem ist dann für die Signale aus anderen Kanälen gleichsam blind, weil diese Signale in anderen Frequenzbändern liegen. Bei einem FMCW-Radar kommt die kanalspezifische Modulation zu der rampenförmigen Modulation hinzu, die bereits in der HF-Quelle erfolgen kann und somit für alle Kanäle dieselbe ist.
Wenn die Signale durch die kanalspezifische Modulation zu höheren Frequenzen verschoben werden, so läßt sich wahlweise noch der folgende vorteilhafte Nebeneffekt ausnutzen:
Die Lage des von einem Radarobjekt erzeugten Signals im Frequenzspektrum ist, wie oben erläutert wurde, von der Relativgeschwindigkeit des Objekts abhängig und kann daher bei bestimmten Relativgeschwindigkeiten auch in den sogenannten DC-Bereich des Spektrums, d. h., in den Frequenzbereich in der Umgebung der Frequenz null, verschoben sein oder gar in den Bereich negativer Frequenzen. Signalanteile im DC-Bereich können mit herkömmlichen FMCW-Radarsensoren nicht detektiert bzw. nicht ausgewertet werden. Positive und negative Frequenzen unterscheiden sich in dem komplexen Zwischenfrequenzsignal Z = [Aje1 durch das Vorzeichen der Frequenz f. Da jedoch beim herkömmlichen FMCW- Verfahren letztlich nur der Absolutbetrag des Realteils des
Zwischenfrequenzsignals ausgewertet wird, kann zwischen positiven und negativen Frequenzen nicht unterschieden werden, so daß es zu einer Verfälschung des Meßergebnisses kommen kann, wenn nennenswerte Signalanteile im negativen Spektralbereich liegen. Durch die erfindungsgemäße Modulation und Frequenzverschiebung läßt sich nun erreichen, daß das gesamte Signal oder zumindest ein größerer Anteil desselben in dem auswertbaren positiven Frequenzbereich liegt.
Anderseits ist es auch möglich, die empfangenen Signale wieder kanalspezifisch zu demodulieren und sie so in das ursprüngliche Fequenzband zurückzutransformieren. Die Auswertung kann dann in allen Kanälen in demselben Frequenzband erfolgen. Die Kanaltrennung bleibt dabei erhalten, weil nur für den eigenen Kanal die Demodulation invers zu der senderseitigen Modulation ist. Kanalfremde Signale werden daher durch die Demodulation in andere Frequenzbänder verschoben. Kurze Beschreibung der Zeichnungen
Ausfuhrungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Figur 1 ein Blockdiagramm eines Radarsensors gemäß einer Ausfuhrungsform der
Erfindung;
Figur 2 eine Skizze zur Erläuterung der Funktionsweise des Radarsensors nach Figur 1 ;
Figur 3 ein Antennendiagramm für einen Kanal des Radarsensors nach Figur 1 ;
Figur 4 ein Frequenz/Zeit-Diagramm für modulierte Signale, die in verschiedenen Kanälen des Radarsensors nach Figur 1 gesendet werden;
Figur 5 ein Spektrum eines in einem der Kanäle empfangenen Radarsignals;
Figur 6 eine Skizze zur Illustration des Aufbaus eines winkelauflösenden Radarsensors gemäß einem anderen Ausführungsbeispiel der Erfindung; und
Figur 7 eine Schaltskizze für den Radarsensor nach Figur 6.
In Figur 1 ist als Blockdiagramm ein FMCW-Radarsensor mit zwei gleichzeitig aktivierbaren Kanälen 10 und 12 dargestellt. Im gezeigten Beispiel ist ein bistatisches Antennenkonzept verwirklicht, d. h., jedem der beiden Kanäle 10, 12 ist je eine Sendeantenne 14 und eine separate Empfangsantenne 16 zugeordnet.
Der Sendeantenne 14 des Kanals 10 wird von einem als HF-Quelle dienenden lokalen Oszillator 18 ein rampenförmig moduliertes Hochfrequenzsignal zugeführt, dessen Frequenz in der Größenordnung von 76 GHz liegt. Das von der Sendeantenne 14 gesendete Signal wird nach Reflektion an einem nicht gezeigten Radarziel von der Empfangsantenne 16 dieses Kanals empfangen und einem Mischer 20 zugeführt. Dort wird das empfangene Signal mit dem vom Oszillator 18 gelieferten Signal gemischt, und es wird so ein Zwischenfrequenzsignal Zl erzeugt, dessen Frequenz dem
Frequenzunterschied zwischen dem gesendeten Signal und dem empfangenen Signal entspricht. Das Zwischenfrequenzsignal Zl wird dann in einer hier nicht gezeigten Auswerteschaltung in der für FMCW-Radarsysteme üblichen Weise ausgewertet.
Der Kanal 12 hat einen ähnlichen Aufbau wie der Kanal 10, doch ist hier zwischen dem lokalen Oszillator 18 und der Sendeantenne 12 ein Modulator 22 eingefügt, der das
Signal des Oszillators 18 mit einem von einem Hilfsoszillator 24 bereitgestellten Modulationssignal moduliert. Hierdurch wird das von der Sendeantenne 14 im Kanal 12 abgestrahlte Signal in ein höheres Frequenzband verschoben.
Im gezeigten Beispiel ist außerdem im Kanal 12 zwischen der Empfangsantenne 16 und dem Mischer 20 ein Demodulator 26 eingefügt, der ebenfalls das vom Hilfsoszillator 24 erzeugte Modulationssignal erhält und der an dem von der Antenne empfangenen Signal eine zu der Modulation des Modulators inverse Demodulation vornimmt, bevor das Signal im Mischer 20 mit dem Signal des Oszillators 20 gemischt wird und so ein Zwischenfrequenzsignal Z2 erzeugt wird.
Die Funktionsweise des oben beschriebenen Radarsensors soll nun anhand der Figuren 2 bis 5 näher erläutert werden.
In Figur 2 sind symbolisch die zu den beiden Kanälen 10 und 12 gehörenden Sendeantennen gezeigt, die hier zur besseren Unterscheidung mit 14-10 und 14-12 bezeichnet sind. Beide Antennen liegen ebenso wie die zugehörigen Empfangsantennen 16 (in Figur 2 nicht gezeigt) in der Brennebene einer Mikrowellenlinse 28, die die emittierte Radarstrahlung bündelt und die empfangene Strahlung wieder auf die Empfangsantenne fokussiert. Die Sendeantenne 14-10 ist flächig ausgedehnt und erzeugt daher eine relativ scharf gebündelte Radarkeule 30-10 zur Ortung von Objekten, die sich innerhalb eines relativ schmalen Winkelbereiches, jedoch in relativ großem Abstand befinden. Die Sendeantenne 14-12 hat eine kleinere Ausdehnung und erzeugt eine weiter aufgefächerte Radarkeule 30-12, mit der im unteren Abstandsbereich Objekte geortet werden können, die innerhalb eines größeren Winkelbereiches liegen. Wenn der Radarsensor beispielsweise an der Frontpartie eines Kraftfahrzeugs montiert und nach vorn gerichtet ist, so können mit der Radarkeule 30-10 vorausfahrende Fahrzeuge, insbesondere solche in der eigenen Fahrspur, geortet werden, während mit der Radarkeule 30-12 auch die Randbebauung, z. B. Leitplanken, parkende Fahrzeuge am Straßenrand und dergleichen geortet werden können.
Die in Figur 2 nicht gezeigten Empfangsantennen 16 sind analog zu den Sendeantennen 14 dimensioniert und angeordnet. Beispielsweise können die verschiedenen Antennen in der zur Zeichenebene in Figur 2 senkrechten Richtung gegeneinander versetzt vor der gemeinsamen Mikrowellenlinse 28 angeordnet sein. Aufgrund der unterschiedlichen
Ausdehnung der Antennen ist es jedoch auch denkbar, daß beispielsweise die Sendeantenne 14-12 verschachtelt in der dann aus mehreren Elementen bestehenden Sendeantenne 14-10 angeordnet ist.
In Figur 2 ist weiterhin ein Objekt 32 gezeigt, das sich im Überlappungsbereich beider Radarkeulen 30-10 und 30-12 befindet und somit in beiden Kanälen des Radarsensors geortet wird.
Figur 3 zeigt ein Antennendiagramm für den Kanal 12, der für die Ortung im Nahbereich zuständig ist. Die als durchgezogene Linie eingezeichnete Kurve 34 gibt die Amplitude des von einem Objekt empfangenen Radarechos in Abhängigkeit vom Azimutwinkel j des Objekts an. Entsprechend der weit aufgefächerten Form der Radarkeule 30-12 hat diese Kurve ein relativ flaches Maximum bei dem Azimutwinkel 0, und sie fällt nach beiden Seiten annähernd symmetrisch, mit relativ schwach ausgebildeten Nebenkeulen, verhältnismäßig sanft ab, so daß auch bei größeren Azimutwinkeln noch eine hohe Empfindlichkeit erreicht wird. Die Empfangsantenne 16 für den Kanal 12 empfängt allerdings nicht nur das von der Sendeantenne 14-12 gesendete und an dem Objekt 32 reflektierte Signal, sondern auch das reflektierte Signal, das von der zum anderen Kanal gehörenden Sendeantenne 14-10 gesendet wurde. Wenn das von der Sendeantenne 14-12 gesendete Signal nicht mit Hilfe des Modulators 22 moduliert wäre, hätten die aus beiden Kanälen empfangenen Signale dieselbe Frequenz, so daß es zwischen ihnen zu Interferenz käme, wie in Figur 3 schematisch durch die gestrichelt eingezeichnete Kurve 36 dargestellt wird. Man erkennt, daß unter diesen Umständen bei bestimmten Azimutwinkeln, im gezeigten Beispiel etwa bei j = ± 18°, zu einer weitgehenden Signalauslöschung käme. Ein Objekt, das sich bei einem dieser Azimutwinkel befände, könnte folglich im Kanal 12 nicht geortet werden, weil das Radarecho so schwach wäre, daß es vor dem Rauschhintergrund nicht mehr auszumachen wäre. Die aus den beiden Kanälen 10 und 12 erhaltene Information wäre somit inkonsistent, was die Bewertung der Verkehrssituation erheblich erschweren und leicht zu Fehlinterpretationen führen könnte.
Entsprechende Störeffekte würden selbstverständlich auch im Kanal 10 auftreten, da dessen Empfangsantenne auch das von der Sendeantenne 14-12 empfangene Signal empfängt und es aufgrund der Frequenzgleicheit auch zwischen diesen Signalen zu Interferenzen käme. Eine weitgehende Auslöschung eines Signals in diesem Kanal könnte dann zu der Fehleinschätzung führen, daß sich das nur im Kanal 12 geortete Objekt außerhalb der Radarkeule 30-10 (am Straßenrand) befindet und somit kein relevantes Hindernis darstellt.
Durch die Modulation des im Kanal 12 gesendeten Signals werden Störungen und Fehler diese Art wirksam vermieden.
In Figur 4 sind die von den Sendeantennen 14 beider Kanäle gesendeten Signale in einem Frequenz/Zeit-Diagramm dargestellt. Die Kurve 38-10 gibt den Frequenzverlauf des im
Kanal 10 gesendeten Signals an, das mit dem vom lokalen Oszillator 18 gelieferten Signal identisch ist. Man erkennt, daß die Frequenz rampenförmig moduliert ist, mit einer abwechselnden Folge von steigenden und fallenden Rampen mit dem Betrage nach gleicher Steigung. Die Kurve 38-12 gibt das im Kanal 12 gesendete Signal an. Dieses Signal weist die gleiche rampenförmige Modulation auf, das es ebenfalls vom Oszillator 18 abgeleitet ist, ist jedoch zusätzlich aufgrund der Wirkung des Modulators 22 in seiner Frequenz verschoben. Diese Frequenzverschiebung Df ist so groß, daß das Fequenzband, in dem die Frequenz des im Kanal 12 gesendeten Signals variiert, nicht mit dem entsprechenden Frequenzband für den Kanal 10 überlappt.
In Figur 5 ist für die in Figur 2 gezeigte Objektkonstellation das Spektrum des
Zwischenfrequenzsignals Z2 dargestellt, das man im Kanal 12 erhält. Da das Objekt 32 von beiden Radarkeulen 30-10 und 30-12 getroffen wird und die Empfangsantenne 16 des Kanals 12 die reflektierten Signale empfängt, die von beiden Sendeantennen 14-10 und 14-12 gesendet wurden, muß sich das Objekt 32 im Spektrum durch zwei Peaks abzeichnen. Aufgrund der Modulation im Kanal 12 sind diese Peaks um Df gegeneinander verschoben.
Die gestrichelt eingezeichnete Kurve 40 in Figur 5 gibt das Spektrum für den Fall an, daß der Kanal 10 abgeschaltet wäre, man also nur das von der Sendeantenne 14-12 gesendete Signal empfinge. Dieses Spektrum hat einen Peak bei einer Frequenz fl , die durch den der Abstand und die Relativgeschwindigkeit des Objekts 32 bestimmt ist. Zwar wurde durch den Modulator 22 die Frequenz des gesendeten Signals um Df erhöht, doch wird diese Frequenzerhöhung durch den Demodulator 26 wieder rückgängig gemacht, so daß die Frequenz des Zwischenfrequenzsignals Z2 nur von dem Unterschied zwischen der Frequenz des empfangenen Signals und der Frequenz des lokalen Oszillators 18 abhängig ist.
Die in Figur 5 als dünnen durchgehende Linie eingezeichnete Kurve 42 gibt das Spektrum an, das man erhielte, wenn nur das Signal von der Sendeantenne 14-10 im Kanal 10 empfangen würde. Dieses Signal ist senderseitig nicht moduliert worden, wird aber gleichwohl, wenn es im Kanal 12 empfangen wird, durch den Demodulator 26 demoduliert und dadurch in seiner Frequenz um Df herabgesetzt. Folglich liegt der entsprechende Peak im Spektrum nun bei einer Frequenz f2, außerhalb des für die Signalauswertung benutzten Bereichs F des Spektrums.
Tatsächlich wird im Kanal 12 das Summensignal empfangen, das in Figur 5 durch die fett eingezeichnete Kurve 44 repräsentiert wird und einer Überlagerung der Kurven 42 und 40 entspricht. Da jedoch der Signalanteil, der vom Kanal 10 herrührt (Kurve 42) im auswertbaren Bereich F des Spektrums praktisch gleich 0 ist, ist die Kurve 44 in diesem auswertbaren Bereich nahezu mit der Kurve 40 identisch, d. h., das empfangene und zur Auswertung herangezogenen Signal wird durch das gleichzeitig aus dem anderen Kanal 10 empfangene Signal nicht verfälscht oder überdeckt, obgleich im gezeigten Beispiel die
Signalstärke im Kanal 10 höher ist als im Kanal 12.
Es versteht sich, daß das oben erläuterte Prinzip analog auch bei Radarsensoren mit drei oder mehr Kanälen anwendbar, mit denen drei oder mehr Radarkeulen erzeugt werden, die an einen Bereich großer Abstände, einen Bereich mittlerer Abstände bzw. einen Bereich kleiner Abstände angepaßt sind.
Figur 6 zeigt ein Beispiel eines winkelauflösenden monostatischen Radarsensors mit vier Kanälen. Die Kanäle sind hier mit 1 , 2, 3 und 4 bezeichnet und durch gegeneinander winkelversetzte Radarstrahlen 46 symbolisiert. Jeder Radarstrahl wird von einer Antenne 48, beispielsweise einer Patch- Antenne erzeugt, die sowohl zum Senden als auch zum Empfang dient. Die Antennen 48 sind versetzt zur optischen Achse der Mikrowellenlinse
28 angeordnet, so daß die Radarstrahlen 46 in leicht unterschiedliche Richtungen abgestrahlt werden.
Figur 7 zeigt eine Schaltskizze für den Radarsensor gemäß Figur 6. Wie im zuvor beschriebenen Ausführungsbeispiel erzeugt der lokale Oszillator 18 ein rampenförmig moduliertes Hochfrequenzsignal, das - gegebenenfalls nach Modulation - den Antennen
48 zugeführt wird. Im Kanal 1 wird das Signal des Oszillators 18 ummoduliert über einen Zirkulator 50 in die Antenne 48 eingespeist. Der Zirkulator 50 dient in bekannter Weise dazu, das gesendete Signal von dem über die Antenne 48 empfangenen Signal zu trennen, so daß nur das empfangene Signal an den Mischer 20 zur Erzeugung des Zwischenfrequenzsignals gelangt.
In den Kanälen 2, 3, und 4 ist jeweils in der Leitung, die vom Oszillator 18 zum Zirkulator 50 führt, eine Diode 52 angeordnet, die als Modulator dient. Speziell wird hier die Vorspannung (Bias) der Diode 52 mit Hilfe eines Hilfsoszillators 54 moduliert. Serienkapazitäten 56 vor und hinter der Diode 52 sorgen dafür, daß der Bias-Strom nur vom Hilfsoszillator 54 zu einer NF-Masse 58 fließt, während das HF-Signal ohne NF- Anteil zum Zirkulator 50 gelangt.
In der Leitung vom Zirkulator 50 zum Mischer 20 ist in jedem der Kanäle 2, 3 und 4 eine als Demodulator dienende Diode 60 angeordnet. Zugehörige Serienkapazitäten und eine MF-Masse sind, entsprechend der Polungsrichtung der Diode 60, auf analoge Weise wie bei der Diode 52 angeordnet. Innerhalb jedes Kanals wird der Bias für die Dioden 52 und 60 vom demselben Hilfsoszillator 54 erzeugt, so daß die Demodulation jeweils exakt der Modulation in dem betreffenden Kanal entspricht.
Die Hilfsoszillatoren 54, die den Kanälen 2, 3 und 4 zugeordnet sind, haben jedoch voneinander verschiedene Frequenzen, so daß die Modulation und Demodulation jeweils kanalspezifisch ist.
Die durch die Diode 52 bewirkte Modulation ist ihrer Natur nach vorwiegend eine Amplitudenmodulation, die jedoch zu Seitenbändern im Frequenzspektrum führt. Durch geschickte Abstimmung der Komponenten läßt sich erreichen, daß der größte Teil der Oszillatorenergie in das erste Seitenband fließt, so daß der Antenne 48, beispielsweise im
Kanal 2, ein relativ starkes HF-Signal zugeführt werden kann, das gegenüber der Frequenz des lokalen Oszillators 18 um einen kanalspezifischen Betrag Df verschoben ist.

Claims

Ansprüche
1. Radarsensor mit mehreren aus einer gemeinsamen HF-Quelle (18) gespeisten Kanälen (1, 2, 3, 4; 10, 12) zum Senden und Empfangen von HF-Signalen, dadurch gekennzeichnet, daß zumindest einer der Kanäle (2, 3, 4; 12) senderseitig einen Modulator (22; 52) aufweist, der das von der HF-Quelle (18) gelieferte Signal in einer für den betreffenden Kanal spezifischen Weise moduliert.
2. Radarsensor nach Anspruch 1, dadurch gekennzeichnet, daß er n-Kanäle aufweist, mit n > 3, und daß nf - 1 Kanäle kanalspezifisch moduliert sind.
3. Radarsensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß jeder Kanal (2, 3, 4; 12), der einen Modulator (22; 52) aufweist, empfangsseitig einen Demodulator (26; 60) aufweist, der eine zu der Modulation inverse Demodulation an dem empfangenen Signal vornimmt.
4. Radarsensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die
Modulatoren (22; 52) dazu eingerichtet sind, die Frequenz des von der HF-Quelle (18) gelieferten Signals in von Kanal zu Kanal verschiedene Frequnenzbänder zu verschieben.
5. Radarsensor nach Anspruch 4, dadurch gekennzeichnet, daß die Frequenzbänder einander nicht überlappen.
6. Radarsensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß er als FMCW-Radar ausgebildet ist und daß die in den verschiedenen Kanälen gesendeten Signale zusätzlich zu der kanalspezifischen Modulation eine gemeinsame rampenförmige Modulation aufweisen.
7. Radarsensor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß den verschiedenen Kanälen (10, 12) verschiedene Sende- und/oder Empfangsantennen (14, 16) zugeordnet sind, die unterschiedlich stark gebündelte Radarkeulen (30-10, 30-12) erzeugen.
8. Radarsensor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß den verschiedenen Kanälen (1, 2, 3, 4) verschiedene Sende- und/oder Empfangsantennen (48) zugeordnet sind, die gegeneinander winkelversetzte Radarstrahlen (46) erzeugen.
PCT/EP2007/055772 2006-07-13 2007-06-12 Radarsensor mit mehreren sende- und empfangskanälen WO2008006654A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006032487.0 2006-07-13
DE102006032487A DE102006032487A1 (de) 2006-07-13 2006-07-13 Radarsensor mit mehreren Sende- und Empfangskanälen

Publications (1)

Publication Number Publication Date
WO2008006654A1 true WO2008006654A1 (de) 2008-01-17

Family

ID=38314447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/055772 WO2008006654A1 (de) 2006-07-13 2007-06-12 Radarsensor mit mehreren sende- und empfangskanälen

Country Status (2)

Country Link
DE (1) DE102006032487A1 (de)
WO (1) WO2008006654A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10976461B2 (en) * 2017-10-17 2021-04-13 California Institute Of Technology Sub-surface imaging of dielectric structures and voids via narrowband electromagnetic resonance scattering
US11105894B2 (en) * 2017-12-18 2021-08-31 SZ DJI Technology Co., Ltd. Weak target detection method, microwave radar sensor, and unmanned aerial vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002272A (ja) * 2008-06-19 2010-01-07 Toyota Motor Corp レーダー装置の軸調整方法および軸調整装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793798A (en) * 1995-12-18 1998-08-11 Ail Systems, Inc. Virtual beam system
US6583753B1 (en) * 2002-04-03 2003-06-24 Delphi Technologies, Inc. Vehicle back-up and parking aid radar system
US20050237236A1 (en) * 2004-04-26 2005-10-27 Budic Robert D Method and apparatus for performing bistatic radar functions
US20050285773A1 (en) * 2002-06-06 2005-12-29 Roadeye Flr General Partnership Forward-looking radar system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793798A (en) * 1995-12-18 1998-08-11 Ail Systems, Inc. Virtual beam system
US6583753B1 (en) * 2002-04-03 2003-06-24 Delphi Technologies, Inc. Vehicle back-up and parking aid radar system
US20050285773A1 (en) * 2002-06-06 2005-12-29 Roadeye Flr General Partnership Forward-looking radar system
US20050237236A1 (en) * 2004-04-26 2005-10-27 Budic Robert D Method and apparatus for performing bistatic radar functions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10976461B2 (en) * 2017-10-17 2021-04-13 California Institute Of Technology Sub-surface imaging of dielectric structures and voids via narrowband electromagnetic resonance scattering
US11105894B2 (en) * 2017-12-18 2021-08-31 SZ DJI Technology Co., Ltd. Weak target detection method, microwave radar sensor, and unmanned aerial vehicle

Also Published As

Publication number Publication date
DE102006032487A1 (de) 2008-01-17

Similar Documents

Publication Publication Date Title
EP2044459B1 (de) Winkelauflösender radarsensor
EP2044458B1 (de) Fmcw-radarsensor
EP2753950B1 (de) Abbildender radarsensor mit synthetischer vergrösserung der antennenapertur und zweidimensionaler strahlschwenkung
DE102011082242B4 (de) Radarvorrichtung
DE69826070T2 (de) Frequenzmoduliertes Dauerstrichradarsystem
DE102009057191A1 (de) Verfahren zum eindeutigen Bestimmen einer Entfernung und/oder einer relativen Geschwindigkeit eines Objektes, Fahrerassistenzeinrichtung und Kraftfahrzeug
WO2006045668A1 (de) Sensorsystem für kraftfahrzeuge mit fmcw-radar sensoren zur winkelaufgelösten entfernungsbestimmung eines objekts mittels triangulation
WO2006063915A1 (de) Radarsystem mit adaptiver digitaler empfangs-strahlformung und umschaltbarer sende-richtcharakteristik zur abdeckung von nah- und fernbereich
DE69834355T2 (de) Vorwärtsgerichteter Sensor für Kraftfahrzeuge
WO2018137835A1 (de) Verfahren zur ermittlung von wenigstens einer objektinformation wenigstens eines objekts, das mit einem radarsystem insbesondere eines fahrzeugs erfasst wird, radarsystem und fahrerassistenzsystem
DE2411806C2 (de) Modulationsgenerator für ein Puls-Doppler-Radarsystem
DE2542628C2 (de) Korrelationsradar zur Entfernungsmessung
EP0636251A1 (de) Verfahren zur überwachung eines gebietes und anordnung zur durchführung des verfahrens
DE102005007917A1 (de) Kraftfahrzeug-Radarsystem und Auswerteverfahren
WO2006069924A1 (de) Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen
EP2215497B1 (de) Winkelauflösender radarsensor
WO2010112261A1 (de) Mehrstrahlradarsensorvorrichtung und verfahren zum bestimmen eines abstandes
EP0355336A1 (de) Radarsystem zur Positionsbestimmung von zwei oder mehreren Objekten
WO2008006654A1 (de) Radarsensor mit mehreren sende- und empfangskanälen
DE10348216A1 (de) Objekterfassungssystem für ein Fahrzeug
DE10253808A1 (de) Verfahren und Vorrichtung zur Erstellung eines Radarbildes mit einem frequenzmodulierten Dauerstrichradar
EP1516200B1 (de) Verfahren und vorrichtung zum erzeugen von hf-signalen zum bestimmen eines abstandes und/oder einer geschwindigkeit eines objektes
DE2908261C2 (de) Radargerät für ein Abstandswarnsystem für Fahrzeuge
WO2008043595A1 (de) Winkelauflösender radarsensor für kraftfahrzeuge
DE3917794C2 (de) Verfahren zur Bestimmung des Zündpunktes eines Flugkörpers sowie Schaltungsanordnung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07730094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07730094

Country of ref document: EP

Kind code of ref document: A1