EP2534457A1 - Procédé et dispositif d'étalonnage automatique de capteurs d'allongement ou de force - Google Patents

Procédé et dispositif d'étalonnage automatique de capteurs d'allongement ou de force

Info

Publication number
EP2534457A1
EP2534457A1 EP11709325A EP11709325A EP2534457A1 EP 2534457 A1 EP2534457 A1 EP 2534457A1 EP 11709325 A EP11709325 A EP 11709325A EP 11709325 A EP11709325 A EP 11709325A EP 2534457 A1 EP2534457 A1 EP 2534457A1
Authority
EP
European Patent Office
Prior art keywords
calibration
circuit
evaluation circuit
operating state
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11709325A
Other languages
German (de)
English (en)
Inventor
Wolfgang Viel
Werner Bonifer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hottinger Bruel and Kjaer GmbH
Original Assignee
Hottinger Baldwin Messtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hottinger Baldwin Messtechnik GmbH filed Critical Hottinger Baldwin Messtechnik GmbH
Publication of EP2534457A1 publication Critical patent/EP2534457A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency

Definitions

  • the invention relates to a method for automatic
  • the preamble of claim 1 and a measuring device for carrying out the method according to the preamble of
  • Measuring devices for strain and force measurement is an accurate calibration and their repetition necessary, as with larger measurement errors, this also easy to damage
  • the strain or force transducers are preferably used for direct strain measurement at the container feet
  • Hydraulic presses and the like mounted to detect the container contents or the pressing force due to the load.
  • Strain behavior of the respective deformation body depended on which the strain or force transducer are directly attached.
  • Weight values are calculated in the external evaluation device and displayed if necessary. Especially with such large equipment, such calibration methods with external evaluation devices are very expensive and usually have to be carried out by external specialist personnel.
  • An external device for testing and calibrating container scales is known from DE 102 37 513 B4.
  • a rigid frame is provided, in which a hydraulic loading device is arranged.
  • the balance is arranged with at least one load cell, on which a modified container foot is turned off.
  • the balance is then loaded with an initial value and at least one end value.
  • a reference load cell is provided by which the initial and final values fixed
  • Weight or force values are assigned, from which in the balance with an externally assigned evaluation device according to a linear function, the weight values are calculated.
  • a calibration device only separate scales or load cells can be calibrated with defined deformation bodies. A calibration of strain or Force transducers on undefined deformation bodies is thus not possible.
  • Abutment frame provided on which a
  • Chassis dynamometer stands.
  • a reference balance is arranged, whose reference values of the balance are assigned as start and end values in an evaluation device arranged externally to the weighing cells. Due to the separate abutment frame and the additional
  • Loading device is such a calibration very expensive and only suitable for intermediate load cells or scales.
  • a high-precision calibration method for load cells and load cells is known from DE 199 11 086 C2, which operates with a so-called force-normal measuring machine.
  • the respective load cells to be calibrated with several dead load weights are charged to at least the nominal force automatically and the output signals of the load cells or load cells assigned to the respective weight of the dead loads.
  • the calibration on site in the installed state of the strain or force transducer usually can not be done.
  • the invention is therefore the object of a
  • Operating state of the transducer can be made without the transducer would have to be dismantled from the measurement object and thus advantageously the calibration can also be done on site of the measurement object.
  • Computing devices also fully automatic and thus can be performed at predetermined intervals without any specialist. This is particularly advantageous if such a transducer is exchanged with integrated evaluation circuit or used later, since this requires no external devices and methods.
  • the inventive device has the advantage that it is very compact executable and thus easy to many reliable machine parts for monitoring or as
  • the calibration by means of only two load states not only a zero and nominal load calibration, but also an individual calibration of other load conditions is advantageously possible. So is advantageously a calibration of any load conditions as well as a calibrated monitoring or overload control at any
  • Fig. 1 A block diagram of a strain transducer with
  • the drawing is a block diagram of a strain 1 or force transducer is shown, in which an electronic evaluation circuit 13 for automatically calibrating the transducer 1 is integrated.
  • the strain 1 or force transducer is as
  • Tensile strip sensor 10 is formed, which preferably has a plate-shaped deformation body of a
  • this deformation body 10 includes elastic special stainless steel or aluminum. On this deformation body 10 are preferably four
  • the plate-shaped deformation body .10 still has at least two mounting holes 12, with which he to a
  • kraftbelastbares component of a crane, a container or a press is attached as a measuring body whose
  • Measuring bridge 14 an output signal, the strain of the
  • Weight load is proportional.
  • the output of the measuring bridge 14 is connected to an integrated in the transducer 1 electronic evaluation circuit 13, which consists essentially of an A / D andler 2, a calibration circuit 3, a
  • Memory circuit 4 an arithmetic circuit 5 and a D / AWandler 6 consists. Here are the necessary
  • Groove 15 of the deformation body 10 is arranged and shed with a plastic sealing compound kraftnebenschluß arthritis in this. This creates a compact
  • Strain sensor 1 which is formed cuboid in a proposed embodiment and preferably has a length of about 90 mm, a width of about 25 mm and a thickness of about 10 mm. Depending on the application but other shapes and dimensions are conceivable.
  • the transducer 1 For power supply, for calibration and display of the measured value of the transducer 1 is provided with an outwardly guided at least five-core connection cable, not shown. This includes at least one line 17 for calibration, a line 18 for taring, a line 16 for display and two for power. For calibration outside the
  • Evaluation circuit 13 is still a calibration switch 7 for Generation of a second switching signal is provided, which is electrically connected to the calibration circuit 3.
  • a taring 8 is still provided, which is also connected to the calibration circuit 3.
  • a display device 9 is provided outside of the pickup 1, which is electrically connected via at least one display line 16 of the connecting cable to the D / A converter 6.
  • Machine part attached non-positively which serves as a measuring body or object to be measured. Due to the mechanical load of the
  • Measuring body results in a change in length on the measuring body, which is transmitted to the extensometer 1. Due to the change in length, the electrical resistance of the applied strain gauges 11 changes proportionally to the elongation. This resistance change is converted by an unrepresented DC amplifier into an electrical measurement signal at the output of the measuring bridge 14. It is the
  • these output voltages can be assigned to specific start or end values according to a linear characteristic.
  • the initial value is at the characteristic zero point, which represents a so-called tare function, and in which a zero-load indication is usually to take place.
  • This uncalibrated output signal is now detected by the measuring bridge 14 and in the subsequent analog-to-digital converter 2 in a
  • the tare switch 8 is first actuated for zero point calibration in this first, preferably load-free state, by means of its first switching signal in the calibration circuit 3
  • the starting point may preferably be selected from a range of + 0% to + 20%.
  • the measurement object or the measuring body is mechanically loaded up to a second state, preferably up to its nominal value.
  • the resulting output signal of the measuring bridge 14 is now digitized in the A / D converter and the
  • Calibration switch 7 is actuated, which generates a second switching signal, by which the output signal to the end point of
  • the end value or endpoint may preferably be selected from a range of -0% to + 20% of the endpoint.
  • output measurement values are stored, which are assigned to the predetermined start and end values, and by the for each
  • Loading force or a relative percentage load value can be calculated as the initial measured value.
  • the measurement object is from a first operating state, for example the tare state, in a second operating state, for example the nominal state, by means of a program-controlled, not shown
  • a first switching signal are generated, by which the output signal in the tare state within the calibration circuit 3 an initial value of the characteristic
  • Switching device can when reaching a second
  • Nominal load a second switching signal, by which the characteristic curve end point is determined.
  • the program-controlled computing and switching devices can also be used in the
  • a strain transducer 1 can also outside the zero load and outside the rated load
  • each detected output signal of the measuring bridge 1 is digitized in the analog-to-digital converter 2 and then fed to the arithmetic circuit 5.
  • the instantaneous load measured value is then calculated as the output measured value in accordance with the calibration values stored in the memory 4. This is then in the digital-to-analog converter 6 in an analog output reading

Abstract

L'invention concerne un procédé et un dispositif d'étalonnage automatique de capteurs d'extension ou de force (1) au moyen d'un circuit à jauge d'extension (11) destiné à convertir une contrainte mécanique en un signal de sortie électrique. Selon le procédé, pour l'étalonnage du capteur (1), une valeur initiale définie est affectée dans un circuit d'évaluation (13) dans un premier état de fonctionnement ou dans un état exempt de contraintes, et une valeur finale définie est affectée dans le circuit d'évaluation (13) dans un deuxième état de fonctionnement soumis à des contraintes. A l'état de fonctionnement, le circuit d'évaluation (13) calcule des valeurs de mesure de sortie correspondantes, pouvant être affichées, sur la base de la valeur initiale et de la valeur finale affectées, à l'aide d'une fonction linéaire. L'invention est caractérisée en ce que l'étalonnage à l'état de fonctionnement du capteur (1) monté fixe est réalisé automatiquement au moyen d'un circuit d'évaluation (13) intégré au capteur. Au moyen d'un premier signal de commutation commandé la valeur initiale est enregistrée dans le circuit d'évaluation (13) et au moyen d'un deuxième signal de commutation commandé la valeur finale est enregistrée dans le circuit d'évaluation (13), et sur la base de ces valeurs, les valeurs de mesure de sortie étalonnées sont calculées en fonction des contraintes consécutives.
EP11709325A 2010-02-12 2011-02-11 Procédé et dispositif d'étalonnage automatique de capteurs d'allongement ou de force Withdrawn EP2534457A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010007937.5A DE102010007937B4 (de) 2010-02-12 2010-02-12 Verfahren und Vorrichtung zum selbsttätigen Kalibrieren von Dehnungs- oder Kraftaufnehmern
PCT/EP2011/000655 WO2011098287A1 (fr) 2010-02-12 2011-02-11 Procédé et dispositif d'étalonnage automatique de capteurs d'allongement ou de force

Publications (1)

Publication Number Publication Date
EP2534457A1 true EP2534457A1 (fr) 2012-12-19

Family

ID=44121391

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11709325A Withdrawn EP2534457A1 (fr) 2010-02-12 2011-02-11 Procédé et dispositif d'étalonnage automatique de capteurs d'allongement ou de force

Country Status (4)

Country Link
EP (1) EP2534457A1 (fr)
CN (1) CN102741673B (fr)
DE (1) DE102010007937B4 (fr)
WO (1) WO2011098287A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102928156B (zh) * 2012-10-26 2014-10-08 浙江中烟工业有限责任公司 气浮静重式微型测力传感器标定装置
CN104568304B (zh) * 2013-10-12 2017-11-28 北京航天计量测试技术研究所 一种增强应变式力传感器数据采集系统
CN105181240A (zh) * 2015-07-15 2015-12-23 苏州高新区世纪福科技有限公司 带有自动校准功能的触屏压力传感器测试装置及自校方法
CN109211299B (zh) * 2018-09-10 2023-08-25 交通运输部公路科学研究所 桥梁监测传感器的在线校准方法及系统
CN110672263A (zh) * 2019-09-02 2020-01-10 南京理工大学 一种冲击波压力传感器现场校准装置及方法
CN111380648A (zh) * 2020-03-27 2020-07-07 辛成辉 一种自校准压力传感器及其自校准方法
CN112284613A (zh) * 2020-10-27 2021-01-29 深圳市鑫精诚科技有限公司 一种力传感器的校准方法
CN112327212B (zh) * 2020-10-28 2023-03-10 北京强度环境研究所 一种基于分流校准的多通道加载系统的实时断线检测方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020911A (en) * 1973-08-10 1977-05-03 Structural Instrumentation, Inc. Load cell scale
US4674605A (en) * 1986-04-18 1987-06-23 Otis Elevator Company Automatic elevator load sensor calibration system
JPH0652190B2 (ja) * 1989-07-24 1994-07-06 株式会社島津製作所 電子天びん
DE4306662C2 (de) * 1993-02-10 1999-11-11 Kone Corp Verfahren zur Kalibrierung der Verstärkervorrichtung eines Dehnungsmessers an einem Kran
DE4433163A1 (de) * 1994-09-17 1996-03-21 Bosch Gmbh Robert Vorrichtung zum Kalibrieren von Waagen
GB9426220D0 (en) * 1994-12-23 1995-02-22 Lucas Ind Plc Vehicle load measuring systems
DE19911086C2 (de) * 1999-03-12 2002-02-21 Gassmann Theiss Messtech Kraft-Normalmeßmaschine
DE19959678A1 (de) * 1999-12-10 2001-06-21 Bosch Gmbh Robert Verfahren zum Abgleich von Sensoren
DE10237513B4 (de) * 2002-08-16 2007-12-20 Basf Ag Vorrichtung zur Prüfung und Kalibrierung von Waagen
DE502005006317D1 (de) * 2005-01-26 2009-02-05 Mettler Toledo Gmbh Gravimetrisches Messgerät mit Kalibriergewicht
US7258016B2 (en) * 2005-12-21 2007-08-21 Honeywell International Inc. Pressure sensor with electronic datasheet
CN101281055B (zh) * 2008-04-30 2010-06-02 太仓宏大纺织仪器有限公司 棉纤维气流仪及消除其称重和马克隆测量值漂移的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011098287A1 *

Also Published As

Publication number Publication date
CN102741673B (zh) 2016-08-17
DE102010007937A1 (de) 2011-08-18
DE102010007937B4 (de) 2017-12-14
CN102741673A (zh) 2012-10-17
WO2011098287A1 (fr) 2011-08-18

Similar Documents

Publication Publication Date Title
DE102010007937B4 (de) Verfahren und Vorrichtung zum selbsttätigen Kalibrieren von Dehnungs- oder Kraftaufnehmern
DE19548390B4 (de) Vorrichtung zum Messen von Fahrzeugbelastungen
EP2237000A1 (fr) Capteur de force destiné à mesurer les forces d'appui dans un élément d'appui
DE3719532A1 (de) Kraftmesseinrichtung
DE102015004937A1 (de) Kraftmesssystem mit Doppelsensor
DE19514050C2 (de) Verfahren und Vorrichtung zum Erfassen von Belastungen von Hub- und Zugeinrichtungen
CH671101A5 (fr)
DE102005024020B4 (de) Vorrichtung zum Kalibrieren von Dehnungsmessschaltungen
DE10359460B4 (de) Wägezelle
DE19722077B4 (de) Trägerfrequenzmeßverfahren
DE1202516B (de) Wiegeeinrichtung fuer Schienenfahrzeuge, insbesondere fuer Gueterwagen in Rangieranlagen
EP0500971A1 (fr) Méthode de pesage
EP2428787B1 (fr) Procédé et dispositif de calibrage d'un amplificateur de charge d'une chaîne de mesure piézoélectrique
WO2020132708A1 (fr) Procédé de contrôle de la durée de vie d'un palier à roulement monté
DE102008064163A1 (de) Wägezelle
DE2510913A1 (de) Lagerung von zur papierbahnzugmessung dienenden walzen in rotationsdruckmaschinen
DE102010016968A1 (de) Verfahren zum Betrieb eines Messgerätes mit einem mindestens drei Füße aufweisenden Chassis
DE10120982B4 (de) Vorrichtung und Verfahren zum Kalibrieren von Dehnungsmessschaltungen
DE102018113880A1 (de) Verfahren zum Betreiben einer Presse
DE102012109662A1 (de) Kraftmesseinrichtung
DE19960418C2 (de) Elektronische Waage mit Justiergewicht
WO2015154771A1 (fr) Élément de mesure et composant doté d'un élément de mesure
DE202010010111U1 (de) Kraftmessmodul, Verbindungseinheit für eine modulare Kraftmessvorrichtung und entsprechende Kraftmessvorrichtung
DE3728936A1 (de) Verfahren und vorrichtung zur messung von bauwerkslasten
DE4244394C2 (de) Schnittstelle bei eichfähigen elektromechanischen Waagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120906

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190208