EP2532008A1 - Verfahren und vorrichtung zur erzeugung zweier verschiedener radioaktiver isotope - Google Patents

Verfahren und vorrichtung zur erzeugung zweier verschiedener radioaktiver isotope

Info

Publication number
EP2532008A1
EP2532008A1 EP11701810A EP11701810A EP2532008A1 EP 2532008 A1 EP2532008 A1 EP 2532008A1 EP 11701810 A EP11701810 A EP 11701810A EP 11701810 A EP11701810 A EP 11701810A EP 2532008 A1 EP2532008 A1 EP 2532008A1
Authority
EP
European Patent Office
Prior art keywords
starting material
particle beam
particle
radioactive isotope
nuclear reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11701810A
Other languages
German (de)
English (en)
French (fr)
Inventor
Arnd Baurichter
Oliver Heid
Timothy Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2532008A1 publication Critical patent/EP2532008A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0015Fluorine
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0036Molybdenum
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/001Recovery of specific isotopes from irradiated targets
    • G21G2001/0042Technetium

Definitions

  • the invention relates to a method and a device for generating two different radioactive isotopes.
  • Such radioactive isotopes are often used in the field of imaging Medizi ⁇ African imaging, for example, when PET imaging and SPECT.
  • Radionuclides for PET imaging are often produced near hospitals, for example using cyclotron production devices.
  • No. 6,433,495 describes the structure of a target to be irradiated, which is used in a cyclotron for the production of radionuclides for PET imaging.
  • WO 2006/074960 describes a process for the production of radioactive isotopes, which are produced by irradiation with a particle beam.
  • US 6,130,926 discloses a process for the production of radionuclides using a cyclotron and a target assembly with rotating films.
  • JP 1254900 (A) describes a method in which a charged particle beam irradiates a target chamber with a gas contained therein to radioactive isotopes to produzie ⁇ ren.
  • the radionuclides to be used are usually obtained in nuclear reactors, often using highly enriched uranium, for example to obtain 99 Mo / 99m Tc.
  • highly enriched uranium for example to obtain 99 Mo / 99m Tc.
  • international agreements will make it increasingly difficult to operate reactors with highly enriched uranium in the future Bottleneck in delivering radionuclides for SPECT imaging.
  • the cross section for the induction of the first nuclear reaction by the interaction of the particle beam with the first starting material having a first peak at a first particle energy
  • the cross section for the induction of the second nuclear reaction by the interaction of the particle beam with the second output ⁇ material has a second peak at a second particle energy, which is lower than the first Parti ⁇ kel energy
  • the first starting material and the second starting ⁇ material are arranged one behind the other in the beam path of the particle beam, such that the accelerated particle steel initially irradiates the first starting material, whereby the first nuclear reaction is induced, the particle beam thereby loses energy and then the second Trustmate ⁇ rial irradiated, whereby the second nuclear reaction is induced.
  • the particles, for example protons are accelerated by using an accelerator unit and ge to a beam formed ⁇ .
  • the interaction of the accelerated particle beam with the first starting material produces the first radioactive isotopic ⁇ pe, which can be obtained from the first starting material with different ⁇ be known methods.
  • the decelerated particle beam which interacts with the second starting material, generates the second radioactive isotope, which in turn can be obtained from the second starting material.
  • the first starting material and the second starting material are arranged separately from one another in the beam path.
  • the energy required for irradiation of the second starting material is at least partially achieved by slowing down the particle beam when irradiating the first material.
  • the thickness of the first starting material can be constituted of the ⁇ art and be adapted to the following nuclear reaction of the particle beam with the second starting material that is at penetration decelerated by the particle beam, the particle beam to a particle energy, which is in a range in which a nuclear reaction is induced by interaction of the particle beam braked with the second Trustma ⁇ TERIAL which is suitable for the generation ⁇ supply and recovery of the second radioactive isotope.
  • it is ensured that the thickness of the first raw material is low enough so that the particles emerging beam has a sufficiently high energy, after emerging from the first raw material to redesignzu- call the desired interaction in two ⁇ th starting material.
  • the thickness can be large enough to decelerate the particle beam into the required interaction region, so that additional energy modulators are no longer necessary before the second source material.
  • the particle beam can be accelerated to an energy of at least 15 MeV, in particular at least 25 MeV, and up to an energy of more than 50 MeV before irradiating the first starting material.
  • the first nuclear reaction takes place in an energy range, which is for generating a usable for the SPECT imaging isotope, such as for the production of 99m Tc from a suitable starting material.
  • the first starting material or the second starting material may be in the form of metal, be a chemical compound, be in solid form or be in liquid form.
  • Examples game as a liquid solution can be used in which naturally occurring or-enriched isotopes ⁇ find be, which then generate by irradiating the desired radioactive isotope.
  • the device according to the invention for producing a first radioactive isotope and a second radioactive isotope with the aid of an accelerated particle beam comprises:
  • a first irradiation target comprising a first output ⁇ material and can be directed to which the accelerated particles ⁇ beam, from the first material through a first nuclear reaction obtained by an alternating The effect of the accelerated particle beam with the first starting material is inducible, the first radioactive isotope is generated, and wherein the particle beam is decelerated when irradiated by the first starting material,
  • the second radioactive isotope produced is, wherein the cross section for the first nuclear reaction is at a higher particle energy than the cross section for the second nuclear reaction.
  • the first radioactive isotope can be used for the SPECT
  • Imaging be suitable radionuclide, in particular 99m Tc
  • the second radioactive isotope can be used for the PET
  • Imaging be suitable radionuclide, in particular X1 C,
  • the accelerator unit can for accelerating the Par tikelstrahls before irradiation of the first raw material to an energy of at least 15 MeV, in particular Minim ⁇ least 25 MeV be formed.
  • 1 is a schematic overview of the structure of the device for generating two different radioactive isotopes
  • Fig. 3 is a diagram illustrating the process steps that can be performed in the implementation of the method.
  • Fig. 1 shows an overview of the device for generating two different radionuclides, one for SPECT imaging, another for PET imaging.
  • the proton beam 11 is provided by an accelerator unit 13 such as a cyclotron and has ⁇ nearest a first energy of 15 MeV to 50 MeV.
  • an accelerator unit 13 such as a cyclotron and has ⁇ nearest a first energy of 15 MeV to 50 MeV.
  • the proton beam on a first target unit 15 is directed, which comprises a stack of Trustmateri ⁇ as that to be used for the SPECT imaging generated by interaction with the particle beam in a nuclear reaction, the 99 Mo / 99m Tc.
  • a decoupling device 17 the first radioactive isotope 19 generated in the stack is extracted and collected, so that it is ready for further use.
  • target material for the generation of m Tc can be Mo, so that 99m Tc results from the nuclear reaction 100 Mo (p, n) 99 Tc.
  • the proton beam 11 is directed to a second Tar ⁇ get unit 21, in which there is a stack of the second starting material, which generates by interaction with the proton beam 11 in a further nuclear reaction, the radionuclide for PET imaging.
  • the second radioactive isotope may be, for example, 11 C, 13 N, 18 F or 15 O.
  • the second radioactive isotope 25 is just ⁇ if using a further decoupling device 23 removed from the second target unit 21 and collected so that it is ready for further use.
  • the following table provides an overview of target materials and nuclear reactions that can be used to generate PET radionuclides.
  • a first cross-section curve 31 identifies the first nuclear reaction induced by the particle beam in the first starting material.
  • a second cross section curve 33 characterizes the second nuclear reaction, which is induced by the particle beam in the second starting material.
  • Fig. 3 shows a schematic representation of the method ⁇ steps in one embodiment of the method.
  • the particle beam is generated. This can be done by means of a cyclotron which generates a particle beam with always the same final energy (step 41).
  • the particle beam is directed to a target comprising the first starting material (step 43).
  • a first nuclear reaction is induced in which the first radioactive isotope is generated.
  • the ra ⁇ diozine isotope produced is ge ⁇ gained by known Extension method (step 45).
  • the decelerated particle beam is directed to a second target comprising a second source material (step 47).
  • the second core radioactive isotope which is then recovered by well ⁇ te extraction process (step 49).

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Radiation-Therapy Devices (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
EP11701810A 2010-02-01 2011-01-26 Verfahren und vorrichtung zur erzeugung zweier verschiedener radioaktiver isotope Withdrawn EP2532008A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010006433A DE102010006433B4 (de) 2010-02-01 2010-02-01 Verfahren und Vorrichtung zur Erzeugung zweier verschiedener radioaktiver Isotope
PCT/EP2011/051019 WO2011092175A1 (de) 2010-02-01 2011-01-26 Verfahren und vorrichtung zur erzeugung zweier verschiedener radioaktiver isotope

Publications (1)

Publication Number Publication Date
EP2532008A1 true EP2532008A1 (de) 2012-12-12

Family

ID=43799715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11701810A Withdrawn EP2532008A1 (de) 2010-02-01 2011-01-26 Verfahren und vorrichtung zur erzeugung zweier verschiedener radioaktiver isotope

Country Status (9)

Country Link
US (1) US9287015B2 (pt)
EP (1) EP2532008A1 (pt)
JP (1) JP2013518267A (pt)
CN (1) CN102741940B (pt)
BR (1) BR112012019102B1 (pt)
CA (1) CA2788617C (pt)
DE (1) DE102010006433B4 (pt)
RU (1) RU2549881C2 (pt)
WO (1) WO2011092175A1 (pt)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006433B4 (de) 2010-02-01 2012-03-29 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung zweier verschiedener radioaktiver Isotope
US9196390B2 (en) * 2011-09-23 2015-11-24 Ge-Hitachi Nuclear Energy Americas Llc Irradiation target encapsulation assembly and method of assembly
RU2542733C1 (ru) * 2013-08-30 2015-02-27 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения радиоизотопа лютеций-177
CN106662540A (zh) * 2014-08-06 2017-05-10 研究三角协会 高效中子俘获产物产生
FR3025354B1 (fr) * 2014-08-26 2016-12-30 Ecole Polytech Creation d'isotopes par reactions nucleaires en chaine
JP6752590B2 (ja) * 2016-02-29 2020-09-09 日本メジフィジックス株式会社 ターゲット装置および放射性核種製造装置
RU2624636C1 (ru) * 2016-06-03 2017-07-05 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения радионуклида лютеций-177
US10186446B2 (en) * 2016-09-30 2019-01-22 Axcelis Technology, Inc. Adjustable circumference electrostatic clamp
US10245448B2 (en) * 2017-07-21 2019-04-02 Varian Medical Systems Particle Therapy Gmbh Particle beam monitoring systems and methods
US10109383B1 (en) * 2017-08-15 2018-10-23 General Electric Company Target assembly and nuclide production system
RU2674260C1 (ru) * 2017-12-05 2018-12-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" Способ производства трихлорида лютеция-177 и технологическая линия для его реализации
JP6914870B2 (ja) * 2018-02-19 2021-08-04 住友重機械工業株式会社 放射性同位元素製造装置
RU2695635C1 (ru) * 2018-11-26 2019-07-25 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ получения радионуклеида лютеций-177
US11315700B2 (en) 2019-05-09 2022-04-26 Strangis Radiopharmacy Consulting and Technology Method and apparatus for production of radiometals and other radioisotopes using a particle accelerator
JP7169254B2 (ja) * 2019-06-25 2022-11-10 株式会社日立製作所 放射性核種の製造方法及び装置
RU2716824C1 (ru) * 2019-10-18 2020-03-17 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Мишенный узел ускорителя электронов

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319757B2 (pt) * 1973-09-17 1978-06-22
US4664869A (en) * 1985-07-01 1987-05-12 The United States Of America As Represented By The United States Department Of Energy Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123
JPH01254900A (ja) 1988-04-05 1989-10-11 Daiichi Radio Isotope Kenkyusho:Kk ガスターゲツト装置およびそれを用いたラジオアイソトープの製造方法
JPH0554796A (ja) 1991-08-26 1993-03-05 Hitachi Ltd シヤドウマスク自動脱着装置
US5425063A (en) * 1993-04-05 1995-06-13 Associated Universities, Inc. Method for selective recovery of PET-usable quantities of [18 F] fluoride and [13 N] nitrate/nitrite from a single irradiation of low-enriched [18 O] water
WO1997007122A2 (en) * 1995-08-09 1997-02-27 Washington University PRODUCTION OF 64Cu AND OTHER RADIONUCLIDES USING A CHARGED-PARTICLE ACCELERATOR
US5784423A (en) * 1995-09-08 1998-07-21 Massachusetts Institute Of Technology Method of producing molybdenum-99
US5978681A (en) 1996-06-07 1999-11-02 Telefonaktiebolaget L M Ericsson Method and apparatus for providing calling service features within incompletely upgraded cellular telephone networks
SE513191C2 (sv) 1998-09-29 2000-07-24 Gems Pet Systems Ab Snabbkoppling
US6444990B1 (en) * 1998-11-05 2002-09-03 Advanced Molecular Imaging Systems, Inc. Multiple target, multiple energy radioisotope production
US6130926A (en) 1999-07-27 2000-10-10 Amini; Behrouz Method and machine for enhancing generation of nuclear particles and radionuclides
US6586747B1 (en) * 2000-06-23 2003-07-01 Ebco Industries, Ltd. Particle accelerator assembly with liquid-target holder
WO2002031836A1 (en) * 2000-10-07 2002-04-18 Amini Behrouz Method and machine for enhancing generation of nuclear particles and radionuclides
JP2002214395A (ja) * 2001-01-12 2002-07-31 Hitachi Ltd 同位体核種製造装置
RU2199165C1 (ru) * 2001-11-12 2003-02-20 Чувилин Дмитрий Юрьевич Способ получения радионуклида торий-229 - стартового материала для производства терапевтического препарата на основе радионуклида висмут-213
WO2005014136A2 (en) * 2003-08-08 2005-02-17 Washington University In St. Louis Enhanced separation process for (76br, 77br and 124i) preparation and recovery of each
GB2436508C (en) 2005-01-14 2011-01-26 Europ Organisation For Nuclear Res Cern Method for production of radioisotope preparationsand their use in life science, research, medical application and industry.
US20070040115A1 (en) * 2005-08-05 2007-02-22 Publicover Julia G Method for calibrating particle beam energy
ITCO20050028A1 (it) * 2005-11-11 2007-05-12 Fond Per Adroterapia Oncologica Complesso di acceleratori di protoni in particolare per uso medicale
DE102005061560A1 (de) * 2005-12-22 2007-07-05 Siemens Ag Verfahren zur Herstellung von radioaktiven Isotopen für die Positronen-Emissions-Tomographie
JP4618732B2 (ja) * 2006-10-20 2011-01-26 独立行政法人 日本原子力研究開発機構 放射性モリブデンの製造方法と装置
WO2008073468A1 (en) * 2006-12-11 2008-06-19 Mallinckrodt Inc. Target bodies and uses thereof in the production of radioisotope materials
DE102007054919B4 (de) 2007-08-24 2009-07-30 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Schnelle Regelung der Reichweite von hochenergetischen Ionenstrahlen für Präzisionsbestrahlungen von bewegten Zielvolumina
US8050377B2 (en) * 2008-05-01 2011-11-01 Ge-Hitachi Nuclear Energy Americas Llc Irradiation target retention systems, fuel assemblies having the same, and methods of using the same
RU2373589C1 (ru) 2008-09-23 2009-11-20 Институт ядерных исследований РАН Способ получения актиния-225 и изотопов радия и мишень для его осуществления (варианты)
DE102010006433B4 (de) 2010-02-01 2012-03-29 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung zweier verschiedener radioaktiver Isotope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011092175A1 *

Also Published As

Publication number Publication date
US20120321027A1 (en) 2012-12-20
DE102010006433A1 (de) 2011-08-04
CA2788617A1 (en) 2011-08-04
CN102741940B (zh) 2016-08-10
BR112012019102B1 (pt) 2020-02-04
WO2011092175A1 (de) 2011-08-04
RU2012137198A (ru) 2014-03-10
US9287015B2 (en) 2016-03-15
JP2013518267A (ja) 2013-05-20
CA2788617C (en) 2019-09-10
DE102010006433B4 (de) 2012-03-29
CN102741940A (zh) 2012-10-17
BR112012019102A2 (pt) 2016-09-13
RU2549881C2 (ru) 2015-05-10

Similar Documents

Publication Publication Date Title
WO2011092175A1 (de) Verfahren und vorrichtung zur erzeugung zweier verschiedener radioaktiver isotope
EP1987859B1 (de) Partikeltherapieanlage
DE102010006434B4 (de) Verfahren und Vorrichtung zur Produktion eines 99mTc-Reaktionsprodukts
EP2204820B1 (de) Strahlenschutzkammer
EP1153398A1 (de) Ionenstrahl-abtastsystem und verfahren zum betrieb des systems
DE102005061560A1 (de) Verfahren zur Herstellung von radioaktiven Isotopen für die Positronen-Emissions-Tomographie
EP1992965A2 (de) Verfahren zur Kalibrierung eines Positronen-Emissions-Tomographen einer Strahlentherapievorrichtung sowie Strahlentherapievorrichtung
DE102015213503B4 (de) Magnetische Schirmung eines Röntgenstrahlers
EP2292298B1 (de) Verfahren zur Bestimmung eines Bestrahlungsplans, Bestrahlungsplanungseinrichtung sowie Bestrahlungsanlage
EP2531449A1 (de) VERFAHREN UND VORRICHTUNG ZUR PRODUKTION VON 99mTc
DE102016222947A1 (de) Vorrichtung und Verfahren zur additiven Herstellung eines dreidimensionalen Produktes
EP3599619A1 (de) Target zum erzeugen von röntgenstrahlung, röntgenemitter und verfahren zum erzeugen von röntgenstrahlung
DE69522083T2 (de) Verfahren und Vorrichtung zur Erzeugung von Gammalaserstrahlung
DE102010025660A1 (de) Beschleuniger und Verfahren für die Bestrahlung eines Zielvolumens
DE102012210241B4 (de) Verfahren und Vorrichtung zur Optimierung einer Bestrahlung mit einer Partikelbestrahlungsanlage mit mehreren Strahlauslässen
DE112021005300T5 (de) System zur Herstellung von Nukliden mit einem Hochstrom-Elektronen-Linearbeschleuniger
DE2164207C3 (de) Einrichtung zur Bestrahlung mit energiereichen Elektronen
DE112017001303T5 (de) Verfahren zur Umwandlung von Kernenergie in Wärmeenergie und Vorrichtung dafür
EP2016978A2 (de) Partikelstrahlapplikationsvorrichtung, Bestrahlungsvorrichtung sowie Verfahren zur Führung eines Partikelstrahls
WO2024165205A1 (de) Prozessiervorrichtung, verfahren zum prozessieren einer schmelze und verfahren zum prozessieren eines trägerfluides
EP2814572A1 (de) Verfahren und vorrichtung zum bestimmen eines bestrahlungsplans für eine partikelbestrahlungsanlage
DE102010019286A1 (de) Röntgenquelle und Verfahren zum Betrieb einer Röntgenquelle mit mehreren Targets
Guenther Investigation of relativistic laser-plasmas using nuclear diagnostics; Untersuchung relativistischer Laserplasmen mittels nukleardiagnostischer Verfahren
Guenther Investigation of relativistic laser-plasmas using nuclear diagnostics
Schraube et al. Source for fast neutrons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130911

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140122