EP2531806B1 - Programmable ammunition - Google Patents

Programmable ammunition Download PDF

Info

Publication number
EP2531806B1
EP2531806B1 EP11704923.9A EP11704923A EP2531806B1 EP 2531806 B1 EP2531806 B1 EP 2531806B1 EP 11704923 A EP11704923 A EP 11704923A EP 2531806 B1 EP2531806 B1 EP 2531806B1
Authority
EP
European Patent Office
Prior art keywords
signal
frequency
programming
projectile
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11704923.9A
Other languages
German (de)
French (fr)
Other versions
EP2531806A1 (en
Inventor
Henry Roger Frick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Air Defence AG
Original Assignee
Rheinmetall Air Defence AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Air Defence AG filed Critical Rheinmetall Air Defence AG
Publication of EP2531806A1 publication Critical patent/EP2531806A1/en
Application granted granted Critical
Publication of EP2531806B1 publication Critical patent/EP2531806B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/06Electric fuzes with time delay by electric circuitry
    • F42C11/065Programmable electronic delay initiators in projectiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/06Electric fuzes with time delay by electric circuitry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/008Power generation in electric fuzes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C17/00Fuze-setting apparatus
    • F42C17/04Fuze-setting apparatus for electric fuzes

Definitions

  • the invention is concerned with the problem of programming a projectile during the pipe run or the like. In extension, it is intended to realize the transmission of energy to the projectile in the pipe run, etc.
  • the projectile For programmable ammunition, the projectile must be informed of its detonation time and / or flight path, ie it must be programmed. In systems in which the detonation time is calculated from the measured muzzle velocity V 0 , the information can be transmitted only at the mouth and / or in flight. If the programming takes place before exiting the weapon barrel, the projectile usually flies past a programming unit with the muzzle velocity V 0 and is therefore in relative motion to the programming unit.
  • a well-known programming unit is with the CH 691 143 A5 described.
  • the information about a counter-coil in / on the projectile is transmitted inductively.
  • an unshielded transmission coil can lead to unwanted radiation, since the coil also acts as an antenna.
  • the radiated signal can be detected and drawn from this conclusions on the location of the gun.
  • the projectile has peripheral optical sensors.
  • the battery from the DE 31 50 172 A is activated only after the cannon has left the cannon, which is done, among other things, by a mechanical timer. Also the battery in the DE 199 41 301 A is only activated by large accelerations during firing.
  • a receiving antenna on the detonator receives the radiated signal and carries it via a switch either to a rectifier device or to a acting as a de-modulator filter that filters out the data from the incoming signal.
  • the rectifier device serves to generate a supply voltage from the incoming signal, which is then stored.
  • a mechanism is installed in the projectile, which converts the necessary energy into electromagnetic energy from the acceleration after the ignition of the propellant charge, thereby charging a storage located in the projectile.
  • CH 586 384 A a method in which is displaced by the linear shot acceleration, a soft iron ring and a ring-shaped permanent magnet against an induction coil in the direction of the projectile axis, whereby in the coil, a voltage is generated, which charges a capacitor.
  • This unit is provided with a transport lock, which is only destroyed by the or a high acceleration during the shot.
  • the disadvantage here may be that the acceleration of the projectile is used in the gun barrel, as this can not be controlled exactly. This causes different energy charges, so that the projectile too much or too little energy is given along the way. Too little energy then has the disadvantage that the functionality is not guaranteed.
  • Another disadvantage is the complex and thus space consuming conversion mechanism for the conversion of mechanical energy into electromagnetic energy. In the case of the high environmental impact (impacts during firing, lateral acceleration and spin) on the projectile during firing, this mechanism can also be destroyed. To exclude this, constructive measures are necessary, which not only make the ammunition more expensive, but also claim further space in the projectile and make this heavier.
  • the invention has as its object to provide a projectile that allows simple design optimal programming and / or optimal energy transfer.
  • the invention is based on the idea of making programming and energy transmission inductively and / or capacitively. These are located in the projectile, a sensor that receives the programming signal, as well as an electrically connected to this sensor processor that performs the programming and thereby initiates the ignition of the projectile at a predetermined time. An electrical memory is used to power the electronics of the processor. This receives its energy in the preferred embodiment when passing through a gun barrel and / or a muzzle brake.
  • the weapon tube used as a waveguide, muzzle brake or additional part between gun barrel and muzzle brake, as well as attachable to the muzzle brake part below the cutoff frequency is operated.
  • Such a method with device is for measuring the muzzle velocity of a projectile or the like already from the DE 10 2006 058 375 A known.
  • Technically widespread are mainly rectangular and round -Hohlleiter), which, however, operated below the cutoff frequency of the respective waveguide mode.
  • the WO 2009/141055 A continues this idea and combines two measurement methods of V 0 measurement.
  • Applicant's co-pending applications show a method and apparatus for programming and energy transfer which essentially involves building the weapon-side integration of the assemblies for programming and / or power transfer.
  • the V 0 measurement is preferably carried out with the aid of a waveguide.
  • Such a solution may in this case be the basis for weapon-side programming as well as energy transfer to the projectile.
  • Fig. 1 to 3 show a projectile or an ammunition 1 with at least one sensor 2 for receiving a programming signal with the frequency f 3 and / or a power transmission signal with the frequency f 2 .
  • the sensor may for example be a coil for an inductive and / or an electrode for a capacitive signal transmission.
  • 7 with an ignition (electrical) is characterized, which is electrically connected to an electronics (processor) 6 and an energy storage 5.
  • the signal with the frequency f 2 energizes the memory 5 with energy and the signal with the frequency f 3 programs the electronics 6, for example with the detonation time.
  • the memory 5 supplies the electronics 6 and the igniter 7 with electricity.
  • the energy transfer can be tuned to the signal of the programming. It will be in Fig. 1 used the programming signal with the frequency f 3 ⁇ f 2 , so that for reasons of space savings, the same sensor 2 can be used for both processes. In this preferred embodiment, therefore, only one sensor 2, the programming and an energy transfer to provide energy for the memory 5 in the projectile 1 is used. This is also supported by the fact that the energy transfer during the passage of the projectile 1 through a gun barrel, a muzzle brake, etc., and the programming take place in time after this transfer of energy. Of course, it is also possible to use two separate sensors and to interconnect them firmly.
  • the energy input takes place at the projectile 1 by the reception of a frequency f 2 and the programming by the reception of a frequency f 3 .
  • a bandpass 3, 4 is integrated, which on the one hand passes the signal with the frequency f 2 to the memory 5 and on the other hand, the signal with the frequency f 3 to the electronics 6.
  • the two bandpass filters 3, 4 thus separate the received signals according to their frequencies.
  • Fig. 2 shows the connection to the memory 5 of the energy path and Fig. 3 the connection of the sensor 2 with the electronics 6 of the programming path.
  • Fig. 4 reflects the programming process with the condition f 2 ⁇ f 3 .
  • the weapon-side structure for the programming or energy transmission reference is made to the two parallel applications of the Applicant.
  • the projectile or the ammunition or the projectile 1 flies into the waveguide, not shown.
  • the energy is transferred to the projectile 1 within the waveguide HL1.
  • These are either the bandpass filter 3, 4 or according to the embodiment Fig. 2 and Fig. 3 the controller 8 is used.
  • the programming is carried out, for example, within the waveguide HL2.
  • Both waveguides mentioned can also be formed by one and the same waveguide. If multiple arrays of waveguides are present and they pass through successively (if N> 1: yes), the process repeats. Otherwise, the projectile 1 emerges from the waveguide.
  • the electrical paths in the projectile 1 must be mutually opened or closed. This is done in the simplest version by the switch 8 in the ammunition.
  • a plurality of waveguides may be present, which are passed through successively (path N> 1: yes), before the projectile 1 leaves the waveguides.

Description

Die Erfindung beschäftigt sich mit der Problematik der Programmierung eines Projektils während des Rohrdurchlaufs oder dergleichen. In Erweiterung ist vorgesehen, auch die Übertragung der Energie auf das Projektil beim Rohrdurchlauf etc. zu realisieren.The invention is concerned with the problem of programming a projectile during the pipe run or the like. In extension, it is intended to realize the transmission of energy to the projectile in the pipe run, etc.

Für programmierbare Munitionen müssen dem Projektil Informationen bezüglich seiner Detonationszeit und/oder Flugweg mitgeteilt - diesem also aufprogrammiert - werden. Bei Systemen, bei denen die Detonationszeit aus der gemessenen Mündungsgeschwindigkeit V0 berechnet wird, kann die Information erst an der Mündung und/oder im Flug weitergegeben werden. Erfolgt die Programmierung noch vor dem Austritt aus dem Waffenrohr, fliegt das Projektil in der Regel an einer Programmiereinheit mit der Mündungsgeschwindigkeit V0 vorbei und ist damit in relativer Bewegung zur Programmiereinheit.For programmable ammunition, the projectile must be informed of its detonation time and / or flight path, ie it must be programmed. In systems in which the detonation time is calculated from the measured muzzle velocity V 0 , the information can be transmitted only at the mouth and / or in flight. If the programming takes place before exiting the weapon barrel, the projectile usually flies past a programming unit with the muzzle velocity V 0 and is therefore in relative motion to the programming unit.

Eine bekannte Programmiereinheit wird mit der CH 691 143 A5 beschrieben. Mit Hilfe einer Sendespule werden die Informationen über eine Gegenspule im/am Projektil induktiv übertragen. Unhabhängig des massiven Aufbaus der Programmiereinheit kann eine ungeschirmte Sendespule zur ungewollten Abstrahlung führen, da die Spule auch als Antenne wirkt. Das abgestrahlte Signal kann erfasst und aus diesem Rückschlüsse auf den Standort des Geschützes gezogen werden.A well-known programming unit is with the CH 691 143 A5 described. With the aid of a transmitting coil, the information about a counter-coil in / on the projectile is transmitted inductively. Irrespective of the massive structure of the programming unit, an unshielded transmission coil can lead to unwanted radiation, since the coil also acts as an antenna. The radiated signal can be detected and drawn from this conclusions on the location of the gun.

Aus der WO 2009/085064 A2 ist ein Verfahren bekannt, bei dem die Programmierung durch Nachsenden von Lichtstrahlen vorgenommen wird. Dazu weist das Geschoss umfangsseitig optische Sensoren auf.From the WO 2009/085064 A2 For example, a method is known in which the programming is carried out by retransmitting light beams. For this purpose, the projectile has peripheral optical sensors.

Die nicht vor veröffentlichte DE 10 2009 024 508.1 beschäftigt sich mit einem Verfahren zur Korrektur der Flugbahn einer endphasengelenkte Munition, speziell mit der Geschossprägung dieser Geschosse bzw. Munition im Mittelkaliberbereich. Hierbei wird vorgeschlagen, nach einem Feuerstoß (Dauerfeuer, schnelles Einzelfeuer) jedes einzelne Geschoss separat anzusprechen und dabei zusätzliche Informationen für das Einzelgeschoss für die Richtung des Erdmagnetfeldes zu übermitteln. Die Geschossprägung erfolgt auf dem Prinzip der Leitstrahllenkung von Geschossen. Jedes Geschoss liest dabei nur den für das Geschoss bestimmten Leitstrahl und kann anhand weiterer Informationen seine absolute Rolllage im Raum bestimmen, um so zur richtigen Auslösung des Korrekturimpulses zu gelangen.The not before published DE 10 2009 024 508.1 deals with a method for correcting the trajectory of an end-phase guided ammunition, especially with the projectile marking of these projectiles or ammunition in the middle caliber range. It is suggested that after a burst of fire (continuous fire, fast single fire) to address each floor separately and thereby additional information for the single floor for the direction to transmit the earth's magnetic field. The projectile is based on the principle of the guidance of projectiles. Each bullet only reads the beacon intended for the bullet and, based on further information, can determine its absolute rolling position in the space in order to arrive at the correct triggering of the correction pulse.

Alternative Übertragungsmöglichkeiten, beispielsweise mittels Mikrowellensender, sind dem Fachmann unter anderem aus der EP 1 726 911 A1 bekannt.Alternative transmission possibilities, for example by means of microwave transmitters, are among those skilled in the art from among others EP 1 726 911 A1 known.

Die Programmierung während des Fluges ist daher zwar technisch möglich, jedoch unterliegt auch diese einer einfachen Störung.The programming during the flight is therefore technically possible, but also this is subject to a simple fault.

Für programmierbare Munition muss dem Projektil Energie für die darin integrierte Elektronik und für das Starten der Zündkette zur Verfügung gestellt werden. Dafür besitzen diverse Munitionen kleine Batterien, die die notwendige Energie liefern. Andere werden vor dem Abschuss programmiert und mit Energie versorgt. Wenn die Energiemenge dauerhaft, beispielsweise während der Lagerung oder dem Ladevorgang in der Waffe, zur Verfügung steht, kann es zu einer ungewollten Geschosszerlegung kommen bei Fehlfunktion der Elektronik. Daher ist der Einsatz einfacher Energiespeicher, wie die einer Batterie nicht immer geeignet.For programmable ammunition, energy needs to be provided to the projectile for the integrated electronics and for starting the ignition chain. For this, various ammunition have small batteries that provide the necessary energy. Others are programmed and powered before launch. If the amount of energy is permanently available, for example during storage or charging in the weapon, there may be an unwanted bullet decomposition in case of malfunction of the electronics. Therefore, the use of simple energy storage, such as a battery is not always suitable.

Aus Sicherheitsgründen empfiehlt sich daher, die Energie dem Projektil erst in zeitlicher Nähe des Abschusses bereit zustellen, beispielsweise nach dem Zünden einer Treibladung und vor dem Verlassen des Mündungsaufganges eines Waffenrohrs. Dadurch wird gewährleistet, dass vor dem Abschuss die Munition sich nicht selbst zur Detonation bringen kann, da sie über keine Energie verfügt.For safety reasons, it is therefore advisable to deliver the energy to the projectile only in time proximity of the launch, for example after the ignition of a propellant charge and before leaving the mouth of a gun barrel. This ensures that the ammunition can not detonate itself before launch because it has no energy.

Die Batterie aus der DE 31 50 172 A wird erst aktiviert, nachdem das Geschütz des Geschützrohr verlassen hat, was unter anderem durch einen mechanischen Zeitschalter erfolgt. Auch die Batterie in der DE 199 41 301 A wird erst durch große Beschleunigungen beim Abfeuern aktiviert.The battery from the DE 31 50 172 A is activated only after the cannon has left the cannon, which is done, among other things, by a mechanical timer. Also the battery in the DE 199 41 301 A is only activated by large accelerations during firing.

Nach DE 488 866 wird ein Kondensator des Zünders in Schusslage über externe Kontakte aufgeladen. Ein Zündkondensator wird nach der Lehre der DE 10 2007 007 404 A schon nach Ende der Vorrohrsicherheit, d.h., ca. zwei Sekunden vor Laufzeitende aufgeladen. Der Zündkondensator nach DE 26 53 241 A wird induktiv über Magnetspulen vor dem Abschuss aufgeladen.To DE 488 866 a capacitor of the igniter is charged in weft position via external contacts. An ignition capacitor is according to the doctrine of DE 10 2007 007 404 A already after the end of the pre-pipe safety, ie, charged approximately two seconds before the end of the life. The ignition capacitor after DE 26 53 241 A is inductively charged by magnetic coils before firing.

Mit der US 4,144,815 A wird eine Art Energieübertragungseinrichtung beschrieben, bei der das Geschützrohr als Mikrowellenleiter dient, sodass vor dem Feuern die Energie und die Daten übertragen werden. Eine Empfangsantenne am Zünder nimmt das eingestrahlte Signal auf und führt es über einen Umschalter entweder an eine Gleichrichtereinrichtung oder an ein als De-Modulator wirkendes Filter, das aus dem ankommenden Signal die Daten ausfiltert. Die Gleichrichtereinrichtung dient hierbei dazu, aus dem ankommenden Signal eine Versorgungsspannung zu erzeugen, die dann gespeichert wird.With the US 4,144,815 A There is described a type of energy transfer device in which the gun barrel serves as a microwave conductor so that the energy and data are transferred before firing. A receiving antenna on the detonator receives the radiated signal and carries it via a switch either to a rectifier device or to a acting as a de-modulator filter that filters out the data from the incoming signal. The rectifier device serves to generate a supply voltage from the incoming signal, which is then stored.

Bekannt sind auch Vorrichtungen, die die Energie aus der Bewegungsenergie des Projektils gewinnen. Dabei ist ein Mechanismus im Projektil eingebaut, welcher aus der Beschleunigung nach der Zündung der Treibladung die nötige Energie in elektromagnetische Energie umwandelt und dabei einen im Projektil befindlichen Speicher auflädt.Also known are devices that gain the energy from the kinetic energy of the projectile. In this case, a mechanism is installed in the projectile, which converts the necessary energy into electromagnetic energy from the acceleration after the ignition of the propellant charge, thereby charging a storage located in the projectile.

So beschreibt die CH 586 384 A ein Verfahren, bei dem durch die lineare Schussbeschleunigung ein Weicheisenring und ein ringförmiger Dauermagnet gegenüber einer Induktionsspule in Richtung der Geschossachse verschoben wird, wodurch in der Spule eine Spannung erzeugt wird, welche einen Kondensator lädt. Zur Sicherheit wird dann mit der CH 586 889 A diese Einheit mit einer Transportsicherung versehen, die erst durch die bzw. eine hohe Beschleunigung beim Schuss zerstört wird.That's how it describes CH 586 384 A a method in which is displaced by the linear shot acceleration, a soft iron ring and a ring-shaped permanent magnet against an induction coil in the direction of the projectile axis, whereby in the coil, a voltage is generated, which charges a capacitor. For safety then with the CH 586 889 A This unit is provided with a transport lock, which is only destroyed by the or a high acceleration during the shot.

Nachteilig hierbei kann sein, dass die Beschleunigung des Projektils im Geschützrohr benutzt wird, da diese nicht exakt genau kontrolliert werden kann. Das bewirkt unterschiedliche Energieaufladungen, sodass dem Projektil zu viel oder gar zu wenig Energie mit auf den Weg mitgegeben wird. Zu wenig Energie hat dann den Nachteil, dass die Funktionsfähigkeit nicht gewährleistet wird. Ein weiterer Nachteil ist der komplexe und damit Platz einnehmende Umwandlungsmechanismus für die Umwandlung von mechanischer Energie in elektromagnetische Energie. Bei den hohen Umwelteinwirkungen (Stöße beim Abschuss, Querbeschleunigungen und Drall) auf das Geschoss während des Abschusses kann dieser Mechanismus zudem zerstört werden. Um dieses auszuschließen, sind konstruktive Maßnahmen notwendig, die die Munition nicht nur teuerer machen, sondern auch weiteren Platz im Projektil beanspruchen und dieses schwerer machen.The disadvantage here may be that the acceleration of the projectile is used in the gun barrel, as this can not be controlled exactly. This causes different energy charges, so that the projectile too much or too little energy is given along the way. Too little energy then has the disadvantage that the functionality is not guaranteed. Another disadvantage is the complex and thus space consuming conversion mechanism for the conversion of mechanical energy into electromagnetic energy. In the case of the high environmental impact (impacts during firing, lateral acceleration and spin) on the projectile during firing, this mechanism can also be destroyed. To exclude this, constructive measures are necessary, which not only make the ammunition more expensive, but also claim further space in the projectile and make this heavier.

Generatoren im Geschosskopf schlagen die DE 25 18 266 A sowie die DE 103 41 713 A vor. Alternativen zu diesen sind die Nutzung von Piezokristallen, wie in der DE 77 02 073 A , DE 25 39 541 A oder DE 28 47 548 A vorgeschlagen und ausgeführt.Generators in the bullet head beat the DE 25 18 266 A as well as the DE 103 41 713 A in front. Alternatives to these are the use of piezocrystals, as in the DE 77 02 073 A . DE 25 39 541 A or DE 28 47 548 A proposed and executed.

Die letztgenannten gehen dabei bereits den Weg, bekannte Energieumwandlungsmechanismen gegen ein Energieübertragungssystem zu ersetzen, welches seinerseits dem Projektil die notwendige Energie spätestens beim Mündungsdurchlauf aufprägt.The latter already go the way to replace known energy conversion mechanisms against a power transmission system, which in turn imposes the necessary energy on the projectile at the latest at the muzzle pass.

Die Erfindung stellt sich die Aufgabe, ein Projektil zu schaffen, das einfach aufgebaut eine optimale Programmierung und / oder eine optimale Energieübertragung ermöglicht.The invention has as its object to provide a projectile that allows simple design optimal programming and / or optimal energy transfer.

Gelöst wird die Aufgabe durch die Merkmale des Patentanspruchs 1 bzw. 4. Vorteilhafte Ausführungen sind in den Unteransprüchen aufgezeigt.The object is achieved by the features of claim 1 or 4. Advantageous embodiments are shown in the subclaims.

Dabei geht die Erfindung von der Idee aus, die Programmierung sowie Energieübertragung induktiv und/oder kapazitiv vorzunehmen. Dazu befinden sich im Projektil ein Sensor, der das Programmiersignal empfängt, sowie ein mit diesem Sensor elektrisch verbundenen Prozessor, der die Programmierung durchführt und dadurch zu einem vorbestimmten Zeitpunkt die Zündung des Projektils initiiert. Ein elektrischer Speicher dient zur Stromversorgung der Elektronik des Prozessors. Dieser erhält seine Energie in der bevorzugten Ausführung beim Durchlauf durch ein Waffenrohr und / oder eine Mündungsbremse.The invention is based on the idea of making programming and energy transmission inductively and / or capacitively. These are located in the projectile, a sensor that receives the programming signal, as well as an electrically connected to this sensor processor that performs the programming and thereby initiates the ignition of the projectile at a predetermined time. An electrical memory is used to power the electronics of the processor. This receives its energy in the preferred embodiment when passing through a gun barrel and / or a muzzle brake.

In der bevorzugten Ausführung wird das als Hohlleiter genutzte Waffenrohr, Mündungsbremse oder zusätzliche Teil zwischen Waffenrohr und Mündungsbremse sowie an der Mündungsbremse befestigbare Teil unterhalb der Grenzfrequenz betrieben. Ein derartiges Verfahren mit Vorrichtung ist zur Messung der Mündungsgeschwindigkeit eines Projektil oder dergleichen bereits aus der DE 10 2006 058 375 A bekannt. Diese schlägt vor, das Waffenrohr bzw. das Abschussrohr und/oder Teile der Mündungsbremse als Hohlleiter zu nutzen (als Hohlleiter gilt ein Rohr mit einer charakteristischen Querschnittsform, das eine sehr gut elektrisch leitende Wand besitzt. Technisch weit verbreitet sind vor allem Rechteck- und Rund-Hohlleiter), welches jedoch unter der Grenzfrequenz des betreffenden Hohlleiter-Mode betrieben wird. Die WO 2009/141055 A führt diese Idee weiter und kombiniert zwei Messmethoden der V0 Messung miteinander.In the preferred embodiment, the weapon tube used as a waveguide, muzzle brake or additional part between gun barrel and muzzle brake, as well as attachable to the muzzle brake part below the cutoff frequency is operated. Such a method with device is for measuring the muzzle velocity of a projectile or the like already from the DE 10 2006 058 375 A known. This proposes to use the weapon tube or the launching tube and / or parts of the muzzle brake as a waveguide (as a waveguide, a tube with a characteristic cross-sectional shape, which has a very good electrically conductive wall.) Technically widespread are mainly rectangular and round -Hohlleiter), which, however, operated below the cutoff frequency of the respective waveguide mode. The WO 2009/141055 A continues this idea and combines two measurement methods of V 0 measurement.

Parallele Anmeldungen der Anmelderin zeigen ein Verfahren und eine Vorrichtung zur Programmierung und Energieübertragung auf Behandelt werden darin im Wesentlichen der Aufbau der waffenseitigen Einbindung der Baugruppen für eine Programmierung und / oder einer Energieübertragung. Auch die V0 Messung erfolgt hierbei bevorzugt mit Hilfe eines Hohlleiters. Eine derartige Lösung kann in diesem Fall Grundlage für die waffenseitige Programmierung als auch Energieübertragung auf das Projektil sein.Applicant's co-pending applications show a method and apparatus for programming and energy transfer which essentially involves building the weapon-side integration of the assemblies for programming and / or power transfer. The V 0 measurement is preferably carried out with the aid of a waveguide. Such a solution may in this case be the basis for weapon-side programming as well as energy transfer to the projectile.

Anhand eines Ausführungsbeispiels mit Zeichnung soll die Erfindung näher erläutert werden. Es zeigt in schematischer Darstellung:

Fig. 1
eine programmierbare Munition in einer ersten Variante mit Bandpassfilter,
Fig. 2
die programmierbare Munition aus Fig. 1 mit verbundenem Energiepfad,
Fig. 3
die programmierbare Munition aus Fig. 2 mit verbundenem Programmierpfad,
Fig. 4/5
Ablaufdiagramme der Programmierung bzw. des Energieübertrages der Munition.
Reference to an embodiment with drawing, the invention will be explained in more detail. It shows in a schematic representation:
Fig. 1
a programmable ammunition in a first variant with bandpass filter,
Fig. 2
the programmable ammunition Fig. 1 with connected energy path,
Fig. 3
the programmable ammunition Fig. 2 with connected programming path,
Fig. 4/5
Flowcharts of the programming and the energy transfer of the ammunition.

Fig. 1 bis 3 zeigen ein Projektil bzw. eine Munition 1 mit wenigstens einem Sensor 2 für den Empfang eines Programmiersignals mit der Frequenz f3 und/oder einer Energieübertragungssignals mit der Frequenz f2. Der Sensor kann beispielsweise eine Spule für eine induktive und/oder eine Elektrode für eine kapazitive Signalübertragung sein. Mit 7 ist eine Zündung (elektrisch) gekennzeichnet, die mit einer Elektronik (Prozessor) 6 sowie einem Energiespeicher 5 elektrisch verschaltet ist. Das Signal mit der Frequenz f2 speist den Speicher 5 mit Energie und das Signal mit der Frequenz f3 programmiert die Elektronik 6 beispielsweise mit der Detonationszeit. Der Speicher 5 versorgt die Elektronik 6 und den Zünder 7 mit Strom. Fig. 1 to 3 show a projectile or an ammunition 1 with at least one sensor 2 for receiving a programming signal with the frequency f 3 and / or a power transmission signal with the frequency f 2 . The sensor may for example be a coil for an inductive and / or an electrode for a capacitive signal transmission. 7 with an ignition (electrical) is characterized, which is electrically connected to an electronics (processor) 6 and an energy storage 5. The signal with the frequency f 2 energizes the memory 5 with energy and the signal with the frequency f 3 programs the electronics 6, for example with the detonation time. The memory 5 supplies the electronics 6 and the igniter 7 with electricity.

In der bevorzugten Ausbildung kann die Energieübertragung auf das Signal der Programmierung abgestimmt werden. Dabei wird in Fig. 1 das Programmiersignal mit der Frequenz f3 ≠ f2 genutzt, sodass aus Gründen der Platzersparnis derselbe Sensor 2 für beide Vorgänge verwendet werden kann. In dieser bevorzugten Ausführung wird somit nur ein Sensor 2 die Programmierung als auch eine Energieübertragung zum Bereitstellen einer Energie für den Speicher 5 im Projektil 1 genutzt wird. Dies wird auch dadurch unterstützt, dass die Energieübertragung beim Durchlauf des Projektil 1 durch ein Waffenrohr, eine Mündungsbremse etc. und die Programmierung zeitlich nach diesem Energieübertrag stattfinden. Es ist selbstverständlich aber auch möglich zwei getrennte Sensoren zu verwenden und diese fest zu verschalten.In the preferred embodiment, the energy transfer can be tuned to the signal of the programming. It will be in Fig. 1 used the programming signal with the frequency f 3 ≠ f 2 , so that for reasons of space savings, the same sensor 2 can be used for both processes. In this preferred embodiment, therefore, only one sensor 2, the programming and an energy transfer to provide energy for the memory 5 in the projectile 1 is used. This is also supported by the fact that the energy transfer during the passage of the projectile 1 through a gun barrel, a muzzle brake, etc., and the programming take place in time after this transfer of energy. Of course, it is also possible to use two separate sensors and to interconnect them firmly.

Nach dem bevorzugten Ausführungsbeispiel in Fig.1 erfolgt der Energieeingang (Energieübertragung) beim Projektil 1 durch den Empfang einer Frequenz f2 und die Programmierung durch den Empfang einer Frequenz f3. Da für beide Frequenzen ein gemeinsamer Empfängersensor 2 verwendet wird, ist ein Bandpass 3, 4 eingebunden, der einerseits das Signal mit der Frequenz f2 zum Speicher 5 durchlässt und andererseits das Signal mit der Frequenz f3 zur Elektronik 6. Die beiden Bandpassfilter 3, 4 trennen somit die empfangenen Signale gemäß ihrer Frequenzen.In the preferred embodiment in FIG Fig.1 the energy input (energy transmission) takes place at the projectile 1 by the reception of a frequency f 2 and the programming by the reception of a frequency f 3 . Since a common receiver sensor 2 is used for both frequencies, a bandpass 3, 4 is integrated, which on the one hand passes the signal with the frequency f 2 to the memory 5 and on the other hand, the signal with the frequency f 3 to the electronics 6. The two bandpass filters 3, 4 thus separate the received signals according to their frequencies.

In der zweiten Ausführung nach Fig. 2 und Fig.3 (Bedingung kann sein f2≠ f3 oder f2 = f3) ist anstelle der Bandpässe 3, 4 eine Steuerung 8 eingebunden, die ein Umschalten zu den einzelnen Pfaden - Energiepfad und Programmierpfad - über einen Schalter 9 oder dergleichen organisiert. Fig. 2 zeigt dabei das Verbinden mit dem Speicher 5 des Energiepfades und Fig. 3 das Verbinden des Sensors 2 mit der Elektronik 6 des Programmierpfades.In the second execution after Fig. 2 and Figure 3 (Condition may be f 2 ≠ f 3 or f 2 = f 3 ) is integrated instead of the band passes 3, 4, a controller 8, which organizes switching to the individual paths - energy path and programming path - via a switch 9 or the like. Fig. 2 shows the connection to the memory 5 of the energy path and Fig. 3 the connection of the sensor 2 with the electronics 6 of the programming path.

Fig. 4 widerspiegelt den Programmierablauf bei der Bedingung f2 ≠ f3. Fig. 5 widerspiegelt den Programmierablauf bei der Bedingung f2 = f3. Nicht näher dargestellt ist der waffenseitige Aufbau für die Programmierung bzw. Energieübertragung (verwiesen wird hierzu auf die beiden parallelen Anmeldungen der Anmelderin). Fig. 4 reflects the programming process with the condition f 2 ≠ f 3 . Fig. 5 reflects the programming process with the condition f 2 = f 3 . Not shown in detail is the weapon-side structure for the programming or energy transmission (reference is made to the two parallel applications of the Applicant).

Das Geschoss bzw. die Munition oder das Projektil 1 fliegt in den nicht näher dargestellten Hohlleiter ein. In einem ersten Schritt erfolgt die Energieübertragung auf das Projektil 1 innerhalb des Hohlleiters HL1. Dazu kommen entweder die Bandpassfilter 3, 4 oder nach dem Ausführungsbeispiel Fig. 2 und Fig. 3 die Steuerung 8 zum Einsatz. Anschließend erfolgt die Programmierung beispielsweise innerhalb des Hohlleiters HL2. Beide genannten Hohlleiter können auch durch ein und denselben Hohlleiter gebildet werden. Wenn mehrere Anordnungen von Hohlleitern vorhanden sind und diese nacheinander durchlaufen werden (entspricht N>1:ja), wiederholt sich der Vorgang. Ansonsten tritt das Projektil 1 aus dem Hohlleiter aus.The projectile or the ammunition or the projectile 1 flies into the waveguide, not shown. In a first step, the energy is transferred to the projectile 1 within the waveguide HL1. These are either the bandpass filter 3, 4 or according to the embodiment Fig. 2 and Fig. 3 the controller 8 is used. Subsequently, the programming is carried out, for example, within the waveguide HL2. Both waveguides mentioned can also be formed by one and the same waveguide. If multiple arrays of waveguides are present and they pass through successively (if N> 1: yes), the process repeats. Otherwise, the projectile 1 emerges from the waveguide.

Wird nur eine Frequenz (f2 = f3) -für die Programmierung als auch die Energieübertragung verwendet, müssen die elektrischen Pfade im Projektil 1 wechselseitig geöffnet bzw. geschlossen werden. Dies erfolgt in der einfachsten Ausführung durch den Schalter 8 in der Munition. Auch hier können mehrere Hohlleiter vorhanden sein, die nacheinander durchlaufen werden (Pfad N>1:ja), bevor das Projektil 1 die Hohlleiter verlässt.If only one frequency (f 2 = f 3 ) is used for the programming and the energy transmission, the electrical paths in the projectile 1 must be mutually opened or closed. This is done in the simplest version by the switch 8 in the ammunition. Here, too, a plurality of waveguides may be present, which are passed through successively (path N> 1: yes), before the projectile 1 leaves the waveguides.

Claims (6)

  1. Programmable munition (1) having at least one energy store (5), electronics (6) and an ignition (7) and also at least one sensor (2)
    - for receiving a signal at a frequency (f2) for power transmission, which signal can be routed to the energy store (5), and
    - for receiving its signal at a frequency (f3), which signal is sent for programming, and forwarding this signal to the electronics (6) for programming, wherein
    - the programming and the power transmission are effected when the projectile (1) passes through a weapon barrel or a muzzle brake that is operated as a waveguide below the cut-off frequency.
  2. Munition according to Claim 1, characterized in that two bandpass filters (3, 4) are incorporated, wherein one bandpass filter (3) allows the signal at the frequency (f2) to pass through to the memory (5) and the other bandpass filter (4) forwards the signal at the frequency (f3) to the electronics (6).
  3. Munition according to Claim 1, characterized in that a controller (8) having a changeover unit (9) is incorporated, so that the signal at the frequency (f2) is routed to the memory (5) and the signal at the frequency (f3) is routed to the electronics (6).
  4. Method for programming and/or power transmission for a munition (1) having at least one energy store (5), electronics (6) and an ignition (7) and also at least one sensor (2), characterized by the steps of:
    - transmission of a power to the projectile (1) by sending a signal at the frequency (f2) and
    - programming of the projectile (1) by sending a signal at the frequency (f3), wherein
    - the at least one sensor (2) routes
    - the signal at the frequency (f2) to the memory (5) and
    - the signal at the frequency (f3) to the electronics (8), wherein
    - the programming and the power transmission are effected when the projectile (1) passes through a weapon barrel or a muzzle brake that is operated as a waveguide below the cut-off frequency.
  5. Method according to Claim 4, characterized in that connection is effected by means of filtering.
  6. Method according to Claim 4, characterized in that connection is effected by means of controlled changeover.
EP11704923.9A 2010-02-01 2011-01-28 Programmable ammunition Active EP2531806B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010006530A DE102010006530B4 (en) 2010-02-01 2010-02-01 Programmable ammunition
PCT/EP2011/000389 WO2011092023A1 (en) 2010-02-01 2011-01-28 Programmable ammunition

Publications (2)

Publication Number Publication Date
EP2531806A1 EP2531806A1 (en) 2012-12-12
EP2531806B1 true EP2531806B1 (en) 2016-01-20

Family

ID=43969417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11704923.9A Active EP2531806B1 (en) 2010-02-01 2011-01-28 Programmable ammunition

Country Status (16)

Country Link
US (1) US8984999B2 (en)
EP (1) EP2531806B1 (en)
JP (1) JP5882912B2 (en)
KR (1) KR101647540B1 (en)
CN (1) CN102667396B (en)
BR (1) BR112012019016B1 (en)
CA (1) CA2784931C (en)
DE (1) DE102010006530B4 (en)
DK (1) DK2531806T3 (en)
ES (1) ES2568791T3 (en)
PL (1) PL2531806T3 (en)
RU (1) RU2535313C2 (en)
SG (1) SG182736A1 (en)
UA (1) UA108627C2 (en)
WO (1) WO2011092023A1 (en)
ZA (1) ZA201205166B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010006528B4 (en) * 2010-02-01 2013-12-12 Rheinmetall Air Defence Ag Method and device for programming a projectile
DE102011018248B3 (en) * 2011-04-19 2012-03-29 Rheinmetall Air Defence Ag Device and method for programming a projectile
DE102012022894A1 (en) * 2012-11-23 2014-05-28 Gabriele Lisa Trinkel System for identification, verification and/or authentication of projectile e.g. railgun projectile, has sensor, communication unit, processing unit and power supply or power generation unit which are arranged in housing of projectile
DE102014005832A1 (en) * 2014-04-19 2015-10-22 Diehl Bgt Defence Gmbh & Co. Kg Missile with a store
DE102014015833A1 (en) 2014-10-28 2016-04-28 Rheinmetall Air Defence Ag A method for data transmission of data to a projectile during the passage of a gun barrel assembly, wherein a programming signal is generated with the data from a programming unit
DE102014015832B4 (en) 2014-10-28 2024-01-04 Rheinmetall Air Defence Ag Method for transmitting data to a projectile while passing through a weapon barrel assembly
DE102014016340B3 (en) * 2014-11-05 2015-08-20 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, vertreten durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr Programming device for programming a programmable artillery ammunition
US20180299220A1 (en) * 2017-04-13 2018-10-18 Rebecca Reixin Du Ammunition firing authorization system
RU2718477C2 (en) * 2018-06-04 2020-04-08 Акционерное общество "ЗАСЛОН" Power supply source for controlled artillery projectiles and missiles
DE102019102722A1 (en) * 2019-02-04 2020-08-06 Ruag Ammotec Gmbh Bullet with a caliber of less than 13 mm and bullet tracking system
DE102022124558A1 (en) 2022-09-23 2024-03-28 Rheinmetall Waffe Munition Gmbh Modular ignition system and ammunition comprising a modular ignition system

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE488866C (en) * 1927-04-29 1930-01-11 Rheinische Metallw & Maschf Method and device for testing and energy supply of electrical projectile fuses
US2824284A (en) * 1947-10-03 1958-02-18 Thomas H Johnson Microwave-registering of projectile position and velocity in guns
US2691761A (en) * 1948-02-03 1954-10-12 Jr Nicholas M Smith Microwave measuring of projectile speed
US4142442A (en) * 1971-12-08 1979-03-06 Avco Corporation Digital fuze
US4144815A (en) * 1973-01-05 1979-03-20 Westinghouse Electric Corp. Remote settable fuze information link
CH578723A5 (en) * 1974-05-10 1976-08-13 Oerlikon Buehrle Ag
CH586384A5 (en) * 1974-12-06 1977-03-31 Oerlikon Buehrle Ag
CH586889A5 (en) 1974-12-13 1977-04-15 Oerlikon Buehrle Ag
DE2539541C2 (en) * 1975-09-05 1982-05-13 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Circuit for an electric projectile fuse
CH621230B (en) 1975-11-25 Mefina Sa ELECTRONIC IGNITION DEVICE FOR PROJECTILE ROCKET.
US4030097A (en) * 1976-02-02 1977-06-14 Gedeon Anthony A Muzzle velocity chronograph
DE7702073U1 (en) * 1977-01-26 1978-04-20 Fa. Diehl, 8500 Nuernberg IGNITION VOLTAGE GENERATOR FOR BULLET DETECTORS AND THE LIKE
DE2847548C2 (en) * 1978-11-02 1983-03-03 Diehl GmbH & Co, 8500 Nürnberg Electric projectile fuse
US4283989A (en) * 1979-07-31 1981-08-18 Ares, Inc. Doppler-type projectile velocity measurement and communication apparatus, and method
DE3150172A1 (en) * 1981-12-18 1983-06-30 Brown, Boveri & Cie Ag, 6800 Mannheim DEVICE FOR ADJUSTING AND / OR MONITORING THE OPERATION OF A BULLET IGNITION
US4649796A (en) * 1986-06-18 1987-03-17 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for setting a projectile fuze during muzzle exit
EP0300255B1 (en) * 1987-07-20 1991-04-24 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Digital counter setting apparatus for the initiation of a timed-detonator in a projectile
AT389764B (en) * 1988-03-04 1990-01-25 Avl Verbrennungskraft Messtech METHOD AND DEVICE FOR DETERMINING INNER BALLISTIC CHARACTERISTICS IN TUBE ARMS
CH691143A5 (en) * 1995-03-17 2001-04-30 Contraves Ag Device for measuring shell velocity at mouth of barrel of high cadence weapon has offset magnetic flux sensor coils on closed magnetic circuit perpendicular to barrel
EP0769673B1 (en) * 1995-09-28 2002-03-20 Oerlikon Contraves Pyrotec AG Method and device to program time fuses for projectiles
NO312143B1 (en) * 1996-04-19 2002-03-25 Contraves Ag Procedure for determining the desired split time, especially for a programmable projectile
FR2771807B1 (en) * 1997-11-28 1999-12-31 Giat Ind Sa DEVICE FOR PROGRAMMING A PROJECTILE INSIDE A WEAPON TUBE
DE19756357B4 (en) * 1997-12-18 2007-06-28 Dynamit Nobel Gmbh Explosivstoff- Und Systemtechnik Device for inducing a magnetic field in the mouth region of a launcher
US5894102A (en) * 1997-12-31 1999-04-13 Aai Corporation Self-correcting inductive fuze setter
RU2135947C1 (en) * 1998-05-18 1999-08-27 Государственное научно-производственное предприятие "Прибор" Method for combination initiation of ammunition and ammunition with combination initiation
DE19941301C1 (en) 1999-08-31 2000-12-07 Honeywell Ag Electronic timed shell detonator has timing program for electronic control unit initiated only after closure of switch via mechanical safety device
DE10341713B3 (en) * 2003-09-10 2005-06-09 Diehl Bgt Defence Gmbh & Co. Kg A rifling stabilized artillery projectile with a projectile nose, detonator, electrical generator and a decelleration device useful in military operations involving artillery
DE102005024179A1 (en) 2005-05-23 2006-11-30 Oerlikon Contraves Ag Method and device for temping and / or correction of the ignition timing of a projectile
US7506586B1 (en) * 2005-08-04 2009-03-24 The United States Of America As Represented By The Secretary Of The Army Munitions energy system
DE102006058375A1 (en) 2006-12-08 2008-06-12 Oerlikon Contraves Ag Method for measuring the muzzle velocity of a projectile or the like
DE102007007404A1 (en) * 2007-02-12 2008-08-14 Krauss-Maffei Wegmann Gmbh & Co. Kg Method and device for remote release of a projectile
US8499693B2 (en) * 2007-09-21 2013-08-06 Rheinmetall Waffe Munition Gmbh Method and apparatus for optically programming a projectile
DE102008024574A1 (en) * 2008-05-21 2010-06-17 Rheinmetall Air Defence Ag Apparatus and method for measuring the muzzle velocity of a projectile or the like
DE102009024508A1 (en) 2009-06-08 2011-07-28 Rheinmetall Air Defence Ag Method for correcting the trajectory of an end-phase guided munition
DE102010006528B4 (en) * 2010-02-01 2013-12-12 Rheinmetall Air Defence Ag Method and device for programming a projectile

Also Published As

Publication number Publication date
KR20120139691A (en) 2012-12-27
DE102010006530B4 (en) 2013-12-19
DE102010006530A1 (en) 2011-08-04
DK2531806T3 (en) 2016-04-18
US8984999B2 (en) 2015-03-24
EP2531806A1 (en) 2012-12-12
UA108627C2 (en) 2015-05-25
KR101647540B1 (en) 2016-08-10
JP2013518238A (en) 2013-05-20
US20140007759A1 (en) 2014-01-09
CA2784931A1 (en) 2011-08-04
CA2784931C (en) 2014-09-16
ES2568791T3 (en) 2016-05-04
JP5882912B2 (en) 2016-03-09
BR112012019016A2 (en) 2016-09-13
CN102667396B (en) 2014-12-31
BR112012019016B1 (en) 2020-10-27
SG182736A1 (en) 2012-08-30
WO2011092023A1 (en) 2011-08-04
PL2531806T3 (en) 2017-09-29
RU2012137290A (en) 2014-03-10
RU2535313C2 (en) 2014-12-10
CN102667396A (en) 2012-09-12
ZA201205166B (en) 2013-03-27

Similar Documents

Publication Publication Date Title
EP2531806B1 (en) Programmable ammunition
EP2531807B1 (en) Method and device for programming a projectile
EP2531802B1 (en) Method and device for transmitting energy to a projectile
EP1726911B1 (en) Method and device for time setting and for correcting the ignition time in a projectile
EP2524189B1 (en) Method for correcting the trajectory of a projectile, in particular of an end-phase-guided projectile, and projectile for carrying out the process
DE2122843C2 (en) Remote-controlled projectile detonator
EP3279603A1 (en) Electromagnetic mobile active system
DE3150172A1 (en) DEVICE FOR ADJUSTING AND / OR MONITORING THE OPERATION OF A BULLET IGNITION
EP2699871B1 (en) Device and method for programming a projectile
DE102009016147A1 (en) Demountable projectile for use in weapon barrel of weapon system, is demounted into two projectile parts after firing target location, where projectile parts are connected with each other by multiple connecting elements
EP1040313B1 (en) Device for inducing a magnetic field in the mouth area of a launching device
DE102012101037B3 (en) Launching system for launching projectile by vehicle, has ignition module which is optionally provided with either electric or mechanical firing mechanism over common control device, and is optionally connected to common control device
DE102016005911A1 (en) Measuring projectile and method for measuring a condition of a gun by means of a measuring projectile
DE3639277C2 (en) Telecontrol device
DE102012001219A1 (en) Projectile ignitor for use with weapon pipe of weapon system, has safety device comprising evaluation unit for obtaining and converting sensor signals for receiving environmental criterion for unlocking locking device
DE2262366C3 (en) Triggering device for a weapon acting against movable targets that influence the earth's magnetic field
DE102013015163A1 (en) Course correction device for spin-stabilized projectiles
DE102014005830A1 (en) Arrangement for the tempering of a turret having grenade with airburst function

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140904

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 771929

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008709

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WEINMANN ZIMMERLI, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160414

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2568791

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160504

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20160400474

Country of ref document: GR

Effective date: 20160505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008709

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

26N No opposition filed

Effective date: 20161021

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160128

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160420

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011008709

Country of ref document: DE

Representative=s name: HUEBSCH, KIRSCHNER & PARTNER, PATENTANWAELTE U, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011008709

Country of ref document: DE

Representative=s name: HUEBSCH & WEIL PATENT- UND RECHTSANWALTSKANZLE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011008709

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 771929

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011008709

Country of ref document: DE

Representative=s name: HUEBSCH, KIRSCHNER & PARTNER, PATENTANWAELTE U, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011008709

Country of ref document: DE

Representative=s name: HUEBSCH, KIRSCHNER & PARTNER, PATENTANWAELTE U, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230125

Year of fee payment: 13

Ref country code: FR

Payment date: 20230124

Year of fee payment: 13

Ref country code: ES

Payment date: 20230330

Year of fee payment: 13

Ref country code: DK

Payment date: 20230123

Year of fee payment: 13

Ref country code: CH

Payment date: 20230124

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230127

Year of fee payment: 13

Ref country code: SE

Payment date: 20230119

Year of fee payment: 13

Ref country code: PL

Payment date: 20230120

Year of fee payment: 13

Ref country code: IT

Payment date: 20230120

Year of fee payment: 13

Ref country code: GR

Payment date: 20230123

Year of fee payment: 13

Ref country code: DE

Payment date: 20220620

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230119

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240119

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240122

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240223

Year of fee payment: 14