EP2531584B1 - Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten - Google Patents

Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten Download PDF

Info

Publication number
EP2531584B1
EP2531584B1 EP11706660.5A EP11706660A EP2531584B1 EP 2531584 B1 EP2531584 B1 EP 2531584B1 EP 11706660 A EP11706660 A EP 11706660A EP 2531584 B1 EP2531584 B1 EP 2531584B1
Authority
EP
European Patent Office
Prior art keywords
oil
base
group
oils
detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11706660.5A
Other languages
English (en)
French (fr)
Other versions
EP2531584A1 (de
Inventor
Kathleen H. Tellier
Vincent M. Carey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Priority to EP19167430.8A priority Critical patent/EP3527649A1/de
Priority to EP19167432.4A priority patent/EP3527650A1/de
Publication of EP2531584A1 publication Critical patent/EP2531584A1/de
Application granted granted Critical
Publication of EP2531584B1 publication Critical patent/EP2531584B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/042Mixtures of base-materials and additives the additives being compounds of unknown or incompletely defined constitution only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • the present invention relates to the operation of large engines such as natural gas engines using additized lubricating oil formulations.
  • Natural gas fueled engines are typically four-stroke spark-ignited engines having 12 to 20 cylinders or more similar to heavy duty diesel engines.
  • the engines are typically deployed in the gas and oil industry to compress natural gas at the well heads and along the pipeline.
  • Another common application is distributed power generation or combined heating and power (CHP). Due to the nature of this latter application, the engines fueled by natural gas run continuously near full load conditions, shutting down only for maintenance or oil changes. Higher energy costs result in higher operating costs and create a strong driver for customers to improve the efficiency of their natural gas engine operations.
  • fuel efficiency gains of 1-4% for a typical 1000 bhp gas engine can yield considerable annual savings per engine. In addition, less fuel is burned; proportionately less CO 2 (greenhouse gas) is produced.
  • the life of the lubricant is often limited by its oxidation stability. Moreover, because natural gas-fired engines run with high emission of nitrogen oxides (NO x ), the lubricant life may also be limited by its nitration resistance. A longer term requirement is that the lubricant must also maintain cleanliness within the high temperature environment of the engine, especially for critical components such as bearings, cylinder walls, pistons and piston rings. Therefore, it is desirable for gas engine oils to have good cleanliness qualities while promoting long life through enhanced resistance to oxidation and nitration.
  • NO x nitrogen oxides
  • Gas engine oil of enhanced life as evidenced by an increase in the resistance of the oil to oxidation, nitration and deposit formation is the subject of U.S. Patent No. 5,726,133 .
  • the gas engine oil of that patent is a low ash gas engine oil comprising a major amount of a base oil of lubricating viscosity and a minor amount of an additive mixture comprising a mixture of detergents comprising at least one alkali or alkaline earth metal salt having a Total Base Number (TBN) of about 250 and less and a second alkali or alkaline earth metal salt having a TBN lower than the aforesaid component.
  • TBN of this second alkali or alkaline earth metal salt will typically be about half or less that of the first component.
  • the fully formulated gas engine oil of U.S. Patent No. 5,726,133 can also typically contain other standard additives known to those skilled in the art, including dispersants (about 0.5 to 8 vol%), phenolic or aminic anti-oxidants (about 0.05 to 1.5 vol%), metal deactivators such as triazoles, alkyl-substituted dimercaptothiadiazoles (about 0.01 to 0.2 vol%), anti-wear additives such as metal dithiophosphates, metal dithiocarbamates, metal xanthates or tricresylphosphates (about 0.05 to 1.5 vol%), pour point depressants such as poly (meth) acrylates or alkyl aromatic polymers (about 0.05-0.6 vol%), anti-foamants such as silicone anti-foaming agents (about 0.005 to 0.15 vol%) and viscosity index improvers, such as olefin copolymers, polymethacrylates, styrene-diene block copolymers
  • U.S. Patent 6,191,081 is directed to a lubricating oil composition for natural gas engines comprising a major amount of a base oil of lubricating viscosity and a minor amount of a mixture of one or more metal salicylate detergents and one or more metal phenate and/or metal sulfonate detergents.
  • the lubricating oil base stock is any natural or synthetic lubricating base oil stock fraction typically having a kinematic viscosity at 100°C of about 5 to 20 cSt.
  • a viscosity index improver permits the omission of oil of viscosity about 20 cSt or more at 100°C from the lube base oil fraction used to make the formulation. Therefore, a preferred base oil is one which contains little, if any, heavy fraction; e.g., little, if any, lube oil fraction of viscosity 20 cSt or higher at 100°C.
  • the lubricating oil base stock can be derived from natural lubricating oils, synthetic lubricating oils or mixtures thereof. Suitable base stocks include those in API categories I, II and III, where saturates level and Viscosity Index are:
  • Suitable lubricating oil base stocks also include base stocks obtained by isomerization of synthetic wax and slack wax, as well as hydrocrackate base stocks produced by hydrocracking (rather than solvent extracting) the aromatic and polar components of the crude.
  • the mixture of detergents comprises a first metal salt or group of metal salts selected from the group consisting of one or more metal sulfonates(s), salicylate(s), phenate(s) and mixtures thereof having a high TBN of greater than about 150 to 300 or higher, a second metal salt or group of metal salts selected from the group consisting of one or more metal salicylate(s), metal sulfonate(s), metal phenate(s) and mixtures thereof having a medium TBN of greater than about 50 to 150, and a third metal salt or group of metal salts selected from the group consisting of one or more metal sulfonate(s), metal salicylate(s) and mixtures thereof identified as neutral or low TBN, having a TBN of about 10 to 50, the total amount of medium plus neutral/low TBN detergent being about 0.7 vol% or higher (active ingredient) wherein at least one of the medium or low/neutral TBN detergent(s) is metal salicylate, preferably at least one of the medium TBN detergent
  • the total amount of high TBN detergents is about 0.3 vol% or higher (active ingredient).
  • the mixture contains salts of at least two different types, with medium or neutral salicylate being an essential component.
  • the volume ratio (based on active ingredient) of the high TBN detergent to medium plus neutral/low TBN detergent is in the range of about 0.15 to 3.5.
  • the mixture of detergents is added to the lubricating oil formulation in an amount up to about 10 vol% based on active ingredient in the detergent mixture, preferably in an amount up to about 8 vol% based on active ingredient, more preferably 6 vol% based on active ingredient in the detergent mixture, most preferably between about 1.5 to 5.0 vol%, based on active ingredient in the detergent mixture.
  • the total amount of metal salicylate(s) used of all TBNs is in the range of between 0.5 vol% to 4.5 vol%, based on active ingredient of metal salicylate, the combination of the recited metal salts per se or in combination with any additional metal salts or groups of metal salts being used in an amount sufficient to produce a lubricating oil of at least 0.65 wt% sulfated ash content.
  • U.S. Published Application US2005/0059563 is directed to a lubricating oil composition, automotive gear lubricating composition and fluids useful in the preparation of finished automotive gear lubricants and gear oils comprising a blend of a PAO having a viscosity of between about 40 cSt (mm 2 /s) and 1000 cSt (mm 2 /s) @ 100°C, and an ester having a viscosity of less than or equal to about 2.0 cSt (mm 2 /s) @ 100°C wherein the blend of PAO and ester has a viscosity index greater than or equal to the viscosity index of the PAO.
  • the composition may further contain thickeners, anti-oxidants, inhibitor packages, anti-rust additives, dispersants, detergents, friction modifiers, traction improving additives, demulsifiers, defoamants, dyes and haze inhibitors.
  • U.S. Published Application US2003/0191032 is directed to a detergent additive for lubricating oil compositions comprising at least two of low, medium and high TBN detergents, preferably a calcium salicylate.
  • the detergent is in a lubricating oil composition comprising at least one of Group II base stock, Group III base stock or wax isomerate base stock and mixtures thereof, and an optional minor quantity of a co-base stock(s).
  • Co-base stocks include polyalpha olefin oligomeric low and medium and high viscosity oil, di-basic acid esters, polyol esters, other hydrocarbon oils, supplementary hydrocarbyl aromatics and the like.
  • US Published Application 2006/0276355 is directed to a lubricant blend for enhanced micropitting properties wherein the lubricant comprises at least two base stocks with a viscosity difference between the first and second base stock of greater than 96 cSt (mm 2 /s) @ 100°C.
  • At least one base stock is a polyalpha olefin with a viscosity of less than 6 mm 2 /s but greater than 2 cSt (mm 2 /s)
  • the second base stock is a synthetic oil with a viscosity greater than 100 cSt (mm 2 /s) but less than 300 cSt (mm 2 /s) @ 100°C.
  • the second base stock can be a high viscosity polyalpha olefin.
  • U.S. Published Application 2007/0289897 is directed to a lubricating oil blend comprising at least two base stocks with a viscosity difference between the first and second base stock of greater than 96 cSt (mm 2 /s) @ 100°C, the lubricant exhibiting improved air release.
  • the blend contains at least one synthetic PAO having a viscosity of less than 10 cSt (mm 2 /s) but greater than 2 cSt (mm 2 /s) @ 100°C and a second synthetic oil having a viscosity greater than 100 cSt (mm 2 /s) but less than 300 cSt (mm 2 /s) @ 100°C.
  • the lubricant can contain anti-wear, anti-oxidant, defoamant, demulsifier, detergent, dispersant, metal passivator, friction reducer, rust inhibitor additive and mixtures thereof.
  • the difference in viscosity between the first and second stocks is greater than 30 cSt (mm 2 /s) @ 100°C.
  • the higher viscosity first stock is a metallocene catalyzed PAO base stock.
  • the second stock can be selected from GTL lubricants, wax-derived lubricants, PAO, brightstock, brightstock with PIB, Group I base stocks, Group II base stocks, Group III base stocks and mixtures thereof.
  • the lubricant can contain additives including detergents.
  • the first stock has a viscosity of greater than 300 cSt (mm 2 /s) @ 100°C
  • the second stock has a viscosity of between 1.5 cSt (mm 2 /s) to 6 cSt (mm 2 /s) @ 100°C.
  • the difference in viscosity between the first and second stocks is greater than 96 cSt (mm 2 /s) @ 100°C.
  • the difference in viscosity between the first and second stocks is greater than 250 cSt (mm 2 /s) @ 100°C.
  • the first stock is a metallocene catalyzed PAO base stock.
  • the second stock can be chosen from GTL base stock, wax-derived base stock, PAO, brightstock, brightstock with PIB, Group I base stock, Group II base stock, Group III base stock, Group V base stock, Group VI base stock and mixtures thereof.
  • the lubricant can contain additives including detergents.
  • U.S. Patent 6,140,281 is directed to long life gas engine lubricating oils containing detergents.
  • the lubricating oil comprises a major amount of a base oil of lubricating viscosity and a minor amount of a mixture of one or more metal sulfonate(s) and/or phenate(s) and one or more metal salicylate(s) detergents, all detergents in the mixture having the same or substantially the same Total Base Number (TBN).
  • TBN Total Base Number
  • the lubricating oil base stock is any natural or synthetic lubricating base stock fraction typically having a kinematic viscosity at 100°C of about 5 to 20 cSt (mm 2 /s), more preferably about 7 to 16 cSt (mm 2 /s), most preferably about 9 to 13 cSt (mm 2 /s).
  • a viscosity index improver permits the omission of oil of viscosity 20 cSt (mm 2 /s) or more at 100°C from the lube base oil fraction used to make the formulation. Therefore, a preferred base oil is one which contains little, if any, heavy fractions; e.g., little, if any, lube oil fraction of viscosity 20 cSt (mm 2 /s) or higher at 100°C.
  • the lubricating oil base stock can be derived from natural lubricating oils, synthetic lubricating oils or mixtures thereof. Suitable base stocks include those in API categories I, II and III, where saturates level and Viscosity Index are:
  • Suitable lubricating oil base stocks include base stocks obtained by isomerization of synthetic wax and slack wax, as well as hydrocrackate base stocks produced by hydrocracking (rather than solvent extracting) the aromatic and polar components of the crude.
  • the detergent is a mixture of one or more metal sulfonate(s) and/or metal phenate(s) with one or more metal salicylate(s).
  • the metals are any alkali or alkaline earth metals; e.g., calcium, barium, sodium, lithium, potassium, magnesium, more preferably calcium, barium and magnesium. It is a feature of the lubricating oil that each of the metal salts used in the mixture.
  • the TBNs of the salts will differ by no more than about 15%, preferably no more than about 12%, more preferably no more than about 10% or less.
  • the one or more metal sulfonate(s) and/or metal phenate(s), and the one or more metal salicylate(s) are utilized in the detergent as a mixture, for example, in a ratio by parts of 5:95 to 95:5, preferably 10:90 to 90:10, more preferably 20:80 to 80:20.
  • the mixture of detergents is added to the lubricating oil formulation in an amount up to about 10 vol% based on active ingredient in the detergent mixture, preferably in an amount up to about 8 vol% based on active ingredient.
  • U.S. Patent 6,645,922 is directed to a lubricating oil for two-stroke cross-head marine diesel engines comprising a base oil and an oil-soluble overbased detergent additive in the form of a complex wherein the basic material of the detergent is stabilized by more than one surfactant.
  • the more than one surfactants can be mixtures of: (1) sulfurized and/or non-sulfurized phenols and one other surfactant which is not a phenol surfactant; or (2) sulfurized and/or non-sulfurized salicylic acid and one other surfactant which is not a salicylic surfactant; or (3) at least three surfactants which are sulfurized or non-sulfurized phenol, sulfurized or non-sulfurized salicylic acid and one other surfactant which is not a phenol or salicylic surfactant; or (4) at least three surfactants which are sulfurized or non-sulfurized phenol, sulfurized or non-sulfurized salicylic acid and at least one sulfuric acid surfactant.
  • the base stock is an oil of lubricating viscosity and may be any oil suitable for the system lubrication of a cross-head engine.
  • the lubricating oil may suitably be an animal, vegetable or a mineral oil.
  • the lubricating oil is a petroleum-derived lubricating oil, such as naphthenic base, paraffinic base or mixed base oil.
  • the lubricating oil may be a synthetic lubricating oil.
  • Suitable synthetic lubricating oils include synthetic ester lubricating oils, which oils include diesters such as di-octyl adipate, di-octyl sebacate and tri-decyl adipate, or polymeric hydrocarbon lubricating oils, for example, liquid polyisobutene and polyalpha olefins. Commonly, a mineral oil is employed.
  • the lubricating oil may generally comprise greater than 60% by mass, typically greater than 70 % by mass of the lubricating oil composition and typically have a kinematic viscosity at 100°C of from 2 to 40 cSt (mm 2 /s), for example, from 3 to 15 cSt (mm 2 /s), and a viscosity index from 80 to 100, for example, from 90 to 95.
  • Hydrocracked oils Another class of lubricating oil is hydrocracked oils, where the refining process further breaks down the middle and heavy distillate fractions in the presence of hydrogen at high temperatures and moderate pressures.
  • Hydrocracked oils typically have kinematic viscosity at 100°C of from 2 to 40 cSt (mm 2 /s), for example, from 3 to 15 cSt (mm 2 /s), and a viscosity index typically in the range of from 100 to 110, for example, from 105 to 108.
  • Brightstock refers to base oils which are solvent-extracted, de-asphalted products from vacuum residuum generally having a kinematic viscosity at 100°C from 28 to 36 cSt (mm 2 /s), and are typically used in a proportion of less than 30, preferably less than 20, more preferably less than 15, most preferably less than 10, such as less than 5 mass%, based on the mass of the lubricating oil composition.
  • U.S. Patent 6,613,724 is directed to gas fueled engine lubricating oils comprising an oil of lubricating viscosity, a detergent including at least one calcium salicylate having a TBN in the range 70 to 245, 0 to 0.2 mass% of nitrogen, based on the mass of the oil composition, of a dispersant and minor amounts of one or more co-additive.
  • the base oil can be any animal, vegetable, mineral oil or synthetic oil. The base oil is used in a proportion of greater than 60 mass% of the composition.
  • the oil typically has a viscosity at 100°C of from 2 to 40 cSt (mm 2 /s), for example 3 to 15 cSt (mm 2 /s) and a viscosity index of from 80 to 100.
  • Hydrocracked oils can also be used which have viscosities of 2 to 40 cSt (mm 2 /s) at 100°C and viscosity indices of 100 to 110.
  • Brightstock having a viscosity at 100°C of from 28 to 36 cSt (mm 2 /s) can also be used, typically in a proportion less than 30, preferably less than 20, most preferably less than 5 mass%.
  • U.S. Patent 7,101,830 is directed to a gas engine oil having a boron content of more than 95 ppm comprising a major amount of a lubricating oil having a viscosity index of 80 to 120, at least 90 mass% saturates, 0.03 mass% or less sulfur and at least one detergent.
  • Metal salicylate is a preferred detergent.
  • U.S. Patent 4,956,122 is directed to a lubricating oil composition containing a high viscosity synthetic hydrocarbon such as high viscosity PAO, liquid hydrogenated polyisoprenes, or ethylene-alpha olefin copolymers having a viscosity of 40-1000 cSt (mm 2 /s) at 100°C, a low viscosity synthetic hydrocarbon having a viscosity of between 1 and 10 cSt (mm 2 /s) at 100°C, optionally a low viscosity ester having a viscosity of between 1 and 10 cSt (mm 2 /s) at 100°C and optionally up to 25 wt% of an additive package.
  • a high viscosity synthetic hydrocarbon such as high viscosity PAO, liquid hydrogenated polyisoprenes, or ethylene-alpha olefin copolymers having a viscosity of 40-1000 cSt (mm 2 /s) at 100
  • the invention is directed to the use of a lubricating oil composition for improving the fuel economy of large low and medium speed engines in which the interfacing surface speeds reach at least 3 mm/s.
  • This is achieved by reducing the traction coefficient of the engine oil comprising a base oil by using as the base oil a bimodal blend of two different base oils, a first base oil being one or more oils selected from the group consisting of Group III base oils, Group IV base oils, and Group V base oils, which first base oil has a kinematic viscosity at 100°C of from 2 to 12 cSt (mm 2 /s) and a second base oil selected from one or more oils selected from Group IV base oils having a kinematic viscosity at 100°C of at least 38 cSt (mm 2 /s), the difference in kinematic viscosity between the first and second base oils being at least 32 cSt (mm 2 /s), the combination of the first and second base oils having a kinematic viscosity at 100
  • This disclosure is also directed to a method for improving the fuel economy of large low and medium speed engines that reach surface speeds of at least 3 mm/s, preferably at least 10 mm/s, more preferably at least 30 mm/s, and are lubricated by an engine oil by reducing the traction coefficient of the engine oil used to lubricate the engine, by employing as the engine oil a lubricating oil comprising a first base oil selected from the group consisting of a Group III base oil, Group IV base oil and/or Group V base oil having a kinematic viscosity at 100°C of from 2 to 12 mm 2 /s, and a second base oil selected from Group IV base oils having a kinematic viscosity at 100°C of at least 38 mm 2 /s, the difference in kinematic viscosity between the first and second base oils being at least 32 mm 2 /s, the combination of the first and second base oils having a kinematic viscosity at 100°C of 15 mm 2
  • the difference in kinematic viscosity between the first and second base stocks is at least 70 cSt (mm 2 /s), more preferably at least 110 cSt (mm 2 /s), still more preferably at least 140 cSt (mm 2 /s).
  • the combination of the first and second base stocks preferably has a kinematic viscosity of 7 to 13 cSt (mm 2 /s) at 100°C.
  • surface speed is meant the velocity at which interfacing surfaces of an engine, e.g. piston and cylinder wall, interfacing bearing surfaces, move past each other when the engine is operating. This surface speed is a primary factor in influencing whether the lubrication regime for the interfacing surfaces is boundary, hydrodynamic or mixed (boundary/hydrodynamic).
  • the present invention utilizes a bimodal mixture of base stocks.
  • bimodal in the present specification is meant a mixture of at least two base stocks each having a different kinematic viscosity at 100°C wherein the difference in kinematic viscosity at 100°C between the at least two base stocks is at least 32 cSt (mm 2 /s).
  • the mixture of the at least two base stocks comprises one or more low kinematic viscosity base stock(s) having a kinematic viscosity at 100°C of from 2 to 12 cSt (mm 2 /s), which base stock is selected from the group consisting of Group III, Group IV and Group V base stocks, preferably Group III and Group IV base stocks, using the API classification in combination with one or more high kinematic viscosity Group IV base stocks having a kinematic viscosity at 100°C of at least 38 mm 2 /s.
  • Group III base stocks are classified by the American Petroleum Institute as oils containing greater than or equal to 90% saturates, less than or equal to 0.03% sulfur and a viscosity index of greater than or equal to 120.
  • Group III base stocks are usually produced using a three-stage process involving hydrocracking an oil feed stock, such as vacuum gas oil, to remove impurities and to saturate all aromatics which might be present to produce highly paraffinic lube oil stock of very high viscosity index, subjecting the hydrocracked stock to selective catalytic hydrodewaxing which converts normal paraffins into branched paraffins by isomerization followed by hydrofinishing to remove any residual aromatics, sulfur, nitrogen or oxygenates.
  • Group III stocks as used in the present specification and appended claims also embrace non-conventional or unconventional base stocks and/or base oils which include one or a mixture of base stock(s) and/or base oil(s) derived from: (1) one or more Gas-to-Liquids (GTL) materials; as well as (2) hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed base stock(s) and/or base oil(s) derived from synthetic wax, natural wax or waxy feeds, waxy feeds including feeds such as mineral and/or non-mineral oil waxy feed stocks, for example gas oils, slack waxes (derived from the solvent dewaxing of natural oils, mineral oils or synthetic; e.g., Fischer-Tropsch feed stocks) and waxy stocks such as waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, foots oil or other natural, mineral oil, or even non-petroleum oil derived waxy materials such
  • GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes and butynes.
  • GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons, for example, waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks.
  • GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range (1) separated/ fractionated from synthesized GTL materials such as, for example, by distillation and subsequently subjected to a final wax processing step which involves either or both of a catalytic dewaxing process, or a solvent dewaxing process, to produce lube oils of reduced/low pour point; (2) synthesized wax isomerates, comprising, for example, hydrodewaxed or hydroisomerized cat and/or solvent dewaxed synthesized wax or waxy hydrocarbons; (3) hydrodewaxed or hydroisomerized cat and/or solvent dewaxed Fischer-Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydrodewaxed or hydroisomerized/followed by cat and/or solvent dewaxing dewaxed F-T waxy hydrocarbons, or hydrodewaxed
  • GTL base stock(s) and/or base oil(s) derived from GTL materials especially, hydrodewaxed or hydroisomerized/followed by cat and/or solvent dewaxed wax or waxy feed, preferably F-T material derived base stock(s) and/or base oil(s), are characterized typically as having kinematic viscosities at 100°C of from about 2 mm 2 /s to about 50 mm 2 /s (ASTM D445).
  • such GTL base stock(s) and/or base oil(s) employed as the first oil in the bimodal blend are limited to those GTL base stock(s) and/or base oil(s) which have a KV @ 100°C in the range of from 2 to 12 cSt (mm 2 /s).
  • the GTL base stock(s) and/or base oil(s) are further characterized typically as having pour points of -5°C to about -40°C or lower (ASTM D97). They are also characterized typically as having viscosity indices of about 80 to about 140 or greater (ASTM D2270).
  • GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffins.
  • the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
  • GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than about 10 ppm, and more typically less than about 5 ppm of each of these elements.
  • the sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained from F-T material, especially F-T wax, is essentially nil.
  • the absence of phosphorous and aromatics make this material especially suitable for the formulation of low SAP products.
  • GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil is to be understood as embracing individual fractions of such materials of different viscosity as recovered in the production process, mixtures of two or more of such fractions of similar viscosity, as well as mixtures of one or two or more low viscosity fractions combined with one, two or more higher viscosity fractions to produce a blend wherein the blend exhibits a target kinematic viscosity in the range of 2 to 12 cSt (mm 2 /s).
  • the GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is preferably an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax).
  • the GTL material from which the GTL base stock(s) and/or base oil(s) is/are derived is an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax).
  • F-T material i.e., hydrocarbons, waxy hydrocarbons, wax.
  • a slurry F-T synthesis process may be beneficially used for synthesizing the feed from CO and hydrogen and particularly one employing an F-T catalyst comprising a catalytic cobalt component to provide a high Schultz-Flory kinetic alpha for producing the more desirable higher molecular weight paraffins. This process is well known to those skilled in the art.
  • compositions of GTL base stock(s) and/or base oil(s), hydrodewaxed or hydroisomerized/cat (and/or solvent) dewaxed F-T material derived base stock(s), and wax-derived hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed base stock(s), such as wax isomerates or hydrodewaxates, are recited in U.S. Patent Nos. 6,080,301 ; 6,090,989 , and 6,165,949 , for example.
  • Base stock(s) and/or base oil(s) derived from waxy feeds which are also suitable for use as the Group III stocks in this invention, are paraffinic fluids of lubricating viscosity derived from hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed waxy feed stocks of mineral oil, non-mineral oil, non-petroleum, or natural source origin, e.g.
  • feed stocks such as one or more of gas oils, slack wax, waxy fuels hydrocracker bottoms, hydrocarbon raffinates, natural waxes, hydrocrackates, thermal crackates, foots oil, wax from coal liquefaction or from shale oil, or other suitable mineral oil, non-mineral oil, non-petroleum, or natural source derived waxy materials, linear or branched hydrocarbyl compounds with carbon number of about 20 or greater, preferably about 30 or greater, and mixtures of such isomerate/isodewaxate base stock(s) and/or base oil(s).
  • gas oils such as one or more of gas oils, slack wax, waxy fuels hydrocracker bottoms, hydrocarbon raffinates, natural waxes, hydrocrackates, thermal crackates, foots oil, wax from coal liquefaction or from shale oil, or other suitable mineral oil, non-mineral oil, non-petroleum, or natural source derived waxy materials, linear or branched hydrocar
  • Slack wax is the wax recovered from any waxy hydrocarbon oil including synthetic oil such as F-T waxy oil or petroleum oils by solvent or auto-refrigerative dewaxing.
  • Solvent dewaxing employs chilled solvent such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), mixtures of MEK/MIBK, mixtures of MEK and toluene, while auto-refrigerative dewaxing employs pressurized, liquefied low boiling hydrocarbons such as propane or butane.
  • Slack waxes secured from synthetic waxy oils such as F-T waxy oil will usually have zero or nil sulfur and/or nitrogen containing compound content.
  • Slack wax(es) secured from petroleum oils may contain sulfur and nitrogen-containing compounds.
  • Such heteroatom compounds must be removed by hydrotreating (and not hydrocracking), as for example by hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) so as to avoid subsequent poisoning/ deactivation of the hydroisomerization catalyst.
  • the process of making the lubricant oil base stocks from wax or waxy stocks may be characterized as an isomerization process.
  • slack waxes may need to be subjected to a preliminary hydrotreating step under conditions already well known to those skilled in the art to reduce (to levels that would effectively avoid poisoning or deactivating the isomerization catalyst) or to remove sulfur- and nitrogen-containing compounds which would otherwise deactivate the hydroisomerization or hydrodewaxing catalyst used in subsequent steps.
  • F-T waxes are used, such preliminary treatment is not required because such waxes have only trace amounts (less than about 10 ppm, or more typically less than about 5 ppm to nil each) of sulfur and/or nitrogen compound content.
  • some hydrodewaxing catalyst feed F-T waxes may benefit from prehydrotreatment for the removal of oxygenates while others may benefit from oxygenates treatment.
  • the hydroisomerization or hydrodewaxing process may be conducted over a combination of catalysts, or over a single catalyst.
  • the hydroprocessing used for the production of base stocks from such waxy feeds may use an amorphous hydrocracking/hydroisomerization catalyst, such as a lube hydrocracking (LHDC) catalysts, for example catalysts containing Co, Mo, Ni, W, Mo, etc., on oxide supports, e.g., alumina, silica, silica/alumina, or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
  • LHDC lube hydrocracking
  • oxide supports e.g., alumina, silica, silica/alumina, or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
  • Hydrocarbon conversion catalysts useful in the conversion of the n-paraffin waxy feedstocks disclosed herein to form the isoparaffinic hydrocarbon base oil are zeolite catalysts, such as ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-12, ZSM-38, ZSM-48, offretite, ferrierite, zeolite beta, zeolite theta, and zeolite alpha, as disclosed in U.S. Patent 4,906,350 . These catalysts are used in combination with Group VIII metals, in particular palladium or platinum. The Group VIII metals may be incorporated into the zeolite catalysts by conventional techniques, such as ion exchange.
  • Conversion of the waxy feed stock may be conducted over a combination of Pt/zeolite beta and Pt/ZSM-23 catalysts or over such catalysts used in series in the presence of hydrogen.
  • the process of producing the lubricant oil base stocks comprises hydroisomerization and dewaxing over a single catalyst, such as Pt/ZSM-35.
  • the waxy feed can be fed over a catalyst comprising Group VIII metal loaded ZSM-48, preferably Group VIII noble metal loaded ZSM-48, more preferably Pt/ZSM-48 in either one stage or two stages. In any case, useful hydrocarbon base oil products may be obtained.
  • Catalyst ZSM-48 is described in U.S. Patent 5,075,269 .
  • a dewaxing step, when needed, may be accomplished using one or more of solvent dewaxing, catalytic dewaxing or hydrodewaxing processes or combinations of such processes in any sequence.
  • the hydroisomerate may be contacted with chilled solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), mixtures of ME/MIBK, or mixtures of MEK/toluene and the like, and further chilled to precipitate out the higher pour point material as a waxy solid which is then separated from the solvent-containing lube oil fraction which is the raffinate.
  • the raffinate is typically further chilled in scraped surface chillers to remove more wax solids.
  • Auto-refrigerative dewaxing using low molecular weight hydrocarbons, such as propane, can also be used in which the hydroisomerate is mixed with, e.g., liquid propane, at least a portion of which is flashed off to chill down the hydroisomerate to precipitate out the wax.
  • the wax is separated from the raffinate by filtration, membrane separation or centrifugation.
  • the solvent is then stripped out of the raffinate, which is then fractionated to produce the preferred base stocks useful in the present invention.
  • catalytic dewaxing the hydroisomerate is reacted with hydrogen in the presence of a suitable dewaxing catalyst at conditions effective to lower the pour point of the hydroisomerate.
  • Catalytic dewaxing also converts a portion of the hydroisomerate to lower boiling materials which are separated from the heavier base stock fraction. This base stock fraction can then be fractionated into two or more base stocks. Separation of the lower boiling material may be accomplished either prior to or during fractionation of the heavy base stock fraction material into the desired base stocks.
  • dewaxing catalyst which will reduce the pour point of the hydroisomerate and preferably those which provide a large yield of lube oil base stock from the hydroisomerate may be used.
  • dewaxing catalyst which include shape selective molecular sieves which, when combined with at least one catalytic metal component, have been demonstrated as useful for dewaxing petroleum oil fractions and include, for example, ferrierite, mordenite, ZSM-5, ZSM-11, ZSM-23, ZSM-35, ZSM-22 also known as theta one or TON, and the silicoaluminophosphates known as SAPOs.
  • a dewaxing catalyst which has been found to be unexpectedly particularly effective comprises a noble metal, preferably Pt, composited with H-mordenite.
  • the dewaxing may be accomplished with the catalyst in a fixed, fluid or slurry bed.
  • Typical dewaxing conditions include a temperature in the range of from about 204.4 to 315.6 °C (about 400 to 600°F) a pressure of 3.45 to 6.2 MPa (500 to 900 psig) H 2 treat rate of 1500 to 3500 SCF/B for flow-through reactors and LHSV of 0.1 to 10, preferably 0.2 to 2.0.
  • the dewaxing is typically conducted to convert no more than 40 wt% and preferably no more than 30 wt% of the hydroisomerate having an initial boiling point in the range of 343.3 to 399°C (650 to 750 °F) to material boiling below its initial boiling point.
  • the first base stock of the bimodal mixture can also be a Group IV base stock which for the purposes of this specification and the appended claims is identified as polyalpha olefins.
  • the polyalpha olefins in general are typically comprised of relatively low molecular weight hydrogenated polymers or oligomers of polyalphaolefins which include, but are not limited to, C 2 to about C 32 alphaolefins, with the C 8 to about C 16 alphaolefins, such as 1-octene, 1-decene, 1-dodecene and the like, being preferred.
  • the preferred polyalphaolefins are poly-1-octene, poly-1-decene and poly-1-dodecene and mixtures thereof and mixed olefin-derived polyolefins.
  • the PAO fluids may be conveniently made by the polymerization of one or a mixture of alphaolefins in the presence of a polymerization catalyst such as the Friedel-Crafts catalyst including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl proprionate.
  • a polymerization catalyst such as the Friedel-Crafts catalyst including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl proprionate.
  • a polymerization catalyst such as the Friedel-Crafts catalyst including, for example, aluminum trichloride
  • Patents 3,742,082 ; 3,769,363 ; 3,876,720 ; 4,239,930 ; 4,367,352 ; 4,413,156 ; 4,434,408 ; 4,910,355 ; 4,956,122 ; and 5,068,487 .
  • the dimers of the C 14 to C 18 olefins are described in U.S. Patent 4,218,330 .
  • the PAOs useful in the present invention can also be made by metallocene catalysis.
  • the metallocene-catalyzed PAO can be a copolymer made from at least two or more different alphaolefins, or a homo-polymer made from a single alphaolefin feed employing a metallocene catalyst system.
  • the metallocene catalyst can be simple metallocenes, substituted metallocenes or bridged metallocene catalysts activated or promoted by, for instance, methylaluminoxane (MAO) or a non-coordinating anion, such as N,N-dimethylanilinium tetrakis(perfluorophenyl)borate or other equivalent non-coordinating anion.
  • MAO methylaluminoxane
  • a non-coordinating anion such as N,N-dimethylanilinium tetrakis(perfluorophenyl)borate or other equivalent non-coordinating anion.
  • the copolymer mPAO composition is made from at least two alphaolefins of C 3 to C 30 range and having monomers randomly distributed in the polymers. It is preferred that the average carbon number is at least 4.1.
  • ethylene and propylene, if present in the feed, are present in the amount of less than 50 wt% individually or preferably less than 50 wt% combined.
  • the copolymers can be isotactic, atactic, syndiotactic polymers or any other form of appropriate taciticity.
  • mPAO can also be made from mixed feed Linear Alpha Olefins (LAOs) comprising at least two and up to 26 different linear alphaolefins selected from C 3 to C 30 linear alphaolefins.
  • LAOs Linear Alpha Olefins
  • the mixed feed LAO can be obtained, for example, from an ethylene growth processing using an aluminum catalyst or a metallocene catalyst.
  • the growth olefins comprise mostly C 6 to C 18 LAO. LAOs from other processes can also be used.
  • the homo-polymer mPAO composition can be made from single alphaolefin chosen from alphaolefins in the C 3 to C 30 range, preferably C 3 to C 16 , most preferably C 3 to C 14 or C 3 to C 12 .
  • the homo-polymers can be isotactic, atactic, syndiotactic polymers or any other form of appropriate taciticity. The taciticity can be carefully tailored by the polymerization catalyst and polymerization reaction condition chosen or by the hydrogenation condition chosen.
  • the alphaolefin(s) can be chosen also from any component from a conventional LAO production facility or from a refinery. It can be used alone to make homo-polymer or together with another LAO available from a refinery or chemical plant, including propylene, 1-butene, 1-pentene, and the like, or with 1-hexene or 1-octene made from a dedicated production facility.
  • the alphaolefins also can be chosen from the alphaolefins produced from Fischer-Tropsch synthesis (as reported in U.S. Patent 5,382,739 ). For example, C 3 to C 16 alphaolefins, more preferably linear alphaolefins, are suitable to make homo-polymers.
  • the phrase "at least two alphaolefins” will be understood to mean “at least two different alphaolefins” (and similarly “at least three alphaolefins” means “at least three different alphaolefins", and so forth).
  • the product obtained is an essentially random liquid copolymer comprising the at least two alphaolefins.
  • essentially random is meant that one of ordinary skill in the art would consider the products to be random copolymer.
  • liquid will be understood by one of ordinary skill in the art as meaning liquid under ordinary conditions of temperature and pressure, such as ambient temperature and pressure.
  • the process for producing mPAO employs a catalyst system comprising a metallocene compound (Formula 1, below) together with an activator such as a non-coordinating anion (NCA) (Formula 2, below) or methylaluminoxane (MAO) 1111 (Formula 3, below):
  • NCA non-coordinating anion
  • MAO methylaluminoxane
  • catalyst system is defined herein to mean a catalyst precursor/activator pair, such as a metallocene/activator pair.
  • catalyst system means the unactivated catalyst (precatalyst) together with an activator and, optionally, a co-activator (such as a trialkyl aluminum compound).
  • co-activator such as a trialkyl aluminum compound
  • this activated "catalyst system” may optionally comprise the co-activator and/or other charge-balancing moiety.
  • the co-activator such as trialkyl aluminum compound, is also used as an impurity scavenger.
  • the metallocene is selected from one or more compounds according to Formula 1 above.
  • M is selected from Group 4 transition metals, preferably zirconium (Zr), hafnium (Hf) and titanium (Ti), L1 and L2 are independently selected from cyclopentadienyl ("Cp"), indenyl, and fluorenyl, which may be substituted or unsubstituted, and which may be partially hydrogenated.
  • A is an optional bridging group which, if present, can be selected from dialkylsilyl, dialkylmethyl, diphenylsilyl or diphenylmethyl, ethylenyl (-CH 2 -CH 2 ), alkylethylenyl (-CR 2 -CR 2 ), where alkyl can be independently C 1 to C 16 alkyl radical or phenyl, tolyl, xylyl radical and the like, and wherein each of the two X groups, Xa and Xb, are independently selected from halides OR (R is an alkyl group, preferably selected from C 1 to C 5 straight or branched chain alkyl groups), hydrogen, C 1 to C 16 alkyl or aryl groups, haloalkyl, and the like. Usually relatively more highly substituted metallocenes give higher catalyst productivity and wider product viscosity ranges.
  • the polyalphaolefins preferably have a Bromine number of 1.8 or less as measured by ASTM D1159, preferably 1.7 or less, preferably 1.6 or less, preferably 1.5 or less, preferably 1.4 or less, preferably 1.3 or less, preferably 1.2 or less, preferably 1.1 or less, preferably 1.0 or less, preferably 0.5 or less, preferably 0.1 or less. If necessary the polyalphaolefins can be hydrogenated to achieve a low bromine number.
  • mpolyalphaolefins described herein may have monomer units represented by Formula 4 in addition to the all regular 1,2-connection: where j, k and m are each, independently, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 or 22, n is an integer from 1 to 350 (preferably 1 to 300, preferably 5 to 50) as measured by proton NMR.
  • mpolyalphaolefins may have an Mw (weight average molecular weight) of 100,000 or less, preferably between 100 and 80,000, preferably between 250 and 60,000, preferably between 280 and 50,000, preferably between 336 and 40,000 g/mol.
  • mpolyalphaolefins may have a Mn (number average molecular weight) of 50,000 or less, preferably between 200 and 40,000, preferably between 250 and 30,000, preferably between 500 and 20,000 g/mol.
  • any of the mpolyalphaolefins (mPAO) described herein may have a molecular weight distribution (MWD-Mw/Mn) of greater than 1 and less than 5, preferably less than 4, preferably less than 3, preferably less than 2.5.
  • the MWD of mPAO is always a function of fluid viscosity.
  • any of the polyalphaolefins described herein may have an Mw/Mn of between 1 and 2.5, alternately between 1 and 3.5, depending on fluid viscosity.
  • Mw/Mn Molecular weight distribution
  • GPC gel permeation chromatography
  • the GPC solvent was HPLC Grade tetrahydrofuran, uninhibited, with a column temperature of 30°C, a flow rate of 1 ml/min, and a sample concentration of 1 wt%, and the Column Set is a Phenogel 500 A, Linear, 10E6A.
  • any of the m-polyalphaolefins (mPAO) described herein may have a substantially minor portion of a high end tail of the molecular weight distribution.
  • the mPAO has not more than 5.0 wt% of polymer having a molecular weight of greater than 45,000 Daltons.
  • the amount of the mPAO that has a molecular weight greater than 45,000 Daltons is not more than 1.5 wt%, or not more than 0.10 wt%.
  • the amount of the mPAO that has a molecular weight greater than 60,000 Daltons is not more than 0.5 wt%, or not more than 0.20 wt%, or not more than 0.1 wt%.
  • the mass fractions at molecular weights of 45,000 and 60,000 can be determined by GPC, as described above.
  • Any mPAO described herein may have a pour point of less than 0°C (as measured by ASTM D97), preferably less than -10°C, preferably less than 20°C, preferably less than -25°C, preferably less than -30°C, preferably less than -35°C, preferably less than -50°C, preferably between -10°C and -80°C, preferably between -15°C and -70°C.
  • mPolyalphaolefins (mPAO) made using metallocene catalysis may have a kinematic viscosity at 100°C from about 1.5 to about 5,000 cSt, preferably from about 2 to about 3,000 cSt, preferably from about 3 cSt to about 1,000 cSt, more preferably from about 4 cSt to about 1,000 cSt, and yet more preferably from about 8 cSt to about 500 cSt as measured by ASTM D445.
  • the mPAO When used as the first component of the bimodal blend described in the present specification, the mPAO has a KV @ 100°C in the range 2 to 12 cSt (mm 2 /s) while when used as the second component of the bimodal blend the mPAO has a KV @ 100°C of at least 38 cSt (mm 2 /s).
  • PAOs useful as either the first and/or second component in the bimodal blend used in the present invention include those made by the process disclosed in U.S. Patent 4,827,064 and U.S. Patent 4,827,073 .
  • Those PAO materials, which are produced by the use of a reduced valence state chromium catalyst, are olefin oligomers of polymers which are characterized by very high viscosity indices which give them very desirable properties to be useful as lubricant base stocks and, with higher viscosity grades, as VI improvers. They are referred to as High Viscosity Index PAOs or HVI-PAOs.
  • HVI-PAO materials are also described in the following U.S. Patents to which reference is made: 4,990,709 ; 5,254,274 ; 5,132,478 ; 4,912,272 ; 5,264,642 ; 5,243,114 ; 5,208,403 ; 5,057,235 ; 5,104,579 ; 4,943,383 ; 4,906,799 .
  • These oligomers can be briefly summarized as being produced by the oligomerization of 1-olefins in the presence of a metal oligomerization catalyst which is a supported metal in a reduced valence state.
  • the preferred catalyst comprises a reduced valence state chromium on a silica support, prepared by the reduction of chromium using carbon monoxide as the reducing agent.
  • the oligomerization is carried out at a temperature selected according to the viscosity desired for the resulting oligomer, as described in U.S. Patent Nos. 4,827,064 and 4,827,073 .
  • Higher viscosity materials may be produced as described in U.S. Patent No. 5,012,020 and U.S. Patent No. 5,146,021 where oligomerization temperatures below about 90°C are used to produce the higher molecular weight oligomers.
  • the oligomers after hydrogenation when necessary to reduce residual unsaturation, have a branching index (as defined in U.S. Patent Nos. 4,827,064 and 4,827,073 ) of less than 0.19.
  • the HVI-PAO normally have a viscosity in the range of about 12 to 5,000 cSt.
  • HVI-PAOs generally can be characterized by one or more of the following: C 30 to C 1300 hydrocarbons having a branch ratio of less than 0.19, a weight average molecular weight of between 300 and 45,000, a number average molecular weight of between 300 and 18,000, a molecular weight distribution of between 1 and 5.
  • HVI-PAOs are fluids with 100°C viscosity ranging from 3 to 5000 mm 2 /s or more.
  • the fluids with viscosity at 100°C of 3 mm 2 /s to 5000 mm 2 /s have VI calculated by ASTM method D2270 greater than 130. Usually they range from 130 to 350.
  • the fluids all have low pour points, below -15°C.
  • the HVI-PAOs can further be characterized as hydrocarbon compositions comprising the polymers or oligomers made from 1-alkenes, either by itself or in a mixture form, taken from the group consisting of C 6 to C 20 1-alkenes.
  • Examples of the feeds can be 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, etc.
  • the products usually are distilled to remove any low molecular weight compositions such as those boiling below 315.6 °C (600°F), or with carbon numbers less than C 20 , if they are produced from the polymerization reaction or are carried over from the starting material. This distillation step usually improves the volatility of the finished fluids.
  • the fluids made directly from the polymerization or oligomerization process usually have unsaturated double bonds or have olefinic molecular structure.
  • the amount of double bonds or unsaturation or olefinic components can be measured by several methods, such as bromine number (ASTM D1159), bromine index (ASTM D2710) or other suitable analytical methods, such as NMR, IR, etc.
  • the amount of the double bond or the amount of olefinic compositions depends on several factors - the degree of polymerization, the amount of hydrogen present during the polymerization process and the amount of other promoters which anticipate in the termination steps of the polymerization process, or other agents present in the process. Usually the amount of double bonds or the amount of olefinic components is decreased by the higher degree of polymerization, the higher amount of hydrogen gas present in the polymerization process or the higher amount of promoters participating in the termination steps.
  • the oxidative stability and light or UV stability of HVI-PAO fluids improves when the amount of unsaturation double bonds or olefinic contents is reduced. Therefore, it is desirable to further hydrotreat the polymer if it has a high degree of unsaturation.
  • the fluids with bromine number of less than 5, as measured by ASTM D1159 is suitable for high quality base stock application. Of course, the lower the bromine number, the better the lube quality. Fluids with bromine numbers of less than 3 or 2 are common. The most preferred range is less than 1 or less than 0.1.
  • the method to hydrotreat to reduce the degree of unsaturation is well known in literature ( U.S. Patent No. 4,827,073 , example 16).
  • the fluids made directly from the polymerization already have very low degree of unsaturation, such as those with viscosities greater than 150 cSt at 100°C. They have bromine numbers less than 5 or even below 2. In these cases, it can be used as is without hydrotreating, or it can be hydrotreated to further improve the base stock properties.
  • PAO fluid is used as a single component fluid or as one of a mixture of PAO fluids constituting the first low viscosity base stock of the bimodal mixture useful in the present invention
  • that PAO fluid or blend of PAO fluid is a low kinematic viscosity fluid
  • a PAO fluid with a KV at 100°C in the range of 2 to 12 mm 2 /s is a PAO fluid with a KV at 100°C in the range of 2 to 12 mm 2 /s.
  • the low viscosity fluid can be made up of a single base stock oil meeting the recited kinematic viscosity levels or be made up of two or more base stocks/oils, each meeting the recited kinematic viscosity limits. Further, the low viscosity fluid can be made up of mixtures of one, two or more low viscosity stocks/oils, e.g. stocks/oils with kinematic viscosities in the range of 2 to 12 mm 2 /s at 100°C, combined with one, two or more high viscosity stocks/oils, e.g.
  • stocks/oils with kinematic viscosities greater than 12 mm 2 /s at 100°C such as stocks/oils with kinematic viscosities of 100 mm 2 /s or greater, provided that the resulting mixture blend exhibits the target low kinematic viscosity of 2 to 12 mm 2 /s recited as the viscosity range of the first low viscosity stock.
  • the second oil used in the bimodal blend is a high kinematic viscosity Group IV fluid, i.e. a PAO with a kinematic viscosity at 100°C of at least 38 mm 2 /s, preferably a kinematic viscosity in the range of about 38 to 1200 mm 2 /s, more preferably about 38 to 600 mm 2 /s.
  • a high kinematic viscosity Group IV fluid i.e. a PAO with a kinematic viscosity at 100°C of at least 38 mm 2 /s, preferably a kinematic viscosity in the range of about 38 to 1200 mm 2 /s, more preferably about 38 to 600 mm 2 /s.
  • the second, high kinematic viscosity oil it can be made up of a single PAO base stock/oil meeting the recited kinematic viscosity limit or it may be made up of two or more PAO base stocks/oils, each of which meet the recited kinematic viscosity limit.
  • this second, high kinematic viscosity base stock/oil can be a mixture of one, two or more lower kinematic viscosity PAO base stocks/oils, e.g.
  • Such higher kinematic viscosity PAO fluids can be made using the same PAO synthesis techniques previously recited.
  • the high kinematic viscosity PAO fluid which is the second fluid of the bimodal mixture is made employing metallocene catalysis or the process described in U.S. Patent 4,827,064 or U.S. Patent 4,827,073 .
  • the PAO fluid used as the second base stock of the bimodal blend is a high kinematic viscosity PAO having a KV at 100°C of at least 38, the only proviso being that the PAO stock used be liquid at ambient temperature.
  • the present invention achieves its reduction in traction coefficient by use of a lubricant comprising a bimodal blend of two different base oils, the first being one or more Group III and/or Group IV and/or Group V base oils having a KV at 100°C of from 2 to 12 cSt (mm 2 /s) and the second being one or more Group IV base oils having a KV at 100°C of at least 38 cSt (mm 2 /s), provided there is a difference in KV between the first and second base stock of at least 32 cSt (mm 2 /s) and the blend has a KV at 100°C of 15 cSt (mm 2 /s) or less.
  • the traction coefficient of the oil being used at a surface speed of at least about 3 mm/s is reduced as compared to using engine oils which are not bimodal or are bimodal to a lesser degree than as recited or which are based on Group I and/or Group II base stocks and do not contain the recited detergents.
  • the traction coefficient is reduced at surface speeds as low as about 3 mm/s by using the above recited bimodal base stock blend in combination with a detergent selected from the group consisting of an alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, salicylate, a mixture of alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, salicylates and alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, phenates.
  • a detergent selected from the group consisting of an alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, salicylate, a mixture of alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, salicylates and alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, phenates.
  • the bimodal blend used to reduce traction coefficient at surface speeds of at least 10 mm/s are used in combination with detergents selected from alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, salicylates, mixtures of alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, salicylates and phenates, and mixtures of alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, sulfonates and phenates.
  • detergents selected from alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, salicylates, mixtures of alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, salicylates and phenates.
  • the bimodal blend used can contain alkali and/or alkaline earth metal, preferably alkaline earth metal, more preferably calcium, phenates as well as any of the aforesaid detergents and detergent pairs.
  • the salts need not be the salt of a single metal but can be a mixture of metal salts, e.g. a mixture of sodium salts and/or lithium salts and/or calcium salts and/or magnesium salts, only by way of example and not limitation.
  • the engine lubricating oil used to achieve the reduction in traction coefficient comprises as essential components both the bimodal base stock blend and the aforesaid detergents or detergent pairs.
  • the detergent(s) is/are present in a total amount in the range 0.5 to 6 wt%, preferably 0.5 to 4 wt%, more preferably 0.5 to 2 wt% of the lubricant (based on detergent active ingredient).
  • the weight ratio of salicylate to phenate is in the range of 0.75 to 2.0, preferably 1 to 2, and the ratio of sulfonate to phenate is in the range of 0.5 to 1.5, preferably 0.5 to 1.
  • the detergent(s) used can be of Total Base Number (TBN) in mg KOH/g ranging from neutral/low to high, e.g. TBN 0-40 up to 400 or more, preferably TBN of 0-40 to 300, more preferably TBN of 0-40 to 250.
  • TBN Total Base Number
  • the finished lubricating oil will have a TBN in the range of 2 to 8, preferably 3 to 7 mg KOH/g.
  • the amount of detergent(s) used and the TBN of the detergent(s) used will be such that the bimodal lubricant has a sulfated ash content of no more than 1.2 wt%, preferably no more than 0.65 wt%.
  • the method can use gas engine lubricating oils containing additional performance additives provided the base stock comprises the essential bimodal blend base stock and preferably the bimodal blend base stock and the aforesaid detergents or pairs of detergents, again depending on the surface speed regime to be addressed.
  • the formulated lubricating oil useful in the present invention may additionally contain one or more of the other commonly used lubricating oil performance additives including but not limited to dispersants, additional other detergents, corrosion inhibitors, rust inhibitors, metal deactivators, other anti-wear and/or extreme pressure additives, anti-seizure agents, wax modifiers, viscosity index improvers, viscosity modifiers, fluid-loss additives, seal compatibility agents, other friction modifiers, lubricity agents, anti-staining agents, chromophoric agents, defoamants, demulsifiers, emulsifiers, densifiers, wetting agents, gelling agents, tackiness agents, colorants, and others.
  • the other commonly used lubricating oil performance additives including but not limited to dispersants, additional other detergents, corrosion inhibitors, rust inhibitors, metal deactivators, other anti-wear and/or extreme pressure additives, anti-seizure agents, wax modifiers, viscosity
  • Viscosity improvers also known as Viscosity Index modifiers, and VI improvers
  • Viscosity Index modifiers also known as Viscosity Index modifiers, and VI improvers
  • VI improvers provide lubricants with high and low temperature operability. These additives increase the viscosity of the oil composition at elevated temperatures which increases film thickness, while having limited effect on viscosity at low temperatures.
  • Suitable viscosity improvers include high molecular weight hydrocarbons, polyesters and viscosity index improver dispersants that function as both a viscosity index improver and a dispersant.
  • Typical molecular weights of these polymers are between about 1,000 to 1,000,000, more typically about 2,000 to 500,000, and even more typically between about 25,000 and 100,000.
  • suitable viscosity improvers are polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes.
  • Polyisobutylene is a commonly used viscosity index improver.
  • Another suitable viscosity index improver is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants.
  • Other suitable viscosity index improvers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include styrene-isoprene or styrenebutadiene based polymers of 50,000 to 200,000 molecular weight.
  • the amount of viscosity modifier may range from zero to 8 wt%, preferably zero to 4 wt%, more preferably zero to 2 wt% based on active ingredient and depending on the specific viscosity modifier used.
  • Typical anti-oxidant include phenolic anti-oxidants, aminic anti-oxidants and oil-soluble copper complexes.
  • the phenolic anti-oxidants include sulfurized and non-sulfurized phenolic anti-oxidants.
  • the terms "phenolic type" or "phenolic anti-oxidant” used herein includes compounds having one or more than one hydroxyl group bound to an aromatic ring which may itself be mononuclear, e.g., benzyl, or poly-nuclear, e.g., naphthyl and spiro aromatic compounds.
  • phenol type includes phenol per se, catechol, resorcinol, hydroquinone, naphthol, etc., as well as alkyl or alkenyl and sulfurized alkyl or alkenyl derivatives thereof, and bisphenol type compounds including such bi-phenol compounds linked by alkylene bridges sulfuric bridges or oxygen bridges.
  • Alkyl phenols include mono- and poly-alkyl or alkenyl phenols, the alkyl or alkenyl group containing from about 3-100 carbons, preferably 4 to 50 carbons and sulfurized derivatives thereof, the number of alkyl or alkenyl groups present in the aromatic ring ranging from 1 to up to the available unsatisfied valences of the aromatic ring remaining after counting the number of hydroxyl groups bound to the aromatic ring.
  • the phenolic anti-oxidant may be represented by the general formula: (R) x -Ar-(OH) y where Ar is selected from the group consisting of: wherein R is a C 3 -C 100 alkyl or alkenyl group, a sulfur substituted alkyl or alkenyl group, preferably a C 4 -C 50 alkyl or alkenyl group or sulfur substituted alkyl or alkenyl group, more preferably C 3 -C 100 alkyl or sulfur substituted alkyl group, most preferably a C 4 -C 50 alkyl group, R g is a C 1 -C 100 alkylene or sulfur substituted alkylene group, preferably a C 2 -C 50 alkylene or sulfur substituted alkylene group, more preferably a C 2 -C 2 alkylene or sulfur substituted alkylene group, y is at least 1 to up to the available valences of Ar, x ranges from 0 to up to the available valences of Ar
  • Preferred phenolic anti-oxidant compounds are the hindered phenolics which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other.
  • Typical phenolic anti-oxidants include the hindered phenols substituted with C 1 + alkyl groups and the alkylene coupled derivatives of these hindered phenols.
  • phenolic materials of this type 2-t-butyl-4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t-butyl-4-heptyl phenol; 2,6-di-t-butyl-4-dodecyl phenol; 2-methyl-6-t-butyl-4-heptyl phenol; 2-methyl-6-t-butyl-4-dodecyl phenol; 2,6-di-t-butyl-4 methyl phenol; 2,6-di-t-butyl-4-ethyl phenol; and 2,6-di-t-butyl 4 alkoxy phenol.
  • Phenolic type anti-oxidants are well known in the lubricating industry and commercial examples such as Ethanox® 4710, Irganox® 1076, Irganox® L1035, Irganox® 1010, Irganox® L109, Irganox® L118, Irganox® L135 and the like are familiar to those skilled in the art. The above is presented only by way of exemplification, not limitation on the type of phenolic anti-oxidants which can be used.
  • Aromatic amine anti-oxidants include phenyl- ⁇ -naphthyl amine which is described by the following molecular structure: wherein R z is hydrogen or a C 1 to C 14 linear or C 3 to C 14 branched alkyl group, preferably C 1 to C 10 linear or C 3 to C 10 branched alkyl group, more preferably linear or branched C 6 to C 8 and n is an integer ranging from 1 to 5 preferably 1.
  • R z is hydrogen or a C 1 to C 14 linear or C 3 to C 14 branched alkyl group, preferably C 1 to C 10 linear or C 3 to C 10 branched alkyl group, more preferably linear or branched C 6 to C 8 and n is an integer ranging from 1 to 5 preferably 1.
  • a particular example is Irganox L06.
  • aromatic amine anti-oxidants include other alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R 8 R 9 R 10 N where R 8 is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 10 is H, alkyl, aryl or R 11 S(O) x R 12 where R 11 is an alkylene, alkenylene, or aralkylene group, R 12 is a higher alkyl group, or an alkenyl, aryl, or alkaryl group, and x is 0, 1 or 2.
  • the aliphatic group R 8 may contain from 1 to about 20 carbon atoms, and preferably contains from about 6 to 12 carbon atoms.
  • the aliphatic group is a saturated aliphatic group.
  • both R 8 and R 9 are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl.
  • Aromatic groups R 8 and R 9 may be joined together with other groups such as S.
  • Typical aromatic amines anti-oxidants have alkyl substituent groups of at least about 6 carbon atoms.
  • Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than about 14 carbon atoms.
  • the general types of such other additional amine anti-oxidants which may be present include diphenylamines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more of such other additional aromatic amines may also be present. Polymeric amine anti-oxidants can also be used.
  • Another class of anti-oxidant used in lubricating oil compositions and which may be present in addition to the necessary phenyl- ⁇ -naphthylamine is oil-soluble copper compounds.
  • Any oil-soluble suitable copper compound may be blended into the lubricating oil.
  • suitable copper anti-oxidants include copper dihydrocarbyl thio- or dithio-phosphates and copper salts of carboxylic acid (naturally occurring or synthetic).
  • Other suitable copper salts include copper dithiacarbamates, sulphonates, phenates, and acetylacetonates.
  • Basic, neutral, or acidic copper Cu(I) and or Cu(II) salts derived from alkenyl succinic acids or anhydrides are know to be particularly useful.
  • Such anti-oxidants may be used in an amount of about 0.50 to 5 wt%, preferably about 0.75 to 3 wt% (on an as-received basis).
  • Such additional detergents can have total base number (TBN) in mg KOH/g ranging from neutral to highly overbased, i.e. TBN of 0 to over 500, preferably 0-40 to 300, more preferably 0-40 to 250, and they can be present either individually or in combination with each other.
  • TBN total base number
  • Preferably such other detergents are not present in the gas engine oil but, if they are present, they are employed in a minor amount, e.g.
  • the total detergent mixture preferably less than 50%, of the total detergent mixture, preferably less than 20% of the total detergent mixture, more preferably 10% or less of the total detergent mixture and such that the total amount of all of the detergents present in the formulated lubricating oil is such that the sulfonated ash content of the oil is still no more than 1.2 wt%, preferably no more than 0.65 wt%.
  • Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces.
  • Dispersants may be ashless or ash-forming in nature.
  • the dispersant is ashless.
  • So called ashless dispersants are organic materials that form substantially no ash upon combustion.
  • non-metal-containing or borated metal-free dispersants are considered ashless.
  • metal-containing detergents discussed above form ash upon combustion.
  • Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
  • the polar group typically contains at least one element of nitrogen, oxygen, or phosphorus.
  • Typical hydrocarbon chains contain 50 to 400 carbon atoms.
  • a particularly useful class of dispersants are the alkenylsuccinic derivatives, typically produced by the reaction of a long chain substituted alkenyl succinic compound, usually a substituted succinic anhydride, with a polyhydroxy or polyamino compound.
  • the long chain group constituting the oleophilic portion of the molecule which confers solubility in the oil, is normally a polyisobutylene group.
  • Hydrocarbyl-substituted succinic acid compounds are popular dispersants.
  • succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.
  • Succinimides are formed by the condensation reaction between alkenyl succinic anhydrides and amines. Molar ratios can vary depending on the polyamine. For example, the molar ratio of alkenyl succinic anhydride to TEPA can vary from about 1:1 to about 5:1.
  • Succinate esters are formed by the condensation reaction between alkenyl succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of an alkenyl succinic anhydride and pentaerythritol is a useful dispersant.
  • Succinate ester amides are formed by condensation reaction between alkenyl succinic anhydrides and alkanol amines.
  • suitable alkanol amines include ethoxylated polyalkylpolyamines, propoxylated polyalkylpolyamines and polyalkenylpolyamines such as polyethylene polyamines.
  • propoxylated hexamethylenediamine is propoxylated hexamethylenediamine.
  • the molecular weight of the alkenyl succinic anhydrides will typically range between 800 and 2,500.
  • the above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid, and boron compounds such as borate esters or highly borated dispersants.
  • the dispersants can be borated with from about 0.1 to about 5 moles of boron per mole of dispersant reaction product.
  • Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500.
  • Typical high molecular weight aliphatic acid modified Mannich condensation products can be prepared from high molecular weight alkyl-substituted hydroxyaromatics or HN(R) 2 group-containing reactants.
  • high molecular weight alkyl-substituted hydroxyaromatic compounds are polypropylphenol, polybutylphenol, and other polyalkylphenols. These polyalkylphenols can be obtained by the alkylation, in the presence of an alkylating catalyst, such as BF 3 , of phenol with high molecular weight polypropylene, polybutylene, and other polyalkylene compounds to give alkyl substituents on the benzene ring of phenol having an average 600-100,000 molecular weight.
  • an alkylating catalyst such as BF 3
  • HN(R) 2 group-containing reactants are alkylene polyamines, principally polyethylene polyamines.
  • Other representative organic compounds containing at least one HN(R) 2 group suitable for use in the preparation of Mannich condensation products are well known and include the mono- and di-amino alkanes and their substituted analogs, e.g., ethylamine and diethanol amine; aromatic diamines, e.g., phenylene diamine, diamino naphthalenes; heterocyclic amines, e.g., morpholine, pyrrole, pyrrolidine, imidazole, imidazolidine, and piperidine; melamine and their substituted analogs.
  • alkylene polyamine reactants include ethylenediamine, diethylene triamine, triethylene tetraamine, tetraethylene pentaamine, pentaethylene hexamine, hexaethylene heptaamine, heptaethylene octaamine, octaethylene nonaamine, nonaethylene decamine, and decaethylene undecamine and mixture of such amines having nitrogen contents corresponding to the alkylene polyamines, in the formula H 2 N-(Z-NH-) n H, mentioned before, Z is a divalent ethylene and n is 1 to 10 of the foregoing formula.
  • propylene polyamines such as propylene diamine and di-, tri-, tetra-, pentapropylene tri-, tetra-, penta- and hexaamines are also suitable reactants.
  • the alkylene polyamines are usually obtained by the reaction of ammonia and dihalo alkanes, such as dichloro alkanes.
  • the alkylene polyamines obtained from the reaction of 2 to 11 moles of ammonia with 1 to 10 moles of dichloroalkanes having 2 to 6 carbon atoms and the chlorines on different carbons are suitable alkylene polyamine reactants.
  • Aldehyde reactants useful in the preparation of the high molecular products useful in this invention include the aliphatic aldehydes such as formaldehyde (also as paraformaldehyde and formalin), acetaldehyde and aldol ( ⁇ -hydroxybutyraldehyde). Formaldehyde or a formaldehyde-yielding reactant is preferred.
  • Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from about 500 to about 5000 or a mixture of such hydrocarbylene groups.
  • Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine-coupled Mannich adducts, their capped derivatives, and other related components.
  • Such additives may be used in an amount of about 0.1 to 20 wt%, preferably about 0.1 to 8 wt%, more preferably about 1 to 6 wt% (on an as-received basis) based on the weight of the total lubricant.
  • pour point depressants also known as lube oil flow improvers
  • Pour point depressant may be added to lower the minimum temperature at which the fluid will flow or can be poured.
  • suitable pour point depressants include alkylated naphthalenes polymethacrylates, polyacrylates, polyarylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers.
  • Such additives may be used in amount of about 0.0 to 0.5 wt%, preferably about 0 to 0.3 wt%, more preferably about 0.001 to 0.1 wt% on an as-received basis.
  • Corrosion inhibitors are used to reduce the degradation of metallic parts that are in contact with the lubricating oil composition.
  • Suitable corrosion inhibitors include aryl thiazines, alkyl substituted dimercapto thiodiazoles thiadiazoles and mixtures thereof.
  • Such additives may be used in an amount of about 0.01 to 5 wt%, preferably about 0.01 to 1.5 wt%, more preferably about 0.01 to 0.2 wt%, still more preferably about 0.01 to 0.1 wt% (on an as-received basis) based on the total weight of the lubricating oil composition.
  • Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer.
  • Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of about 0.01 to 3 wt%, preferably about 0.01 to 2 wt% on an as-received basis.
  • Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 percent, preferably 0.001 to about 0.5 wt%, more preferably about 0.001 to about 0.2 wt%, still more preferably about 0.0001 to 0.15 wt% (on an as-received basis) based on the total weight of the lubricating oil composition.
  • Anti-rust additives are additives that protect lubricated metal surfaces against chemical attack by water or other contaminants.
  • One type of anti-rust additive is a polar compound that wets the metal surface preferentially, protecting it with a film of oil.
  • Another type of anti-rust additive absorbs water by incorporating it in a water-in-oil emulsion so that only the oil touches the surface.
  • Yet another type of anti-rust additive chemically adheres to the metal to produce a non-reactive surface.
  • suitable additives include zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines. Such additives may be used in an amount of about 0.01 to 5 wt%, preferably about 0.01 to 1.5 wt% on an as-received basis.
  • Anti-wear additives can also advantageously be present.
  • Anti-wear additives are exemplified by metal dithiophosphate, metal dithiocarbamate, metal dialkyl dithiophosphate, metal xanthage where the metal can be zinc or molybdenum.
  • Tricresylphosphates are another type of anti-wear additive.
  • Such anti-wear additives can be present in an amount to contribute up to 300 ppm phosphorus in the finished lubricant.
  • a series of gas engine oils was evaluated in regard to the effect base stock composition and detergent type has on traction coefficient.
  • the gas engine oils were either a commercially available oil or unadditized base stock or base stock blends or additized base stock or base stock blends.
  • the traction coefficient was measured employing the MTM Traction Rig which is a fully automated Mini Traction Machine traction measurement instrument.
  • the rig is manufactured by PCS Instruments and identified as Model MTM.
  • the test specimens and apparatus configuration are such that realistic pressures, temperatures and speeds can be attained without requiring very large loads, motors or structures.
  • a small sample of fluid (50 ml) is placed in the test cell and the machine automatically runs through a range of speeds, slide-to-roll ratios, temperatures and loads to produce a comprehensive traction map for the test fluid without operational intervention.
  • the standard test specimens are a polished 19.05 mm ball and a 50.0 mm diameter disc manufactured from AISI 52100 bearing steel. The specimens are designed to be single use, throw away items. The ball is loaded against the face of the disc and the ball and disc are driven independently by DC servo motors and drives to allow high precision speed control, particularly at low slide/roll ratios.
  • Each specimen is end mounted on shafts in a small stainless steel test fluid bath. The vertical shaft and drive system which supports the disk test specimen is fixed.
  • the shaft and drive system which supports the ball test specimen is supported by a gimbal arrangement such that it can rotate around two orthogonal axes. One axis is normal to the load application direction, the other to the traction force direction. The ball and disk are driven in the same direction.
  • Application of the load and restraint of the traction force is made through high stiffness force transducers appropriately mounted in the gimbal arrangement to minimize the overall support system deflections.
  • the output from these force transducers is monitored directly by a personal computer.
  • the traction coefficient is the ratio of the traction force to the applied load. As shown in Figures 1-4 , the traction coefficient was measured over a range of speeds.
  • the speed on the x-axis is the entrainment speed, which is half the sum of the ball and disk speeds.
  • These entrainment speeds simulate the range of surface speeds, or at least a portion of the range of surface speeds, reached when the engine is operating.
  • the lubricating oils are described in Table 1.
  • Table 1 Oil Designation Additive System Base Stock Base Stock Mixture SAE Grade Nominal ⁇ KV @ 100°C (mm 2 /s) As-Received wt% TBN Active Ingredient (AI), wt% AI Ratio Reference Oil Calcium Phenate + Calcium Salicylate (Pack II) Group I + Group II 40 (12 mm 2 /s) 1-2 2.55 6 1.37 0.5 1 I Calcium Phenate + Calcium Salicylate (Pack I) PAO6 + PAO40 30 (9 mm 2 /s) 34 4.5 6 1.95 1.2 2 II Calcium Phenate + Calcium Salicylate (Pack I) PAO6 + PAO150 30 (9 mm 2 /s) 144 4.5 6 1.95 1.2 2 III Calcium Phenate + Calcium Salicylate (Pack I) PAO6 + PAO40 20 (6 mm 2 /s) 34 4.5 6 1.95 1.2 2 IV Calcium Phenate + Calcium Salicylate (Pack I) PAO6 + PAO150 20 (6
  • Additive Pack I nominally contains a mixture of calcium phenate detergent, calcium salicylate detergent, borated dispersant, unborated dispersant, aminic anti-oxidant, phenolic anti-oxidant, ZDDP and metal passivator.
  • Additive Pack II nominally contains a mixture of calcium phenate, calcium sulfonate, unborated dispersant, aminic anti-oxidant, phenolic anti-oxidant, ZDDP and no metal passivator.
  • PAO 150 means a PAO having a KV at 100°C of nominally 150 mm 2 /s.
  • the PAO 150 used in the examples was made employing metallocene catalysis as previously described.
  • the PAO 40 was made employing aluminum trichloride catalysis as previously described.
  • Figure 1 compares different combinations of base oils and combinations of base oils with a variety of different additives and mixtures of additives.
  • the oils compared are Oils X, VI, VII, VIII, IX, XI, XII and Reference Oil.
  • Oils X, VIII and XI compared oils containing different detergents Oil X contained 2.7 wt% (as-received) of 60-68 TBN calcium salicylate.
  • Oil VIII contained 1.8 wt% (as-received) of 107-124 TBN calcium phenate.
  • Oil XI employed Pack I which contained 107-124 TBN calcium phenate and 60-68 calcium salicylate at a salicylate:phenate ratio of 1.5 on an as-received basis, a combined treat rate of 4.5 wt% on an as-received basis, and an AI ratio of 1.2.
  • Oils VI, VII, IX and XII compared oils containing either no additive or different types and mixtures of dispersants.
  • Oil VI contained 1.7 wt% of a borated dispersant based on active ingredient
  • Oil VII contained 2.2 wt% of a mixture of borated and unborated dispersant at a ratio of 3:1 as-received or 0.8 based on active ingredient.
  • Oil IX contained 0.5 wt% unborated dispersant based on active ingredient.
  • Oil XII contained no additive and was a mixture of PAO6 and PAO40, ⁇ KV at 100°C 34 mm 2 /s.
  • the lube oil containing the calcium salicylate or mixture of calcium salicylate and calcium phenate (Oils X and XI) exhibited unexpected superior reduction in traction coefficient at speeds of as low as about 3 mm/s compared against just blends of base oil (Oil XII) and even blends of base oil containing one or more dispersants combined with mixed phenate/sulfonate detergent (Oil VI, VII and IX) or just calcium phenate (Oil VIII).
  • Figure 2 presents just the results from comparing Oils VIII, X, XI, XII and Reference Oil, again showing the unexpected results secured from using calcium salicylate or a mixture of calcium salicylate and calcium phenate in a bimodal base stock blend, the result being superior to those achieved using just the bimodal blend base stock by itself or when additized with just calcium phenate.
  • Figure 3 shows the unexpected superior results secured when the base stock is a bimodal blend of base stocks having a ⁇ KV at 100°C of at least 34 mm 2 /s (both with and without detergent additives), Oils XV and XII, compared to oils comprising blends of Group I and Group II base stocks containing the same detergent additives (mixed sulfonate and phenate detergents), Reference Oil and Oil XIII.
  • Reference Oil is a mixture of Group I and Group II base stocks additized with Pack II which contained a mixture of calcium phenate (itself a 1.6 weight ratio (active ingredient) mixture of 250 TBN and 114 TBN calcium phenate) and 5 TBN calcium sulfonate detergents.
  • Oil XV is a mixture of PAO6 and PAO40 blended to SAE 40 grade (12 mm 2 /s) additized with the same Pack II mixture of calcium phenate and calcium sulfonate as used in the Reference Oil.
  • Oil XIII is a mixture of just a Group I and a Group II stock.
  • Oil XII is a mixture of PAO6 and PAO40 blended to SAE grade 30.
  • the bimodal blend of PAO6 and PAO40 whether additized (Oil XV) with the mixture of phenate and sulfonate detergents or not (Oil XII), exhibited unexpected improvement in traction coefficient down to speeds as low as 10 mm/s compared to Reference Oil and Oil XIII, blends of Group I and Group II base stocks, the improvement becoming even more apparent at higher speeds; e.g. 30 mm/s and 70 mm/s, lining out at about 250 to 500 mm/s.
  • Figure 4 compares oils of different blends of base stock as such or additized with a mixture of 60 to 68 TBN calcium salicylate and 107 to 124 TBN calcium phenate detergents at a salicylate:phenate ratio of 1.5 on an as-received basis, at a combined treat ratio of 4.5 wt% (as-received) and an active ingredient weight ratio of 1:2 (Pack I).
  • Oil I is a mixture of PAO6 and PAO40 blended to SAE grade 30 (9 mm 2 /s) and containing the Pack I detergent mixture.
  • Oil II is a mixture of PAO6 and PAO150 blended to SAE grade 30 (9 mm 2 /s) and containing the Pack I detergent mixture.
  • Oil XIV is a mixture of Group I and Group II base stocks blended to SAE grade 40 (12 mm 2 /s) and containing the Pack I detergent mixture.
  • Oil XIII is just a mixture of Group I and Group II base stock blended to SAE grade 40 (12 mm 2 /s).
  • Oil XII is just a mixture of PAO6 and PAO40 blended to SAE grade 30 (9 mm 2 /s).
  • both the blends of PAO6/PAO40 and PAO6/PAO150 exhibited superior traction coefficient reduction compared to the formulations containing blends of Group I and Group II base stocks (with and without detergents), superior results being achieved at a speed as low as 3 mm/s, becoming more dramatic as speed is increased; i.e. at 10 mm/s, even more pronounced at 30 to 100 mm/s, and lining out at about 250 to 500 mm/s.
  • the performance of the detergent additized bimodal blends tracked the performance of Oil XII, which was just the bimodal blend of PAO6/PAO40, at speeds of from about 10 mm/s and higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Claims (12)

  1. Verwendung eines Schmieröls, umfassend:
    (a) ein Basisöl, das eine bimodale Mischung von zwei verschiedenen Basisölen umfasst,
    i) ein erstes Basisöl, das ein oder mehrere Öle ausgewählt aus der Gruppe bestehend aus Gruppe-III-Basisölen, Gruppe-IV-Basisölen und Gruppe-V-Basisölen ist, wobei das erste Basisöl eine kinematische Viskosität bei 100°C von 2 bis 12 mm2/s aufweist, und
    ii) ein zweites Basisöl, das ein oder mehrere Öle ausgewählt aus der Gruppe bestehend aus Gruppe-IV-Basisölen mit einer kinematischen Viskosität bei 100°C von mindestens 38 mm2/s ist,
    wobei die Differenz der kinematischen Viskosität zwischen den ersten und zweiten Basisölen in der Mischung mindestens 32 mm2/s beträgt, und
    die Kombination der ersten und zweiten Basisöle eine kinematische Viskosität bei 100°C von 15 mm2/s oder weniger hat,
    (b) ein Detergens, ausgewählt aus einem Alkali- und/oder Erdalkalimetallsalicylat oder einer Mischung von Alkali- und/oder Erdalkalimetallphenolaten und Alkali- und/oder Erdalkalimetallsalicylaten, wobei das Detergens in einer Gesamtmenge von 0,5 bis 6 Gew.-% des Schmieröls (auf Basis von Detergensaktiven Mitteln) vorhanden ist,
    als ein Motorenöl zur Schmierung von großen Hoch- und Mittelgeschwindigkeitsmotoren, in denen die Geschwindigkeit, mit denen sich die zueinander gewandten Oberflächen gegeneinander bewegen, wenn der Motor in Betrieb ist, mindestens 3 mm/s erreichen, zur Verbesserung der Kraftstoffökonomie dieser Motoren,
    wobei die zueinander gewandten Oberflächen ausgewählt sind aus der Gruppe bestehend aus Kolben und Zylinderwand und/oder Lageroberflächen,
    wobei die Verbesserung der Kraftstoffökonomie dadurch belegt wird, dass das Schmieröl einen Traktionskoeffizienten aufweist, der niedriger ist als der Traktionskoeffizient von Motorölen, die nicht bimodal sind oder nicht in dem gleichen Ausmaß bimodal sind, wie beschrieben, oder die auf Gruppe-I- und/oder Gruppe-II-Basisölen basieren, und die nicht die vorgenannten Detergenzien enthalten, und
    wobei der Traktionskoeffizient unter Verwendung eines automatisierten Mini-Traktionsmaschinen-Messinstruments (MTM traction rig) bei einer Temperatur von 100°C unter einer Beladung von 1,0 GPa, einem Slide-to-Roll-Verhältnis (SRR) von 50% und einem Geschwindigkeitsgradienten von 0-3000 mm/s in 480 Sekunden gemessen wird.
  2. Verwendung nach Anspruch 1, wobei das Detergens ein Erdalkalimetall-Detergens, vorzugsweise ein Calcium-Detergens ist.
  3. Verwendung nach Anspruch 1 oder 2, wobei das Detergens in einer Gesamtmenge von 0,5 bis 4 Gew.-%, bevorzugt 0,5 bis 2 Gew.-% des Schmieröls (auf Basis der Detergens-aktiven Bestandteile) vorhanden ist.
  4. Verwendung nach Anspruch 1, 2 oder 3, wobei die Differenz der kinematischen Viskosität zwischen den ersten und zweiten Basisölen mindestens 70 mm2/s beträgt.
  5. Verwendung nach Anspruch 1, 2 oder 3, wobei die Kombination der ersten und zweiten Basisöle eine kinematische Viskosität von 7 bis 13 mm2/s hat.
  6. Verwendung nach Anspruch 1, 2 oder 3, wobei das zweite Basisöl eine kinematische Viskosität im Bereich von 38 bis 1200 mm2/s hat.
  7. Verwendung nach Anspruch 1, 2 oder 3, wobei das Schmieröl einen sulfatierten Aschegehalt von nicht mehr als 1,2 Gew.-% hat.
  8. Verwendung nach Anspruch 1, 2 oder 3, wobei das Gewichtsverhältnis von Salicylatdetergens zu Phenolatdetergens im Bereich von 0,75 bis 2,0 auf Basis des aktiven Bestandteils liegt.
  9. Verwendung nach Anspruch 1, 2 oder 3, wobei das erste Basisöl aus Gruppe-III- und Gruppe IV-Basisölen ausgewählt ist.
  10. Verwendung nach Anspruch 1, 2 oder 3, wobei das zweite Basisöl ein PAO-Basisöl ist.
  11. Verwendung nach Anspruch 10, wobei das PAO-Basisöl durch Verwendung von Metallocen-Katalyse hergestellt ist.
  12. Verwendung nach Anspruch 9, wobei das PAO-Basisöl dadurch gekennzeichnet ist, dass nicht mehr als 5,0 Gew.-% des Polymers ein Molekulargewicht von mehr als 45.000 Dalton haben.
EP11706660.5A 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten Active EP2531584B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19167430.8A EP3527649A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP19167432.4A EP3527650A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US33720410P 2010-02-01 2010-02-01
US33720510P 2010-02-01 2010-02-01
US33721310P 2010-02-01 2010-02-01
US33721510P 2010-02-01 2010-02-01
US33718210P 2010-02-01 2010-02-01
PCT/US2011/022959 WO2011094566A1 (en) 2010-02-01 2011-01-28 Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient

Related Child Applications (4)

Application Number Title Priority Date Filing Date
EP19167430.8A Division-Into EP3527649A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP19167430.8A Division EP3527649A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP19167432.4A Division EP3527650A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP19167432.4A Division-Into EP3527650A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten

Publications (2)

Publication Number Publication Date
EP2531584A1 EP2531584A1 (de) 2012-12-12
EP2531584B1 true EP2531584B1 (de) 2019-06-19

Family

ID=43859841

Family Applications (7)

Application Number Title Priority Date Filing Date
EP11706663.9A Not-in-force EP2531585B1 (de) 2010-02-01 2011-01-28 Verwendung von motorölzusammensetzungen zur verbesserung der kraftstoffeffizienz für grosse gasmotoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP19167432.4A Withdrawn EP3527650A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP19167430.8A Withdrawn EP3527649A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP11705321.5A Not-in-force EP2531583B1 (de) 2010-02-01 2011-01-28 Verwendung von motorölzusammensetzungen zur verbesserung der kraftstoffeffizienz von grossen motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP11705318.1A Active EP2531581B1 (de) 2010-02-01 2011-01-28 Verwendung von motorölzusammensetzungen zur verbesserung der kraftstoffeffizienz von grossen motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP11706660.5A Active EP2531584B1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP11705319.9A Not-in-force EP2531582B1 (de) 2010-02-01 2011-01-28 Verwendung von motorölzusammensetzungen zur verbesserung der kraftstoffeffizienz von grossen motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten

Family Applications Before (5)

Application Number Title Priority Date Filing Date
EP11706663.9A Not-in-force EP2531585B1 (de) 2010-02-01 2011-01-28 Verwendung von motorölzusammensetzungen zur verbesserung der kraftstoffeffizienz für grosse gasmotoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP19167432.4A Withdrawn EP3527650A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP19167430.8A Withdrawn EP3527649A1 (de) 2010-02-01 2011-01-28 Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP11705321.5A Not-in-force EP2531583B1 (de) 2010-02-01 2011-01-28 Verwendung von motorölzusammensetzungen zur verbesserung der kraftstoffeffizienz von grossen motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
EP11705318.1A Active EP2531581B1 (de) 2010-02-01 2011-01-28 Verwendung von motorölzusammensetzungen zur verbesserung der kraftstoffeffizienz von grossen motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11705319.9A Not-in-force EP2531582B1 (de) 2010-02-01 2011-01-28 Verwendung von motorölzusammensetzungen zur verbesserung der kraftstoffeffizienz von grossen motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten

Country Status (4)

Country Link
EP (7) EP2531585B1 (de)
JP (6) JP5852012B2 (de)
SG (5) SG182697A1 (de)
WO (5) WO2011094575A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150247103A1 (en) 2015-01-29 2015-09-03 Bestline International Research, Inc. Motor Oil Blend and Method for Reducing Wear on Steel and Eliminating ZDDP in Motor Oils by Modifying the Plastic Response of Steel
CN103459572A (zh) * 2011-04-05 2013-12-18 雪佛龙奥伦耐有限责任公司 低粘度船用气缸润滑油组合物
US10495014B2 (en) 2011-12-29 2019-12-03 Ge Global Sourcing Llc Systems and methods for displaying test details of an engine control test
US20140274848A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Low traction energy conserving fluids containing base stock blends
US9617494B2 (en) 2014-04-18 2017-04-11 Exxonmobil Research And Engineering Company Method for improving deposit control
PE20171535A1 (es) * 2015-01-29 2017-10-27 Bestline International Res Inc Mezcla de aceite de motor y metodo para reducir el desgaste de acero y eliminar el zddp en aceites de motor modificando la respuesta plastica del acero
USD800739S1 (en) 2016-02-16 2017-10-24 General Electric Company Display screen with graphical user interface for displaying test details of an engine control test
KR102613198B1 (ko) * 2016-10-18 2023-12-15 셰브런 오로나이트 테크놀로지 비.브이. 선박용 디젤 윤활유 조성물
US10443008B2 (en) * 2017-06-22 2019-10-15 Exxonmobil Research And Engineering Company Marine lubricating oils and method of making and use thereof
US20190136147A1 (en) * 2017-11-03 2019-05-09 Exxonmobil Research And Engineering Company Lubricant compositions with improved performance and methods of preparing and using the same
CA3093399C (en) 2018-03-06 2022-03-22 Valvoline Licensing And Intellectual Property Llc Traction fluid composition comprising a hydrogenated alpha dimethyl styrene dimer base oil, a polyisobutene viscosity modifier, and a comb-polymethacrylate viscosity modifier
US10894930B2 (en) 2019-03-13 2021-01-19 Valvoline Licensing And Intellectual Property Llc Traction fluid with improved low temperature properties
US20240191154A1 (en) * 2021-03-30 2024-06-13 Idemitsu Kosan Co.,Ltd. Lubricating oil composition
WO2022209540A1 (ja) * 2021-03-30 2022-10-06 出光興産株式会社 潤滑油組成物
WO2024086554A1 (en) * 2022-10-17 2024-04-25 Chevron Oronite Company Llc Marine lubricating oil compositions

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382291A (en) 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3
US3742082A (en) 1971-11-18 1973-06-26 Mobil Oil Corp Dimerization of olefins with boron trifluoride
US3769363A (en) 1972-03-13 1973-10-30 Mobil Oil Corp Oligomerization of olefins with boron trifluoride
US3876720A (en) 1972-07-24 1975-04-08 Gulf Research Development Co Internal olefin
US4149178A (en) 1976-10-05 1979-04-10 American Technology Corporation Pattern generating system and method
US4218330A (en) 1978-06-26 1980-08-19 Ethyl Corporation Lubricant
US4239930A (en) 1979-05-17 1980-12-16 Pearsall Chemical Company Continuous oligomerization process
JPS56126315A (en) 1980-03-11 1981-10-03 Sony Corp Oscillator
US4367352A (en) 1980-12-22 1983-01-04 Texaco Inc. Oligomerized olefins for lubricant stock
CA1208196A (en) * 1982-03-10 1986-07-22 Raymond F. Watts Lubricating composition
US4956122A (en) 1982-03-10 1990-09-11 Uniroyal Chemical Company, Inc. Lubricating composition
US4413156A (en) 1982-04-26 1983-11-01 Texaco Inc. Manufacture of synthetic lubricant additives from low molecular weight olefins using boron trifluoride catalysts
US4827064A (en) 1986-12-24 1989-05-02 Mobil Oil Corporation High viscosity index synthetic lubricant compositions
FR2626005A1 (fr) 1988-01-14 1989-07-21 Shell Int Research Procede de preparation d'une huile lubrifiante de base
US4827073A (en) 1988-01-22 1989-05-02 Mobil Oil Corporation Process for manufacturing olefinic oligomers having lubricating properties
US5057235A (en) 1988-06-23 1991-10-15 Mobil Oil Corporation Sulfur-phosphorus adducts of chromium catalyzed polyalphaolefins
US4943383A (en) 1988-06-23 1990-07-24 Mobil Oil Corporation Novel lubricant epoxides
US4912272A (en) 1988-06-23 1990-03-27 Mobil Oil Corporation Lubricant blends having high viscosity indices
US5104579A (en) 1988-06-24 1992-04-14 Mobil Oil Corporation Phosphonate adducts of olefinic lubricants having enhanced properties
US4910355A (en) 1988-11-02 1990-03-20 Ethyl Corporation Olefin oligomer functional fluid using internal olefins
US4906799A (en) 1988-11-02 1990-03-06 Mobil Oil Corporation Process for the production of reduced viscosity high VI hydrocarbon lubricant
US5075269A (en) 1988-12-15 1991-12-24 Mobil Oil Corp. Production of high viscosity index lubricating oil stock
US5254274A (en) 1989-01-06 1993-10-19 Mobil Oil Corporation Alkylaromatic lubricant fluids
US5132478A (en) 1989-01-06 1992-07-21 Mobil Oil Corporation Alkylaromatic lubricant fluids
US4990709A (en) 1989-04-28 1991-02-05 Mobil Oil Corporation C2-C5 olefin oligomerization by reduced chromium catalysis
US5012020A (en) 1989-05-01 1991-04-30 Mobil Oil Corporation Novel VI enhancing compositions and Newtonian lube blends
US5068487A (en) 1990-07-19 1991-11-26 Ethyl Corporation Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts
US5146021A (en) 1991-04-17 1992-09-08 Mobil Oil Corporation VI enhancing compositions and Newtonian lube blends
US5208403A (en) 1992-01-09 1993-05-04 Mobil Oil Corporation High VI lubricant blends from slack wax
US5264642A (en) 1992-06-19 1993-11-23 Mobil Oil Corp. Molecular weight control of olefin oligomers
GB9216014D0 (en) 1992-07-28 1992-09-09 British Petroleum Co Plc Lubricating oils
US5243114A (en) 1992-09-08 1993-09-07 Mobil Oil Corporation Oligomerization of alpha-olefins over layered silicate compositions containing pillars of silica and group VIB metal oxide
GB9400417D0 (en) * 1994-01-11 1994-03-09 Bp Chemicals Additives Lubricating oil composition
US5726133A (en) 1996-02-27 1998-03-10 Exxon Research And Engineering Company Low ash natural gas engine oil and additive system
GB9611428D0 (en) * 1996-05-31 1996-08-07 Exxon Chemical Patents Inc Overbased metal-containing detergents
JP4813633B2 (ja) * 1997-04-16 2011-11-09 出光興産株式会社 ディーゼルエンジンオイル組成物
JP3827039B2 (ja) * 1997-08-20 2006-09-27 株式会社コスモ総合研究所 舶用エンジン油組成物
US6090989A (en) 1997-10-20 2000-07-18 Mobil Oil Corporation Isoparaffinic lube basestock compositions
US6339051B1 (en) * 1998-06-11 2002-01-15 Mobil Oil Corporation Diesel engine cylinder oils
US6080301A (en) 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6165949A (en) 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US6713438B1 (en) * 1999-03-24 2004-03-30 Mobil Oil Corporation High performance engine oil
US6140281A (en) 1999-12-15 2000-10-31 Exxonmobil Research And Engineering Company Long life lubricating oil using detergent mixture
US6191081B1 (en) 1999-12-15 2001-02-20 Exxonmobil Research And Engineering Company Long life medium and high ash oils with enhanced nitration resistance
US6551965B2 (en) * 2000-02-14 2003-04-22 Chevron Oronite Company Llc Marine diesel engine lubricating oil composition having improved high temperature performance
EP1229101A1 (de) 2001-02-06 2002-08-07 Infineum International Limited Schmiermittel für Schiffsdieselmotor
EP1266952A1 (de) 2001-06-15 2002-12-18 Infineum International Limited Schmierölzusammensetzungen für Gasmotor
EP1298189A1 (de) * 2001-09-28 2003-04-02 Infineum International Limited Schmiermittelzusammensetzungen für Schiffsdieselmotoren
US20030191032A1 (en) 2002-01-31 2003-10-09 Deckman Douglas E. Mixed TBN detergents and lubricating oil compositions containing such detergents
EP1347033A1 (de) 2002-03-12 2003-09-24 Infineum International Limited Schmierölzusammensetzung für Gasmotoren
US7585823B2 (en) 2003-09-13 2009-09-08 Exxonmobil Chemical Patents Inc. Lubricating fluids with enhanced energy efficiency and durability
US20050148478A1 (en) * 2004-01-07 2005-07-07 Nubar Ozbalik Power transmission fluids with enhanced anti-shudder characteristics
FR2879621B1 (fr) * 2004-12-16 2007-04-06 Total France Sa Huile pour moteur marin 4-temps
US7732389B2 (en) * 2005-02-04 2010-06-08 Exxonmobil Chemical Patents Inc. Lubricating fluids with low traction characteristics
US7476645B2 (en) * 2005-03-03 2009-01-13 Chevron U.S.A. Inc. Polyalphaolefin and fischer-tropsch derived lubricant base oil lubricant blends
EP1899446B1 (de) 2005-06-07 2018-02-28 ExxonMobil Research and Engineering Company Verwendung von grundlagenschmierstoffmischungen zum verbesserten schutz gegen graufleckigkeit
US8399390B2 (en) * 2005-06-29 2013-03-19 Exxonmobil Chemical Patents Inc. HVI-PAO in industrial lubricant and grease compositions
CA2615895C (en) 2005-07-19 2012-10-30 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
US20070117726A1 (en) * 2005-11-18 2007-05-24 Cartwright Stanley J Enhanced deposit control for lubricating oils used under sustained high load conditions
US20080207475A1 (en) 2006-06-06 2008-08-28 Haigh Heather M High viscosity novel base stock lubricant viscosity blends
US20070289897A1 (en) 2006-06-06 2007-12-20 Carey James T Novel base stock lubricant blends
US8535514B2 (en) * 2006-06-06 2013-09-17 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst PAO novel base stock lubricant blends
US20080128322A1 (en) * 2006-11-30 2008-06-05 Chevron Oronite Company Llc Traction coefficient reducing lubricating oil composition
US8513478B2 (en) 2007-08-01 2013-08-20 Exxonmobil Chemical Patents Inc. Process to produce polyalphaolefins
US20090088356A1 (en) * 2007-09-27 2009-04-02 Chevron U.S.A. Inc. Gear Oil Compositions, Methods of Making and Using Thereof
US20090186784A1 (en) * 2008-01-22 2009-07-23 Diggs Nancy Z Lubricating Oil Composition
CN101977944A (zh) 2008-03-31 2011-02-16 埃克森美孚化学专利公司 剪切稳定的高粘度pao的制备
FR2932813B1 (fr) * 2008-06-18 2010-09-03 Total France Lubrifiant cylindre pour moteur marin deux temps
JP5357605B2 (ja) * 2009-04-02 2013-12-04 出光興産株式会社 α−オレフィン重合体の製造方法及び潤滑油

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3527650A1 (de) 2019-08-21
EP2531581A1 (de) 2012-12-12
EP2531582B1 (de) 2018-07-25
JP5755251B2 (ja) 2015-07-29
EP2531585A1 (de) 2012-12-12
WO2011094562A1 (en) 2011-08-04
EP2531584A1 (de) 2012-12-12
SG182700A1 (en) 2012-08-30
SG182504A1 (en) 2012-08-30
EP2531585B1 (de) 2018-06-20
JP2013518935A (ja) 2013-05-23
SG182502A1 (en) 2012-08-30
JP2013518939A (ja) 2013-05-23
WO2011094566A1 (en) 2011-08-04
EP3527649A1 (de) 2019-08-21
EP2531582A1 (de) 2012-12-12
JP5755253B2 (ja) 2015-07-29
SG182697A1 (en) 2012-08-30
WO2011094582A1 (en) 2011-08-04
JP2013518937A (ja) 2013-05-23
EP2531583B1 (de) 2018-07-18
EP2531581B1 (de) 2018-07-11
SG182699A1 (en) 2012-08-30
JP2016000827A (ja) 2016-01-07
JP2013518936A (ja) 2013-05-23
JP5755254B2 (ja) 2015-07-29
EP2531583A1 (de) 2012-12-12
JP5852012B2 (ja) 2016-02-03
WO2011094571A8 (en) 2012-10-11
JP6050450B2 (ja) 2016-12-21
JP2013518938A (ja) 2013-05-23
WO2011094571A1 (en) 2011-08-04
JP5755252B2 (ja) 2015-07-29
WO2011094575A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
EP2531584B1 (de) Verwendung zur verbesserung der krafststoffeffizienz von motorölzusammensetzungen für grosse motoren mit niedriger und mittlerer geschwindigkeit mittels reduzierung des traktionskoeffizienten
US8642523B2 (en) Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8598103B2 (en) Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
US8586520B2 (en) Method of improving pour point of lubricating compositions containing polyalkylene glycol mono ethers
US8759267B2 (en) Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8728999B2 (en) Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2013003405A1 (en) Lubricating compositions containing polyalkylene glycol mono ethers
US8748362B2 (en) Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
US20130023455A1 (en) Lubricating Compositions Containing Polyetheramines
EP2726584B1 (de) Verfahren zur verbesserung des stockpunktes von schmiermittelzusammensetzungen mit polyalkylenglykolmonoethern
EP3642315B1 (de) Schiffsschmieröle und verfahren zu ihrer herstellung und verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190509

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011059824

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1145514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190920

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1145514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191021

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011059824

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 14

Ref country code: GB

Payment date: 20240123

Year of fee payment: 14