EP2524008B1 - Effektpigmente - Google Patents
Effektpigmente Download PDFInfo
- Publication number
- EP2524008B1 EP2524008B1 EP10798512.9A EP10798512A EP2524008B1 EP 2524008 B1 EP2524008 B1 EP 2524008B1 EP 10798512 A EP10798512 A EP 10798512A EP 2524008 B1 EP2524008 B1 EP 2524008B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal oxide
- effect pigment
- flakes
- pigment according
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0021—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0024—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/06—Treatment with inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
- C09D11/037—Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
- C09D17/004—Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/03—Powdery paints
- C09D5/032—Powdery paints characterised by a special effect of the produced film, e.g. wrinkle, pearlescence, matt finish
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/36—Pearl essence, e.g. coatings containing platelet-like pigments for pearl lustre
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/32—Three-dimensional structures spinel-type (AB2O4)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/62—L* (lightness axis)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/65—Chroma (C*)
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/102—Interference pigments characterized by the core material the core consisting of glass or silicate material like mica or clays, e.g. kaolin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/1037—Interference pigments characterized by the core material the core consisting of an inorganic suboxide or a mixture thereof, e.g. SiOx or TiOx
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/1062—Interference pigments characterized by the core material the core consisting of an organic compound, e.g. Liquid Crystal Polymers [LCP], Polymers or natural pearl essence
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/1087—Interference pigments characterized by the core material the core consisting of bismuth oxychloride, magnesium fluoride, nitrides, carbides, borides, lead carbonate, barium or calcium sulfate, zinc sulphide, molybdenum disulphide or graphite
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/30—Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
- C09C2200/301—Thickness of the core
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/30—Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
- C09C2200/302—Thickness of a layer with high refractive material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/30—Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
- C09C2200/303—Thickness of a layer with low refractive material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2220/00—Methods of preparing the interference pigments
- C09C2220/10—Wet methods, e.g. co-precipitation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2220/00—Methods of preparing the interference pigments
- C09C2220/10—Wet methods, e.g. co-precipitation
- C09C2220/106—Wet methods, e.g. co-precipitation comprising only a drying or calcination step of the finally coated pigment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2220/00—Methods of preparing the interference pigments
- C09C2220/20—PVD, CVD methods or coating in a gas-phase using a fluidized bed
Definitions
- the present invention relates to effect pigments with a substrate comprising a coating comprising a complex metal oxide with spinel structure comprising copper, iron and manganese, and a process for the preparation of the effect pigments, the use of the effect pigments in paints, lacquers, powder coatings, printing inks, plastics , ceramic materials, glasses, in cosmetic formulations, for laser marking and for the production of pigment preparations and dry preparations.
- Gloss or effect pigments as they are for. B. off DE 2522572 are known, are used in many areas of technology, especially in the field of automotive paints, decorative coating, in plastics, in paints, inks and in cosmetic formulations.
- Black effect pigments are often based on carbon. Such pigments are known from DE 4227082 A1 . DE 3636076 A1 . DE 3617430 A1 and EP 0246523 , The preparation of the black luster pigments is carried out either by the use of carbon black, by decomposition processes of organic compounds or by temperature-dependent calcination of hydrocarbons. Out EP 1520883 are black shiny interference pigment with adjustable color content, ie with a gold, green, red or blue cast, known.
- the black pigments known from the prior art have the disadvantage that they have a dull gloss and a gray-black or brown-black color or show interference colors which are very strongly dependent on the viewing angle, which is not the case in the majority of applications is desired. Furthermore, some of these pigments are very difficult to prepare or reproducible.
- Object of the present invention is therefore to produce a glossy effect pigment with neutral gray or neutral gray to black body color.
- the invention therefore provides an effect pigment comprising a substrate which has a coating comprising a complex metal oxide containing copper, iron and manganese, wherein the complex metal oxide has spinel structure.
- the coating essential to the invention comprises complex metal oxides of monophase mixed crystals of copper, iron and manganese oxide, wherein the complex metal oxide has spinel structure.
- the spinel structure at least two different types of cations (divalent and trivalent or tetravalent cations) occupy different types of lattice sites, namely eight tetrahedrally coordinated dot locations and 16 octahedrally coordinated point locations per unit cell.
- all 16 trivalent or tetravalent cations are located in the octahedral lattice sites; in the inverse spinels, eight trivalent or tetravalent cations and eight divalent cations are coordinated octahedrally. Due to certain degrees of freedom, cation distributions in spinels often have order / disorder states.
- Iron and manganese can be both divalent and trivalent in the complex metal oxide.
- the complex metal oxide may additionally contain further trivalent and / or divalent cations, preferably aluminum, cobalt, and / or titanium cations.
- Preferred amounts of aluminum, cobalt and / or titanium oxide are in this case 0-10% by weight, based on the complex metal oxide.
- the complex metal oxides are particularly preferably stoichiometric spinels. Particularly preferred is a copper spinel of the form Cu (Fe, Mn) 2 O 4 .
- the amount of the complex metal oxide is 2.5-60% by weight, preferably 20-60% by weight, in particular 20-50% by weight, based on the substrate.
- the coating essential to the invention may contain partially titanium dioxide in addition to the complex metal oxide.
- the thickness of the coating according to the invention containing a complex metal oxide is preferably 1 to 350 nm, in particular 10 nm to 300 nm and very particularly preferably 20 to 200 nm.
- Suitable substrates for the effect pigments of the invention are, for. B. all known platelet-shaped support materials, preferably transparent or semitransparent platelets. Preference is given to those platelet-shaped carrier materials which are coated with one or more highly or low refractive, transparent or semitransparent metal oxide layers. Titanium dioxide coated mica is particularly preferred.
- the platelet-shaped carrier materials have a thickness between 0.05 and 5 .mu.m, in particular between 0.1 and 4.5 microns.
- Glass platelets preferably have a thickness of ⁇ 1 ⁇ m, in particular of ⁇ 900 nm and very particularly preferably of ⁇ 500 nm.
- the size of the carrier materials is not critical per se and can be matched to the respective intended use.
- the particle size is 1 - 350 microns, preferably 2 - 200 microns, and in particular between 5 - 150 microns.
- Preference is also given to mixtures consist of platelets with different particle sizes are used.
- the particle sizes are determined by means of laser diffraction on powder or pigment suspensions using commercially available equipment known to the person skilled in the art (for example from Malvern, Horiba).
- the substrates preferably have a form factor (aspect ratio: diameter / thickness ratio) of 5 to 750, in particular 10 to 300 and very particularly preferably 20 to 200.
- the use of other substrates such.
- spherical particles or needle-shaped substrates which may be coated with the above layers, possible.
- the support material may be coated with one or more transparent, semi-transparent and / or opaque layers comprising metal oxides, metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures of these materials.
- the metal oxide, metal oxide hydrate, metal suboxide, metal, metal fluoride, metal nitride, metal oxynitride layers or the mixtures thereof may be low (refractive index ⁇ 1.8) or high refractive index (refractive index ⁇ 1.8, preferably 2.0).
- Suitable metal oxides and metal oxide hydrates are all metal oxides or metal oxide hydrates known to the person skilled in the art, such as, for example, Example, alumina, alumina hydrate, silica, Siliziumoxidhydrat, iron oxide, tin oxide, cerium oxide, zinc oxide, zirconium oxide, chromium oxide, titanium oxide, in particular titanium dioxide, in the rutile or anatase modification, titanium oxide and mixtures thereof, such as ilmenite or pseudobrookite.
- metal suboxides for example, the titanium suboxides can be used. Chromium, aluminum, nickel, silver, gold, titanium, copper or alloys are suitable as metals, for example magnesium fluoride is suitable as the metal fluoride.
- metal nitrides or metal oxynitrides for example, the nitrides or oxynitrides of the metals titanium, zirconium and / or tantalum can be used. Preference is given to applying metal oxide, metal, metal fluoride and / or metal oxide hydrate layers and very particularly preferably metal oxide and / or metal oxide hydrate layers to the support. Particular preference is given to oxides and / or hydrated oxides of aluminum, silicon, iron, tin and titanium, in particular titanium dioxide, in the rutile or anatase modification, and mixtures of these compounds.
- multi-layer constructions of high-refractive and low-refractive index metal oxide, metal oxide hydrate, metal or metal fluoride layers can also be present, alternating preferably high and low refractive index layers.
- Particularly preferred are layer packages of a high and a low-refractive layer, wherein one or more of these layer packages can be applied to the support.
- the order of the high- and low-index layers can be adapted to the carrier in order to include the carrier in the multi-layer structure.
- Suitable substrates are, in particular, those platelet-shaped carrier materials which are coated with one or more highly refractive or low-refractive, transparent or semitransparent metal oxide layers. Preference is given to supports coated with one or more metal oxide layers. Particularly preferred is titanium dioxide-coated mica or with TiO 2 / SnO 2 single or multiple coated mica.
- the layers of metal oxides, hydroxide and / or oxide hydrates are preferably applied wet-chemically. Such methods are known in the art and eg in DE 25 22 572 , Examples and embodiments of the abovementioned materials and pigment constructions are also found, for example, in Research Disclosures RD 471001 and RD 472005.
- wet coating the substrate is suspended in water and with one or more hydrolyzable metal salts added at a suitable pH for the hydrolysis, which is chosen so that the metal oxides or metal oxide are precipitated directly on the platelets, without causing precipitation.
- the pH is usually kept constant by simultaneous addition of a base or acid.
- the pigments can be separated after application of individual coatings, dried and optionally annealed, in order then to be resuspended again for precipitation of the further layers.
- the coating can also be carried out in a fluidized bed reactor by gas phase coating.
- the coatings on the carrier material preferably consist of simple or complex metal oxides, metals, nitrides or oxynitrides such as TiO 2 , ZrO 2 , ZnO, SnO 2 , SiO 2 , SiO (OH) 2 , Al 2 O 3 , AlO (OH), B 2 O 3 or mixtures thereof or BiOCl or MgF 2 . Particularly preferred is TiO 2 .
- the thickness of the metal oxide, metal oxide hydrate, metal suboxide, metal, metal fluoride, metal nitride or metal oxynitride layers or a mixture thereof is usually 1 to 1000 nm, preferably 1 to 800 nm, in particular 1 to 600 nm. Layer thicknesses of 1 to 300 nm, in particular from 1 to 100 nm. The thickness of the metal layers is preferably 4 to 60 nm.
- the coating containing a complex metal oxide according to the invention can be present as an outer oxide coating or coated with one or more highly or low refractive, transparent or semitransparent metal oxide layers, preferably with a TiO 2 layer.
- the coating containing a complex metal oxide is outside.
- the coating containing a complex metal oxide according to the invention is produced in that the complex metal oxide a substrate is formed by water-soluble copper, iron and manganese salts being added to an aqueous suspension of the substrate in such a way that the water-containing oxides on the substrate, possibly partially mixed with the titanium dioxide layer, are produced, the water-soluble copper, Iron and manganese salts can be added simultaneously or sequentially.
- the manganese salt solution if necessary simultaneously with the titanium salt solution, is added first and then the copper salt solution and then the iron salt solution are added.
- Suitable metal salts are in particular halides, nitrates and sulfates, in particular chlorides and sulfates.
- the precipitation of the metal oxides is achieved by suitable pH and temperature conditions.
- the amount and concentrations to be used for a desired pigment composition may be routinely determined by those skilled in the art.
- the effect pigments of the invention can also have one or more layers of highly refractive and / or low refractive, transparent or semitransparent metal compounds, in particular of TiO 2 , ZrO 2 , ZnO, SnO 2 , SiO 2 , SiO (OH), over the coating comprising a complex metal oxide. 2 , Al 2 O 3 , AlO (OH), B 2 O 3 or mixtures thereof.
- the pigment prepared by the process described is separated, washed, dried at preferably 80-150 ° C and calcined at 400-850 ° C, preferably 500-700 ° C for 30-60 minutes under air, whereby the complex metal oxide is formed ,
- Another method for producing effect pigments with a coating containing a complex metal oxide according to the invention comprises calcination of a mixture of a) TiO 2 / CuO-coated mica, b) TiO 2 / FeO-coated mica and c) TiO 2 / MnO-coated mica.
- the coated mica will after the im Previously described methods separately coated, washed and dried. Then, the mixture is prepared and the thus coated mica is calcined together at 400-850 ° C, preferably 500-700 ° C, for 30-60 minutes under air to form the complex metal oxide.
- an effect pigment consisting of, in this order, a mica substrate, optionally a tin dioxide coating, a titanium dioxide coating, a coating of a complex metal oxide with spinel structure of the form Cu (Fe, Mn) 2 O 4 , wherein the titanium dioxide coating and the partially or completely, preferably in part, may be mixed, and optionally a post-coating, coating containing complex metal oxide.
- the effect pigments of the invention can also be used advantageously in admixture with fillers, organic dyes and / or pigments, such as transparent and opaque white, colored and black pigments and platelet-shaped iron oxides, organic pigments, holographic pigments, LCPs (Liquid Crystal Polymers ), Interference pigments and conventional transparent, colored and black luster pigments the base of metal oxide coated platelets based on mica, glass, Al 2 O 3 , Fe 2 O 3 , SiO 2 , etc., can be used.
- the effect pigments of the invention can be mixed in any ratio with commercially available pigments and fillers.
- fillers are e.g. Mention may be made of natural and synthetic mica, nylon powder, pure or filled melanin resins, talcum, glasses, kaolin, oxides or hydroxides of aluminum, magnesium, calcium, zinc, biocl, barium sulfate, calcium sulfate, calcium carbonate, magnesium carbonate, carbon, as well as physical or chemical combinations of these substances.
- particle shape of the filler It can meet the requirements according to e.g. be platy, spherical or acicular.
- the effect pigments of the invention can be used in paints (automotive and industrial coatings, solvent-based and water-based, powder coatings), plastics, printing inks, ceramic glazes or cosmetic formulations. They can also be used in the form of preparations (pearlets, pastes, pastes), for example for use in printing inks or plastics.
- the effect pigments according to the invention are furthermore suitable for the preparation of flowable pigment preparations and dry preparations containing one or more effect pigments according to the invention, binders and optionally one or more additives.
- Dry preparations are also preparations which contain 0 to 8% by weight, preferably 2 to 8% by weight, in particular 3 to 6% by weight, of water and / or of a solvent or solvent mixture.
- the dry preparations are preferably in the form of pellets, granules, chips, sausages or briquettes and have particle sizes of 0.2-80 mm on.
- the dry preparations are used in particular in the production of printing inks and in cosmetic formulations.
- the effect pigments according to the invention are compatible with a large number of color systems, preferably from the field of paints, inks and printing inks.
- binders in particular water-soluble types, are suitable, as e.g. from BASF, Marabu, Pröll, Sericol, Hartmann, Gebr. Schmidt, Sicpa, Aarberg, Siegberg, GSB-Wahl, Follmann, Ruco or Coates Screen INKS GmbH.
- the printing inks may be water-based or solvent-based.
- the pigments are also suitable for the laser marking of paper and plastics, as well as for agricultural applications, e.g. for greenhouse films, and z. B. for the color of tarpaulins suitable.
- the invention further relates to the use of the effect pigments in formulations such as paints, printing inks, security printing inks, paints, powder coatings, plastics, ceramic materials, glasses, in cosmetic formulations, as a dopant for the laser marking of papers and plastics and for the preparation of pigment preparations and dry preparations ,
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
- Cosmetics (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10798512.9A EP2524008B1 (de) | 2010-01-15 | 2010-12-17 | Effektpigmente |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10000338 | 2010-01-15 | ||
PCT/EP2010/007742 WO2011085780A1 (de) | 2010-01-15 | 2010-12-17 | Effektpigmente |
EP10798512.9A EP2524008B1 (de) | 2010-01-15 | 2010-12-17 | Effektpigmente |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2524008A1 EP2524008A1 (de) | 2012-11-21 |
EP2524008B1 true EP2524008B1 (de) | 2017-06-14 |
Family
ID=43778463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10798512.9A Not-in-force EP2524008B1 (de) | 2010-01-15 | 2010-12-17 | Effektpigmente |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120301554A1 (zh) |
EP (1) | EP2524008B1 (zh) |
KR (1) | KR20120104634A (zh) |
CN (1) | CN102712816B (zh) |
WO (1) | WO2011085780A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104169376B (zh) * | 2012-03-14 | 2018-04-27 | 巴斯夫涂料有限公司 | 包含金属颜料的溶剂型颜料膏及其在制备溶剂型效应涂料中的用途 |
US9320687B2 (en) | 2013-03-13 | 2016-04-26 | Johnson & Johnson Consumer Inc. | Pigmented skin-care compositions |
US9168393B2 (en) | 2013-03-13 | 2015-10-27 | Johnson & Johnson Consumer Inc. | Pigmented skin-care compositions |
US9168394B2 (en) | 2013-03-13 | 2015-10-27 | Johnson & Johnson Consumer Inc. | Pigmented skin-care compositions |
US9168209B2 (en) | 2013-03-13 | 2015-10-27 | Johnson & Johnson Consumer Inc. | Pigmented skin-care compositions |
US11324671B2 (en) * | 2015-06-01 | 2022-05-10 | Nippon Sheet Glass Company, Limited | Interference pigment, and cosmetic preparation, coating material, ink, and resin composition each containing same |
KR101705069B1 (ko) | 2015-06-10 | 2017-02-10 | 씨큐브 주식회사 | 높은 색강도를 갖는 골드 안료 |
KR20170099369A (ko) * | 2016-02-23 | 2017-08-31 | 메르크 파텐트 게엠베하 | 효과 안료 |
EP3613811A1 (de) | 2018-08-22 | 2020-02-26 | Schlenk Metallic Pigments GmbH | Champagner-farbton metalleffektpigmente |
CN114316630B (zh) * | 2022-01-06 | 2024-03-22 | 广西七色珠光材料股份有限公司 | 一种黑色珠光颜料及其制备方法和用途 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2811463A (en) | 1955-12-23 | 1957-10-29 | Ferro Corp | Inorganic black pigment |
DE2522572C2 (de) | 1975-05-22 | 1982-06-03 | Merck Patent Gmbh, 6100 Darmstadt | Rutilhaltige Perlglanzpigmente |
US4205996A (en) * | 1979-04-26 | 1980-06-03 | Scm Corporation | CoO Free black spinel ceramic pigment containing NiO, Fe2 O3 and Cr2 O3 |
DE3617430A1 (de) | 1986-05-23 | 1987-11-26 | Merck Patent Gmbh | Perlglanzpigmente |
DE3636076A1 (de) | 1986-10-23 | 1988-04-28 | Merck Patent Gmbh | Plaettchenfoermige eisenoxidpigmente |
US5080718A (en) * | 1989-02-23 | 1992-01-14 | Engelhard Corporation | Inorganic pigments of the empirical formula Ax By Cz |
CZ232294A3 (en) | 1992-03-26 | 1995-01-18 | Merck Patent Gmbh | Plate-like colored pigment and process for preparing thereof |
DE4227082A1 (de) | 1992-08-17 | 1994-02-24 | Merck Patent Gmbh | Pigmente mit dunkler Körperfarbe |
ATE159973T1 (de) | 1992-11-30 | 1997-11-15 | Shiseido Co Ltd | Verfahren zur herstellung eines pigments, welches ein niederes titanoxid enthält |
US5693134A (en) * | 1994-12-29 | 1997-12-02 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Gray interference pigment and process for producing the same |
DE19511697A1 (de) | 1995-03-30 | 1996-10-02 | Basf Ag | Verfahren zur Herstellung von blaustichigen Glanzpigmenten |
DE19520312B4 (de) * | 1995-06-02 | 2004-09-16 | Eckart-Werke Standard-Bronzepulver-Werke Carl Eckart Gmbh & Co. | Oxidierte farbige Aluminiumpigmente, Verfahren zu deren Herstellung sowie deren Verwendung |
DE19522267A1 (de) | 1995-06-20 | 1997-01-02 | Merck Patent Gmbh | Zinnhaltige Graupigmente |
CN1099601C (zh) * | 1995-07-04 | 2003-01-22 | 大日精化工业株式会社 | 黑色基质,黑色基质的形成方法及附加有黑色基质的物品 |
JP3212065B2 (ja) * | 1995-07-12 | 2001-09-25 | 大日精化工業株式会社 | 微粒子複合酸化物ブラック顔料及びその製造方法 |
US6001533A (en) * | 1996-03-27 | 1999-12-14 | Dai Nippon Printing Co., Ltd. | Composition for forming non-conductive light-shielding layer, and non-conductive light-shielding layer containing same |
US6468647B1 (en) * | 1998-02-17 | 2002-10-22 | Spectro Dynamic Systems, Llc | Infrared reflective visually colored metallic compositions |
EP1239307A1 (en) * | 2001-03-09 | 2002-09-11 | Sicpa Holding S.A. | Magnetic thin film interference device |
JP2002309123A (ja) * | 2001-04-10 | 2002-10-23 | Dainichiseika Color & Chem Mfg Co Ltd | 微粒子複合酸化物ブラック顔料及びその製造方法 |
JP2002370465A (ja) * | 2001-06-14 | 2002-12-24 | Konica Corp | 印刷版材料、印刷版材料の画像形成方法及び印刷方法 |
MXPA04000614A (es) * | 2001-07-25 | 2005-02-17 | Avery Dennison Corp | Revestimientos para papel sintetico y metodo para su fabricacion. |
DE10151844A1 (de) * | 2001-10-24 | 2003-05-08 | Merck Patent Gmbh | Farbige Interferenzpigmente |
DE10346167A1 (de) | 2003-10-01 | 2005-05-25 | Merck Patent Gmbh | Glänzende schwarze Interferenzpigmente |
DE10354763A1 (de) * | 2003-11-21 | 2005-06-23 | Eckart Gmbh & Co. Kg | Effektpigmente mit Aluminium- oder Aluminiumlegierungskern, Verfahren zu deren Herstellung und Verwendung derselben |
US7118622B2 (en) * | 2004-05-19 | 2006-10-10 | Engelhard Corporation | Organic dyes suitable for use in drugs and cosmetics laked onto a platy titanium dioxide pigment |
DE102005037611A1 (de) * | 2005-08-05 | 2007-02-15 | Eckart Gmbh & Co. Kg | Metalleffektpigmente mit anorganisch/organischer Mischschicht, Verfahren zur Herstellung solcher Metalleffektpigmente und deren Verwendung |
EP1844945A1 (de) * | 2006-04-13 | 2007-10-17 | M-real Oyj | Verfahren zur Aufbringung von Interferenzpigmenten auf ein Substrat |
DE102006032582A1 (de) * | 2006-07-13 | 2008-01-24 | Clariant International Limited | Verfahren zur Herstellung von Nanopartikeln aus Aluminiumspinellen und deren Anwendung |
US7470318B2 (en) * | 2006-07-21 | 2008-12-30 | Basf Corporation | Synthetic mica based pearlescent pigments containing ferrites |
EP2079416A4 (en) * | 2006-10-30 | 2012-06-27 | Univ Rutgers | ELECTROSPIN MATRICES FOR DISPENSING HYDROPHILIC AND LIPOPHILLE COMPOUNDS |
DE102007028842A1 (de) * | 2007-06-20 | 2008-12-24 | Eckert Gmbh | Dunkle, IR-Strahlung reflektierende Pigmente, Verfahren zu deren Herstellung und Verwendung derselben |
US7713349B2 (en) * | 2008-01-22 | 2010-05-11 | Ppg Industries Ohio, Inc. | Coatings including pigments comprising substrate particles with ultrafine metal oxide particles deposited thereon |
-
2010
- 2010-12-17 WO PCT/EP2010/007742 patent/WO2011085780A1/de active Application Filing
- 2010-12-17 CN CN201080061228.1A patent/CN102712816B/zh not_active Expired - Fee Related
- 2010-12-17 US US13/521,890 patent/US20120301554A1/en not_active Abandoned
- 2010-12-17 EP EP10798512.9A patent/EP2524008B1/de not_active Not-in-force
- 2010-12-17 KR KR1020127021092A patent/KR20120104634A/ko not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2011085780A1 (de) | 2011-07-21 |
EP2524008A1 (de) | 2012-11-21 |
US20120301554A1 (en) | 2012-11-29 |
CN102712816B (zh) | 2015-09-09 |
KR20120104634A (ko) | 2012-09-21 |
CN102712816A (zh) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2524008B1 (de) | Effektpigmente | |
EP1213330B1 (de) | Silberfarbenes Glanzpigment | |
EP1572812B1 (de) | Silberweisse interferenzpigmente mit hohem glanz auf der basis von transparenten substratplättchen | |
EP1230310B1 (de) | Farbstarke interferenzpigmente | |
US11479681B2 (en) | Effect pigments | |
EP2531563B1 (de) | Effektpigmente | |
WO2001030920A1 (de) | Farbstarke interferenzpigmente | |
EP1520883A1 (de) | Glänzende schwarze Interferenzpigmente | |
EP1611209B1 (de) | Oberflächenmodifizierte effektpigmente | |
EP2799398A2 (en) | alpha-Alumina flakes | |
EP1469040A2 (de) | Interferenzpigmente mit einer lichtabsorbierenden Schicht | |
WO2006018196A1 (de) | Perlglanzpigmente | |
EP2799397A2 (en) | alpha-Alumina flakes | |
DE10151844A1 (de) | Farbige Interferenzpigmente | |
DE19915153A1 (de) | Farbstarke Interferenzpigmente | |
EP3119840B1 (de) | Effektpigmente | |
DE10331903A1 (de) | Deckendes Silberpigment | |
DE10259301A1 (de) | Interferenzpigmente | |
DE10251378A1 (de) | Fünfschichtpigmente | |
DE10229256A1 (de) | Fünfschichtpigmente | |
DE102004052544A1 (de) | Interferenzpigmente | |
DE10302589A1 (de) | Interferenzpigmente |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120509 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20130924 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C09D 11/037 20140101ALI20161205BHEP Ipc: C09D 17/00 20060101ALI20161205BHEP Ipc: C08K 9/02 20060101ALI20161205BHEP Ipc: C09D 7/12 20060101ALI20161205BHEP Ipc: C09D 5/03 20060101ALI20161205BHEP Ipc: C09C 1/00 20060101AFI20161205BHEP Ipc: C08K 3/22 20060101ALI20161205BHEP Ipc: C09D 5/36 20060101ALI20161205BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170118 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 900939 Country of ref document: AT Kind code of ref document: T Effective date: 20170615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010013762 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170614 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170915 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170914 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20171212 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171014 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010013762 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
26N | No opposition filed |
Effective date: 20180315 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171217 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171217 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171217 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 900939 Country of ref document: AT Kind code of ref document: T Effective date: 20171217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010013762 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170614 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |