EP2515373B1 - Frequenzieller Duplexer mit geringer Masse und geringem Platzbedarf - Google Patents

Frequenzieller Duplexer mit geringer Masse und geringem Platzbedarf Download PDF

Info

Publication number
EP2515373B1
EP2515373B1 EP12164889.3A EP12164889A EP2515373B1 EP 2515373 B1 EP2515373 B1 EP 2515373B1 EP 12164889 A EP12164889 A EP 12164889A EP 2515373 B1 EP2515373 B1 EP 2515373B1
Authority
EP
European Patent Office
Prior art keywords
frequency
input
filter
power
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12164889.3A
Other languages
English (en)
French (fr)
Other versions
EP2515373A1 (de
Inventor
Eric Peragin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP2515373A1 publication Critical patent/EP2515373A1/de
Application granted granted Critical
Publication of EP2515373B1 publication Critical patent/EP2515373B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies

Definitions

  • the present invention relates to a frequency duplexer for separating transmission and reception signals comprised in the same frequency band, for example the UHF band, or included in two different frequency bands, for example the VHF and UHF bands, and a method of manufacturing such a duplexer.
  • Equipment for transmitting and receiving radio signals for example a remote control transponder and telemetry of a Martian probe, can be desensitized or even damaged if high level signals are present on the receiving antenna.
  • the receiving antenna is pooled with a transmitting antenna in the same frequency band, or in a broad band covering both the transmit band and the receive band, a device shall isolate and protect the receiver.
  • the frequencies For a duplexer that is designed to operate on well-defined transmit and receive frequencies, the frequencies must of course be different and far enough apart to obtain sufficient rejection of the transmit signal and noise at the frequency of the transmission. reception.
  • the residual power observed on the reception channel at the input of the reception filter at the transmission frequency must be compatible with a maximum level of admissible power by the reception filter, called maximum input power capacity.
  • the maximum allowable power level for any filter fabricated in a predetermined technology is equal to the power from which the filter parameters change temporarily or permanently. This can lead to breakdown of the filter which permanently becomes an open or closed circuit.
  • the reception filter technology is classically identical in terms of power with that of the transmission filter.
  • the current technology used to make the filters of the duplexers of radio frequency communication equipment thus involves a device that can be heavy and bulky. On space equipment, this can translate into reduced mission times, especially on micro- and nano-satellites without propulsion.
  • the technical problem is to reduce the mass and the congestion of the frequency duplexer.
  • the invention also relates to a radio communication equipment comprising a transmitter configured to transmit an electromagnetic signal at a first frequency f1 and a transmission power; a receiver configured to receive an electromagnetic signal at a second frequency f2; a radio antenna configured to transmit a radio signal at the first frequency f1 and to receive a radio signal at the second frequency f2; a defined duplexer as defined above, whose first input port is outputted to the transmitter, whose second output port is inputted to the receiver, and whose third input and output port is connected to the antenna input; wherein the electromagnetic power expressed in dBm and supplied by the transmitter to the duplexer is between Padm1 - Lem1 - 5 dB and Padm1 - Lem1 where
  • Padm1 is the input power handling, expressed in dBm, of the duplexer's transmission filter, and Lem1 is the insertion loss expressed in dB of the duplexer's transmission filter.
  • a radiocommunication equipment 2 forming a transmission and reception assembly, for example that of a space probe, comprises a radio antenna 4 configured to transmit and receive on two different frequencies, a transmitter 6 configured to transmit a signal electromagnetic at a first transmission frequency f1, a receiver 8 configured to receive an electromagnetic signal at a second reception frequency f2, and a frequency duplexer 10 connecting the transmitter 6 and the receiver 8.
  • the second reception frequency f2 is moved away from the first frequency f1 by a frequency spacing width designated by ⁇ f.
  • the devices are configured to operate in the same frequency band, for example the UHF (Ultra High Frequency) frequency band.
  • the first transmission frequency f1 and the second reception frequency f2 therefore belong to the same frequency band, here the UHF band.
  • the devices operate on the same frequency band or on two different frequency bands included in the High Frequency (HF) bands from 100 KHz, the Very High Frequency (VHF) band, the Ultra High Frequency (UHF) band. , the L band, the S band, the C band, the X band, the Ku band, and the Ka band.
  • HF High Frequency
  • VHF Very High Frequency
  • UHF Ultra High Frequency
  • the radio antenna 4 is a broadband or narrowband antenna configured to transmit at the first frequency f1, respectively to receive at the second frequency f2 according to a first emission radiation pattern, respectively a second reception radiation pattern.
  • the radio antenna 4 comprises a single input terminal 12 connected to the duplexer 10 by a first coaxial cable 14 having a connection terminal 16 to the duplexer.
  • the assembly formed by the antenna 4 and the first coaxial cable 14 is configured to present to the connection terminal 16 to the duplexer an input impedance at the first frequency f1, an output impedance at the second frequency f2 substantially identical and equal to one and the same characteristic impedance of value 50 Ohms.
  • the transmitter 6 is configured to transmit at an output terminal 18 a sinusoidal signal at the first frequency f1 and of high power from a signal having the same shape but of low level, supplied to an input terminal 20 of the transmitter 6.
  • the input power is here equal to 40 dBm, that is to say 10 Watts, 1 dBm being by definition an electrical power of 1 milliwatt delivered to a resistive load of 50 ohms.
  • the transmitter 6 conventionally comprises a chain of serially connected intermediate power amplifiers 22, followed by a high power amplifier 24 (referred to as HPA for High Power Amplifier), the high power amplifier 24 being connected at the output terminal 18 of the transmitter 6.
  • HPA High Power Amplifier
  • the transmitter 6 is output-adapted to present at the output terminal 18 of the transmitter an output impedance whose value is equal to the value of the characteristic impedance of 50 ohms.
  • the transmitter 6 is connected to the duplexer 10 through a second coaxial cable 26 of characteristic impedance equal to 50 Ohms, connected by a first end 28 to the output terminal 18 of the transmitter 4.
  • the receiver 8 is configured to receive at a reception input terminal 30 a sinusoidal signal at the second frequency f2 and of low level, and for providing at an output terminal 32 of the receiver a high level signal obtained by amplification of the low level signal supplied to the input terminal 30 of the receiver 8.
  • the receiver 8 conventionally comprises, connected in series, a low noise amplifier 34 and low gain (LNA for low noise amplifier) followed by a chain of amplifiers 36 high gain and noise factor higher than the factor of noise of the low noise amplifier 34.
  • LNA low noise amplifier
  • the low noise amplifier 34 is input connected to the input terminal 30 of the receiver 8.
  • the receiver 8 is input adapted to present at the input terminal 30 of the receiver an input impedance of equal value to that of the characteristic impedance.
  • the receiver 8 is connected to the duplexer 10 through a third coaxial cable 38 with a characteristic impedance of 50 Ohms, the third coaxial cable 38 being connected by a first end 40 to the input terminal 30 of the receiver 8.
  • the frequency duplexer 10 includes a first input port 42, a second output port 44, and a third input and output port 46.
  • the first input port 42 of the duplexer 10 is connected to the transmitter 6 through the second coaxial cable 26 by a second end of the second coaxial cable.
  • the second output port 44 of the duplexer 10 is connected to the receiver 8 through the third coaxial cable 38 via a second end of the third coaxial cable 38.
  • the third input and output port 46 of the duplexer 10 is connected to the antenna 4 through the first coaxial cable 14 via a second end of the first coaxial cable 14.
  • the duplexer 10 is input-adapted to the first input port 42 of the duplexer 10 to have an input impedance at the first frequency f1 equal to the value of 50 ohms of the characteristic impedance.
  • the duplexer 10 is outputted to the second output port 44 of the duplexer to provide an output impedance at the second frequency f2 equal to the value of 50 ohms of the characteristic impedance.
  • the duplexer 10 is adapted at the input and at the output to the third input and output port 46 for presenting an output impedance at the first input frequency f1 and an input impedance at the second frequency f2 equal to the value of 50. ohms of the characteristic impedance.
  • the duplexer 10 is configured to pass from the first input port 42 to the third output port 46 a signal at the first frequency f1.
  • the duplexer is configured to pass from the third input port 46 to the second output port 44 a signal at the second frequency f2.
  • the duplexer 10 comprises a matching junction 50 with three inputs, a transmission filter 52 at the first transmission frequency f1 and a reception filter 54 at the second reception frequency f2.
  • the transmit filter 52 is input connected to the first input port 42 of the duplexer 10 and output to a first input terminal 56 of the adapted three-input junction 50.
  • the receive filter 54 is connected at the output to the second output port 44 of the duplexer and at the input to a second input terminal 58 of the adapted three-input junction 50.
  • a third input 60 of the three-input adapted junction 50 is connected to the third input and output port 46 of the duplexer 10.
  • the three-input adapted junction 50 is configured to parallel the transmit filter 52 and the receive filter 54 by connecting the two filters 52, 54 to a common antenna access terminal 4 which is here the third port 46 input and output of the duplexer 10.
  • the emission filter 52 is manufactured in a first technology, for example here the technology of ceramic cavity filters.
  • the transmission filter 52 is configured to pass the first transmission frequency f1 f1 and to reject to a certain degree the second reception frequency f2.
  • the emission filter 52 is output at the first frequency f1 on the characteristic impedance of 50 ohms.
  • the rejection of the transmission filter 52 is chosen so as to prevent the sending of energy to the second reception frequency f2 on the input of the reception filter 54.
  • the rejection of the transmission filter 52 at the second frequency f2 is equal to the ratio of the output power at the output of the transmission filter 52 of a first signal at the second frequency f2 to the output power of a second signal at the first frequency f1, when the input powers of the first and second signals are equal.
  • the rejection of the transmission filter 52 is also equal to the ratio of the module of the output impedance Zem, out 2 of the transmission filter 52 to the second frequency f2 on the module of the output impedance Zem, out1 of the filter transmission 52 at the first frequency f1, the output impedance of the transmission filter 52 at the first frequency f1 being here assumed a resistance of 50 ohms.
  • the configuration of the transmission filter 52 is that of a filter whose transfer function has three poles.
  • the emission filter here has an insertion loss, noted L1, equal to 0.5 dB and a rejection at the second frequency f2 equal to 70 dB.
  • the reception filter 54 is manufactured in a second technology, for example here SAW Surface Acoustic Wave (SAW) technology.
  • SAW SAW Surface Acoustic Wave
  • the reception filter 54 is configured to pass the second reception frequency f2 and to reject to a certain degree the first transmission frequency f1.
  • the reception filter 54 is adapted at the input and at the output at the second frequency f2 with a characteristic impedance of 50 ohms.
  • the rejection of the reception filter 54 at the first frequency f1, denoted by rejf1, is chosen sufficiently high to limit the sizing of a too high compression point of the low noise amplifier 34 placed at the top of the receiver 8.
  • the insertion loss of the reception filter 54 is chosen sufficiently small to avoid attenuation of the reception filter at the second frequency f2 too high which would increase the noise factor of the assembly formed by the receiver 8 and the duplexer 10.
  • the rejection of the reception filter 54 at the first frequency f1 is equal to the ratio of the output power output of the reception filter of a third signal at the first frequency f1 to the output power of a fourth signal to the second signal. frequency f2, when the input powers of the third and fourth signals are equal.
  • the input impedance of the receive filter at the first frequency Zrec, in1 decreases as the rejection level at the first frequency f1 increases.
  • the reception filter exhibits, with this example configuration, an insertion loss equal to 0.8 dB and a rejection at the first frequency f1 equal to 50 dB.
  • the rejection performance of any filter depends on the filter technology, the insertion loss and the frequency spacing ⁇ f.
  • the rejection increases when the insertion loss increases or when the frequency spacing increases ⁇ f.
  • the adapted three-input junction 50 is configured to adapt by means of a first matching element 61 the transmission filter 52 so as to minimize the level of an electromagnetic signal sent from the antenna 4 to the emission filter 52. at the second frequency f2.
  • the adapted three-input junction 50 is configured to adapt by means of a second matching element 62 the reception filter 54 so as to minimize the level of an electromagnetic signal sent from the transmission filter 52 to the first frequency. f1 to the reception filter.
  • the ceramic cavity filter technology is associated with a first maximum power input capacity Padm1, f1.
  • the SAW filter technology is associated with a first maximum power input capacity Padm2, f1.
  • the maximum power handling input associated with the technology used to manufacture a filter, is independent of the insertion loss of the filter and the number of poles of the filter transfer function, that is to say say the number of elementary cells of the filter.
  • the maximum input power capacity is the maximum permissible input power in terms of the safety threshold with respect to the respect of the physical integrity of the filter.
  • the maximum input power capacity at a predetermined frequency is the maximum input power at a predetermined frequency beyond which the filter is degraded by the temporary or permanent modification of its parameters.
  • the power handling of a filter is specified by the manufacturer for a signal in the bandwidth of the filter.
  • the filter should be qualified by measurements of the out-of-band power handling of the filter in a band determined to be of interest and relevance.
  • the maximum input power capacity of a SAW filter being much lower than the maximum input power capacity of a ceramic cavity filter, the mass and the dimensions of a SAW filter are significantly lower than that of a filter. a filter with ceramic cavities.
  • the reject rej1 of the reception filter 54 at the first frequency f1 is chosen so that, when the reception filter 54 is adapted through the adjustment of the impedance of the second adaptation element 62 to present a substantially real and maximum impedance R at the first frequency f1 in the effective junction zone 63, the ratio of the maximum real impedance R to the characteristic resistance R0 expressed in dB is greater than the difference between the first power capacity and the maximum power capacity.
  • the second maximum power capacity, the first and second maximum power capacity being expressed in dBm.
  • the insertion loss of the transmission filter 52 at the frequency f1 being designated by L1
  • the output power of the transmission filter P1out at the first frequency is equal to at P1-L1.
  • the input power of the transmit filter 52 is maximized to make the most of the transmit filter technology used and then P1-L1 is taken equal to Padm1, f1.
  • a first link 64 between the first input port 42 of the duplexer and the actual local junction area 63, a second link 66 existing the effective local junction area 63 and the second output port 44, a third link 68 existing between the effective local area junction 63 and the third port 46 input and output are called respectively the transmission channel, the reception channel, and the antenna path.
  • a first embodiment 90 of the duplexer 10 of the Figure 1 includes identical elements designated by the same references.
  • the broadband junction 108 having three access terminals comprises first, second and third access terminals 126, 128, 130, the first input terminal 126, the second output terminal 128 being respectively connected to the first input element.
  • a first embodiment of the adapted junction 50 of the Figure 1 is thus the set 132, delimited by the rectangular border in dashed lines on the Figure 2 , and which comprises the broadband junction 108 with three access terminals 126, 128, 130 and the first and second matching elements 104, 114 of the duplexer 90, the three terminals 126, 128, 130 are each adapted to the value of the characteristic impedance of 50 Ohms in the operating modes of the frequency duplexer 90,
  • the three sections 106, 116, 124 of the broadband junction 110 are sections of coaxial cable of the same characteristic impedance 50 Ohms arranged in the same mean plane coinciding with the plane of view of the Figure 2 .
  • the three webs of the sections 106, 116, 124 are represented in dashed line and are joined in one piece in a T-shape in an effective local area 134 junction.
  • the first section 106 having a first length and the second section 116 having a second length are collinearly arranged and respectively connected to the first access terminal 126 and to the second access terminal 128.
  • the third section 124 having a third length is disposed perpendicular to the first section 106 and the second section 116.
  • Each section has a longitudinal plane of symmetry, perpendicular to the mean plane of the broadband junction 108 and viewed from the end.
  • Figure 2 the longitudinal planes intersecting in one axis as seen from the Figure 2 through a point P, representative of the effective zone 134 of junction of the three sections.
  • the effective zone 134 of junction contains the point P common to the mean plane of the broadband junction 108 at T and to the longitudinal plane intersecting axis of the sections 106, 116, 124 orthogonal to the mean plane.
  • the point P serves as an electrical reference point for the adaptation settings of the duplexer 90, and more particularly for the determination of the equivalent input impedance of the receive channel 112 at the first frequency f1, the impedance determined in this way.
  • point P being representative of the power absorbed at the input by the reception filter 54.
  • the equivalent input impedance of the receive channel 112 at the first frequency f1 resulting from the adjustment of the duplexer by the second matching element is a maximum real-time impedance. So the actual value of the impedance seen in input of the reception filter is less than or equal to the equivalent input impedance of the receive channel 112 determined at point P.
  • the impedances of the coaxial cable sections 106, 116, 124 are characterized and their characteristics provided by the manufacturer of the wideband junction 110. Thus it is possible to find the point P by calculation and to determine the electrical quantities applied at this point P. such as current and voltage, even if the point P is not accessible for measurements.
  • a length L of the coaxial line forming the second adaptation element 114 is associated for which the electrical impedance R has at the effective point P of the junction is real and maximum.
  • the determination of the length L of the coaxial cable forming the second adaptation element 114 takes into account the effect of the second coaxial section 116 of the broadband junction 108 through the characteristics of the impedance of the second section 116 provided by the manufacturer.
  • the output power used at the output of the emission filter 52 manufactured in the first technology is such that it is greater than the input power capacity of the reception filter 54 and less than the filter power capacity. transmission 52 at the first frequency f1.
  • the rejection of the reception filter 54 produced in the second technology for an output power of the predetermined transmission filter 52 is such that the ratio expressed in dB of the actual electrical impedance R at the effective point P of the broadband junction 108 on the characteristic impedance R0 is greater than the difference between the output power of the transmission filter 52 at the first frequency f1 and the maximum input power capacity of the reception filter 54 at the first frequency f1, the output power and the maximum input power capacity being expressed in dBm.
  • the input power of the transmission filter 52 is equal to the maximum power carrying capacity of the transmission filter 52 and the insertion loss of the transmission filter 52 is assumed equal to zero.
  • the rejection at the first transmission frequency f1 of the reception filter 54 produced in the second technology is such that the ratio expressed in dB of the actual electrical input impedance R of the reception channel at the effective point of the broadband junction 108 on the characteristic resistor R0 is greater than the difference between the power input power of the transmission filter 52 at the first frequency f1 and the power input power of the reception filter 54 at the first frequency f1.
  • the input power injected into the input of the transmission filter 52 has a margin with respect to the maximum power handling of the transmission filter 52 and the insertion loss is non-zero.
  • the input power of the emission filter 52 with ceramic cavities is taken equal to 39.7 dBm, that is to say at a value lower than the maximum input power of emission filter technology.
  • the output power of the emission filter 52 is then equal to 39 dBm. This power is greater than the 30 dBm input power withstand of the receive filter 54 manufactured in the SAW filter technology.
  • the real value R of the maximized reception channel input impedance 112 seen at the effective point P of the broadband junction 108 is equal to about 1.6 kOhm and the power The active value calculated at this point P is equal to 24 dBm, a value that is much lower than the 30 dBm input power rating of a SAW filter.
  • the first adaptation element 104 is set in the first embodiment through the adjustment of a length of a coaxial cable so that the actual part the input impedance of the transmission channel at the second frequency f2 seen at the effective point P is maximum.
  • this adjustment of the first adaptation element 106 is independent of the adjustment of the second adaptation element 116 which concerns the problem of the input power handling of the reception filter 54.
  • the adjustment of the second adaptation element 114 is shown on a Smith chart through the progression along the receiving path 112 from the input of the receiving filter 54 to the actual junction point P of the junction Broadband 108.
  • the adjustment of the second adaptation element 114 can be carried out using the charts of the Smith diagram as illustrated in FIG. Figure 3 or be implemented by an analytical calculation representative of the operations carried out on the Smith diagram through the charts.
  • a horizontal segment 202 represents the real impedances delimited by a first end 204 to the left of the Figure 3 corresponding to a short resistance circuit zero and one end 206 right on the Figure 3 corresponding to an open circuit of infinite resistance.
  • the horizontal segment 202 is a diameter of a large circle 207 of rotation of the phase along the line.
  • the circle 208 is inscribed in the large circle 207, it is tangent to this great circle 207 at the second end 206 of the segment 202.
  • the points of the circle 208 are the impedance points z for which the standardized resistance r to the impedance characteristic R0 is equal to 1.
  • a second curve 212 is associated a normalized reactance equal to +1, +0.5, -1, - 0.5.
  • a rotation around the large circle in the direction of arrow 217 corresponds to a rise towards the electromagnetic source and towards the effective point P of junction.
  • the impedance at the first frequency f1 is here equal to +2 ohms - j * 15 ohms.
  • This impedance is represented on the Figure 3 by a point designated by A, as the intersection of the circle having r equal to 2/50 and the reactance curve having x equal to -0.3.
  • a length L of the coaxial cable forming the second matching element 114 is determined using the Smith charts so that the impedance seen at the actual junction point P, represented by the same letter P on the Smith chart is real and maximum, and results from the rise of the line by turning around the center C of the large circle in the direction of the arrow 217 to a point B of the diagram corresponding to the second input terminal of the broadband junction 108
  • the difference in the coordinates between the points B and A corresponds to the impedance of the second adaptation element 114 and the difference in the coordinates between the points B and P corresponds to the impedance of the second portion 116 of the broadband junction 108. whose value is provided by the constructor of the broadband junction.
  • the input impedance of the reception channel 112 at the first frequency f1 thus optimized in P is equal to 1.6 kOhms, and corresponds to the resistance value attainable on the line segment 202.
  • the input impedance of the receive channel 112 at the first frequency f1 brought back to the output of the transmit channel 102 at the actual junction point P is the maximum real impedance calculated by adjusting the second matching element 114 to through the length L1 of coaxial line.
  • the load impedance at the output of the transmission filter 52 at the first frequency f1 is formed by a first characteristic resistor R0, representative of the transmission path 102 and the antenna path 122 adapted to the characteristic impedance at the first frequency f1, connected in parallel with a second resistor R representative of the input impedance of the reception channel at the first frequency f1.
  • the power absorbed by the second resistor R is equal to the square of the voltage U delivered at the output of the emission filter 52 at the first frequency f1 divided by the resistor R.
  • Ps denotes the output power of the transmission filter 52 at the frequency f1
  • P aR Ps * R ⁇ 0 / R .
  • the difference between the output power of the emission filter 51 and the power absorbed by the resistor R is equal to 10 * log (R / R0) expressed in dB.
  • the input power of the reception filter 54 at the first frequency f1 is taken equal to the power absorbed by the second resistor R, which has been verified by fine measurements.
  • the line simulation tools developed conventionally are adapted to the case studies in which the observed frequency is the operating frequency of the line for which the components have been adapted according to known impedances at this frequency, the characterization of the out-of-band impedances not being then in general precisely determined.
  • the modeling described above has been validated experimentally and thus made it possible to highlight the possibility of using a reception filter technology which is radically different from the emission filter technology, thus leading to a significant decrease in mass and the size of the duplexer.
  • the size of the duplexer was decreased in a ratio of 2000: 1 with a volume of the dielectric resonator emission filter equal to 45x65x17 mm3 and a volume of the receiving SAW filter equal to 5x5x1 mm3.
  • a panorama 302 of the filter technologies is partially represented by the areas of occupancy 304, 306, 308, 310, 311 of technologies in terms of operating input power and maximum input power handling.
  • the operating input power of a filter is represented on an abscissa axis 312 having a logarithmic scale and whose unit is expressed in dBm.
  • the maximum power input power of a filter is represented on an ordinate axis 314 having a logarithmic scale and whose unit is expressed in dBm.
  • a filter technology is a known set of materials and methods of assembling materials together to make filters and listed under a name commonly accepted by those skilled in the art.
  • a filter technology is a set of at least one filter technology in the conventional sense which is characterized by the same order of magnitude of maximum input power withstand.
  • a first filter technology within the meaning of the invention is the group of ceramic cavity filters.
  • a second filter technology within the meaning of the invention is a group of technologies that includes electro-acoustic surface wave (SAW) filters, electro-acoustic wave-volume filters (in English BAW for Bulky Acoustic Wave)
  • SAW surface wave
  • electro-acoustic wave-volume filters in English BAW for Bulky Acoustic Wave
  • a third filter technology is the group of air cavity or vacuum filters.
  • a fourth filter technology is a group of cavity filters that requires an auxiliary energy-saving cooling device.
  • a fifth technology of filters is the group of quartz filters.
  • the first technology represented by a first hatching pattern 320 occupies the first zone 304 of rectangular shape.
  • the maximum input power withstand is about 40 dBm
  • the nominal input power of the filter is between 25 dBm and 40 dBm.
  • the second technology represented by a second hatching pattern 324 occupies the second zone 306 of rectangular shape.
  • the maximum input power capacity is equal to approximately 30 dBm, the nominal input power of the filter is between 0 dBm and 30 dBm, or even less than 0 dBm.
  • the third technology represented by a third hatching pattern 328 occupies the third zone 308 of rectangular shape.
  • the maximum input power withstand is approximately 50 dBm
  • the nominal input power of the filter is between 38 dBm and 50 dBm.
  • the fourth technology represented by a fourth hatching pattern 332 occupies the fourth zone 310 of rectangular shape.
  • the input power handling is at least 60 dBm, and the nominal input power of the filter is between 48 dBm and at least 60 dBm.
  • the fifth technology represented by a fifth pattern 333 of hatching occupies the fifth zone 311 of rectangular shape.
  • the input power handling is at least 20 dBm, and the nominal input power of the filter is between 8 dBm and at least 20 dBm.
  • Discrete component technology is characterized by the discrete component technology inductances and capacitors, itself characterized by the power handling and the operating frequency band of the discrete components.
  • crystal filters can be used for the receiver filter while a transmission filter uses a discrete assembly of components such as inductors and capacitors.
  • the emission filter uses cavities for high power while the receiver filter uses SAW, BAW, LTCC (Low Temperature Cofired Ceramic) or discrete components technologies.
  • the transmit filter 52 uses ribbon lines and cavities for power while the receive filter uses SAW, BAW, LTCC, and other technologies. distributed components.
  • a second embodiment 400 of the duplexer 10 of the Figure 1 includes identical elements designated by the same references.
  • the junction 410 comprises the first adaptation element 406 and the second element 408 and a connecting element 418 of the antenna path.
  • the first adaptation element 406, the second adaptation element 408, and the connecting element 418 forming the antenna path constitute the junction 410 which also corresponds to the adapted junction 50 of the antenna.
  • Figure 1 The first adaptation element 406, the second adaptation element 408, and the connecting element 418 forming the antenna path constitute the junction 410 which also corresponds to the adapted junction 50 of the antenna.
  • the first adaptation element 406, the second adaptation element 408, and the junction element 418 of the antenna path are each portions of ribbon or micro-ribbon lines whose distributed components are precisely known.
  • the three portions of ribbon lines 406, 408, 416 are interconnected in a T-shape and their effective junction area 420 is a square of width equal to the width of a ribbon line portion.
  • the center of the square corresponds to the point P of Figures 2 and 4 .
  • the portions of the lines forming the first matching member 404, the second matching member 408, the joining member 410 respectively have a first length, a second length, a third length respectively designated L1, L2, L3.
  • the second length L2 of the line portion 408 forming both the second arm of the T of the junction 410 and the second adaptation element is determined from so that the input impedance R of the receive channel 406 at the effective point P of the junction 410 is real and maximum.
  • the determination of the length L2 is carried out by direct calculation using a line equation or by using Smith charts such as those presented in the table. Figure 4 . It should be noted that here there is only one section of line between the input of the reception filter 54 and the effective point P junction, and that the intermediate point B of the Figure 4 does not exist.
  • the output power used at the output of the emission filter 52 produced in the first technology is such that it is greater than the maximum input power capacity of the reception filter 54 and less than the input power capacity of the transmission filter 52 at the first frequency f1.
  • the rejection at the first frequency f1 of the reception filter 54 produced in the second technology and the length L2 of the second adaptation element are such that the input impedance R of the reception channel 406 at the effective point P of the junction 410 is real and the ratio, expressed in dB, of the equivalent input impedance of the receive channel on the characteristic resistor R0 is greater than or equal to the difference between the input power hold of the transmit filter 52 at the first frequency f1 and the maximum power input power of the reception filter 54 at the first frequency f1, the power input power being expressed in dBm.
  • the interest of the second embodiment is its greater simplicity, flexibility of adjustment, and complete control of the design of the junction.
  • access to the actual junction area 420 for possible measurements is facilitated and the possibility is also offered to make duplexers operating at higher frequencies in the microwave field.
  • a manufacturing method 502 of a duplexer described in Figures 1 , 2 and 7 comprises a set of successive steps 504, 506, 508, 510, 512.
  • a transmission filter 52 passing a first predetermined frequency f1 is manufactured in a first technology able to withstand a first maximum input power at the first frequency f1, the maximum power being called power handling. maximum input of the transmission filter 52 at the first frequency f1 in the first technology or still held at maximum input power of the first technology.
  • the transmission filter 52 is adapted to the first frequency f1 to a real characteristic impedance R0.
  • a reception filter 54 passing a second predetermined frequency f2 is manufactured in a second technology adapted to support a second maximum input power at the first frequency f1, the maximum input power being called a resistance. maximum input power of the transmission filter at the first frequency f1 in the second technology or the power of the second technology.
  • the maximum input power withstand of the first technology is greater than the power handling of the second technology, and the difference between the maximum input power withstand of the first technology and the power handling of the first technology.
  • Maximum input of the second technology is greater than or equal to 10 dB.
  • the rejection of the reception filter 54 at the second frequency f2 is chosen so that when the receive filter 54 is connected to a port of a three-port junction having an effective junction area and is adapted to the first frequency f1 to have a maximum actual impedance R in the actual junction area, the ratio of the maximum real impedance R on the characteristic resistance R0 expressed in dB is greater than the difference between the first resistance at maximum input power and the second resistance at maximum input power, the first and second power requirements at maximum input power being expressed in dBm.
  • a junction adapted to three input terminals is manufactured in which the effective junction of the first, second, third input terminals is made into an effective junction area.
  • a first line delimited between the first input terminal and the effective junction zone comprises a first adaptation element.
  • a second line delimited between the second input terminal and the effective junction zone comprises a second adaptation element.
  • the configuration of the second adaptation element is chosen to present an impedance for which, the rejection of the reception filter at the first frequency f1 being fixed in step 506, the input impedance R of the reception channel to the first frequency f1 in the effective area of junction is real and maximum.
  • a fourth step 510 the elements of the duplexer, that is to say to say the transmission filter, the reception filter and the adapted junction, are assembled.
  • a fifth step 512 the performance of the duplexer is verified by measurements.
  • the requirement of the input power handling of the reception filter 54 is verified through a nondestructive measurement of the input impedance of the reception channel at the actual junction zone, the measurement being direct when the actual junction area is accessible, and the measurement being indirect, when a commercially-integrated broadband junction is used with external matching elements at the broadband junction, through a measurement at the terminal access to the reception channel of the broadband junction.

Landscapes

  • Transceivers (AREA)

Claims (10)

  1. Frequenzduplexer, bestimmt zum Verbinden mit einer Antenne (4), aufweisend:
    einen Sendepfad (64; 102, 402) mit einem ersten Eingangsanschluss (42);
    einen Empfangspfad (66; 112; 406) mit einem zweiten Ausgangsanschluss (44);
    einen Antennenpfad (68; 122; 418) mit einem Eingangs-und-Ausgangsanschluss (46); und
    eine Verbindung (50; 108,; 410) des Sendepfads (64; 102, 402), des Empfangspfads (66; 112; 406) und des Antennenpfads (68; 122; 418) mit einem ersten Anschlusspunkt (56; 126; 412), einem zweiten Anschlusspunkt (58; 128; 414), einem dritten Anschlusspunkt (60; 130; 416) und einem lokalen Verbindungsbereich (63; 124; 420) des ersten, zweiten und dritten Anschlusspunkts (56; 58; 60; 126, 128, 130; 412, 414, 416);
    wobei der Sendepfad (66; 112; 406) begrenzt ist durch den ersten Eingangsanschluss (42) und den Verbindungsbereich (63; 134; 420), wobei er durch den ersten Anschlusspunkt (56, 126, 412) hindurchführt, und
    eingerichtet ist zum Arbeiten mit einer ersten Sendefrequenz f1, indem er bei der ersten Frequenz f1 an einen reellen Wellenwiderstand R0 angepasst ist, und zum Durchlassen einer ersten vorgegebenen
    elektromagnetischen Leistung bei der ersten Frequenz f1 und ein Sendefilter (52) und ein erstes Anpasselement (61; 104; 404), die ausgehend von dem ersten Eingangsschluss in Serie geschaltet sind, aufweist;
    wobei der Empfangspfad (66; 112; 406) begrenzt ist durch den Verbindungsbereich (63; 134; 420) und den zweiten Ausgangsanschluss (44), wobei er durch den zweiten Anschlusspunkt (58, 128, 414) hindurchführt, und
    eingerichtet ist zum Arbeiten mit einer zweiten Empfangsfrequenz f2, indem er an den reellen Wellenwiderstand R0 angepasst ist, und ein Empfangsfilter (54) und ein zweites Anpasselement (62; 114; 408), die ausgehend von dem Verbindungsbereich (63; 134; 420) hintereinander in Serie geschaltet sind, aufweist;
    wobei der Antennenpfad (68; 122; 418) begrenzt ist durch den Verbindungsbereich (63; 134; 420) und den dritten Eingangs-und-Ausgangsanschluss (46), wobei er durch den dritten Anschlusspunkt (60, 130, 416) durchführt, und
    eingerichtet ist zum Arbeiten mit der ersten Frequenz f1 und der zweiten Frequenz f2, indem er an den reellen Wellenwiderstand R0 angepasst ist; und
    wobei das Sendefilter (52) eingerichtet ist zum Durchlassen der ersten Sendefrequenz f1 und Unterdrücken der zweiten Empfangsfrequenz f2;
    wobei das Empfangsfilter (54) eingerichtet ist zum Durchlassen der zweiten Empfangsfrequenz f2 und
    Unterdrücken der ersten Sendefrequenz f1 mit einem Unterdrückungsniveau rej1 gegenüber der zweiten Frequenz f2;
    gekennzeichnet dadurch, dass
    das Sendefilter (52) in einer ersten Technologie hergestellt ist, die durch eine erste Eingangsleistungsbelastbarkeit gekennzeichnet ist, und das Empfangsfilter (54) in einer zweiten Technologie hergestellt ist, die durch eine zweite Eingangsleistungsbelastbarkeit gekennzeichnet ist;
    die Unterdrückung rej1 des Empfangsfilters (54) bei der ersten Frequenz f1 so gewählt ist, dass, wenn das Empfangsfilter (54) durch Regeln der Impedanz des zweiten Anpasselements (62; 114; 408) so angepasst ist,
    dass es in dem Verbindungsbereich (63; 134; 420) eine im Wesentlichen reelle und maximale Impedanz R bei der ersten Frequenz f1 zeigt, das Verhältnis der reellen maximalen Impedanz R zu dem Wellenwiderstand R0 ausgedrückt in dB größer ist als die Differenz ausgedrückt zwischen der ersten Leistungsbelastbarkeit und der zweiten Leistungsbelastbarkeit, wobei die erste Leistungsbelastbarkeit und die zweite Leistungsbelastbarkeit in dBm ausgedrückt sind.
  2. Frequenzduplexer gemäß Anspruch 1, dadurch gekennzeichnet, dass die Differenz zwischen der ersten Eingangsleistungsbelastbarkeit und der zweiten Eingangsleistungsbelastbarkeit größer oder gleich 10dB, vorzugsweise 20 dB, ist.
  3. Frequenzduplexer gemäß einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die erste Technologie des Sendefilters (52) eine Filtertechnologie ist, enthalten in der Menge aus Filtern mit keramischen Hohlräumen, Filtern mit Lufthohlräumen oder leeren Hohlräumen, Hohlraumfiltern, gekühlt mit einer Kühlvorrichtung, die Energie verbraucht, und die zweite Technologie des Empfangsfilters eine Technologie enthalten in SAW-Filtern, Volumenwellen-BAW-Filtern, LTCC-Filtern und Quartz-Filtern ist.
  4. Frequenzduplexer gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Empfangsfilter (54) eingerichtet ist, so dass der Einfügungsverlust des Empfangsfilters bei der zweiten Frequenz f2 kleiner oder gleich 2dB ist, wobei die Unterdrückung des Empfangsfilters bei der ersten Frequenz kleiner ist als ein Grenzwert einer Konfiguration des Empfangsfilters für den der Einfügungsverlust gleich 2 dB ist.
  5. Frequenzduplexer gemäß einem der Ansprüche 1 bis 4, in dem für eine feste Unterdrückung rej1 des Empfangsfilters (54) bei der ersten Frequenz f1 die Impedanz des zweiten Anpasselements (62; 114; 408) eingestellt ist, wo die Eingangsimpedanz des Empfangspfads (66; 112; 406) in dem Verbindungsbereich (63; 134; 420) im Wesentlichen reell und maximal ist, und in dem für eine feste Eingangsleistung des Sendefilters (52) ausgedrückt in Watt, die einer Ausgangsspannung U des Sendefilters (52) ausgedrückt in Volt bei der ersten Frequenz entspricht, eine aktive Leistung mit einem Wert gleich der quadrierten Ausgangsspannung U des Sendefilters (52) multipliziert mit dem linearen Verhältnis des reellen Teils R0 des Wellenwiderstands zu dem reellen Teil R der Eingangsimpedanz des Empfangspfads (66; 112; 406) in dem Verbindungsbereich (63; 134; 410) bei der ersten Frequenz die aktive Leistung, die am Eingang des Empfangsfilters (54) empfangen wird, ist.
  6. Frequenzduplexer gemäß einem der Ansprüche 1 bis 5, in dem
    die Verbindung (108) eine Breitbandverbindung (108) ist, die einen ersten Teil, einen zweiten Teil und einen dritten Teil (106, 116, 124) einer Koaxialleitung mit dem Wellenwiderstand R0 aufweist, die miteinander in dem Verbindungsbereich (134) verbunden sind und die vorgegebene Längen haben, und
    der zweite Teil (116) der Koaxialleitung mit dem zweiten Anpasselement (114) verbunden ist, und
    das erste Anpasselement (104) und das zweite Anpasselement (114) extern bezüglich der Breitbandverbindung (108) sind und aus einem ersten Teilstück bzw. aus einem zweiten Teilstück der Koaxialleitung mit dem Wellenwiderstand R0 gebildet sind, und
    eine Länge des zweiten Teils der Koaxialleitung, der das zweite Anpasselement (114) bildet, eine Länge ist, für die, wenn die Unterdrückung des Empfangsfilters bei der ersten Frequenz f1 festgelegt ist, die Eingangsimpedanz des Empfangspfads (112) in dem Verbindungsbereich (134) reell und maximal ist.
  7. Frequenzduplexer gemäß einem der Ansprüche 1 bis 5, in dem
    die Verbindung (410) einen ersten, einen zweiten und einen dritten Teil (404, 408, 418) einer Streifenleitung oder einer Mikrostreifenleitung mit einem Wellenwiderstand R0 aufweist, die miteinander in dem lokalen Verbindungsbereich (420) verbunden sind und vorgegebene Längen haben und
    der zweite Teil (408) des Streifenleiters direkt mit dem Eingang des Empfangsfilters (54) verbunden ist und das zweite Anpasselement bildet,
    der erste Teil (404) des Streifenleiters direkt mit dem Ausgang des Sendefilters (52) verbunden ist und das erste Anpasselement bildet, und
    die Länge (L2) des zweiten Teils (408) des Streifenleiters oder Mikrostreifenleiters, der das zweite Anpasselement bildet eine Länge ist, für die, wenn die Unterdrückung des Empfangsfilters bei der ersten Frequenz f1 festgelegt ist, die Eingangsimpedanz R des Empfangspfads in der Verbindungszone reell und maximal ist.
  8. Frequenzduplexer gemäß einem der Ansprüche 1 bis 8, wobei die Frequenzen f1 und f2 zu demselben Frequenzband gehören.
  9. Funkkommunikationsgerät aufweisend
    einen Sender (6) eingerichtet zum Senden eines elektromagnetischen Signals mit einer ersten Frequenz f1 und mit einer ersten Sendeleistung;
    ein Empfänger (8) eingerichtet zum Empfangen eines elektromagnetischen Signals mit einer zweiten Frequenz f2;
    eine Funkantenne (4) eingerichtet zum Senden eines Funksignals mit der ersten Frequenz f1 und zum Empfangen eines Funksignals mit einer zweiten Frequenz f2;
    ein Duplexer (10) gemäß einem der Ansprüche 1 bis 8, dessen erster Eingangsanschluss (42) ausgangsseitig mit dem Sender (6) verbunden ist, dessen zweiter Ausgangsanschluss (44) eingangsseitig mit dem Empfänger (54) verbunden ist und dessen dritter Eingangs-und-Ausgangsanschluss (46) eingangsseitig mit der Antenne (4) verbunden ist;
    in dem die elektromagnetische Leistung ausgedrückt in dBm, die von dem Sender (6) an den Empfänger (10) geliefert wird, zwischen Padm1-Lem1-5 dB und Padm1-Lem1 liegt, wobei
    Padm1 die Eingangsleistungsbelastbarkeit des Sendefilters (52) des Duplexers (10) ausgedrückt in dBm ist und Lem1 der Einfügungsverlust des Sendefilters des Duplexers ausgedrückt in dB ist.
  10. Herstellungsverfahren für einen Duplexer, aufweisend:
    einen ersten Schritt (504) zum Herstellen eines Sendefilters in einer ersten Technologie, wobei das Sendefilter eingerichtet ist, eine erste vorgegebenen Frequenz passieren zu lassen, eine erste maximale Eingangsleistung bei der ersten Frequenz f1, bezeichnet als erste Leistungsbelastbarkeit der ersten Technologie, zu unterstützen und bei der ersten Frequenz f1 an einen reellen Wellenwiderstand R0 angepasst ist,
    ein zweiter Schritt (506) zum Herstellen eines Empfangsfilters in einer zweiten Technologie, wobei das Empfangsfilter eingerichtet ist, eine zweite vorgegebene Frequenz f2 passieren zu lassen, eine zweite maximale Eingangsleistung bei der ersten Frequenz f1, bezeichnet als zweite Leistungsbelastbarkeit der zweiten Technologie, zu unterstützen, wobei die erste Leistungsbelastbarkeit der ersten Technologie größer ist als die zweite Leistungsbelastbarkeit der zweiten Technologie und der Unterschied zwischen der ersten Leistungsbelastbarkeit der ersten Technologie und der zweiten Leistungsbelastbarkeit der zweiten Technologie größer oder gleich 10 dB ist,
    wobei die Unterdrückung des Empfangsfilters bei der ersten Frequenz f1 derart gewählt ist, dass,
    wenn das Empfangsfilter mit einem Eingang einer Verbindung mit drei Eingängen, die einen Verbindungsbereich hat, verbunden ist und mittels eines Anpasselements bei einer ersten Frequenz f1, die bezüglich dem Empfangsfilter extern ist und zwischen dem Verbindungsbereich und dem Eingang des Empfangsfilters enthalten ist, angepasst ist, so dass die Eingangsimpedanz R des Empfangsfilters, abgegriffen in dem Verbindungsbereich, reell und maximal ist,
    das Verhältnis der reellen maximalen Impedanz R zu dem Wellenwiderstand R0 ausgedrückt in dB größer ist als die Unterschied zwischen der ersten Leistungsbelastbarkeit und der zweiten Leistungsbelastbarkeit, wobei die erste Leistungsbelastbarkeit und die zweite
    Leistungsbelastbarkeit in dBm ausgedrückt sind,
    ein dritter Schritt (508) zur Herstellung einer Verbindung mit drei Eingängen, die einen lokalen Verbindungsbereich hat, eines ersten Anpasselements und
    eines zweiten Anpasselements, wobei die Impedanz des zweiten Anpasselements bei der ersten Frequenz f1 gewählt ist, sodass, wenn die Unterdrückung des Empfangsfilters bei der ersten Frequenz im Schritt (506) festgelegt ist, die Eingangsimpedanz R des Empfangspfads bei der ersten Frequenz f1 in dem Verbindungsbereich reell und maximal ist,
    einen vierten Schritt (510) zum Zusammenbauen des Sendefilters, des Empfangsfilters, der Verbindung, des ersten Anpasselements und des zweiten Anpasselements.
EP12164889.3A 2011-04-20 2012-04-20 Frequenzieller Duplexer mit geringer Masse und geringem Platzbedarf Active EP2515373B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1153403A FR2974454B1 (fr) 2011-04-20 2011-04-20 Duplexeur frequentiel a faible masse et faible encombrement

Publications (2)

Publication Number Publication Date
EP2515373A1 EP2515373A1 (de) 2012-10-24
EP2515373B1 true EP2515373B1 (de) 2013-04-17

Family

ID=45952406

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12164889.3A Active EP2515373B1 (de) 2011-04-20 2012-04-20 Frequenzieller Duplexer mit geringer Masse und geringem Platzbedarf

Country Status (3)

Country Link
EP (1) EP2515373B1 (de)
ES (1) ES2417340T3 (de)
FR (1) FR2974454B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11368181B2 (en) * 2020-06-30 2022-06-21 Apple Inc. Duplexer with balanced impedance ladder
CN115640770A (zh) * 2022-10-19 2023-01-24 淮阴工学院 一种通过Smith圆图进行网络匹配的S波段低噪声放大器设计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023866A (en) * 1987-02-27 1991-06-11 Motorola, Inc. Duplexer filter having harmonic rejection to control flyback
US4823098A (en) * 1988-06-14 1989-04-18 Motorola, Inc. Monolithic ceramic filter with bandstop function
JPH066111A (ja) * 1992-06-18 1994-01-14 Mitsubishi Electric Corp 複合デュプレックスフィルタ
JP3407931B2 (ja) * 1993-05-31 2003-05-19 三洋電機株式会社 空中線共用器及び空中線共用器の整合回路の調整方法

Also Published As

Publication number Publication date
EP2515373A1 (de) 2012-10-24
FR2974454B1 (fr) 2013-05-10
ES2417340T3 (es) 2013-08-07
FR2974454A1 (fr) 2012-10-26

Similar Documents

Publication Publication Date Title
EP1863116B1 (de) Breitbandrichtkoppler
FR2926417A1 (fr) Filtre d'amplification de puissance de signaux radiofrequence
EP1995740B1 (de) Ebene Induktionsstruktur
WO2009077501A1 (fr) Dispositif d'amplification de puissance radiale a compensation de dispersion de phase des voies amplificatrices
FR2947400A1 (fr) Circuit de couplage multibandes
FR2762729A1 (fr) Diviseur de puissance rf
WO2009092959A1 (fr) Systeme d'emission radiofrequence
FR3008238A1 (fr) Filtre rejecteur de bande
EP3235058B1 (de) Drahtplattenantenne mit einem kapazitiven dach mit einem schlitz zwischen der speisungssonde und dem kurzschlussdraht
EP3136499B1 (de) Aufteilungs-/kombinationssystem für hyperfrequenzwelle
EP2273705A1 (de) Funktionstestverfahren eines Signal-Sender-/Empfänger-Schaltkreises
EP2515373B1 (de) Frequenzieller Duplexer mit geringer Masse und geringem Platzbedarf
EP0828305A1 (de) Vorrichtung zum Transportieren eines gegen elektromagnetische Störungen geschütztes elektrisches Signal
EP3275083B1 (de) Strom-/daten-elektroverbinder
FR3004007A1 (fr) Coupleur large bande
EP0446107A1 (de) Übertragungssystem für elektrische Energie, im Mikrowellenbereich, mit kreismagnetischem Effekt, wie ein Zirkulator, Isolator oder Filter
EP3671955B1 (de) Monopol-drahtplattenantenne für differentiellen anschluss
EP2432129B1 (de) Architektur zur Mehrband-kupplung
EP3516736B1 (de) Antenne mit gewundenen und miteinander verkoppelten ferromagnetischen stangen
FR2818444A1 (fr) Dispositif de separation de signaux d'emission et de reception
EP4395063A1 (de) Zweibandfilter für eine fiff/ads-b-empfangskette
FR2938706A1 (fr) Filtre actif miniature a faible cout
EP0780973B1 (de) Kerbfilter mit passiven Elementen
EP0991215A1 (de) Aperiodisches modulares System zur Übertragungswiederholung mit mehreren digitalen Kanälen
WO2005069429A1 (fr) Dispositif de couplage d'amplificateurs radiofrequence a etat solide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 607796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012000028

Country of ref document: DE

Effective date: 20130620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2417340

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 607796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130417

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130817

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

26N No opposition filed

Effective date: 20140120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012000028

Country of ref document: DE

Effective date: 20140120

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602012000028

Country of ref document: DE

Representative=s name: PRINZ & PARTNER MBB PATENTANWAELTE RECHTSANWAE, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 12

Ref country code: ES

Payment date: 20230504

Year of fee payment: 12

Ref country code: DE

Payment date: 20230316

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230424

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240318

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240322

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240319

Year of fee payment: 13