EP2511736A1 - Vorrichtung und Verfahren zur Detektion von elektrisch leitfähigen Gegenständen - Google Patents

Vorrichtung und Verfahren zur Detektion von elektrisch leitfähigen Gegenständen Download PDF

Info

Publication number
EP2511736A1
EP2511736A1 EP11003197A EP11003197A EP2511736A1 EP 2511736 A1 EP2511736 A1 EP 2511736A1 EP 11003197 A EP11003197 A EP 11003197A EP 11003197 A EP11003197 A EP 11003197A EP 2511736 A1 EP2511736 A1 EP 2511736A1
Authority
EP
European Patent Office
Prior art keywords
coil
excitation
response
detected
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11003197A
Other languages
English (en)
French (fr)
Other versions
EP2511736B1 (de
Inventor
Ralf Philipp Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
iCONTROLS ks
Original Assignee
iCONTROLS ks
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by iCONTROLS ks filed Critical iCONTROLS ks
Priority to EP11003197.8A priority Critical patent/EP2511736B1/de
Priority to CN201280026194.1A priority patent/CN103688192B/zh
Priority to PCT/EP2012/056930 priority patent/WO2012140265A2/de
Publication of EP2511736A1 publication Critical patent/EP2511736A1/de
Application granted granted Critical
Publication of EP2511736B1 publication Critical patent/EP2511736B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/104Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils
    • G01V3/105Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils using several coupled or uncoupled coils forming directly coupled primary and secondary coils or loops

Definitions

  • the invention relates to a device and a method for the detection of electrically conductive objects.
  • This inductive proximity switch includes an oscillator which generates an alternating magnetic field and changes its vibration state when a trigger in the alternating field, which uses an evaluation circuit for obtaining a switching signal for driving a circuit breaker.
  • the detectable change in the vibration state is dependent both on material-typical properties of the trigger and its distance and its position relative to the switch.
  • a sensor is known in which a triangular signal is applied to the primary coil, so that according to the law of induction at the output of the secondary coil a square wave signal with the frequency of the triangular signal is generated.
  • This variant is used to design a sensor that emits a safe signal. This is achieved by the continuous increase or decrease according to the triangular signal.
  • an inductive proximity switch which uses a single coil, by means of a transmission current pulse in the body to be detected, an induction voltage is generated, which causes a current in the body, the decay induces voltage after the end of the current pulse in the coil, which processes accordingly can be.
  • the transmission current pulses are in the range between 100 ⁇ s and 200 ⁇ s.
  • one and the same coil is used for generating an eddy current as well as for detecting the decaying eddy current.
  • a metal housing for this sensor must be non-ferromagnetic and have a relatively high electrical resistivity.
  • the document WO 01/71387 A1 shows an electromagnetic target discrimination system and a method for the detection and identification of metals.
  • the DE 10 2004 047 190 A1 shows a detector for locating metallic objects.
  • the object of the present invention is to provide a device and a method with which specific features of the object to be detected, such as material properties, material composition or size of the object can be detected and this preferably (largely) independent of the distance between the device and the object.
  • the device comprises two or three coils, one of which comprises two coil parts, which are also referred to below as first and second coil and as two coils, or two for generating magnetic fields and one for detecting a response to the excitation in Form of a temporally variable current flow, which is hereinafter referred to as the response to the excitation and may be expressed for example in the form of an induction voltage or attenuation or vice versa one for generating the magnetic field and one comprising two coil parts, hereinafter also as the first and second Coil and may be referred to as two coils, or two may be used to detect a response to the excitation.
  • the device further comprises electronics which detect (in particular) during, and / or after the supply of the magnetic field generating coil with an excitation in the form of a temporally variable current flow, a response to the excitation. If an electrically conductive object is located in the region of the magnetic field, this produces a detectable signal in the detected response to the excitation. Depending on the material properties and size of the detected object, the detected response to the excitation may have specific characteristics. From these, it is also possible to deduce the material of the object, the material composition of the object, the material properties of the object and / or the size of the object.
  • the first and second coil may be wound in opposite directions or in the same direction.
  • the two coils can be spatially separated. By an appropriate interconnection of these coils magnetic fields can be generated with opposite polarity.
  • the first and second coils may be connected in series. However, they can also (independently of each other) be fed by a respective current source, preferably if they do not comprise two parts of a coil.
  • electrically conductive objects On both sides of the coil system (including the first, second, and third coils), electrically conductive objects generate opposite sign waveforms, eliminating the same effects on both sides.
  • the sides which are located on the end of the first and second coils facing the outside are referred to as the front and the rear, respectively.
  • the excitation in the form of a temporally variable current flow which is also referred to below as excitation, can be designed as a pulse packet of any shape and / or as a sinusoidal shape. It may also include a periodic pulse and / or a multiple pulse packet. Furthermore, it can also be designed as a periodic oscillation form and / or an aperiodic pulse train. Furthermore, it can be designed so that it does not rise and fall abruptly and so, for example, can not be designed as a rectangular pulse. Also, the excitation may be in a form of having a sudden increase but not exhibiting a precipitous decay, or alternatively exhibiting no erratic rise and precipitous decay.
  • the excitation in the form of a temporally variable current flow preferably has a sudden increase and / or a sudden drop as in the case of a rectangular pulse.
  • the excitation in the form of a variable current flow is in the form of a square pulse and has a duration between 0.1 ns and 1 ms, such as between 1 ⁇ s and 50 ⁇ s.
  • the excitation may be in the form of or include a temporally variable current flow as a short current pulse of high current intensity such as a Dirac surge.
  • the rise time in which, for example, 90% of the maximum current value (the erratic increase) can be achieved and / or the fall time in which the current drops from the starting value of the leaky drop to 10% thereof can be shorter than 0.2 or 0.1 ⁇ s ,
  • the effect produced by the first and second coils of the response to the excitation in the third coil or the action of the response to the excitation generated by the third coil in the first and second bobbins can cancel each other out or at least partially lift up.
  • the compensation effect may be such that in the absence of an electrically conductive object to be detected, the detected response to the excitation is substantially zero. This leads to a high sensitivity of the device for detection, since any presence of an electrically conductive object gives a non-zero response to the excitation or a response to the excitation different from a reference response to the excitation. This is preferably done so that compensate for influences on the front and back.
  • the compensation effect can be achieved by a symmetrical arrangement of the coils. If, for example, the third coil is symmetrical between the first and the second coil, so the generated responses to the excitation in the form of a time-variable current flow in the first and second coil can cancel.
  • the response to the excitation in the absence of an electrically conductive object can be adjusted by further correction factors, such as further coils or the introduction of other conductive objects into the device so that the effect of the response to the excitation is adjusted to produce the compensation effect described above.
  • the setting of the response to the excitation to zero in the presence of a particular object can be done so.
  • these two coils are preferably connected so that the response to the excitation at least partially, preferably at least 90% or 99%, compensate, preferably the compensation in such a way that in the absence of an electrically conductive object to be detected, the two responses to the excitation essentially complement each other. This can be done, for example, in the ways previously described in connection with the compensation effect on the response to the excitation in the third coil.
  • the course of the generated response to the excitation at different times is detected (time-dependent detection), during and / or after the excitation in the form of a temporally variable current flow.
  • time-dependent detection For example, for each excitation in the form of a temporally variable current flow, more or less than 5, more or less than 10, more or less than 100, more or less than 1000 or more, or less than 10,000 or more or less than 100,000 or 100,000 readings are collected.
  • one, two, three or more maximum and / or minimum and / or inflection points and / or zero crossings (characteristic points) and / or other points of the detected response intended for the excitement are determined.
  • the time interval between the maximum and / or minimum and / or inflection point and / or a zero crossing and / or another point can be determined.
  • the response to the excitation at one or more different points in time. These may be predetermined times, so that the response to the excitation can be measured at a specific time interval from a characteristic time, such as the emission of the excitation. This may, for example, simplify the measurement since, in some embodiments, only the response to the excitation at the characteristic times must be measured and not the response to the excitation at all times.
  • the times can be selected equidistant and / or non-equidistant.
  • a statement about the material can be made solely by considering the sign of the response to the excitement. For example, by judicious choice of the times to be measured, by determining the sign of the response to the excitation, a distinction can be made between materials such as steel, stainless steel and non-ferrous metal or carbide with different grain sizes. It is also possible to draw conclusions about the examined object by considering the response to the excitement at different times. In this case, for example, the attenuation of the response to the excitation or, for example by Fourier transformation, a consideration of the frequency and phase spectrum can be considered.
  • the times are for example between maximum / minimum and zero crossing (largely) distance independent.
  • excitation in the form of a temporally variable current flow to determine a plurality of characteristic points, such as a maximum and a minimum or a plurality of maxima or a plurality of minima or a plurality of zero crossings.
  • a plurality of time intervals between a plurality of (in this case at least three) such characteristic points can be determined and / or the times between the start of the excitation in the form of a temporally variable current flow and the plurality of characteristic points.
  • the duration from the beginning of an excitation in the form of a temporally variable current flow until reaching a maximum / minimum value or a zero crossing or a point of inflection or another point can be used to characterize the detected electrically conductive object.
  • metal particles produced by welding spatter can be distinguished from large electrically conductive objects, such as metal plates, in order to detect a malfunction of the sensors or a contamination of the same.
  • characteristics such as absolute values at a maximum / minimum or inflection point and / or sign at specific times may also be used.
  • differences of responses to the excitation measured at different, preferably predetermined times may also be used as characteristics.
  • the sensor surface typically refers to the front surface of the sensor.
  • one, two or more metallic conductive objects may be provided as part of the device. With this / this is a matching of the generated response to the excitation possible and / or the pretending a reference item.
  • a screw or pin can be provided which projects more or less strongly into the region of a magnetic field and can be used, for example, to zero the generated response to the excitation.
  • the screw or pin can be adjusted until a desired signal (eg, a zeroed signal) is generated.
  • a desired signal eg, a zeroed signal
  • no electrically conductive object to be detected is present.
  • sensors of the same type can be produced for different purposes (installations), which can then be adjusted to zero depending on the use or yes after the interference contour. This can also be done automatically by teach-in by the response or its characteristic features are stored with the interference contour and then detects the deviation to it.
  • a reference object can also be created with such an object, so that a zero signal is generated in the presence of an identical or very similar electrically conductive object to be detected. This is advantageous, for example, especially for the detection of certain coins. Only when the de electrically conductive object to be detected is more or less identical to the predetermined reference object, results in applying the excitation in the form of a time-variable current flow, a zero signal or a previously known signal and upon deviation of the detected electrically conductive object from the reference subject the result is a signal different from zero or deviating from the previously known signal, which signal can be correspondingly evaluated in order to discriminate against electrically conductive objects to be detected, ie in particular coins.
  • the generated response to the excitation at different times can be detected or even at a certain time after applying or switching off the excitation in the form of a temporally variable current flow.
  • a reference object can be a balance or zero balance by means of a screw or pin or a suitable object for matching, if an electrically conductive object to be detected which is identical to the reference object and located in the test position for future objects to be detected.
  • a coin can also be compared with reference objects.
  • This concerns for example, those objects which wear or wear out and whose degree of wear or wear condition is to be detected.
  • a non-worn or non-worn object can be compared with an object to be examined.
  • electrode caps which are placed on the electrodes of a welder and cleaned from time to time, for example, by milling, whereby they wear out, can be measured, whereby the degree of wear is determined. Also, finding material defects such as cracks in the material, can be done so.
  • the coils may be connected in series or in parallel with the first and / or second coil or separated z.
  • B connected to a power source or be short-circuited via a resistor or a circuit.
  • the third coil may also be designed in two parts, wherein the third coil then comprises two coil parts, of which, for example, one of the first and the other of the second coil is associated.
  • the two coil parts can be wound on a common or even each on a single bobbin.
  • the two coil parts are connected in series, for example.
  • the third coil can also be made in one piece, so for example be wound on a bobbin.
  • the first and second coils may have a common axis whose axis coincides with the axis of the third coil, optionally with the third coil positioned centrally between the first and second coils.
  • the axis of the third coil may be parallel offset or not parallel to the common axis or axes or one of the axes of the first two coils.
  • the device comprises a metal housing part or a full metal housing. This makes it possible to use the sensor in environments with an aggressive atmosphere such as vapors containing acid or lye.
  • the metal housing part or the full metal housing can be made of any stainless steel or non-ferrous metal.
  • the detection is possible through stainless steel or through non-ferrous metal, with no restriction on e.g. consists of high-resistance metals.
  • the front surface of the sensor that is, the surface which faces the object to be detected or its detection position, can be made of any stainless steel or non-ferrous metal. Even through such materials, the detection of electrically conductive objects is possible.
  • one or the other metals may be preferred as the housing, the choice of metal depending on the type of detection and also on the environmental conditions of the sensor (surrounding gases or liquids, temperature, pressure, etc.). ), for example, the material CuCrZr is suitable in applications where spatters contaminate the sensor surface. These do not adhere to CuCrZr.
  • the device can be designed, in particular, as a proximity switch or for the detection of different materials, for coin recognition or for detecting the degree of wear or the wear of objects.
  • a proximity switch the device can be installed flush, since the detected signals can be independent of the switching distance.
  • An underground installation allows good protection of the device against damage. Front surfaces with large thicknesses up to 7 mm can be advantageous for the sensor to serve as a stop surface, with the advantage that the positioning accuracy is significantly improved.
  • a device such as a machine can be provided, which includes a device for detecting electrically conductive objects, which is installed in the lower part.
  • the device is designed so that changes in a received signal can be detected, wherein due to the specific characteristic of this change, material defects can be detected. For example, cracks in the material can be detected.
  • the electronics of the device may detect the response to the excitation at preferably predetermined characteristic times.
  • the electronics can then evaluate the measured values and also output the result. This can be done for example on a display, by other optical signals, such as lights, audible signals or the like.
  • An evaluation of the measured values can be done using a preferably predetermined evaluation scheme and / or stored evaluation criteria in which or which optionally equidistant or non-equidistant lying characteristic times can be specified.
  • the electronics described above may additionally or instead also perform further measurements, such as the determination of the time of a maximum and / or minimum and / or zero crossing and / or inflection point and / or another point of the generated response to the excitation and these measured values take into account in the evaluation.
  • the evaluation can also take place, for example, by the or a preferably predetermined evaluation scheme and / or stored evaluation criteria.
  • the specified evaluation scheme and / or the stored evaluation criteria can automatically lead to a classification.
  • the classification may be, for example, the classification of a metal being tested for its composition (e.g., steel, stainless steel, or non-ferrous metal) or may lead to a classification such that an examined article is classified as fair or objectionable.
  • the result of the classification can be output or displayed.
  • an excitation in the form of a temporally variable current flow is applied to a first and a second coil, which generate magnetic fields with opposite polarity, whereby the response to the excitation generated in a third coil is detected.
  • an excitation in the form of a temporally variable current flow to the third coil and to perform the detection of the response to the excitation in the first and second coil.
  • the response to the excitation is preferably detected in a time range during and / or after the application of the excitation in the form of a temporally variable current flow for the detection of the electrically conductive object.
  • the evaluation of the detected response may include, for example, an evaluation of a voltage generated and / or an evaluation in the frequency domain.
  • An evaluation in the frequency domain can be carried out, for example, after an FFT or a normal Fourier transformation of the response to the excitation on the data thus obtained.
  • the excitation may include a sudden increase or a sudden drop, such as in the form of a rectangular pulse.
  • FIG. 1a a device 1 for the detection of an electrically conductive object is shown schematically. Shown is a first coil 10 and a second coil 11, which are connected via the interconnection 17 with each other in series. The two coils are wound in opposite directions so that a current flowing from the terminal 13 to the terminal 14 once generates a magnetic field oriented to the right and once a magnetic field oriented to the left.
  • the first and second coil may also be formed as two coil parts of a coil.
  • a further coil 12 is arranged, with which a generated response to the excitation can be detected. This can be tapped between the terminals 15 and 16.
  • the coil 12 is arranged here in the region which is penetrated by the magnetic fields that can be generated by the coil 10 and 11.
  • the coils 10, 11 and 12 may have a common coil axis and / or may be wound on a common or separate coil bobbins.
  • the coil 12 may be offset from the common axis of the coils 10 and 11 so that the Coil axes of the coils 10 and 11 and the coil 12 are parallel.
  • the axis of the spool 12 is not parallel to the common axis or axes of the spools 10 and 11.
  • FIG. 1b a variant is shown in which the coils 10 and 11 are wound in the same direction, however, by another circuit 18, the current flows in the two coils in different (opposite) directions, so that magnetic fields are also generated with opposite polarity, if a current of Terminal 13 to terminal 14 flows.
  • the coils can be connected independently of each other to a power supply. They are then not connected in series. Again, the first and second coil may be formed as two coil parts of a coil.
  • the coil 12 is also arranged here in the region which is penetrated by the magnetic fields that can be generated by the coil 10 and 11.
  • the coils 10, 11 and 12 may have a common coil axis and / or may be wound on a common or separate coil bobbins.
  • the coil 12 may be offset from the common axis of the coils 10 and 11 so that the coil axes of the coils 10 and 11 and the coil 12 are parallel.
  • the axis of the spool 12 is not parallel to the common axis or axes of the spools 10 and 11.
  • the number of turns in FIGS. 1a and 1b is only schematic.
  • the number of turns of the coils 10 and 11 is identical or does not vary by more than 5% or 1%. But it can also be provided variants in which the number of turns differ by up to 50% or 80%.
  • the influence on the generated signals can be compensated by appropriate electronic compensation or by a corresponding zero compensation or by differences in the number of turns of the individual coils or coil parts.
  • a current for generating a magnetic field can also be applied to the terminals 15 and 16 of the coil 12.
  • a response to the excitation between the terminals 13 and 14 can be tapped.
  • the response to the excitation at the terminals 13 and 14 will be zero due to the opposing windings in FIG FIG. 1a or the opposing circuit in FIG. 1b ,
  • the response to the excitation generated in the coils 10 and 11 can also be detected independently of each other. In this case, the interconnection would be omitted 17 or 18 and tapped the answer to the excitement of the two coils separately for each coil.
  • the respective terminals of the two coils can be supplied to a differential circuit which has the difference of the responses to the excitation as an output signal or amplified, such as in the form of a differential amplifier.
  • FIG. 2 the device 1 is shown in section. Between the two coils 10 and 11, the coil 12 is arranged. In FIG. 2 the magnetic field 20 generated by the coil 10 is shown as well as the magnetic field 21 generated by the coil 11, if current is sent through these coils.
  • the magnetic field of these two coils is opposite, so that when generating these magnetic fields without further influences in the coil 12 adjusts a zero response to the excitation or in some embodiments, a partially compensated response to the excitation.
  • FIG. 3 the structure of a device 1 is shown schematically.
  • an electronics 25 is shown, which either supplies the coils with corresponding terminals 28 with power or can pick up the corresponding responses to the excitation.
  • the electronics 25 may be connected to external terminals 26, 27. These can be used, for example, to supply power to the device 1 or the electronics 25 or to output a measurement signal.
  • the coils 10, 11 and 12 may be wound on a bobbin that is not magnetic or is also soft magnetic, such as a ferrite core. You can also be wound on several bobbins. In some embodiments, it is also possible that two or more coils are wound on a common bobbin and / or parts of a coil are wound on a common bobbin with another coil, and / or are partially or entirely designed as a multilayer printed circuit board.
  • FIG. 4 an example of the current and voltage curve is shown.
  • FIGS. 4a-4e various possible current courses are shown. Possible courses of arousal By a temporally variable current flow thereby include linearly rising and again linearly decreasing current pulses, as in Fig. 4a shown.
  • Fig. 4a If several current pulses are visible.
  • the rise may be abrupt and the fall less rapid, and variants in which the rise and fall are of equal or similar slope, or where the rise is linear in time and the drop is abrupt, may be present in some embodiments.
  • the course of the excitation in the form of a temporally variable current flow may take the form of a negative parabola section with smooth rise and fall (FIG. Fig.
  • a rectangular current pulse is shown in which a current of predetermined intensity flows during the time T1.
  • the excitation in the form of a temporally variable current flow may also comprise or may be formed as pulse packets in which the polarity of the current pulse is varied.
  • a measurable response to the excitation here by way of example an induction voltage, can result, as described in US Pat FIG. 4f is shown, namely a remaining zero signal, which is unaffected by the excitation in the form of a time-variable current flow.
  • an induction voltage as exemplified in Figure 4g is shown.
  • the measured response to the excitation in this case the induction voltage U
  • the time from the start of the arousal can be in the form of a time variable Current flow to the inflection point to characterize the profile can be determined.
  • the response to the excitation may be determined at preferably predetermined times, such as, for example, t 1 and t 2 .
  • t 1 and t 2 already from the sign of the response to the excitement at certain times can be derived in some cases information about the material of the examined object.
  • the course of the response to the excitation may also have a minimum instead of a maximum, for example ⁇ t resulting from the time interval between the minimum and a zero crossing.
  • the absolute value at the maximum point of the response to the excitation such as the voltage U, can be taken into account for evaluating the response to the excitation.
  • FFT Fast Fourier Transform
  • the magnetic field 31 of the coil 11 can be influenced by the presence of an electrically conductive body 30 to be detected.
  • the arrow 32 represents the magnetic field generated by the coil 10.
  • the different influence of the magnetic fields 32 and 31 by the coils 10 and 11 results in a break in symmetry, which leads to that in the coil 12, a response to the excitation is generated.
  • the generated response to the excitation in the coil 12 has typical characteristics (in particular characteristic time courses) which indicate the nature of the object 30.
  • the magnetic field may also be generated by the coil 12, this magnetic field being asymmetric due to the presence of the object 30, so that one of the coil 10 in the coil 11 different response to the excitation is generated, the corresponding interconnection (see FIG. 1a, 1b ) leads not to a complete compensation or cancellation of the two responses to the excitement but rather to a non-zero response to the excitement.
  • FIG. 6 the device 1 for detecting an electrically conductive object is shown, wherein a reference object 35 is provided on the left in the coil arrangement. If an identical or nearly identical electrically conductive object 36 is arranged at the right end of the coil arrangement, an excitation in the form of a time-variable current flow to the coils 10 and 11 results in a response to the excitation by the coil 12, which is zero results. However, if a different electrically conductive object, such as represented by the dashed line 37, applied to the coil assembly, there will be a non-zero response to the excitation, indicating that the electrically conductive object to be detected is not identical or similar to the electrically conductive article 35.
  • a different electrically conductive object such as represented by the dashed line 37
  • an electrically conductive object 36 to be examined can be compared to the reference object for a multiplicity of characteristics. Any deviation in material composition, size, material property, material condition, etc. will result in a non-zero response to the arousal. In the case of differences between the objects 35 and 36, it is also possible for characteristic characteristics of the response to the arousal to occur in time.
  • the response to the excitation may also include maxima and / or minima and / or zero or inflection points and / or changes in the FFT or phase analysis that can be detected and evaluated to quantify the difference between the two objects.
  • both time intervals between maxima and or minima and / or zero crossings and / or inflection points and / or the values of the response to the excitation at these points and / or the values of the response to the excitation can be evaluated at predetermined points in time. Also, the time from the occurrence of a maximum / minimum / zero crossing / inflection point and / or a specific value of the response to the excitation from the application of the excitation in the form of a temporally variable current flow can be evaluated.
  • an energized zero signal will be applied to the two coils when an excitation in the form of a temporally variable current flow of the same amplitude is applied. Any deviation from this indicates a difference between the two objects.
  • the coil arrangement or the power supply of the coils can be such that, even with identical objects 35, 36, there is a time course of the response to the excitation, which deviates from zero (reference). Any further deviation from such a reference of a detected response to the excitation then indicates a difference in the objects.
  • a measurement operation may also be performed by applying the current to the coil 12 and determining the response to the excitation that occurs in the coils 10 and 11.
  • FIGS. 7a and 7b an alternative construction of the device for detecting electrically conductive objects is shown, in which the coil 11 is provided within the coil 10 and the coil 12 is disposed between the coils 10 and 11.
  • the various coils are arranged one behind the other in a radially outward direction.
  • the second and third coils may hereby be provided wholly or partly within the space area surrounded by the first coil.
  • the Figure 7a shows a section through the in Fig. 7b shown in plan view coil assembly.
  • the coils 10, 11 and 12 may be round or square in all figures, so that a turn, for example, is circular or rectangular or square.
  • FIG. 8 shows a sensor surface 38 of the device to which electrically conductive articles 39 and 40 can be brought.
  • the sensor surface is preferably a front surface of a housing of the device. Considering the change (s) of the response to the excitation then, for example, it can be deduced from which direction an electrically conductive object approaches the sensor surface, that is, whether it approaches frontally like object 39 or laterally like object 40.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Detektion von elektrisch leitfähigen Gegenständen mit: einer ersten und einer zweiten Spule oder einem ersten und zweiten Spulenteil, die gleichzeitig Magnetfelder mit entgegengesetzter Polung erzeugen können und einer dritten Spule die im Bereich der entgegengesetzten Magnetfelder angeordnet ist, und einer Elektronik, die während und/oder nach der Versorgung der ersten und zweiten Spule oder des ersten und zweiten Spulenteils mit einer Erregung in Form eines zeitlich variablen Stromflusses eine Antwort auf die Erregung in der dritten Spule erfasst, oder die während der Versorgung der dritten Spule mit einer Erregung in Form eines zeitlich variablen Stromflusses eine Antwort auf die Erregung in der ersten und zweiten Spule oder des ersten und zweiten Spulenteils erfasst, so dass ein elektrisch leitfähiger Gegenstand bei Vorhandensein im Bereich eines der Magnetfelder ein detektierbares Signal in der erfassten Antwort auf die Erregung erzeugt.

Description

  • Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Detektion von elektrisch leitfähigen Gegenständen.
  • Aus der DE 41 02 542 A1 ist ein induktiver Nährungsschalter bekannt. Dieser induktive Nährungsschalter enthält einen Oszillator, der ein magnetisches Wechselfeld erzeugt und der bei Eindringen eines Auslösers in das Wechselfeld seinen Schwingungszustand ändert, was eine Auswerteschaltung zur Gewinnung eines Schaltsignals zur Ansteuerung eines Lastschalters nutzt. Die erfassbare Änderung des Schwingungszustands ist sowohl von materialtypischen Eigenschaften des Auslösers sowie dessen Abstand und dessen Position relativ zum dem Schalter abhängig. Diese Schalter reagieren somit relativ unspezifisch auf verschiedene Materialien und im Wesentlichen nur auf den Abstand zwischen dem Auslöser und dem Schalter.
  • Aus der DE 39 34 593 C2 ist ein Sensor bekannt, bei dem an die Primärspule ein dreiecksförmiges Signal angelegt wird, so dass gemäß dem Induktionsgesetz am Ausgang der Sekundärspule ein Rechtecksignal mit der Frequenz des Dreiecksignals erzeugt wird. Diese Variante dient dazu, einen Sensor zu entwerfen, der ein sicheres Signal abgibt. Dies wird durch das kontinuierliche Ansteigen beziehungsweise Abfallen gemäß dem dreiecksförmigen Signal erreicht.
  • Weiter ist aus der EP 0 936 741 A1 ein induktiver Nährungsschalter bekannt, der eine einzelne Spule verwendet, mit der mittels eines Sendestromimpulses in dem zu erfassenden Körper eine Induktionsspannung erzeugt wird, die einen Strom in dem Körper verursacht, dessen Abklingen nach dem Ende des Stromimpulses in der Spule Spannung induziert, die entsprechend verarbeitet werden kann. Die Sendestromimpulse liegen im Bereich zwischen 100 µs und 200 µs. Bei diesem Verfahren wird ein und dieselbe Spule für das Erzeugen eines Wirbelstroms als auch für das Erfassen des abklingenden Wirbelstroms verwendet. Ein Metallgehäuse für diesen Sensor muss nicht-ferromagnetisch sein und einen relativ hohen spezifischen elektrischen Widerstand aufweisen.
  • Das Dokument WO 01/71387 A1 zeigt ein elektromagnetisches Zielunterscheidungssystem und ein Verfahren zur Detektion und Identifizierung von Metallen.
  • Die DE 10 2004 047 190 A1 zeigt einen Detektor zur Ortung metallischer Objekte.
  • Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung und ein Verfahren zu schaffen, mit dem spezifische Besonderheiten des zu erfassenden Gegenstands wie beispielsweise Materialeigenschaften, Materialzusammensetzung oder Größe des Gegenstands detektierbar werden und dies vorzugsweise (weitgehend) unabhängig vom Abstand zwischen der Vorrichtung und dem Gegenstand.
  • Diese Aufgabe wird gelöst mit einer Vorrichtung nach Anspruch 1 sowie einem Verfahren nach Anspruch 15. Bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen offenbart.
  • Die Vorrichtung weist zwei oder drei Spulen auf, von denen eine, die zwei Spulenteile umfasst, die im Folgenden ebenfalls als erste und zweite Spule und als zwei Spulen bezeichnet werden, oder zwei zur Erzeugung von Magnetfeldern und eine zur Detektion einer Antwort auf die Erregung in Form eines zeitlich variablen Stromflusses, die im Folgenden als Antwort auf die Erregung bezeichnet wird und beispielsweise in Form einer Induktionsspannung oder Dämpfung ausgeprägt sein kann oder umgekehrt eine zur Erzeugung des Magnetfeldes und eine, die zwei Spulenteile umfasst, die im Folgenden ebenfalls als erste und zweite Spule und als zwei Spulen bezeichnet werden oder zwei zur Detektion einer Antwort auf die Erregung verwendet werden können. Die Vorrichtung weist weiter eine Elektronik auf, die (insbesondere) während, und/oder nach der Versorgung der magnetfelderzeugenden Spule mit einer Erregung in Form eines zeitlich variablen Stromflusses eine Antwort auf die Erregung erfasst. Befindet sich ein elektrisch leitfähiger Gegenstand im Bereich des Magnetfeldes, erzeugt dies so ein detektierbares Signal in der erfassten Antwort auf die Erregung. Je nach Materialeigenschaften und Größe des detektierten Gegenstandes, kann die erfasste Antwort auf die Erregung spezifische Charakteristika aufweisen. Aus diesen kann auch auf das Material des Gegenstandes, die Materialzusammensetzung des Gegenstandes, die Materialeigenschaften des Gegenstandes und/oder die Größe des Gegenstandes zurückgeschlossen werden.
  • Die erste und zweite Spule kann entgegengesetzt oder gleichsinnig gewickelt sein. Die beiden Spulen können räumlich voneinander getrennt sein. Durch eine entsprechende Verschaltung dieser Spulen können Magnetfelder mit entgegengesetzter Polung erzeugt werden. Die erste und zweite Spule können in Reihe geschaltet sein. Sie können aber auch (unabhängig voneinander) von jeweils einer Stromquelle gespeist sein, vorzugsweise, wenn sie nicht zwei Teile einer Spule umfassen.
  • Auf beiden Seiten des Spulensystems (umfassend die erste, zweite und dritte Spule) erzeugen elektrisch leitfähige Gegenstände Signalformen mit entgegengesetztem Vorzeichen, so dass sich gleiche Effekte auf beiden Seiten eliminieren. Hierbei werden als Front und Rückseite jeweils die Seiten bezeichnet, die an dem der Außenseite zugewandten Ende der ersten und zweiten Spule liegen.
  • Die Erregung im Form eines zeitlich variablen Stromflusses, die im Folgenden auch als Erregung bezeichnet wird, kann als Pulspaket beliebiger Form und/oder als eine Sinusform ausgebildet sein. Sie kann auch einen periodischen Puls und/oder ein Mehrfachpulspaket umfassen. Weiterhin kann sie auch als eine periodische Schwingungsform und/oder eine aperiodische Pulsfolge ausgebildet sein. Weiterhin kann sie so ausgebildet sein, dass sie nicht sprunghaft ansteigt und abfällt und so beispielsweise nicht als Rechteckspuls ausgebildet sein kann. Auch kann die Erregung in einer Form vorhanden sein, dass sie einen sprunghaften Anstieg aufweist, jedoch kein sprunghaftes Abfallen zeigt oder alternativ keinen sprunghaften Anstieg und ein sprunghaftes Abfallen zeigt.
  • Die Erregung in Form eines zeitlich variablen Stromflusses weist vorzugsweise einen sprunghaften Anstieg und/oder ein sprunghaftes Abfallen auf wie beispielsweise bei einem Rechteckpuls. In einer bevorzugten Ausführungsform weist die Erregung in Form eines variablen Stromflusses die Form eines Rechteckpulses auf und hat die Dauer zwischen 0,1 ns und 1 ms wie etwa zwischen 1 µs und 50 µs. In anderen Ausführungsformen kann die Erregung in Form eines zeitlich variablen Stromflusses als kurzer Stromimpuls mit hoher Stromstärke wie beispielsweise einem Dirac-Stoss ausgeprägt sein oder einen solchen umfassen.
  • Je kürzer die Erregung in Form eines variablen Stromflusses ist bzw. je kürzer der Anstieg oder Abfall ist, desto höherfrequenter und damit breitbandiger ist das Anregungsspektrum für die Antwort auf die Erregung. Durch Anteile mit verschiedenen Frequenzen können insbesondere verschiedene Größenskalen des Gegenstandes unterschieden werden, als auch auf frequenzspezifische Materialeigenschaften und damit auf die Zusammensetzung des elektrisch leitfähigen Gegenstandes geschlossen werden. Die Anstiegszeit in der beispielsweise 90% des maximalen Stromwerts (des sprunghaften Anstiegs) erreicht werden kann und/oder die Abfallzeit, in der der Strom vom Ausgangswert des sprunghaften Abfalls auf 10 % davon abfällt kann kürzer als 0,2 oder 0,1 µs sein.
  • Die durch die erste und zweite Spule erzeugte Wirkung der Antwort auf die Erregung in der dritten Spule oder die durch die dritte Spule erzeugte Wirkung der Antwort auf die Erregung in der ersten und zweiten Spule können sich ganz aufheben oder heben sich zumindest teilweise auf.
  • Vorzugsweise geschieht dies zumindest zu 90% oder 99%. Die Kompensationswirkung kann so sein, dass bei Nichtvorhandensein eines zu detektierenden elektrisch leitfähigen Gegenstandes die erfasste Antwort auf die Erregung im Wesentlichen Null ist. Dies führt zu einer hohen Sensitivität der Vorrichtung zur Detektion, da jedes Vorhandensein eines elektrisch leitfähigen Gegenstandes eine von Null verschiedene Antwort auf die Erregung oder eine von einer Referenzantwort auf die Erregung verschiedene Antwort auf die Erregung ergibt. Dies geschieht vorzugsweise so, dass sich Einflüsse an Front und Rückseite kompensieren. Die Kompensationswirkung kann durch eine symmetrische Anordnung der Spulen erreicht werden. Liegt z.B. die dritte Spule symmetrisch zwischen der ersten und der zweiten Spule, so können sich die erzeugten Antworten auf die Erregung in Form eines zeitlich variablen Stromflusses in der ersten und zweiten Spule aufheben. Aber auch für den Fall, dass die drei Spulen der Vorrichtung nicht symmetrisch angeordnet sind, kann beispielsweise die Antwort auf die Erregung bei Nichtvorhandensein eines elektrisch leitfähigen Gegenstandes durch weitere Korrekturfaktoren, wie beispielsweise weitere Spulen oder das Einbringen von anderen leitfähigen Gegenständen in die Vorrichtung angepasst werden, so dass die Wirkung der Antwort auf die Erregung so eingestellt wird, dass die zuvor beschriebene Kompensationswirkung erzeugt wird. Auch das Einstellen der Antwort auf die Erregung auf Null bei Anwesenheit eines bestimmten Gegenstandes kann so erfolgen.
  • Falls die in der ersten und zweiten Spule erzeugte Antwort auf die Erregung erfasst wird, so sind diese beiden Spulen vorzugsweise so verschaltet, dass die Antwort auf die Erregung sich zumindest teilweise, vorzugsweise zu mindestens 90% oder 99%, kompensieren, wobei vorzugsweise die Kompensation so erfolgt, dass bei Nichtvorhandensein eines zu detektierenden elektrisch leitfähigen Gegenstandes sich die beiden Antworten auf die Erregung im Wesentlichen zu Null ergänzen. Dies kann beispielsweise auf die Arten geschehen, die zuvor im Zusammenhang mit der Kompensationswirkung bezüglich der Antwort auf die Erregung in der dritten Spule beschrieben sind.
  • Vorzugsweise wird der Verlauf der erzeugten Antwort auf die Erregung zu verschiedenen Zeiten erfasst (zeitabhängige Erfassung), während und/oder nach der Erregung in Form eines zeitlich variablen Stromflusses. So können für jede Erregung in Form eines zeitlich variablen Stromflusses beispielsweise mehr oder weniger als 5, mehr oder weniger als 10, mehr oder weniger als 100, mehr oder weniger als 1000 oder mehr oder weniger als 10.000 oder mehr oder weniger als 100.000 oder 100.000 Messwerte erfasst werden.
  • In einer besonders bevorzugten Ausführungsform werden in dem zeitabhängig erfassten Verlauf der Antwort auf die Erregung ein, zwei, drei oder mehr Maximal- und/oder Minimal-und/oder Wendepunkte und/oder Nulldurchgänge (charakteristische Punkte) und/oder andere Punkte der erfassten Antwort auf die Erregung bestimmt. Als Kriterium zur Wertung der Detektion eines elektrisch leitfähigen Gegenstandes kann beispielsweise der zeitliche Abstand zwischen Maximal- und/oder Minimal- und/oder Wendepunkt und/oder einem Nulldurchgang und/oder einem anderen Punkt bestimmt werden. Diese Signale haben den Vorteil, dass sie weitgehend unabhängig von dem Abstand zwischen der Vorrichtung und dem zu detektierenden elektrisch leitfähigem Gegenstand sind.
  • Auch ist es möglich, dabei oder alternativ die Antwort auf die Erregung zu einem oder mehreren verschiedenen Zeitpunkten zu messen. Hierbei kann es sich um vorbestimmte Zeitpunkte handeln, so dass in bestimmtem zeitlichen Abstand zu einer charakteristischen Zeit, wie beispielsweise dem Aussenden der Erregung, die Antwort auf die Erregung gemessen werden kann. Dies kann beispielsweise die Messung vereinfachen, da in einigen Ausführungsformen somit nur die Antwort auf die Erregung zu den charakteristischen Zeitpunkten gemessen werden muss und nicht die Antwort auf die Erregung zu allen Zeitpunkten. Hierbei können die Zeitpunkte äquidistant und/oder nicht-äquidistant gewählt sein. In einigen Ausführungsformen ist es möglich, zu mehreren Zeitpunkten, die in vorherbestimmten zeitlichen Abständen liegen, zu messen und/oder nur zu Zeitpunkten in vorherbestimmten Zeitintervallen zu messen. So kann beispielsweise bei geschickter Wahl der Zeitpunkte allein durch die Betrachtung des Vorzeichens der Antwort auf die Erregung eine Aussage über das Material getroffen werden. Beispielsweise kann bei geschickter Wahl der Zeitpunkte, zu denen gemessen wird, durch die Bestimmung des Vorzeichens der Antwort auf die Erregung eine Unterscheidung von Materialien wie Stahl, Edelstahl und Buntmetall oder Hartmetall mit unterschiedlichen Korngrößen erfolgen. Auch über die Betrachtung der Antwort auf die Erregung zu verschiedenen Zeitpunkten können Rückschlüsse auf den untersuchten Gegenstand getroffen werden. Dabei kann beispielsweise die Dämpfung der Antwort auf die Erregung oder z.B. durch Fouriertransformation eine Betrachtung des Frequenz- und Phasenspektrums betrachtet werden.
  • Die Signalhöhe wird zwar bei verschiedenen Abständen des untersuchten Gegenstandes zur Vorrichtung verschieden sein, jedoch sind die Zeiten beispielsweise zwischen Maximal-/Minimal- und Nulldurchgang (weitgehend) abstandsunabhängig. Es können auch für eine Erregung in Form eines zeitlich variablen Stromflusses mehrere charakteristische Punkte bestimmt werden wie etwa ein Maximum und ein Minimum oder mehrere Maxima oder mehrere Minima oder mehrere Nulldurchgänge. Dabei können mehrere zeitliche Abstände zwischen mehreren (in diesem Fall mindestens drei) solcher charakteristischen Punkte bestimmt werden und/oder die Zeiten zwischen dem Start der Erregung in Form eines zeitlich variablen Stromflusses und den mehreren charakteristischen Punkten.
  • Auch die Dauer vom Beginn einer Erregung in Form eines zeitlich variablen Stromflusses bis zum Erreichen eines Maximal-/Minimalwerts oder eines Nulldurchgangs oder eines Wendepunkts oder eines anderen Punktes können zur Charakterisierung des detektierten elektrisch leitfähigen Gegenstandes herangezogen werden.
  • Auch eine Unterscheidung zwischen kleinen und großen Gegenständen ist mit derartigen Kriterien möglich. So können beispielsweise durch Schweißspritzer entstandene Metallpartikel unterschieden werden von großen elektrisch leitfähigen Gegenständen wie beispielsweise Metallplatten, um eine Fehlfunktion der Sensoren beziehungsweise eine Verschmutzung derselben zu erkennen.
  • Zusätzlich oder Alternativ zu solchen zeitlich bestimmten Charakteristika können auch andere Charakteristika wie zum Beispiel Absolutwerte bei einem Maximal-/Minimal- oder Wendepunkt und/oder Vorzeichen zu bestimmten Zeitpunkten herangezogen werden. In einigen Ausführungsformen können auch die Differenzen von zu verschiedenen, vorzugsweise vorher bestimmten Zeitpunkten gemessenen Antworten auf die Erregung als Charakteristika herangezogen werden.
  • Auch ist es möglich, zusätzlich oder nur Änderungen der Antwort zu erfassen, was Rückschlüsse darauf zulassen kann, aus welcher Richtung (frontal oder seitlich) sich ein elektrisch leitfähiger Gegenstand der Sensorfläche annähert. Hierbei bezeichnet die Sensorfläche typischerweise die Frontfläche des Sensors.
  • Im Bereich der ersten oder zweiten Spule können ein, zwei oder mehr metallisch leitfähige Gegenstände als Bestandteil der Vorrichtung vorgesehen sein. Mit diesen/diesem ist ein Abgleichen der erzeugten Antwort auf die Erregung möglich und/oder auch das Vorgeben eines Referenzgegenstandes. Zum Abgleichen der erzeugten Antwort auf die Erregung kann beispielsweise eine Schraube oder Stift vorgesehen sein, die mehr oder weniger stark in den Bereich eines Magnetfelds hereinragt und so beispielsweise zum Nullabgleich der erzeugten Antwort auf die Erregung eingesetzt werden kann. Für den Nullabgleich kann die Schraube oder der Stift verstellt werden, bis ein gewünschtes Signal (also z.B. ein auf Null abgeglichenes Signal) erzeugt wird. Für den Abgleich oder den Nulllabgleich ist vorzugsweise kein zu detektierender elektrisch leitfähiger Gegenstand vorhanden. Bei Vorhandensein einer elektrisch leitfähigen Störkontur (wie beispielsweise bedingt durch metallische Maschinenteile, in oder an die der Sensor ein-/angebaut wird), kann der Einfluss der metallischen Störkontur mit dem Nullabgleich reduziert bzw. eliminiert werden. Dadurch können Sensoren gleicher Bauart für verschiedene Einsatzzwecke (Einbauten) hergestellt werden, die dann je nach Verwendung bzw. ja nach der Störkontur dennoch auf Null abgeglichen werden können. Dies kann auch automatisch durch teach-in geschehen, indem die Antwort oder deren charakteristischen Merkmale mit der Störkontur gespeichert werden und man dann die Abweichung dazu erfasst.
  • Auch kann mit einem solchen Gegenstand ein Referenzgegenstand geschaffen werden, so dass bei Vorhandensein eines identischen oder sehr ähnlichen zu detektierenden elektrisch leitfähigen Gegenstands ein Nullsignal erzeugt wird. Dies ist beispielsweise insbesondere für die Erkennung von bestimmten Münzen vorteilhaft. Nur dann, wenn der zu detektieren de elektrisch leitfähige Gegenstand mehr oder weniger identisch mit dem vorgegebenen Referenzgegenstand ist, ergibt sich bei Anlegen der Erregung in Form eines zeitlich variablen Stromflusses ein Nullsignal beziehungsweise ein vorbekanntes Signal und bei Abweichen des detektierten elektrisch leitfähigen Gegenstandes von dem Referenzgegenstand ergibt sich ein von Null verschiedenes beziehungsweise von dem vorbekannten Signal abweichendes Signal, das entsprechend ausgewertet werden kann, um zu detektierende elektrisch leitfähige Gegenstände, also insbesondere Münzen, zu diskriminieren. Hierbei kann die erzeugte Antwort auf die Erregung zu verschiedenen Zeiten erfasst werden oder auch nur zu einer bestimmten Zeit nach Anlegen oder Abschalten der Erregung in Form eines zeitlich variablen Stromflusses.
  • Falls ein Referenzgegenstand als Bestandteil der Vorrichtung vorgesehen ist, so kann ein Abgleich oder Nullabgleich mittels Schraube oder Stift oder eines zum Abgleichen geeigneten Gegenstandes erfolgen, sofern ein zu detektierender elektrischer leitfähiger Gegenstand vorhanden ist, der identisch zu den Referenzgegenstand ist und in der Testposition für zukünftige zu detektierende Gegenstände angeordnet ist.
  • Statt einer Münze können auch andere elektrisch leitfähige Gegenstände mit Referenzgegenständen verglichen werden. Dies betrifft beispielsweise solche Gegenstände, die abnutzen oder verschleißen und deren Abnutzungsgrad oder Verschleißzustand erfasst werden soll. Dazu kann ein nicht abgenutzter oder nichtverschlissener Gegenstand mit einem zu untersuchenden Gegenstand verglichen werden. So können beispielsweise Elektrodenkappen, die auf die Elektroden eines Schweißgeräts aufgesetzt werden und von Zeit zu Zeit beispielsweise durch Fräsen gesäubert werden, wodurch sie sich abnutzen, ausgemessen werden, wodurch der Abnutzungsgrad bestimmt wird. Auch das Auffinden von Materialfehlern wie beispielsweise Rissen im Material, kann so erfolgen.
  • Zur Beeinflussung der erzeugten Antwort auf die Erregung können auch ein oder mehrere weitere Spulen vorgesehen sein, die beispielsweise zur Erzeugung eines Nullabgleichs dienen können. Die Spulen können mit der ersten und/oder zweiten Spule in Reihe oder parallel geschaltet sein oder getrennt z. B. an eine Stromquelle angeschlossen oder über einen Widerstand oder eine Schaltung kurzgeschlossen sein.
  • Die dritte Spule kann auch zweiteilig ausgeführt sein, wobei die dritte Spule dann zwei Spulenteile umfasst, von denen beispielsweise einer der ersten und der andere der zweiten Spule zugeordnet ist. Dabei können die beiden Spulenteile auf einen gemeinsamen oder auch jeder auf einen einzelnen Spulenkörper gewickelt sein. Die beiden Spulenteile sind beispielsweise in Reihe geschaltet. Die dritte Spule kann jedoch auch einteilig ausgeführt sein, also beispielsweise auf einen Spulenkörper gewickelt sein.
  • In einigen Ausführungsformen können die erste und zweite Spule eine gemeinsame Achse aufweisen, deren Achse mit der Achse der dritten Spule zusammenfällt, wobei optional die dritte Spule mittig zwischen der ersten und zweiten Spule angeordnet ist. Alternativ kann die Achse der dritten Spule parallel versetzt oder nicht parallel zur gemeinsamen Achse oder den Achsen oder einer der Achsen der beiden ersten Spulen liegen.
  • Vorzugsweise umfasst die Vorrichtung ein Metallgehäuseteil oder ein Vollmetallgehäuse. Damit ist es möglich, den Sensor auch in Umgebungen mit einer aggressiven Atmosphäre wie beispielsweise säure- oder laugenhaltigen Dämpfen einzusetzen.
  • Der Metallgehäuseteil bzw. das Vollmetallgehäuse können aus beliebigem Edelstahl oder auch Buntmetall gefertigt sein. Die Detektion ist durch Edelstahl oder auch durch Buntmetall hindurch möglich, wobei keine Einschränkung auf z.B. hochohmige Metalle besteht. Die Frontfläche des Sensors, also diejenige Fläche, die dem zu detektierenden Gegenstand bzw. dessen Erkennungsposition zugewandt ist, kann aus jedem Edelstahl oder aus Buntmetall gefertigt sein. Auch durch solche Materialien hindurch ist die Detektion von elektrisch leitfähigen Gegenständen möglich. Je nach Anwendung können aber die einen oder die anderen Metalle als Gehäuse(teil) bevorzugt sein, wobei die Auswahl des Metalls von der Art der Detektion abhängen kann und auch von den Umgebungsbedingungen des Sensors (umgebende Gase oder Flüssigkeiten, Temperatur; Druck, etc.) beispielsweise eignet sich das Material CuCrZr in Applikationen bei denen Schweißspritzer die Sensorfläche verunreinigen. An CuCrZr bleiben diese nicht haften.
  • Die Vorrichtung kann insbesondere als Nährungsschalter ausgebildet sein oder zur Erkennung von verschiedenen Materialien, zur Münzerkennung oder zur Erkennung des Abnutzungsgrads oder des Verschleißes von Gegenständen. Als Nährungsschalter kann die Vorrichtung unterbündig eingebaut werden, da die erkannten Signale von dem Schaltabstand unabhängig sein können. Ein unterbündiger Einbau erlaubt einen guten Schutz der Vorrichtung gegen Beschädigung. Frontflächen mit großen Dicken bis 7mm können vorteilhaft sein, damit der Sensor als Anschlagfläche dienen kann, mit dem Vorteil, dass die Positioniergenauigkeit wesentlich verbessert wird.
  • Erfindungsgemäß kann somit auch eine Vorrichtung wie beispielsweise eine Maschine vorgesehen sein, die eine Vorrichtung zur Detektion von elektrisch leitfähigen Gegenständen umfasst, die unterbündig eingebaut ist.
  • Vorzugsweise ist die Vorrichtung so ausgebildet, dass Änderungen eines Empfangssignals erfasst werden können, wobei durch die bestimmte Charakteristik dieser Änderung Materialfehler zu erkennen sein können. So können beispielsweise Risse im Material erkannt werden.
  • In bevorzugten Ausführungsformen kann die Elektronik der Vorrichtung die Antwort auf die Erregung zu vorzugsweise vorgegebenen charakteristischen Zeitpunkten erfassen. Die Elektronik kann dann die gemessenen Werte auswerten und auch das Ergebnis ausgeben. Dies kann beispielsweise auf einem Display, durch andere optische Signale, beispielsweise Lämpchen, akustische Signale oder Ähnliches geschehen. Eine Auswertung der Messwerte kann dabei unter Verwendung eines vorzugsweise vorgegebenen Auswertschemas und/oder hinterlegten Auswertkriterien erfolgen, in dem oder denen auch die optional äquidistant oder nicht-äquidistanten liegenden charakteristischen Zeitpunkte vorgegeben sein können.
  • In weiteren Ausführungsformen kann die zuvor beschriebene Elektronik zusätzlich oder stattdessen auch weitere Messungen durchführen wie beispielsweise die Ermittlung des Zeitpunktes eines Maximums und/oder Minimums und/oder Nulldurchgangs und/oder Wendepunkts und/oder eines anderen Punkts der erzeugten Antwort auf die Erregung und diese Messwerte bei der Auswertung berücksichtigen. Die Auswertung kann hierbei ebenfalls beispielsweise durch das oder ein vorzugsweise vorgegebenes Auswertschema und/oder hinterlegte Auswertkriterien erfolgen.
  • Das vorgegebene Auswertschema und/oder die hinterlegten Auswertkriterien können automatisch zu einer Klassifikation führen. Die Klassifikation kann beispielsweise die Klassifikation eines untersuchten Metalls auf seine Zusammensetzung (z.B. Stahl, Edelstahl oder Buntmetall) sein oder aber zu einer Klassifikation führen derart, dass ein untersuchter Gegenstand als in Ordnung oder als zu beanstanden klassifiziert wird. Das Ergebnis der Klassifikation kann ausgegeben bzw. angezeigt werden.
  • Bei dem Verfahren zur Detektion von elektrisch leitfähigen Gegenständen wird eine Erregung in Form eines zeitlich variablen Stromflusses an eine erste und eine zweite Spule angelegt, wobei diese Magnetfelder mit entgegengesetzter Polung erzeugen, wodurch die in einer dritten Spule erzeugte Antwort auf die Erregung erfasst wird.
  • Stattdessen ist es auch möglich, eine Erregung in Form eines zeitlich variablen Stromflusses an die dritte Spule anzulegen und die Erfassung der Antwort auf die Erregung in der ersten und zweiten Spule vorzunehmen. Die Antwort auf die Erregung wird vorzugsweise in einem Zeitbereich während und/oder nach dem Anlegen der Erregung in Form eines zeitlich variablen Stromflusses zur Detektion des elektrisch leitfähigen Gegenstandes erfasst. Das Auswerten der erfassten Antwort kann dabei beispielsweise ein Auswerten einer erzeugten Spannung und/oder ein Auswerten im Frequenzbereich umfassen. Ein Auswerten im Frequenzbereich kann beispielsweise nach einer FFT oder einer normalen Fouriertransformation der Antwort auf die Erregung an den so gewonnenen Daten durchgeführt werden. Die Erregung kann einen sprunghaften Anstieg oder ein sprunghaftes Abfallen wie beispielsweise in Form eines Rechteckpulses umfassen.
  • Besondere Ausführungsformen der Erfindung werden anhand der beiliegenden Figuren erläutert. Dabei zeigt:
  • Figur 1
    verschiedene Möglichkeiten der Verschaltung der ersten, zweiten und dritten Spule;
    Figur 2
    die erzeugten Magnetfelder;
    Figur 3
    eine schematische Darstellung der Vorrichtung;
    Figur 4
    Strom- und Spannungsverläufe;
    Figur 5
    eine schematische Darstellung der Magnetfelder bei Vorhandensein eines elektrisch leitfähigen Gegenstandes;
    Figur 6
    eine bevorzugte Variante der Vorrichtung in schematischer Darstellung und
    Figur 7a, 7b
    eine alternative Bauform der Vorrichtung
    Figur 8
    eine schematische Darstellung einer Sensorfläche der Vorrichtung.
  • In Figur 1a ist eine Vorrichtung 1 zur Detektion eines elektrisch leitfähigen Gegenstandes schematisch gezeigt. Gezeigt ist eine erste Spule 10 und eine zweite Spule 11, die über die Verschaltung 17 miteinander in Reihe geschaltet sind. Die beiden Spulen sind gegensinnig gewickelt, so dass ein Strom, der von dem Anschluss 13 zu dem Anschluss 14 fließt, einmal ein nach rechts orientiertes Magnetfeld und einmal ein nach links orientiertes Magnetfeld erzeugt. Die erste und zweite Spule können auch als zwei Spulenteile einer Spule ausgebildet sein.
  • In dem Bereich zwischen den beiden Spulen 10 und 11 ist eine weitere Spule 12 angeordnet, mit der eine erzeugte Antwort auf die Erregung erfasst werden kann. Diese kann zwischen den Anschlüssen 15 und 16 abgegriffen werden.
  • Die Spule 12 ist hier in dem Bereich angeordnet, der von den Magnetfeldern, die durch die Spule 10 und 11 erzeugt werden können, durchsetzt wird. Die Spulen 10, 11 und 12 können eine gemeinsame Spulenachse aufweisen und/oder können auf einem gemeinsamen oder getrennten Spulenkörpern aufgewickelt sein. In einigen Ausführungsformen kann die Spule 12 versetzt zur gemeinsamen Achse der Spulen 10 und 11 angeordnet sein, so dass die Spulenachsen der Spulen 10 und 11 und der Spule 12 parallel liegen. In anderen Ausführungsformen ist die Achse der Spule 12 nicht parallel zu der gemeinsamen Achse oder den Achsen der Spulen 10 und 11.
  • In Figur 1b ist eine Variante gezeigt, bei der die Spulen 10 und 11 gleichsinnig gewickelt sind jedoch durch eine andere Verschaltung 18 der Strom in den beiden Spulen in verschiedenen (entgegengesetzten) Richtungen fließt, so dass auch hier Magnetfelder mit entgegengesetzter Polung erzeugt werden, falls ein Strom von Anschluss 13 zum Anschluss 14 fließt. Die Spulen können unabhängig voneinander an eine Stromversorgung angeschlossen sein. Dabei sind sie dann nicht in Reihe geschaltet. Auch hier können die erste und zweite Spule als zwei Spulenteile einer Spule ausgebildet sein.
  • Die Spule 12 ist hier ebenfalls in dem Bereich angeordnet, der von den Magnetfeldern, die durch die Spule 10 und 11 erzeugt werden können, durchsetzt wird. Die Spulen 10, 11 und 12 können eine gemeinsame Spulenachse aufweisen und/oder können auf einem gemeinsamen oder getrennten Spulenkörpern aufgewickelt sein. In einigen Ausführungsformen kann die Spule 12 versetzt zur gemeinsamen Achse der Spulen 10 und 11 angeordnet sein, so dass die Spulenachsen der Spulen 10 und 11 und der Spule 12 parallel liegen. In anderen Ausführungsformen ist die Achse der Spule 12 nicht parallel zu der gemeinsamen Achse oder den Achsen der Spulen 10 und 11.
  • Die Anzahl der Windungen in Figur 1a und 1 b ist lediglich schematisch. Vorzugsweise ist die Anzahl der Windungen der Spulen 10 und 11 identisch oder variiert um nicht mehr als 5 % oder 1 %. Es können aber auch Varianten vorgesehen sein, bei denen sich die Wicklungszahlen um bis zu 50 % oder 80 % unterscheiden. Der Einfluss auf die generierten Signale kann durch entsprechende elektronische Kompensation oder durch einen entsprechenden Nullausgleich oder durch Unterschiede in den Windungszahlen der einzelnen Spulen oder Spulenteilen ausgeglichen werden.
  • Statt einen Strom an die Anschlüsse 13 und 14 zu legen, kann auch ein Strom zum Erzeugen eines Magnetfeldes an die Anschlüsse 15 und 16 der Spule 12 gelegt werden. In diesem Fall kann eine Antwort auf die Erregung zwischen den Anschlüssen 13 und 14 abgegriffen werden. Für den Fall, dass das Magnetfeld der Spule 12 sich ungehindert und symmetrisch ausbreiten kann, wird die Antwort auf die Erregung an den Anschlüssen 13 und 14 sich zu Null ergeben aufgrund der gegensinnigen Wicklungen in Figur 1a oder der gegensinnigen Schaltung in Figur 1b.
  • Die in den Spulen 10 und 11 erzeugte Antwort auf die Erregung kann auch unabhängig voneinander erfasst werden. Dabei würde die Verschaltung 17 oder 18 wegfallen und die Antwort auf die Erregung der beiden Spulen separat für jede Spule abgegriffen. Die jeweiligen Anschlüsse der beiden Spulen können einer Differenzschaltung zugeführt werden, die die Differenz der Antworten auf die Erregung als Ausgangssignal aufweist bzw. verstärkt, wie beispielsweise in Form eines Differenzverstärkers.
  • In Figur 2 ist die Vorrichtung 1 im Schnitt gezeigt. Zwischen den beiden Spulen 10 und 11 ist die Spule 12 angeordnet. In Figur 2 ist das durch die Spule 10 erzeugte Magnetfeld 20 dargestellt sowie das durch die Spule 11 erzeugte Magnetfeld 21, falls durch diese Spulen Strom geschickt wird.
  • Wie in Figur 2 zu erkennen, ist das Magnetfeld dieser beiden Spulen entgegengesetzt, so dass sich beim Erzeugen dieser Magnetfelder ohne weitere Einflüsse in der Spule 12 eine zu Null ergebende Antwort auf die Erregung oder in einigen Ausführungsformen eine teilkompensierte Antwort auf die Erregung einstellt.
  • In Figur 3 ist der Aufbau einer Vorrichtung 1 schematisch dargestellt. Neben den Spulen 10, 11 und 12 ist eine Elektronik 25 dargestellt, die die Spulen mit entsprechenden Anschlüssen 28 entweder mit Strom versorgt oder die entsprechenden Antworten auf die Erregung abgreifen kann.
  • Die Elektronik 25 kann mit externen Anschlüssen 26, 27 verbunden sein. Diese können zum Beispiel zur Stromversorgung der Vorrichtung 1 beziehungsweise der Elektronik 25 dienen oder zum Ausgeben eines Messsignals.
  • Die Spulen 10, 11 und 12 können auf einen Spulenkörper aufgewickelt sein, der nicht magnetisch ist oder auch weichmagnetisch ist, wie beispielweise ein Ferritkern. Sie können auch auf mehrere Spulenkörper aufgewickelt sein. In einigen Ausführungsformen ist es auch möglich, dass zwei oder mehr Spulen auf einen gemeinsamen Spulenkörper aufgewickelt sind und/oder Teile von einer Spule auf einem gemeinsamen Spulenkörper mit einer weiteren Spule aufgewickelt sind, und/oder teilweise oder gesamt als Multilayer-Leiterplatte ausgeführt sind.
  • In Figur 4 ist ein Beispiel für den Strom- und Spannungsverlauf dargestellt. In Figuren 4a -4e sind verschiedene mögliche Stromverläufe gezeigt. Mögliche Verläufe der Erregung durch einen zeitlich variablen Stromfluss umfassen dabei linear ansteigende und wieder linear abfallende Strompulse, wie in Fig. 4a gezeigt. In Fig. 4a sind dabei mehrere Strompulse sichtbar. Bei einigen Strompulsen kann der Anstieg abrupt und der Abfall weniger schnell sein, auch Varianten, in denen der Anstieg und der Abfall gleich große oder ähnliche Steigung haben oder in denen der Anstieg zeitlich linear und der Abfall abrupt sind, können in einigen Ausführungsformen vorhanden sein. In weiteren Ausführungsformen kann der Verlauf der Erregung in Form eines zeitlich variablen Stromflusses die Form von einem negativen Parabelabschnitt mit glattem Anstieg und Abfall (Fig. 4b), von mehreren Rechteckspulsen mit verschiedenen Stromstärken (Fig. 4c) und von mehreren Rechteckspulsen mit gleicher Stromstärke (4d) sein. Die einzelnen Strompulse können dabei äquidistant (Fig. 4c) oder nicht äquidistant (Fig. 4d) sein. In Figur 4e sind beispielhaft ein rechteckiger Stromimpuls gezeigt, bei dem während der Zeit T1 ein Strom vorgegebener Stärke fließt. In anderen Ausführungsformen kann die Erregung in Form eines zeitlich variablen Stromflusses auch Pulspakete, bei denen die Polarität des Stromimpulses variiert wird umfassen oder als solche ausgebildet sein.
  • Diese Erregungen in Form von zeitlich variablen Stromflüssen können beispielsweise zwischen den Anschlüssen 13 und 14 der Spulenanordnung in Figur 1a und 1 b oder auch zwischen den Anschlüssen 15 und 16 der Figur 1 a und 1 b fließen.
  • Sofern kein zu detektierender elektrisch leitfähiger Gegenstand vorhanden ist, kann sich eine messbare Antwort auf die Erregung, hier beispielhaft eine Induktionsspannung, ergeben, wie sie in Figur 4f dargestellt ist, nämlich ein durchbleibendes Nullsignal, das von der Erregung in Form eines zeitlich variablen Stromflusses unbeeinflusst ist.
  • Bei Vorhandensein eines elektrisch leitfähigen Gegenstandes ergibt sich eine Antwort auf die Erregung, in diesem Fall eine Induktionsspannung, wie sie beispielhaft in Figur 4g dargestellt ist. Während oder nach der Erregung in Form eines zeitlich variablen Stromflusses in der Zeit T1 kann die gemessene Antwort auf die Erregung, in diesem Fall die Induktionsspannung U ein zeitlich charakteristisches Profil aufweisen. Dieses Profil kann beispielsweise durch die Bestimmung eines Maximums M und eines Nulldurchgangs N oder auch weiterer charakteristischer Punkte wie etwa Wendepunkt oder ähnliches ausgewertet werden. Es kann beispielsweise zur Charakterisierung dieses Profils die Zeit Δt bestimmt werden, die den Zeitabstand zwischen dem Maximum M und dem Nulldurchgang N angibt, also Δt = tN -tM. Auch kann die Zeit vom Start der Erregung in Form eines zeitlich variablen Stromflusses bis zum Wendepunkt zur Charakterisierung des Profils bestimmt werden. Es kann aber auch zusätzlich oder statt dessen die Antwort auf die Erregung zu vorzugsweise vorher bestimmten Zeiten, wie beispielsweise t1 und t2 bestimmt werden. Bereits aus den Vorzeichen der Antwort auf die Erregung zu bestimmten Zeiten kann in manchen Fällen eine Information über das Material des untersuchten Gegenstandes abgeleitet werden.
  • Der Verlauf der Antwort auf die Erregung kann auch statt eines Maximums ein Minimum aufweisen, wobei beispielsweise Δt sich aus der Zeitspanne zwischen dem Minimum und einem Nulldurchgang ergibt.
  • Neben der Bestimmung von Δt, wie in Figur 4g gezeigt, kann auch die Zeit vom Einsetzen der Erregung in Form eines zeitlich variablen Stromflusses bis zum Erreichen des Maximalwerts M bestimmt werden oder andere charakteristische Zeiten.
  • Auch der Absolutwert im Maximalpunkt der Antwort auf die Erregung, wie beispielsweise der Spannung U kann zur Auswertung der Antwort auf die Erregung berücksichtigt werden.
  • Auch ist es möglich, zu einer fest vorgegebenen Zeit nach dem Beginn der Erregung in Form eines zeitlich variablen Stromflusses oder zu mehrerer solcher Zeiten, die Antwort auf die Erregung zu bestimmen und aus den Absolutwerten dieser Antwort auf die Erregung oder aus dem Vorzeichen, das sich zu verschiedenen Zeiten ergibt, Rückschlüsse auf die Charakteristika des elektrisch leitfähigen Gegenstandes 30 zu ziehen. Alternativ können durch schnelle Fourier-Transformation (FFT) die Frequenz- und Phasenanteile der Antwort bestimmt und diese auf charakteristische Eigenschaften und Änderungen untersucht werden.
  • In Figur 5 ist dargestellt, dass das Magnetfeld 31 der Spule 11 durch das Vorhandensein eines zu detektierenden elektrisch leitfähigen Körpers 30 beeinflusst werden kann. Wie in Figur 5 dargestellt, ist der Pfeil 32 größer als der Pfeil 31. Der Pfeil 32 stellt das von der Spule 10 erzeugte magnetische Feld dar. Durch die unterschiedliche Beeinflussung der Magnetfelder 32 und 31 durch die Spulen 10 und 11 ergibt sich ein Symmetriebruch, der dazu führt, dass in der Spule 12 eine Antwort auf die Erregung erzeugt wird. Die erzeugte Antwort auf die Erregung in der Spule 12 weist typische Charakteristika (insbesondere charakteristische zeitliche Verläufe) auf, die auf die Beschaffenheit des Gegenstandes 30 schließen lassen.
  • Wie bereits vorher erwähnt, kann statt der Erzeugung der Magnetfelder durch die Spulen 10 und 11 das Magnetfeld auch durch die Spule 12 erzeugt werden, wobei dieses Magnetfeld aufgrund des Vorhandenseins des Gegenstandes 30 asymmetrisch ausfällt, so dass in der Spule 11 eine von der Spule 10 verschiedene Antwort auf die Erregung erzeugt wird, die bei entsprechender Verschaltung (siehe Figur 1a, 1 b) nicht zu einer völligen Kompensation beziehungsweise Aufhebung der beiden Antworten auf die Erregung führt sondern vielmehr zu einer von Null verschiedenen Antwort auf die Erregung.
  • In Figur 6 ist die Vorrichtung 1 zur Detektion eines elektrisch leitfähigen Gegenstandes gezeigt, wobei ein Referenzgegenstand 35 links bei der Spulenanordnung vorgesehen ist. Wird ein identischer oder nahezu gleichartiger elektrisch leitfähiger Gegenstand 36 am rechten Ende der Spulenanordnung angeordnet, so ergibt sich bei Anlegen einer Erregung in Form eines zeitlich variablen Stromflusses an die Spulen 10 und 11 eine Antwort auf die Erregung durch die Spule 12, die sich zu Null ergibt. Wird jedoch ein andersartig elektrisch leitfähiger Gegenstand, wie beispielsweise durch die gestrichelte Linie 37 dargestellt, an die Spulenanordnung angelegt, so wird sich eine von Null verschiedene Antwort auf die Erregung ergeben, die darauf hinweist, das der zu detektierende elektrisch leitfähige Gegenstand nicht identisch oder ähnlich zu dem elektrisch leitfähigem Gegenstand 35 ist.
  • Durch die Vorgabe eines elektrisch leitfähigen Referenzgegenstandes 35 kann ein zu untersuchender elektrisch leitfähiger Gegenstand 36 auf eine Vielzahl von Charakteristika hin mit dem Referenzgegenstand verglichen werden. Jede Abweichung in der Materialzusammensetzung, Größe, Materialeigenschaft, Materialzustand, etc. führt zu einer von Null verschiedenen Antwort auf die Erregung. Bei Unterschieden der Gegenstände 35 und 36 können auch zeitlich charakteristische Verläufe der Antwort auf die Erregung auftreten. Die Antwort auf die Erregung kann auch Maxima und/oder Minima und/oder Nulldurchgänge oder Wendepunkte aufweisen und/oder Änderungen in der FFT oder Phasenanalyse, die erkannt und ausgewertet werden können, um den Unterschied zwischen den zwei Gegenständen zu quantifizieren. Dabei können sowohl Zeitabstände zwischen Maxima und oder Minima und/oder Nulldurchgängen und/oder Wendepunkten und/oder die Werte der Antwort auf die Erregung bei diesen Punkten und/oder die Werte der Antwort auf die Erregung zu vorherbestimmten Zeitpunkten ausgewertet werden. Auch die Zeit vom Auftreten eines Maximums/Minimums/Nulldurchgangs/Wendepunkts und/oder eines bestimmten Wertes der Antwort auf die Erregung ab dem Anlegen der Erregung in Form eines zeitlich variablen Stromflusses kann ausgewertet werden.
  • Sind die beiden Gegenstände 35 und 36 identisch und symmetrisch zu der Spulenanordnung angeordnet und sind die Spulen 35 identisch und symmetrisch angeordnet, so wird sich bei Anlegen einer Erregung in Form eines zeitlich variablen Stromflusses gleicher Amplitude an die beiden Spulen ein zeitlich durchgängiges Nullsignal geben. Jede Abweichung davon deutet dann auf einen Unterschied zwischen den beiden Gegenständen hin. Statt der Erzeugung eines Nullsignals kann die Spulenanordnung oder die Stromversorgung der Spulen so sein, dass sich auch bei identischen Gegenständen 35, 36 ein zeitlicher Verlauf der Antwort auf die Erregung ergibt, der von Null abweicht (Referenz). Jede weitere Abweichung von einer solchen Referenz einer erfassten Antwort auf die Erregung deutet dann aber auf eine Verschiedenheit der Gegenstände hin.
  • Durch den Vergleich von zwei Gegenständen 35, 36 ist eine Falschgeldprüfung von Münzen oder auch die Bestimmung eines Abnutzungsgrads oder Verschleißgrads von sich abnutzenden oder verschleißenden Gegenständen möglich. Damit können z.B. auch der Abnutzungsgrad von Elektrodenschweißkappen untersucht werden oder die Frage, ob sich Risse im Material der untersuchten Gegenstände befinden.
  • Wie vorab erwähnt, kann auch ein Messvorgang dadurch durchgeführt werden, dass der Strom an die Spule 12 gelegt wird, und die Antwort auf die Erregung, die sich in den Spulen 10 und 11 einstellt, ermittelt wird.
  • In Figur 7a und 7b ist eine alternative Bauform der Vorrichtung zur Detektion von elektrisch leitfähigen Gegenständen dargestellt, bei der die Spule 11 innerhalb der Spule 10 vorgesehen ist und die Spule 12 zwischen den Spulen 10 und 11 angeordnet ist. Die verschiedenen Spulen sind hierbei in einer radial nach außen laufenden Richtung hintereinander angeordnet. Die zweite und dritte Spule können hierbei ganz oder teilweise innerhalb des von der ersten Spule umgebenen Raumbereichs vorgesehen sein. Die Figur 7a zeigt einen Schnitt durch die in Fig. 7b in Draufsicht dargestellte Spulenanordnung.
  • Auch in dieser Konfiguration ist eine Detektion von elektrisch leitfähigen Gegenständen möglich mit denselben Unterscheidungsmöglichkeiten.
  • Die Spulen 10, 11 und 12 können in allen Figuren rund oder auch eckig sein, so dass eine Windung beispielsweise kreisförmig oder rechteckig oder quadratisch ausgebildet ist.
  • Figur 8 zeigt eine Sensorfläche 38 der Vorrichtung, an die elektrisch leitfähige Gegenstände 39 und 40 herangebracht werden können. Die Sensorfläche ist bevorzugt eine Frontfläche eines Gehäuses der Vorrichtung. Bei einer Betrachtung der Änderung(en) der Antwort auf die Erregung kann dann beispielsweise darauf rückgeschlossen werden, aus welcher Richtung sich ein elektrisch leitfähiger Gegenstand der Sensorfläche nähert, ob er sich also frontal nähert wie Gegenstand 39 oder seitlich wie Gegenstand 40.

Claims (15)

  1. Vorrichtung (1) zur Detektion von elektrisch leitfähigen Gegenständen mit:
    einer ersten und einer zweiten Spule (10, 11) oder einem ersten und einem zweiten Spulenteil, die im folgenden jedoch auch als erste und zweite Spule bezeichnet werden, die gleichzeitig Magnetfelder (20, 21) mit entgegengesetzter Polung erzeugen können und
    einer dritten Spule (12) mit ein, zwei oder mehr Spulenteilen, die im Folgenden ebenfalls als dritte Spule (12) bezeichnet werden, die im Bereich der entgegengesetzten Magnetfelder angeordnet ist, und
    einer Elektronik (25), die während und/oder nach der Versorgung der ersten und zweiten Spule (10,11) mit einer Erregung in Form eines zeitlich variablen Stromflusses eine Antwort auf die Erregung, wie beispielsweise eine Induktionsspannung, in der dritten Spule (12) erfasst, oder die während der Versorgung der dritten Spule (12) mit einer Erregung in Form eines zeitlich variablen Stromflusses eine Antwort auf die Erregung in der ersten und zweiten Spule (10,11) erfasst,
    so dass ein elektrisch leitfähiger Gegenstand (30) bei Vorhandensein im Bereich eines der Magnetfelder ein detektierbares Signal in der erfassten Antwort auf die Erregung erzeugt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die erste und zweite Spule oder Spulenteile entgegengesetzt oder gleichsinnig gewickelt sind.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Erregung in Form eines zeitlich variablen Stromflusses ein Pulspaket beliebiger Form und/oder eine reine Sinusform und/oder ein periodischer Puls und/oder ein Mehrfachpulspaket und/oder eine periodische Schwingungsform und/oder eine aperiodische Pulsfolge und/oder ein Rechteckpuls mit einer Dauer zwischen 0,1 ns und 1 ms, wie etwa zwischen 1 µs und 50 µs ist, und/oder sprunghaft oder nicht sprunghaft abfällt oder ansteigt und/oder kein Rechteckspuls ist oder umfasst.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die jeweils durch die erste und zweite Spule erzeugte Antwort auf die Erregung in der dritten Spule sich zumindest teilweise, vorzugsweise zu mindestens 90% oder 99% kompensieren, wobei vorzugsweise bei nicht Vorhandensein eines zu detektierenden elektrisch leitfähigen Gegenstands (30) sich die Antwort auf die Erregung im wesentlichen zu Null ergibt
    oder
    die durch die dritte Spule (12) in der ersten und zweiten Spule (10, 11) erzeugte Antwort auf die Erregung so erfasst wird, dass diese beiden Antworten auf die Erregung sich zumindest teilweise, vorzugsweise zu mindestens 90% oder 99% kompensieren, wobei vorzugsweise bei nicht vorhanden sein eines zu detektierenden elektrisch leitfähigen Gegenstands (30), die beiden Antworten auf die Erregung sich im wesentlichen zu Null ergänzen.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Elektronik (25) so ausgebildet ist, dass der Verlauf der erzeugten Antwort auf die Erregung zu verschiedenen Zeiten erfasst wird.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Elektronik (25) so ausgebildet ist, dass der Zeitpunkt eines Maximums (M) und/oder Minimums und/oder eines Nulldurchgangs (N) und/oder eines Wendepunkts und/oder eines anderen Punktes der erzeugten Antwort auf die Erregung bestimmt wird und/oder die Antwort auf die Erregung zu verschiedenen Zeitpunkten gemessen wird und/oder Änderungen der Antwort auf die Erregung erfasst werden.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass im Bereich einer der ersten oder zweiten Spule (10, 11) ein metallisch leitfähiger Gegenstand (35) als Bestandteil der Vorrichtung vorgesehen ist, mit dem beispielsweise ein Abgleichen der erzeugten Antwort auf die Erregung ermöglicht wird oder ein Vorgeben eines Referenzgegenstands (35) oder der Einfluss einer Störkontur reduziert oder auf Null abgeglichen werden kann.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die erste und zweite Spule (10, 11) entweder eine gemeinsame Achse aufweisen, deren Achse mit der Achse der dritten Spule (13) zusammenfällt, wobei optional die dritte Spule (13) mittig zwischen der ersten und zweiten Spule (10, 11) angeordnet ist, oder dass die Achse der dritten Spule (13) parallel versetzt oder nicht parallel zur gemeinsamen Achse oder den Achsen der beiden ersten Spulen (10, 11) liegt.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine oder mehrere weitere Spulen vorgesehen sind, die auf die erzeugte Antwort auf die Erregung Einfluss nehmen können.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Vorrichtung einen Metallgehäuseteil oder ein Vollmetallgehäuse (29) umfasst, wobei das Vollmetallgehäuse (29) zumindest die erste, zweite und dritte Spule und eventuell einen Teil der Elektronik (25) oder die ganze Elektronik (25) umschließt, wobei der Metallgehäuseteil oder das Vollmetallgehäuse Buntmetall oder Edelstahl umfasst, bzw. daraus gefertigt ist.
  11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Vorrichtung als Näherungsschalter oder als Vorrichtung zur Erkennung von verschiedenen Materialien, als Münzerkennung oder als Vorrichtung zum Erfassen eines Abnutzungs- oder Verschleißgrades oder zum Erkennen von Legierungen oder Fehlstellen wie beispielsweise Rissen, ausgebildet ist.
  12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass Änderungen eines Empfangssignals erfasst werden können, wobei durch die bestimmte Charakteristik dieser Änderung Materialfehler erkennbar sind.
  13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Elektronik die Antwort auf die Erregung zu vorzugsweise vorgegebenen charakteristischen Zeitpunkten erfassen kann, die gemessenen Werte auswerten und das Ergebnis ausgeben kann.
  14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Elektronik durch schnelle Fourier-Transformation (FFT) charakteristische Änderungen in der Frequenz- und/oder Phasen - Information der Antwort, bestimmten Materialarten zuordnen kann.
  15. Verfahren zur Detektion von elektrisch leitfähigen Gegenständen (30) mit den Schritten:
    - Anlegen einer Erregung in Form eines zeitlich variablen Stromflusses an eine erste und eine zweite Spule (10, 11), wobei diese Magnetfelder (20, 21) mit entgegengesetzter Polung erzeugen und Erfassen einer dadurch erzeugten Antwort auf die Erregung in einer dritten Spule (12)
    oder
    - Anlegen einer Erregung in Form eines zeitlich variablen Stromflusses an eine dritte Spule (12) und Erfassen der dadurch erzeugten Antwort auf die Erregung in einer ersten und zweiten Spule (10, 11), und
    - Auswerten der erfassten Antwort auf die Erregung in einem Zeitbereich während und/oder nach dem Anliegen der Erregung in Form eines zeitlich variablen Stromflusses zur Detektion des elektrisch leitfähigen Gegenstands (30).
EP11003197.8A 2011-04-15 2011-04-15 Vorrichtung und Verfahren zur Detektion von elektrisch leitfähigen Gegenständen Not-in-force EP2511736B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11003197.8A EP2511736B1 (de) 2011-04-15 2011-04-15 Vorrichtung und Verfahren zur Detektion von elektrisch leitfähigen Gegenständen
CN201280026194.1A CN103688192B (zh) 2011-04-15 2012-04-16 用于检测可导电物体的装置
PCT/EP2012/056930 WO2012140265A2 (de) 2011-04-15 2012-04-16 Vorrichtung und verfahren zur detektion von elektrisch leitfähigen gegenständen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11003197.8A EP2511736B1 (de) 2011-04-15 2011-04-15 Vorrichtung und Verfahren zur Detektion von elektrisch leitfähigen Gegenständen

Publications (2)

Publication Number Publication Date
EP2511736A1 true EP2511736A1 (de) 2012-10-17
EP2511736B1 EP2511736B1 (de) 2016-02-17

Family

ID=45998328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11003197.8A Not-in-force EP2511736B1 (de) 2011-04-15 2011-04-15 Vorrichtung und Verfahren zur Detektion von elektrisch leitfähigen Gegenständen

Country Status (3)

Country Link
EP (1) EP2511736B1 (de)
CN (1) CN103688192B (de)
WO (1) WO2012140265A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014191352A3 (de) * 2013-05-27 2015-01-22 iCONTROLS k.s. Induktiver sensor
WO2014191351A3 (de) * 2013-05-27 2015-02-19 iCONTROLS k.s. Induktiver sensor
WO2019196998A1 (en) * 2018-04-09 2019-10-17 Københavns Universitet An eddy-current detector and a method for calibrating such an eddy-current detector
EP3594724A1 (de) 2012-11-09 2020-01-15 Elmos Semiconductor Aktiengesellschaft Spule für einen induktiven sensor und schaltung zu dessen ansteuerung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716836B (zh) 2014-09-09 2020-11-20 巴鲁夫公司 感应式接近度传感器或距离传感器的传感器元件和用于操作所述传感器元件的方法
EP3054279A1 (de) 2015-02-06 2016-08-10 St. Anna Kinderkrebsforschung e.V. Verfahren zur klassifizierung und visualisierung von zellulären populationen auf einem einzelzellenniveau basierend auf mikroskopbildern
DE102017109813A1 (de) * 2017-05-08 2018-11-08 Pepperl + Fuchs Gmbh Induktiver Näherungsschalter
CN109725050A (zh) * 2018-12-14 2019-05-07 天津大学 一种带逆磁线圈的磁感应检测拓扑结构
CN109655524B (zh) * 2019-01-29 2022-07-26 爱德森(厦门)电子有限公司 一种异种金属铆接表面微裂纹的检测方法
CN110703340B (zh) * 2019-11-26 2021-06-22 江苏开创检测技术有限公司 一种高精度手持金属检测仪

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102542A1 (de) 1991-01-29 1992-07-30 Turck Werner Kg Induktiver naeherungsschalter
DE3934593C2 (de) 1989-10-17 1993-09-23 Eckart Dr. 2300 Kiel De Hiss
EP0936741A1 (de) 1998-02-13 1999-08-18 Optosys SA Induktiver Näherungsschalter mit einem aus einem Stück bestehenden Gehäuse
WO2001071387A2 (en) 2000-03-22 2001-09-27 The Johns Hopkins University Electromagnetic target discriminator sensor system and method for detecting and identifying metal targets
GB2394298A (en) * 2002-09-13 2004-04-21 Sankyo Seiki Seisakusho Kk Winding type magnetic sensor
DE29724862U1 (de) * 1996-09-18 2004-12-30 Ifm Electronic Gmbh Induktiver Näherungsschalter
US20050253711A1 (en) * 2003-01-21 2005-11-17 Nelson Carl V Multi-mode electromagnetic target discriminator sensor system and method of operation thereof
DE102004047190A1 (de) 2004-09-29 2006-04-06 Robert Bosch Gmbh Detektor zur Ortung metallischer Objekte
DE202006004158U1 (de) * 2005-02-08 2006-09-21 Pepperl + Fuchs Gmbh Induktiver Näherungsschalter basierend auf dem transformatorischen Kopplungsfaktor-Prinzip
EP2045922A1 (de) * 2007-09-28 2009-04-08 Rockwell Automation Technologies, Inc. Vorrichtung und Verfahren für einen induktiven Nähensensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1055068A (zh) * 1990-03-20 1991-10-02 全苏科学情报所建筑管理工程中心 含金属物探测装置
JP4422480B2 (ja) * 2001-08-27 2010-02-24 株式会社高見沢サイバネティックス 金属体識別装置
JP4198712B2 (ja) * 2003-03-12 2008-12-17 アンリツ産機システム株式会社 金属検出装置
DE202006003990U1 (de) * 2005-03-17 2006-08-03 Pepperl + Fuchs Gmbh Induktiver Näherungsschalter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934593C2 (de) 1989-10-17 1993-09-23 Eckart Dr. 2300 Kiel De Hiss
DE4102542A1 (de) 1991-01-29 1992-07-30 Turck Werner Kg Induktiver naeherungsschalter
DE29724862U1 (de) * 1996-09-18 2004-12-30 Ifm Electronic Gmbh Induktiver Näherungsschalter
EP0936741A1 (de) 1998-02-13 1999-08-18 Optosys SA Induktiver Näherungsschalter mit einem aus einem Stück bestehenden Gehäuse
WO2001071387A2 (en) 2000-03-22 2001-09-27 The Johns Hopkins University Electromagnetic target discriminator sensor system and method for detecting and identifying metal targets
GB2394298A (en) * 2002-09-13 2004-04-21 Sankyo Seiki Seisakusho Kk Winding type magnetic sensor
US20050253711A1 (en) * 2003-01-21 2005-11-17 Nelson Carl V Multi-mode electromagnetic target discriminator sensor system and method of operation thereof
DE102004047190A1 (de) 2004-09-29 2006-04-06 Robert Bosch Gmbh Detektor zur Ortung metallischer Objekte
DE202006004158U1 (de) * 2005-02-08 2006-09-21 Pepperl + Fuchs Gmbh Induktiver Näherungsschalter basierend auf dem transformatorischen Kopplungsfaktor-Prinzip
EP2045922A1 (de) * 2007-09-28 2009-04-08 Rockwell Automation Technologies, Inc. Vorrichtung und Verfahren für einen induktiven Nähensensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3594724A1 (de) 2012-11-09 2020-01-15 Elmos Semiconductor Aktiengesellschaft Spule für einen induktiven sensor und schaltung zu dessen ansteuerung
EP2730950B1 (de) * 2012-11-09 2021-02-17 Elmos Semiconductor SE Spule für einen induktiven Sensor und Schaltung zu dessen Ansteuerung
WO2014191352A3 (de) * 2013-05-27 2015-01-22 iCONTROLS k.s. Induktiver sensor
WO2014191351A3 (de) * 2013-05-27 2015-02-19 iCONTROLS k.s. Induktiver sensor
WO2019196998A1 (en) * 2018-04-09 2019-10-17 Københavns Universitet An eddy-current detector and a method for calibrating such an eddy-current detector

Also Published As

Publication number Publication date
WO2012140265A2 (de) 2012-10-18
WO2012140265A3 (de) 2013-05-16
EP2511736B1 (de) 2016-02-17
CN103688192A (zh) 2014-03-26
CN103688192B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
EP2511736B1 (de) Vorrichtung und Verfahren zur Detektion von elektrisch leitfähigen Gegenständen
EP2312338B1 (de) Vorrichtung und Verfahren zur Detektion von elektrisch leitfähigen Gegenständen
EP2121203B1 (de) Verfahren und vorrichtung zum unterscheiden von ein elektromagnetisches wechselfeld beeinflussenden objekten, insbesondere metallobjekten
DE2928899C2 (de) Vorrichtung zur Bestimmung von Größe und Richtung der seitlichen Abweichung eines Prüfkopfes von der Mittellinie einer Schweißnaht
DE2912712A1 (de) Messanordnung zum nachweis eines in papier, insbesondere in einem wertschein eingebetteten metallischen fadens
DE2025807C3 (de) Vorrichtung zur zerstörungsfreien Untersuchung von magnetischen Werkstücken mit kreisförmigem Querschnitt auf Risse
WO2016037597A1 (de) Sensorelement eines induktiven näherungs- oder abstandssensor und verfahren zum betreiben des sensorelements
EP3002583B1 (de) Verfahren und vorrichtung zur wirbelstromprüfung mit impulsmagnetisierung
DE3720686A1 (de) Verfahren zum untersuchen eines objektes
EP2040227B1 (de) Verfahren zum Prüfen von Münzen
DE202018006650U1 (de) Elektronisches Gerät mit induktivem Sensor
DE102013209808A1 (de) Induktiver Sensor
DE4339419A1 (de) Einrichtungen und Verfahren zum Erkennen von Metallgegenständen
WO2014191352A2 (de) Induktiver sensor
EP0704825B1 (de) Einrichtung zur Prüfung der Echtheit von Münzen, Jetons oder anderen flachen metallischen Gegenständen
DE102007001821B4 (de) Induktiver Näherungsschalter
EP3824323B1 (de) Detektor zum detektieren von elektrisch leitfähigem material
DE102005045774A1 (de) Messvorrichtung und Verfahren zur berührungslosen Bestimmung der Lage zweier relativ zueinander verstellbarer Bauteile
DE102017127114A1 (de) Konzept zum erfassen einer position eines schlittens eines linearen transportsystems
DE1774448A1 (de) Vorrichtung zur selbsttaetigen Pruefung der Echtheit von Muenzen
EP0495267B1 (de) Vorrichtung zur Prüfung von Münzen oder dergleichen metallischen Scheiben
WO2012120062A1 (de) Sicherheitseinrichtung und verfahren zur verwendung einer sicherheitseinrichtung
DE102020214569A1 (de) Prüfvorrichtung und Verfahren zur magnetischen Prüfung
DE102011000303A1 (de) Metalldetektor
DE3416221C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130416

17Q First examination report despatched

Effective date: 20141211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150831

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 775903

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008889

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160217

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160518

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160617

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008889

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160415

26N No opposition filed

Effective date: 20161118

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160517

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160415

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 775903

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160415

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210330

Year of fee payment: 11

Ref country code: IT

Payment date: 20210427

Year of fee payment: 11

Ref country code: FR

Payment date: 20210423

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210422

Year of fee payment: 11

Ref country code: CH

Payment date: 20210420

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011008889

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220415

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220415