EP2510136B1 - Dispositif destine a collecter des debris solides dans une cuve d'electrolyse destinee a la production d'aluminium - Google Patents

Dispositif destine a collecter des debris solides dans une cuve d'electrolyse destinee a la production d'aluminium Download PDF

Info

Publication number
EP2510136B1
EP2510136B1 EP10799073.1A EP10799073A EP2510136B1 EP 2510136 B1 EP2510136 B1 EP 2510136B1 EP 10799073 A EP10799073 A EP 10799073A EP 2510136 B1 EP2510136 B1 EP 2510136B1
Authority
EP
European Patent Office
Prior art keywords
collection unit
altitude
actuator
bucket
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10799073.1A
Other languages
German (de)
English (en)
Other versions
EP2510136A1 (fr
Inventor
Arnaud Wattel
Stéphane DAVID
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives ECL SAS
Original Assignee
ECL SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECL SAS filed Critical ECL SAS
Publication of EP2510136A1 publication Critical patent/EP2510136A1/fr
Application granted granted Critical
Publication of EP2510136B1 publication Critical patent/EP2510136B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C3/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith and intended primarily for transmitting lifting forces to loose materials; Grabs
    • B66C3/02Bucket grabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C3/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith and intended primarily for transmitting lifting forces to loose materials; Grabs
    • B66C3/14Grabs opened or closed by driving motors thereon
    • B66C3/16Grabs opened or closed by driving motors thereon by fluid motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C3/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith and intended primarily for transmitting lifting forces to loose materials; Grabs
    • B66C3/20Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith and intended primarily for transmitting lifting forces to loose materials; Grabs mounted on, or guided by, jibs

Definitions

  • the invention relates to the production of aluminum by igneous electrolysis according to the Hall-Héroult method. It relates more particularly to a device for collecting solid debris immersed or floating in the electrolysis bath and the liquid metal, in particular sludge from the electrolytic bath and which accumulate on the bottom of the tank, as well as the remains of carbon and crust debris that originate in particular from the various operations performed before and during the removal of spent anodes.
  • Aluminum is produced industrially by igneous electrolysis, according to the well-known Hall-Héroult process, in electrolysis cells.
  • the plants contain a large number of electrolysis cells arranged in line, in buildings called halls or electrolysis rooms, and connected electrically in series using connecting conductors, so as to optimize the ground occupation of the cells. factories.
  • the cells are generally arranged to form two or more parallel lines that are electrically bonded together by end conductors.
  • the electrolyte bath and the liquid metal are contained in a tank, called an "electrolysis cell", comprising a steel box, which is lined internally with refractory and / or insulating materials, and a cathode assembly located at the bottom of the tank.
  • Anodes typically of carbonaceous material, are partially immersed in the electrolyte bath.
  • an electrolysis plant requires interventions on the electrolysis cells including, in particular, the replacement of spent anodes with new anodes, the removal of liquid metal and the additions or withdrawals of electrolyte.
  • the factories are generally equipped with one or more service units comprising a movable bridge that can be translated over and along the series of electrolysis cells, and one or more service modules. , each comprising a carriage, adapted to be moved on the movable bridge, and handling and intervention devices, such as shovels and hoists, commonly called “tools”.
  • These service units are often called “electrolysis service machines” or “MSE”("PTA” or “Pot Tending Assembly” or "PTM” or “Pot Tending Machine” in English).
  • the service module generally comprises, attached to the carriage, a rotary frame, called tool turret, which is adapted to rotate about a vertical axis and is integral with said tools.
  • Each tool can be attached to the end of a cable operated by a winch attached to said turret, or at the end an arm, the latter being telescopic and / or articulated.
  • One of the necessary interventions during the anode replacement is the cleaning of the area occupied by the spent anode and to be occupied by the new anode.
  • This zone is essentially constituted by the bath and the liquid metal but can contain many solid debris that it is necessary to remove before setting up the new anode.
  • a hard crust of fluorinated cryolite and alumina is formed on the upper surface of the bath. This crust has the advantage of retaining heat within the bath and therefore constitutes an effective heat-insulating envelope. But it is extremely hard and adheres to the wall of the anode block, so it is necessary to break it around the worn anode, to allow the extraction thereof.
  • rupturing of the crust is carried out using tools such as piercers, called “crust breakers". Then, during the removal of the spent anode, an orifice in the crust is formed, which orifice is left vacant until the installation of the new anode and which we will call “anodic hole”. Crust failure and handling of the spent anodic block inevitably lead to the formation of solid pieces or parts which float or remain suspended in the electrolysis bath, or which fall to the bottom of the tank. It is then necessary to collect them by means of a collection tool, commonly called “crust”.
  • the European patent application EP-A-0 440 488 describes an example of a crust scoop associated with a particular vehicle, distinct from a service machine.
  • the European patent application EP-A-0 618 313 describes, but in a little detail, an example of a service machine equipped with a device to ensure the rupture of the crust in the vicinity of a worn anode and the cleaning of the anode hole.
  • the crust scoop commonly used is a clamp consisting of two buckets arranged symmetrically with respect to a substantially vertical plane and hinged, pivoting about two substantially horizontal axes, possibly merged. Each bucket has a leading edge, also called "blade", vis-à-vis the leading edge of the other bucket.
  • the crust scoop is immersed in the open position in the bath and then the crust scoop is passed from an open position to a closed position, using at least one actuator that acts either directly on a scoop. , or preferably on a linkage designed to bring the cups in a rotational movement substantially symmetrical with respect to each other, the solid debris between the two cups being thus trapped, while the liquid medium mixture of Electrolyte bath and molten metal can still escape, in particular through openings in the walls of the buckets.
  • the movement of opening and closing the crust is driven by the actuation of at least one pneumatic cylinder which acts on a linkage designed to transform the translation movement of the cylinder in two symmetrical movements of the buckets .
  • the European patent application EP-A-1 178 004 proposes a solution likely to solve the problem explained in the preceding paragraph.
  • This solution consists of using a bucket scoop mounted on a vertical arm but not to directly attach the frame secured to the axes of the buckets on said vertical arm.
  • the chassis is split into a part called “excavator frame”, which remains attached to the arm attached to the turret and a part called “bucket support frame”, vertically movable relative to the door frame such that, the instantaneous center of rotation of the buckets being able to move while the arm remains stationary relative to the bottom of the tank, it is possible to give the leading edges of the buckets a substantially rectilinear trajectory.
  • the shovel can be placed so that its leading edges are flush with the bottom of the tank during the entire operation of closing the shovel.
  • a complex bucket closure assembly comprising "a transmission rod of forces, one of whose ends is articulatedtinct on the bucketstinct and whose other end is articulated on a rotating actuating rod, itself hinged to the support frame of the buckets, said rotating rod being mechanically connected to the excavator frame by means of a connecting rod compensation means articulated on the excavator frame, said rotary rod being moreover actuated in rotation by means of an actuating cylinder, whose point of application is integral with the support frame of the buckets ".
  • Such a solution requires the introduction into the crust with numerous intermediate pieces intended to operate in a hostile environment and to undergo vibrations of high amplitude, in particular because of the stresses associated with the breakdown of the buckets. This involves frequent replacement of these parts subject to rapid wear.
  • the aim that the applicant has set was to achieve, without damaging the bottom of the tank, effective cleaning of the anode hole during the replacement of the anodes, while using a simple tool, easy to clean and maintain , and inexpensive in maintenance.
  • the converter translates said signal into a control stream and transmits said control stream to said first actuator.
  • the converter may for example be a servo-distributor associated with a cylinder or a variable speed drive associated with an electric motor.
  • the control flow is an oil flow to a cylinder chamber.
  • the control flow is an electrical signal, or a control current, whose characteristic properties (intensity (s), frequency (s), ...) affect the direction and speed of rotation of the motor. .
  • the altitude of the substantially horizontal axis and that of the blade can be measured directly by sensors but, because of the aggressive environment and the lack of accessibility, these direct measurements are advantageously replaced by calculations based on indirect measurements.
  • said programmable control system can be connected to a first sensor for measuring the vertical displacement of said link relative to a reference level and to a second sensor making it possible to measure, directly or indirectly, the difference in altitude between the blade of the bucket and the substantially horizontal axis around which the bucket pivots .
  • the reference level can be a fixed level defined in the repository of the electrolysis hall. It can also be linked to the mobile support on which the collection unit is fixed. In the latter case, it is obviously necessary to take into account a possible altitude variation of said mobile support.
  • a sensor can be used to determine the angular position of the bucket.
  • said second actuator is a cylinder that requires a rotation to said bucket by means of a connecting rod
  • a displacement sensor can be used to measure the displacement of the rod of said cylinder with respect to the body of said cylinder.
  • the characteristics of the control flow transmitted to the first actuator act on the direction and the intensity of the displacement to be performed by said first actuator: plus the difference found between the measured altitude of the substantially horizontal axis and its set altitude. is important, the stronger the intensity of the displacement imposed on the actuator.
  • the computer program implemented in said programmable logic controller is based on a kinematic model which describes a trajectory of the blade passing above, but not too far, from the bottom of the tank.
  • This trajectory can be deduced from the theoretical profile of the bottom of the vessel by translation along a vector oriented vertically upwards and whose intensity corresponds to a predefined safety distance.
  • the collection unit according to the invention can be for example a "crust scoop" used for cleaning anode holes, comprising a frame and two buckets mounted on said frame, arranged symmetrically with respect to a substantially vertical plane and articulated , pivoting about two substantially horizontal axes, each bucket having a blade vis-à-vis the blade of the other bucket, the second actuator, integral with said frame, imposing each of said buckets a rotational movement substantially symmetrical relative said substantially vertical plane, so that solid debris between the two buckets are trapped by said buckets.
  • a "crust scoop” used for cleaning anode holes
  • the second actuator also called “closing actuator” or “closing actuator / opening” is chosen from pneumatic cylinders, because this type of cylinder does not control at any time the speed of rotation of the bucket during the closing phase of the bucket or buckets.
  • the collection unit which is a crust scoop, is immersed in the bath while it is in the open position, then it is moved from an open position to a closed position, using the closing actuator acting on a linkage designed to bring the buckets in a rotational movement substantially symmetrical relative to each other.
  • the solid debris between the two buckets are thus trapped, while the liquid medium, mixture of electrolyte bath and molten metal can still escape, in particular through openings in the walls of the buckets.
  • Part of this liquid medium which is very viscous, adheres to the wall of the buckets, so that the cups are covered with a gangue that must be removed after each passage of the crust in the tank because the buckets , very quickly fouled, become inoperative.
  • bucket breakdown To remove the maximum of bath and metal that cool and freeze by adhering to the surface of the cups, we realize a operation, called “bucket breakdown".
  • the bucket closure / opening actuator is used so that the edges opposite the buckets are driven at such a speed that their bringing into contact results in a sufficiently violent shock for that the cooled bath and metal is peeled off and ejected from the surface of said wells.
  • it can either be removed or said hydraulic cylinders and provide an intermediate piece acting on the linkage, or leave them near the buckets but protect them from projections.
  • the hydraulic power unit which is mounted on the service machine and which is already placed at a height, so that it is remote from the electrolysis bath, and to install the hydraulic circuit necessary for the operation of the cylinder (s). so that the part most exposed to the hostile environment is limited to the hoses that feed the compartments of the double-acting cylinder.
  • the fact of choosing for closing actuator one or more hydraulic cylinder (s) allows to dedicate the compressed air supplied by the onboard compressor of the service machine to other functions or, of preferably, to choose a compressor of lower capacity, therefore lighter, to equip said service machine.
  • said first actuator also called “lifting actuator”
  • said first actuator comprises an electric motor integral with said movable support, a link secured to said collection unit and coupled to said motor so that the rotation said electric motor causes the displacement of said collection unit through said connection
  • said converter is a speed controller which transmits to said electric motor a control current, whose characteristics allow said electric motor to impose said vertical displacement to said link.
  • Said electric motor may be the motor of an electric jack, said link being the rod of the jack supporting or being coupled with a vertical mast supporting said collection unit. It can also be the motor of an electric winch, said link being the cable supporting said collection unit.
  • Example 2 described below illustrates such an embodiment.
  • said first actuator comprises at least one hydraulic jack which comprises a body integral with the movable support and a piston connected to a rod which acts as said link and said converter is a distributor mounted on the portion. of the hydraulic circuit which feeds with a controlled flow the rod side chamber of said hydraulic cylinder.
  • said distributor which advantageously is an electro-hydraulic servo-distributor servo-controlled and controlled by said programmable control system.
  • said distributor is a 4/3 servo-distributor, proportional action, electrically controlled.
  • said first actuator comprises at least one hydraulic jack that allows to move vertically said connection to which is attached the rest of the collection unit.
  • the manipulator arm of the collection unit is a telescopic arm, comprising a "mobile" mast sliding in a “fixed” arm, the stem of said hydraulic cylinder being secured to said "mobile” mast and the body of said hydraulic cylinder being secured to said "fixed” mast, connected to said mobile support, for example a tool turret fixed on a carriage capable of running along the beam of a traveling crane, so that said collecting unit can be moved and positioned at above the work area before descending to the anodic hole.
  • a “symmetrical” solution consisting in making the "mobile” mast integral with the body of the jack and the rod integral with the "fixed” mast secured to the movable support, is also possible.
  • the rise of the collection unit is done by supplying the shaft chamber with oil.
  • a preferred embodiment comprises a distributor controlled by a programmable automaton which collects, at regular time intervals, typically a few tens of milliseconds, the altitude H of the substantially horizontal axis around which the bucket and the value L of displacement of the piston rod of the second actuator, deduced from these values, using an associated computer memory, the set value that must be imposed on the altitude of the axis of pivoting of the bucket and injects a signal towards said dispenser so as to decrease or increase the volume of the oil which feeds the chamber rod side and which is necessary to reach the correct altitude.
  • the first actuator may include a plurality of hydraulic cylinders.
  • the control of the oil volume in each of the rod-side chambers is not easy, it is preferable to use as the first actuator a single cylinder whose chamber rod side is fed with a single slave valve .
  • the device according to the invention makes it possible in particular to carry out a debris collection by defining a safety distance between the bottom of the tank and the blade of the bucket or buckets: as soon as the estimated distance is less than this safety distance, the system pilot sends to the said distributor a setpoint which increases the volume of oil in the cylinder side chamber of the cylinder so as to impose the desired altitude to the piston and therefore the substantially horizontal axis of rotation of the bucket.
  • the control system sends a direction to the distributor that reduces the volume of oil in the cylinder side chamber of the cylinder.
  • the proportional-action servo-distributor controls the oil flow sent under the required pressure in the stem chamber; when it has to be brought closer, it evacuates towards the reservoir a controlled flow of oil coming from the shaft-side chamber, which is under a pressure corresponding substantially to the weight of the collecting unit.
  • the variable speed drive used emits a control current which can act not only on the amplitude of the speed of rotation but also on the direction of rotation of the electric motor.
  • the safety distance and the limit distance are chosen as close as possible.
  • the bottom of the tank being generally flat, this amounts to imposing a rectilinear trajectory to the leading edge of the bucket.
  • this trajectory can be defined more precisely, depending on the actual geometry of the bottom of the tank where the collection of debris must be performed.
  • a target altitude for the bucket blade is defined and the programmable control system is associated with a computer memory programmed to provide, depending on the bucket angle directly or indirectly measured, the altitude of the bucket. set that must have the instantaneous center of rotation of said bucket.
  • the target altitude for the blade is constant if the bottom of the tank is considered plane.
  • the device according to the invention makes it possible to position the bucket or buckets as close as possible to the cathode, thus to increase the efficiency of the debris collection operation without touching the bottom of the tank.
  • the collection unit suspended from the moving carriage which moves along the traveling crane, is advantageously provided with a displacement sensor which makes it possible to to know at any time the altitude of the or substantially horizontal axes of rotation of the bucket or buckets.
  • the displacement sensor may be a cable encoder or a laser range finder.
  • the elevation of the bottom of the tank is itself known and can be checked regularly, for example by slowly lowering the collection unit placed in a predetermined position until the blade of the bucket touches the bottom of the tank.
  • the bucket is generally defined by an axial wall, that is to say a regulated surface generated by a generatrix parallel to the pivot axis and based on an open directional curve, and two transverse walls.
  • transverse walls have a substantially rectilinear edge, which joins the ends of the open curve.
  • the position of the bucket can be characterized by the angle ⁇ that this edge with the vertical.
  • d the distance from this edge to the pivot axis and by h the distance between the blade and the projection of the pivot axis on said edge
  • ⁇ Z d cos ⁇ + h sin ⁇ .
  • the angle of inclination is itself directly related to a dimensional characteristic of the actuator that rotates the bucket. For example, if it is a cylinder, the angle of inclination is directly related to the stroke of the cylinder rod.
  • the programmable control system is an industrial programmable logic controller (PLC) which collects at regular time intervals, typically a few tens of milliseconds, to using a first sensor, the altitude of the pivot axis of the bucket, and with the aid of a second sensor, the value of the stroke of the closing cylinder and deduced from these values, to the using a computer program based on a kinematic model describing the trajectory of the blade in an appropriate frame of reference, the set value that must be imposed on the altitude of the pivot axis of the bucket and accordingly drives the servo distributor to introduce or evacuate the volume of oil necessary to reach the correct altitude.
  • PLC industrial programmable logic controller
  • Example 1 we describe in more detail these different operating phases of the collection unit.
  • Another object according to the invention is a service module intended to be used in an igneous electrolysis aluminum production plant comprising a trolley and handling and intervention devices, characterized in that it also comprises a collection unit according to the invention, as described above.
  • Another object according to the invention is a service unit of an igneous electrolysis aluminum production plant comprising a traveling crane and characterized in that it also comprises at least one service module according to the invention, such as previously described.
  • Another object according to the invention is the use of a service module according to the invention for the interventions on electrolytic cells intended for the production of aluminum by igneous electrolysis, in particular for the cleaning of the anode holes, wherein said first actuator is driven by said programmable control system such that said one or more bucket blades follow a predefined path, typically located above and parallel to the bottom of the vessel.
  • Electrolysis plants for aluminum production include a liquid aluminum production area that includes one or more electrolysis rooms.
  • the electrolysis room (1) illustrated on the figure 1 comprises electrolysis cells (2) and a service machine (5).
  • the electrolysis cells (2) are normally arranged in rows or rows, each row or line typically having more than one hundred cells.
  • the cells (2) are arranged so as to clear a circulation aisle along the electrolysis room (1).
  • the cells (2) comprise a series of anodes (3) provided with a metal rod (4) for fixing and electrically connecting the anodes to a metal anode frame (not shown).
  • the service unit (5) is used to perform operations on the cells (2) such as anode changes or the filling of ground bath feed hoppers and aluminum fluoride (AlF3). It can also be used to handle various loads, such as tank elements, pockets of liquid metal that are used during casting (“ladles”) or anodes. It can also be used to clean the anode hole after removing a worn anode and before installing a new anode.
  • AlF3 aluminum fluoride
  • the service unit (5) comprises a movable bridge (6) which can be translated over the electrolysis cells (2), and at least one service module (7) comprising a movable carriage (8), said "tool holder", adapted to be moved on the movable bridge (6) and equipped with several handling and intervention devices (10), such as tools, among which may include the crust scoop (100 ').
  • the tools are here mounted on vertical telescopic poles (9) attached to the movable carriage (8).
  • a crust scoop may also be moved and operated from a vehicle other than a service machine.
  • the invention applies to any collection unit, regardless of its mode of movement and placement above the work area.
  • FIGs 2 and 3 illustrate a particular embodiment of a collection unit (100), which is a crust scoop (100 ') attached to the end of a telescopic arm, at the end of the movable arm here called “shovel barrel” ( 11).
  • the shovel shaft is a mobile vertical mast (9 ") sliding in a vertical mast (9 '), which itself moves vertically under the effect of an actuator (not shown), able to make faster movements while remaining integral with the tool turret of the mobile carriage (8) of a service module (7)
  • the crustal scoop comprises a frame (110) provided with two buckets (120a and 120b) placed in substantially perpendicular to a substantially vertical plane and articulated, pivoting about two substantially horizontal axes (115a and 115b).
  • Each bucket (120a, 120b) has a leading edge, or blade (128a, 128b) opposite the blade (128b, 128a) of the other bucket (120b, 120a)
  • the second actuator is here in the form of two cylinders (200, 201) secured to the frame (110) , operating simultaneously, by imposing on each of the buckets, via a connecting rod (300, 300 '), a movement of substantially symmetrical rotation relative to the substantially vertical plane, so that the solid debris between the two buckets are trapped by said buckets.
  • the two actuators of the second actuator were pneumatic cylinders particularly well suited for the breakdown operation.
  • FIGS 4 to 7 illustrate, in four different configurations, the diagram of a hydraulic circuit supplying the first actuator (50) of a collection unit according to the invention, which moreover possesses the characteristics described above ( Figures 2 and 3 ).
  • the first actuator (50), or lift cylinder, is a double acting cylinder (51) with a body (55) and a piston (56) associated with a rod (52).
  • the rod (52) is integral with the collection unit (not shown on the Figures 4 to 7 ).
  • the double-acting cylinder (51) has a stem-like chamber (53), called the lower one, capable of imposing at any moment on the vertical mobile mast (9 ") a vertical upward movement and a piston-like chamber (54), said upper , capable of imposing a vertical downward movement on the vertical mobile mast at any moment,
  • the hydraulic circuit comprises two portions (63) and (64) which feed the two chambers (53) and (54) of the double-acting cylinder (51).
  • the circuit can be connected, via a three-position distributor, called “direction distributor” (80), to the "pressure line” (P) and to the “return line” (R) of a hydraulic power plant.
  • the direction distributor (80) is naturally in the position (802) which corresponds to the rest and can be excited to be put in one of the two other possible positions: the position (803) where the rod (52) of the cylinder makes lowering the collection unit and the position (801) where the cylinder rod raises said collection unit.
  • the circuit portion (64) includes a main branch (640) having one end connected to the directional distributor (80) and the other end connected to the piston chamber (54) of the actuator (51).
  • the circuit portion (63) includes a main branch (630) having one end connected to the directional distributor (80) and the other end branching into two sub-branches; each of which is equipped with a two-position distributor (81, 82), the first sub-branch (631 comprising 6310, 6311, 6312 and 6313) being associated with a holding valve (90), the second sub-branch ( 632 comprising 6320, 6321 and 6322) being associated with the electrohydraulic servo-distributor (83).
  • the two sub-branches meet at their other ends to form the circuit portion (633) which feeds the rod chamber (53) of the jack (51).
  • the figure 4 illustrates the circuit when the lift cylinder is at rest.
  • the direction distributor (80) is naturally in the position (802), which puts the two circuit portions (63) and (64) in connection with each other through their respective main branches (630) and (640).
  • the distributor (82) is in the position (821) which blocks the circulation in the second sub-branch. Isolated by the distributor (82) in position (821) and by the non-conducting valve (90) (the piloting pressures of the connections (92) and (93) are insufficient to make it flow), the The stem chamber (53) is maintained, apart from any shock, at a substantially constant pressure, associated with the weight of the collection unit.
  • the circuit branch (633) is equipped with a safety, integrated in the function of the valve of retainer (90) to limit the pressure in the stem chamber in the event of an impact.
  • the figure 5 illustrates the circuit when the lift cylinder is in rapid descent.
  • the direction distributor (80) is energized to occupy the position (803), which places the two circuit portions (63) and (64) in communication with the pressure line (P) of the hydraulic power unit, the two portions of circuit (63) and (64) also communicating with each other via their respective main branches (630) and (640) at the direction distributor (80) when in this position (803).
  • the distributor (82) is in the position (821) which blocks the circulation in the second sub-branch.
  • the distributor (81) is in the position (811) and allows the operation of the check valve (90): as soon as the resultant of the forces due to the piloting pressures coming from one part of the branch (92) and on the other side of the branch (93) is greater than a certain value, the check valve (90) becomes "passing".
  • the check valve (90) is set to a critical value, typically close to 180 bar, so that, as soon as its piloting has sufficient pressure, it becomes free-running and the oil can flow from the stem-chamber ( 53) to the plunger chamber (54), via the branches (630) and (640), which communicate with each other at the direction distributor (80), placed in position (803). In this way, the flow of oil from the hydraulic unit is increased by the flow of oil from the piston chamber. If the x is the ratio (section of the piston chamber (54)) / (section of the shank (52)), the flow from the hydraulic unit is multiplied by x, so that with such a differential arrangement, the piston rod can descend with a speed x times faster than with a conventional assembly.
  • the figure 6 illustrates the circuit when the lift cylinder raises the rod (52).
  • the direction distributor (80) is energized to occupy the position (801), which places the main branch (630) in connection with the pressure line (P) of the hydraulic power unit and the main branch (640) in communication with the reservoir from the hydraulic power plant, via the return line (R).
  • the distributor (82) is in the position (821) and the distributor (81) is in the position (811).
  • the pressurized oil passes through the main branch (630), passes through the distributor (81) in position (811) and joins the portions (6313) and (633) via the non-return valve (91), to supply the chamber -Storm (53).
  • the oil in the piston chamber (54) is discharged to the return line (R) of the hydraulic unit, via the main branch (640).
  • the figure 7 illustrates the circuit when the lift cylinder is activated in a slave mode when the collection of debris.
  • the direction distributor (80) is energized to occupy the position (801), which places the main branch (630) in connection with the pressure line (P) of the hydraulic power unit and the main branch (640) in connection with the return line (R) of the hydraulic power station.
  • the dispenser (82) is in the position (822) and the dispenser (81) is in the position (812).
  • the servo-distributor is activated to be placed in the position (831) for the descent or (833) for the climb.
  • the programmable control system is a programmable controller (84) associated with a computer memory (85) which enables it, as a function of the measurement values of (H) and (L) transmitted, to define a set altitude at the lifting jack (50).
  • the programmable controller (84) sends a signal (S) to the servo-distributor (83), which is a proportional proportional servo-distributor, imposing on the circuit portion supplying the rod-side chamber an oil flow ( ⁇ ) that is all the more important that the deviation from the set position is large.
  • the signal has characteristics that make it possible to move the movable member of the servo-distributor in a position of type (833) more or less advanced, depending on the flow rate of oil under pressure, the oil from the branches (630) and (632) and feeding the rod-side chamber via the branches (6321), (6322) and (633).
  • the programmable controller (84) sends a signal (S) to the servo-distributor (83) to a configuration corresponding to a position (831), where the pressurized oil no longer supplies the side-rod chamber, which is connected to the return line (R), via the branches (65), (6321), (6322) and (633), the flow ( ⁇ ) for discharging the oil to the return line being controlled by the opening of the servo-distributor, which is controlled by the signal emitted by the PLC.
  • the programmable automaton (84) collects, at regular time intervals, typically a few tens of milliseconds, the altitude H of the pivot axis of the bucket and the value L of the stroke of the closing cylinder and deduces from these values, using a computer program based on a kinematic model that describes the trajectory of the blade in an appropriate frame of reference, the set value that must be imposed on the altitude of the pivot axis of the bucket and emits a signal (S) towards the servo-distributor (83) so as to introduce or evacuate the volume of oil necessary to reach the correct altitude.
  • S signal
  • the second actuator (200 ') here simply schematized essentially to illustrate the role it plays in the operating principle of the first actuator (50), the latter being controlled in particular according to the spatial configuration of said second actuator.
  • This second actuator whose body is integral with the rod (52) of the first actuator (50), is here a double-acting hydraulic cylinder connected to a supply circuit, a part of which allows differential mounting to ensure the breakdown function .
  • the figure 8 schematically illustrates a collection unit, in which the first actuator (50) is an electric motor (53 ') fed by means of a circuit which makes it possible to control the rotation of said motor.
  • the electric motor is that of an electric cylinder (51 ') which imposes a vertical movement to the link (52 ') integral with the frame (110').
  • the electric jack is replaced by an electric winch, the link then being a cable connected to said frame, the vertical displacement thereof being for example guided by a guide device fixed on the movable support.
  • the programmable control system comprises a programmable controller (84) associated with a computer memory (85) which enables it, as a function of the measurement values of (H) and (L) transmitted, to define the set altitude of the substantially horizontal axis around which pivots a bucket. If the set altitude is higher than the effective altitude, there is danger of collision between the bucket blade and the bottom of the tank.
  • variable speed drive (83 ') is then activated in such a way that it can quickly correct the trajectory of the blade.
  • the programmable controller (84) sends a signal (S) to the variable speed drive (83 '), which converts said signal into a current of command (I) which imposes said electric motor a direction of rotation and speed all the more important that the deviation from the set position is large.
  • the variable speed drive (83 ') is activated in such a way that it can quickly correct the motor servo, to lower the altitude of the blade.
  • the programmable controller (84) sends a signal (S) to the variable speed controller (83 ') which imposes on the motor a direction of rotation and a speed which is greater as the deviation from the set position is large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Operation Control Of Excavators (AREA)

Description

  • L'invention concerne la production d'aluminium par électrolyse ignée selon le procédé de Hall-Héroult. Elle concerne plus particulièrement un dispositif destiné à collecter les débris solides en immersion ou flottant dans le bain d'électrolyse et le métal liquide, notamment les boues provenant du bain électrolytique et qui s'accumulent sur le fond de cuve, ainsi que les restes de carbone et les débris de croûte qui proviennent en particulier des diverses opérations effectuées avant et pendant l'enlèvement des anodes usées.
  • L'aluminium est produit industriellement par électrolyse ignée, selon le procédé bien connu de Hall-Héroult, dans des cellules d'électrolyse. Les usines contiennent un grand nombre de cellules d'électrolyse disposées en ligne, dans des bâtiments appelés halls ou salles d'électrolyse, et raccordées électriquement en série à l'aide de conducteurs de liaison, de façon à optimiser l'occupation au sol des usines. Les cellules sont généralement disposées de manière à former deux ou plusieurs files parallèles qui sont électriquement liées entre elles par des conducteurs d'extrémité. Dans chaque cellule, le bain d'électrolyte et le métal liquide sont contenus dans une cuve, dite « cuve d'électrolyse », comprenant un caisson en acier, qui est revêtu intérieurement de matériaux réfractaires et/ou isolants, et un ensemble cathodique situé au fond de la cuve. Des anodes, typiquement en matériau carboné, sont partiellement immergées dans le bain d'électrolyte.
  • En fonctionnement, une usine d'électrolyse nécessite des interventions sur les cellules d'électrolyse parmi lesquelles figurent, notamment, le remplacement des anodes usées par des anodes neuves, le prélèvement de métal liquide et les ajouts ou prélèvements d'électrolyte. Afin d'effectuer ces interventions, les usines sont en général équipées d'une ou plusieurs unités de service comprenant un pont mobile qui peut être translaté au-dessus et le long des séries des cellules d'électrolyse, et un ou plusieurs modules de service, chacun comprenant un chariot, apte à être déplacé sur le pont mobile, et des organes de manutention et d'intervention, tels que des pelles et des palans, appelés communément "outils". Ces unités de service sont souvent appelées "machines de service électrolyse" ou "M.S.E" ("PTA" ou "Pot Tending Assembly" ou "PTM" ou "Pot Tending Machine" en langue anglaise). Le module de service comprend en général, attaché au chariot, un châssis rotatif, appelé tourelle porte-outils, qui est apte à tourner autour d'un axe vertical et est solidaire desdits outils. Chaque outil peut être fixé au bout d'un câble manoeuvré par un treuil attaché à ladite tourelle, ou encore au bout d'un bras, ce dernier pouvant être télescopique et/ou articulé.
  • L'une des interventions nécessaires au cours du remplacement des anodes est le nettoyage de la zone qui était occupée par l'anode usée et qui doit être occupée par la nouvelle anode. Cette zone est essentiellement constituée par le bain et le métal liquide mais peut contenir de nombreux débris solides qu'il est nécessaire d'enlever avant de mettre en place la nouvelle anode. Au cours de l'électrolyse, il se forme à la surface supérieure du bain une croûte dure de cryolithe fluorée et d'alumine. Cette croûte présente l'avantage de conserver la chaleur au sein du bain et constitue donc une enveloppe calorifuge efficace. Mais elle est extrêmement dure et adhère à la paroi du bloc anodique, de sorte qu'il s'avère nécessaire de la rompre autour de l'anode usée, afin de permettre l'extraction de celle-ci. Typiquement, la rupture de la croûte est réalisée à l'aide d'outils tels que des piqueurs, appelés "piqueurs brise-croûte". Il se forme alors, lors de l'enlèvement de l'anode usée, un orifice dans la croûte, orifice qui est laissé vacant jusqu'à l'installation de la nouvelle anode et que nous appellerons par la suite "trou anodique". La rupture de la croûte et les manipulations du bloc anodique usé engendrent inévitablement la formation de morceaux ou parties solides qui surnagent ou restent en suspension dans le bain d'électrolyse, ou encore qui tombent au fond de la cuve. Il est alors nécessaire de les prélever au moyen d'un outil de collecte, appelé communément "pelle à croûte".
  • La demande de brevet européen EP-A- 0 440 488 décrit un exemple de pelle à croûte associée à un véhicule particulier, distinct d'une machine de service. La demande de brevet européen EP-A-0 618 313 décrit, mais de façon peu détaillée, un exemple de machine de service équipée d'une dispositif propre à assurer la rupture de la croûte au voisinage d'une anode usée ainsi que le nettoyage du trou anodique. La pelle à croûte communément employée est une pince constituée de deux godets disposés symétriquement par rapport à un plan sensiblement vertical et articulés, pivotant autour de deux axes sensiblement horizontaux, éventuellement confondus. Chaque godet présente un bord d'attaque, appelé également "lame", en vis-à-vis du bord d'attaque de l'autre godet. Pour recueillir les débris, on plonge la pelle à croûte, en position ouverte, dans le bain puis on fait passer la pelle à croûte d'une position ouverte à une position fermée, en utilisant au moins un actionneur qui agit soit directement sur un godet, soit de préférence sur un embiellage conçu pour mettre les godets en un mouvement de rotation sensiblement symétrique l'un par rapport à l'autre, les débris solides situés entre les deux godets se trouvant ainsi piégés, alors que le milieu liquide, mélange de bain d'électrolyte et de métal fondu peut encore s'échapper, en particulier par des ouvertures ménagées dans les parois des godets.
  • Traditionnellement, le mouvement d'ouverture et de fermeture de la pelle à croûte est animé par l'actionnement d'au moins un vérin pneumatique qui agit sur un embiellage conçu pour transformer le mouvement de translation du vérin en deux mouvements de rotation symétriques des godets. Avant de placer la nouvelle anode dans la cellule, il faut s'assurer que l'ensemble des débris de croûte et de carbone qui se trouvent dans le trou anodique a été enlevé. Comme certains d'entre eux peuvent reposer sur le fond de la cuve, il est nécessaire de plonger la pelle à croûte dans le milieu liquide constitué par le bain et le métal de sorte que ses bords d'attaque affleurent le fond de la cuve. Mais comme les bords d'attaque des godets décrivent des trajectoires circulaires lorsque la pelle à croûte se ferme pour ramasser les débris, la manoeuvre de la pelle est très délicate, car l'ensemble cathodique qui constitue le fond de la cuve risque de subir un endommagement important lors de cette opération. Pour éviter une telle détérioration, il faudrait imposer à l'axe ou aux axes de pivotement des godets une position en altitude telle que les bords d'attaque des godets ne touchent jamais le fond de la cuve pendant la manoeuvre, tout en étant les plus proches possible de ce fond de façon à ce que le nettoyage soit efficace. Toutefois, cette position est difficile à évaluer car il n'y a pas d'accès visuel au fond de cuve. D'autre part, cette position théorique rend, en raison du décrit circulaire des lames, la pelle à croûte peu efficace dans les phases où celles-ci sont les plus éloignées du fond de cuve, une partie des débris reposant sur le fond de cuve risquant de ne pas être collectée.
  • Ainsi, cette opération de nettoyage du trou d'anode à l'aide de la pelle à croûte se heurte à deux difficultés antagonistes: soit on est trop près du fond de cuve et, dans ce cas, on risque de le détériorer, soit on en est trop éloigné et le nettoyage est insuffisant. Quelle que soit la façon de procéder, il subsiste un risque non négligeable d'instabilité générale d'ordre électrique et magnétique dans le fonctionnement de la cuve, conduisant à une baisse de rendement de l'installation.
  • La demande de brevet européen EP-A-1 178 004 propose une solution susceptible de résoudre le problème exposé dans le paragraphe précédent. Cette solution consiste à utiliser une pelle à godets montée sur un bras vertical mais à ne pas fixer directement le châssis solidaire des axes des godets sur ledit bras vertical. A cette fin, on dédouble le châssis en une partie appelée "châssis porte-pelle", qui reste solidaire du bras attaché à la tourelle porte-outils et en une partie appelée "châssis support des godets", mobile verticalement par rapport au châssis porte-pelle de sorte que, le centre de rotation instantanée des godets pouvant se déplacer alors que le bras reste immobile par rapport au fond de cuve, on puisse donner aux bords d'attaque des godets une trajectoire sensiblement rectiligne. La pelle peut être placée de telle sorte que ses bords d'attaque affleurent le fond de cuve pendant toute l'opération de fermeture de la pelle. Toutefois, une telle solution se traduit par une complication importante du mécanisme de la pelle, avec un embiellage de fermeture des godets complexe comprenant "une bielle de transmission d'efforts, dont l'une des extrémités est articulée [ ... ] sur les godets [ ... ] et dont l'autre extrémité est articulée sur une bielle rotative d'actionnement, elle-même articulée sur le châssis support des godets, ladite bielle rotative étant reliée mécaniquement au châssis porte-pelle au moyen d'une bielle de compensation articulée sur le châssis porte-pelle, ladite bielle rotative étant par ailleurs actionnée en rotation au moyen d'un vérin d'actionnement, dont le point d'application est solidaire du châssis support des godets". Une telle solution impose d'introduire dans la pelle à croûte de nombreuses pièces intermédiaires destinées à fonctionner en milieu hostile et à subir des vibrations de fortes amplitudes, en particulier à cause des sollicitations associées au claquage des godets. Cela implique un remplacement fréquent de ces pièces sujettes à une usure rapide.
  • Le but que s'est fixé la demanderesse a été de réaliser, sans endommager le fond de cuve, un nettoyage efficace du trou d'anode lors du remplacement des anodes, tout en faisant appel à un outil simple, facile à nettoyer et à entretenir, et peu coûteux en maintenance.
  • Un premier objet selon invention est une unité de collecte destinée à collecter les débris solides et les boues se trouvant dans les milieux liquides d'une cellule de production d'aluminium, tels que le bain d'électrolyse et le métal liquide, en particulier une pelle à croûte destinée au nettoyage des trous anodiques, comprenant:
    1. a) un moyen de fixation permettant de fixer ladite unité de collecte sur un support mobile apte à déplacer ladite unité de collecte au-dessus de la zone à nettoyer ;
    2. b) une liaison actionnée par un premier actionneur qui impose à ladite liaison un déplacement par rapport audit support mobile suivant la direction verticale;
    3. c) un châssis solidaire de ladite liaison;
    4. d) au moins un godet articulé, pivotant autour d'un axe sensiblement horizontal, monté sur ledit châssis, présentant une lame sensiblement horizontale et actionné par un deuxième actionneur, solidaire dudit châssis, qui impose audit godet un mouvement de rotation autour dudit axe sensiblement horizontal,
      caractérisée en ce que ledit premier actionneur est relié à un système de pilotage programmable apte à :
      1. i) déterminer, directement ou indirectement, l'altitude dudit axe sensiblement horizontal et la différence d'altitude entre ladite lame dudit godet et ledit axe sensiblement horizontal;
      2. ii) définir, à partir des valeurs déterminées en i), le déplacement vertical qui doit être imposé à ladite liaison pour que l'altitude de ladite lame reste supérieure à une valeur prédéterminée;
      3. iii) définir et transmettre audit premier actionneur un flux de commande approprié, permettant audit premier actionneur d'imposer ledit déplacement vertical à ladite liaison.
  • Ledit premier actionneur permet de déplacer verticalement ladite liaison qui, typiquement sous la forme d'une tige rigide, d'un mât vertical coulissant, ou encore d'un câble, est solidaire de l'unité de collecte. Selon l'invention, on impose au premier actionneur, appelé également « actionneur de levage », en particulier lors de la rotation du ou des godets, un régime de fonctionnement où l'altitude de l'axe de rotation du godet est imposée en fonction de celle de la lame du godet. Pour ce faire, ledit premier actionneur est piloté au cours de la rotation dudit godet par ledit système de pilotage programmable qui comprend avantageusement une unité de contrôle et de commande et un convertisseur. L'unité de contrôle et de commande:
    • recueille les données, typiquement fournies par des capteurs de mesure, concernant ladite altitude dudit axe sensiblement horizontal et ladite différence d'altitude entre la lame du godet et l'axe sensiblement horizontal ;
    • en déduit, typiquement à l'aide d'une mémoire informatique associée, une valeur de consigne qu'il faut imposer à l'altitude dudit axe sensiblement horizontal de façon à ce que l'altitude de la lame soit au moins égale à une valeur prédéterminée, ce qui permet d'éviter tout risque de contact entre ladite lame et un obstacle situé en dessous de ladite unité de collecte, par exemple le fond de cuve,
    • émet un signal représentatif de ladite valeur de consigne en direction du convertisseur.
  • Le convertisseur traduit ledit signal en un flux de commande et transmet ledit flux de commande vers ledit premier actionneur. Selon la nature de l'actionneur, le convertisseur peut être par exemple un servo-distributeur associé à un vérin ou un variateur de vitesse associé à un moteur électrique. Dans le premier cas, le flux de commande est un débit d'huile en direction d'une chambre du vérin. Dans le second cas, le flux de commande est un signal électrique, ou un courant de commande, dont les propriétés caractéristiques (intensité(s), fréquence(s), ...) influent sur le sens et la vitesse de rotation du moteur.
  • L'altitude de l'axe sensiblement horizontal et celle de la lame peuvent être mesurées directement par des capteurs mais, en raison du milieu agressif et du manque d'accessibilité, ces mesures directes sont avantageusement remplacées par des calculs à partir de mesures indirectes. Ainsi, ledit système de pilotage programmable peut être relié à un premier capteur permettant de mesurer le déplacement vertical de ladite liaison par rapport à un niveau de référence et à un deuxième capteur permettant de mesurer, directement ou indirectement, la différence d'altitude entre la lame du godet et l'axe sensiblement horizontal autour duquel pivote le godet. Le niveau de référence peut être un niveau fixe défini dans le référentiel du hall d'électrolyse. Il peut également être lié au support mobile sur lequel est fixée l'unité de collecte. Dans ce dernier cas, il faut bien évidemment prendre en compte une éventuelle variation d'altitude dudit support mobile. En ce qui concerne le deuxième capteur, on peut utiliser un capteur permettant de déterminer la position angulaire du godet. A cette fin, si ledit deuxième actionneur est un vérin imposant une rotation audit godet par le biais d'une bielle, on peut utiliser un capteur de déplacement mesurant le déplacement de la tige dudit vérin par rapport au corps dudit vérin.
  • Avantageusement, les caractéristiques du flux de commande transmis au premier actionneur agissent sur le sens et l'intensité du déplacement que doit réaliser ledit premier actionneur : plus l'écart constaté entre l'altitude mesurée de l'axe sensiblement horizontal et son altitude de consigne est important, plus forte est l'intensité du déplacement imposé à l'actionneur.
  • Bien évidemment, il est possible d'être plus exigeant sur le contrôle de la trajectoire de la lame, puisque l'efficacité de l'unité de collecte diminue lorsque la lame s'éloigne trop du fond de cuve. Dans une modalité préférée de l'invention, on définit la valeur de consigne à imposer à l'altitude dudit axe sensiblement horizontal de façon à ce que l'altitude de la lame soit non seulement plus grande mais aussi la plus proche possible de ladite valeur prédéterminée. Avantageusement, en faisant les mesures un grand nombre de fois et en effectuant à chaque mesure un déplacement correctif de ladite liaison pour que l'axe sensiblement horizontal se trouve à l'altitude de consigne permettant à la lame de se trouver à l'altitude voulue, on peut imposer à ladite lame une trajectoire prédéterminée. A cette fin, ladite unité de contrôle et de commande est avantageusement un automate programmable industriel qui, à multiples reprises, de préférence à intervalles de temps réguliers, typiquement de quelques dizaines de millisecondes, :
    1. a) recueille les données fournies par ledit premier capteur et ledit deuxième capteur ;
    2. b) déduit de ces données, à l'aide d'un programme informatique basé sur un modèle cinématique décrivant la trajectoire de la lame dans un référentiel approprié, la valeur de consigne qu'il faut imposer à l'altitude de l'axe de pivotement du godet et
    3. c) transmet audit convertisseur un signal (S) représentatif de ladite valeur de consigne.
  • Avantageusement, le programme informatique implémenté dans ledit automate programmable est basé sur un modèle cinématique qui décrit une trajectoire de la lame passant au-dessus, mais pas trop loin, du fond de cuve. Cette trajectoire peut être déduite du profil théorique du fond de cuve par translation suivant un vecteur orienté verticalement vers le haut et dont l'intensité correspond à une distance de sécurité prédéfinie.
  • L'unité de collecte selon l'invention, peut être par exemple une « pelle à croûte » utilisée pour le nettoyage des trous anodiques, comprenant un châssis et deux godets montés sur ledit châssis, disposés symétriquement par rapport à un plan sensiblement vertical et articulés, pivotant autour de deux axes sensiblement horizontaux, chaque godet présentant une lame en vis-à-vis de la lame de l'autre godet, le deuxième actionneur, solidaire dudit châssis, imposant à chacun desdits godets un mouvement de rotation sensiblement symétrique par rapport audit plan sensiblement vertical, de façon à ce que les débris solides situés entre les deux godets se trouvent piégés par lesdits godets.
  • De préférence, de façon à imposer un mouvement fluide au(x) godet(s), on évite que le deuxième actionneur, appelé également « actionneur de fermeture » ou encore « actionneur de fermeture/ouverture», soit choisi parmi les vérins pneumatiques, car ce type de vérin ne permet pas de contrôler à tout moment la vitesse de rotation du godet pendant la phase de fermeture du ou des godets. On peut choisir un actionneur (électro)mécanique mais, de préférence, on choisira un vérin hydraulique alimenté par un circuit dont une portion est montée en différentiel pour assurer aux godets la fonction de claquage décrite ci-après, qui est essentielle pour les pelles à godets employées dans le cadre du nettoyage des trous anodiques.
  • Pour recueillir les débris, on plonge dans le bain l'unité de collecte, qui est une pelle à croûte, alors qu'elle se trouve en position ouverte, puis on la fait passer d'une position ouverte à une position fermée, en utilisant l'actionneur de fermeture qui agit sur un embiellage conçu pour mettre les godets en un mouvement de rotation sensiblement symétrique l'un par rapport à l'autre. Les débris solides situés entre les deux godets se trouvent ainsi piégés, alors que le milieu liquide, mélange de bain d'électrolyte et de métal fondu peut encore s'échapper, en particulier par des ouvertures ménagées dans les parois des godets. Une partie de ce milieu liquide, qui est très visqueux, adhère à la paroi des godets, de sorte que les godets se couvrent d'une gangue qu'il faut enlever après chaque passage de la pelle à croûte dans la cuve, car les godets, très rapidement encrassés, deviennent inopérants. Pour enlever le maximum de bain et de métal qui refroidissent et se figent en adhérant à la surface des godets, on réalise une opération, appelée "claquage des godets". Dans cette opération, on utilise l'actionneur de fermeture/ouverture des godets de façon à ce que les bords en vis-à-vis des godets soient animés d'une vitesse telle que leur mise en contact se traduise par un choc suffisamment violent pour que le bain et le métal refroidis se décollent et s'éjectent de la surface desdits godets.
  • Traditionnellement, en particulier parce qu'il était bien adapté à l'opération de claquage, l'actionneur de fermeture/ouverture des godets était constitué d'un ou plusieurs vérins pneumatiques. Ici, dans le cadre de la présente invention, pour assurer un mouvement fluide aux godets et pour mieux contrôler trajectoire des lames, il est avantageux de remplacer le ou les vérins pneumatiques par au moins un vérin hydraulique double effet relié à un circuit d'alimentation qui présente au moins deux schémas de fonctionnement pour la fermeture des godets:
    • ➢ un premier schéma, où les godets avancent lentement mais où le vérin de fermeture peut fournir des efforts suffisants pour permettre d'entraîner les débris solides rencontrés par les godets,
    • ➢ un deuxième schéma, où il n'est pas nécessaire de transmettre des efforts, mais où il faut transmettre aux godets une énergie cinétique suffisante pour que la fonction de claquage puisse être remplie. Ce deuxième schéma correspond à un montage en différentiel analogue à celui qui est décrit un peu plus loin, dans l'exemple 1, lors du commentaire sur la descente rapide de l'unité de collecte, illustré en figure 5. Bien évidemment, les fonctions à remplir étant différentes, le circuit alimentant le second actionneur est différent de celui qui alimente le premier actionneur mais le principe du montage en différentiel reste le même.
  • Auparavant, on pensait qu'un claquage efficace de la pelle à croûte ne pouvait se faire que par voie pneumatique. En effet, on pensait que, grâce à l'air comprimé, on peut beaucoup plus facilement et rapidement imposer aux godets des mouvements de rotation symétriques suffisamment rapides pour que le choc qui en résulte permette de détacher et d'éjecter le bain et le métal en cours de solidification sur la surface des godets. De plus, la source d'air comprimé existait déjà sur la machine de service. Enfin, on souhaitait éviter l'implantation de circuits hydrauliques en des endroits qui peuvent se trouver à proximité immédiate du bain d'électrolyse.
  • Ici, dans le cadre de cette modalité préférée de l'invention, on choisit comme deuxième actionneur un ou plusieurs vérins hydrauliques. Pour éviter qu'il(s) se trouve(nt) à proximité du bain d'électrolyse, on peut donc soit éloigner le ou les dits vérins hydrauliques et prévoir une pièce intermédiaire agissant sur l'embiellage, soit les laisser à proximité des godets mais les protéger des projections. On peut par exemple utiliser la centrale hydraulique qui est embarquée sur la machine de service et qui est déjà placée en hauteur, de sorte qu'elle se trouve éloignée du bain d'électrolyse, et installer le circuit hydraulique nécessaire au fonctionnement du ou des vérins de sorte que la partie la plus exposée au milieu hostile soit limitée aux flexibles qui alimentent les compartiments du vérin double effet. Pour améliorer encore la protection de cette portion de circuit vis-à-vis de l'atmosphère hostile et d'éventuelles projections de bain, on peut utiliser le châssis porte-pelle comme écran, en montant le ou les vérins au-dessus de celui-ci et compléter la protection des flexibles du circuit hydraulique à proximité desdits vérins par des parois verticales entourant lesdits vérins et lesdits flexibles.
  • D'autre part, le fait de choisir pour actionneur de fermeture un ou plusieurs vérin(s) hydraulique(s) permet de consacrer l'air comprimé fourni par le compresseur embarqué de la machine de service à d'autres fonctions ou encore, de préférence, de choisir un compresseur de plus faible capacité, donc plus léger, pour équiper ladite machine de service.
  • Dans un premier mode de réalisation selon l'invention, ledit premier actionneur, appelé également « actionneur de levage », comprend un moteur électrique solidaire dudit support mobile, une liaison solidaire de ladite unité de collecte et couplée audit moteur de telle sorte que la rotation dudit moteur électrique entraîne le déplacement de ladite unité de collecte par le biais de ladite liaison, et ledit convertisseur est un variateur de vitesse qui transmet audit moteur électrique un courant de commande, dont les caractéristiques permettent audit moteur électrique d'imposer ledit déplacement vertical à ladite liaison. Ledit moteur électrique peut être le moteur d'un vérin électrique, ladite liaison étant la tige du vérin supportant ou étant couplée avec un mât vertical supportant ladite unité de collecte. Ce peut être également le moteur d'un treuil électrique, ladite liaison étant le câble supportant ladite unité de collecte. L'exemple 2 décrit ci-après illustre un tel mode de réalisation.
  • Dans une deuxième modalité de l'invention, ledit premier actionneur comprend au moins un vérin hydraulique qui comprend un corps solidaire du support mobile et un piston relié à une tige qui joue le rôle de ladite liaison et ledit convertisseur est un distributeur monté sur la portion du circuit hydraulique qui alimente avec un débit contrôlé la chambre côté tige dudit vérin hydraulique. Ainsi, au moins lorsque ledit deuxième actionneur est activé, le volume d'huile dans la chambre côté tige est imposé par ledit distributeur qui, avantageusement, est un servo-distributeur électro-hydraulique asservi en débit et piloté par ledit système de pilotage programmable. De préférence, ledit distributeur est un servo-distributeur 4/3, à action proportionnelle, commandé électriquement.
  • Dans cette deuxième modalité de l'invention, ledit premier actionneur comprend au moins un vérin hydraulique qui permet de déplacer verticalement ladite liaison à laquelle est attaché le reste de l'unité de collecte. De préférence, le bras manipulateur de l'unité de collecte est un bras télescopique, comprenant un mât « mobile » coulissant dans un bras « fixe », la tige dudit vérin hydraulique étant solidaire du dit mât « mobile » et le corps dudit vérin hydraulique étant solidaire du dit mât « fixe », lié au dit support mobile, par exemple une tourelle porte-outils fixée sur un chariot capable de longer la poutre d'un pont roulant, de sorte que ladite unité de collecte peut être déplacée et positionnée au-dessus de la zone de travail avant d'être descendue au niveau du trou anodique. Une solution "symétrique", consistant à rendre le mât « mobile » solidaire du corps du vérin et la tige solidaire du mât « fixe » solidaire du support mobile, est également possible. Dans les deux cas, la montée de l'unité de collecte se fait en alimentant en huile la chambre côté tige. Dans cette deuxième modalité de l'invention, un mode de réalisation préféré comprend un distributeur piloté par un automate programmable qui recueille à intervalles de temps réguliers, typiquement quelques dizaines de millisecondes, l'altitude H de l'axe sensiblement horizontal autour duquel pivote le godet et la valeur L du déplacement de la tige du piston du deuxième actionneur, déduit de ces valeurs, à l'aide d'une mémoire informatique associée, la valeur de consigne qu'il faut imposer à l'altitude de l'axe de pivotement du godet et injecte un signal en direction dudit distributeur de façon à diminuer ou augmenter le volume de l'huile qui alimente la chambre côté tige et qui est nécessaire pour atteindre la bonne altitude.
  • Ledit premier actionneur peut comprendre plusieurs vérins hydrauliques. Toutefois, le contrôle du volume d'huile dans chacune des chambres côté tige n'étant pas aisé, il est préférable d'utiliser comme premier actionneur un vérin unique dont la chambre côté tige est alimentée à l'aide d'un seul distributeur asservi.
  • Le dispositif selon l'invention permet en particulier d'effectuer une collecte des débris en définissant une distance de sécurité entre le fond de cuve et la lame du ou des godets: dès que la distance estimée est inférieure à cette distance de sécurité, le système de pilotage envoie au dit distributeur une consigne qui permet d'augmenter le volume d'huile dans la chambre côté tige du vérin de façon à imposer l'altitude voulue au piston et par conséquent à l'axe sensiblement horizontal de rotation du godet.
  • Avantageusement, pour que la collecte de débris soit efficace, il faut également que la distance entre la lame du godet et le fond de cuve ne soit pas trop grande: dès que la distance estimée est supérieure à un éloignement limite prédéterminé, le système de pilotage envoie au distributeur une consigne qui permet de diminuer le volume d'huile dans la chambre côté tige du vérin. Dans l'exemple 1 présenté ci-après, on n'agit que sur le circuit hydraulique reliant la chambre côté tige: lorsqu'il faut éloigner le godet du fond de cuve, le servo-distributeur à action proportionnelle contrôle le débit d'huile envoyée sous la pression requise dans la chambre côté tige; lorsqu'il faut le rapprocher, elle évacue vers le réservoir un débit contrôlé d'huile provenant de la chambre côté tige, laquelle se trouve sous une pression correspondant sensiblement au poids de l'unité de collecte. Dans l'exemple 2, le variateur de vitesse utilisé émet un courant de commande qui peut agir non seulement sur l'amplitude de la vitesse de rotation mais aussi sur le sens de rotation du moteur électrique.
  • De préférence, la distance de sécurité et l'éloignement limite sont choisis aussi proches que possibles. Le fond de cuve étant en général plan, cela revient à imposer une trajectoire rectiligne au bord d'attaque du godet. Bien évidemment, cette trajectoire peut être définie de façon plus précise, en fonction de la géométrie réelle du fond de cuve à l'endroit où la collecte de débris doit être effectuée. En pratique donc, on définit une altitude visée pour la lame du godet et le système de pilotage programmable est associé à une mémoire informatique programmée pour fournir, en fonction de l'angle d'ouverture du godet directement ou indirectement mesuré, l'altitude de consigne que doit avoir le centre de rotation instantanée dudit godet. L'altitude visée pour la lame est constante si le fond de cuve est considéré plan. Elle peut être variable, en fonction de la position du trou anodique à traiter dans la cellule; cela nécessite simplement l'emploi d'une mémoire informatique associée au système de pilotage plus complexe, donnant des valeurs de consigne différentes suivant l'endroit où travaille l'unité de collecte. Ainsi, le dispositif selon l'invention permet de positionner le ou les godets au plus proche de la cathode, donc d'augmenter l'efficacité de l'opération de collecte des débris sans toucher le fond de cuve.
  • Sur le plan pratique, l'unité de collecte, suspendue au chariot mobile qui se déplace le long du pont roulant, est avantageusement munie d'un capteur de déplacement qui permet de connaître à tout moment l'altitude du ou des axes sensiblement horizontaux de rotation du ou des godets. Le capteur de déplacement peut être un encodeur à câble ou un télémètre laser. L'altitude du fond de cuve est elle-même connue et peut être vérifiée régulièrement, par exemple en faisant descendre lentement l'unité de collecte placée dans une position prédéterminée jusqu'à ce que la lame du godet touche le fond de cuve. Le godet est en général délimité par une paroi axiale, c'est-à-dire une surface réglée engendrée par une génératrice parallèle à l'axe de pivotement et s'appuyant sur une courbe directrice ouverte, et deux parois transversales. Ces parois transversales ont un bord sensiblement rectiligne, qui rejoint les extrémités de la courbe ouverte. La position du godet peut être caractérisée par l'angle α que fait ce bord avec la verticale. En désignant par d la distance de ce bord à l'axe de pivotement et par h la distance entre la lame et la projection de l'axe de pivotement sur ledit bord, on connaît à tout moment, en fonction de l'angle d'inclinaison α du bord par rapport à la verticale, la différence d'altitude entre l'axe sensiblement horizontal et ladite lame, qui est donnée par l'expression: ΔZ= d cos α + h sin α. L'angle d'inclinaison est lui-même directement relié à une caractéristique dimensionnelle de l'actionneur qui fait pivoter le godet. Par exemple, s'il s'agit d'un vérin, l'angle d'inclinaison est directement relié à la course de la tige du vérin.
  • Dans un mode de réalisation préféré de l'invention, le système de pilotage programmable est un automate programmable industriel (API en français, PLC (Prommable Logic Controler) en anglais) qui recueille à intervalles de temps réguliers, typiquement quelques dizaines de millisecondes, à l'aide d'un premier capteur, l'altitude de l'axe de pivotement du godet, et à l'aide d'un second capteur, la valeur de la course du vérin de fermeture et déduit de ces valeurs, à l'aide d'un programme informatique basé sur un modèle cinématique décrivant la trajectoire de la lame dans un référentiel approprié, la valeur de consigne qu'il faut imposer à l'altitude de l'axe de pivotement du godet et pilote en conséquence le servo-distributeur de façon à introduire ou évacuer le volume d'huile nécessaire pour atteindre la bonne altitude.
  • Avantageusement , ledit vérin hydraulique est un vérin double effet dont la tige est solidaire du mât vertical et de ladite unité de collecte, avec une chambre côté tige apte à imposer à tout moment à ladite tige un mouvement vertical vers le haut et une chambre côté piston apte à imposer à tout moment à ladite tige un mouvement vertical vers le bas, les deux chambres pouvant être connectées, par l'intermédiaire d'au moins un distributeur, à une source de pression ou à un réservoir, le circuit d'alimentation comprenant plusieurs portions de circuits qui permettent de réaliser les schémas d'alimentation hydraulique suivants:
    1. a) un schéma différentiel, où la chambre côté tige et la chambre côté piston sont connectées à ladite source de pression, permettant d'assurer la descente à grande vitesse du mât;
    2. b) un schéma correspondant au repos, l'unité de collecte restant suspendue, le circuit étant aménagé de telle sorte que ladite unité de collecte peut se déplacer verticalement sans effort en cas de rencontre d'obstacle;
    3. c) un schéma où la chambre côté tige est connectée à la source de pression, correspondant à la montée de l'unité de collecte;
    4. d) un schéma en fonctionnement asservi, où la portion de circuit alimentant la chambre côté tige comprend un distributeur asservi en débit et piloté par un système de pilotage programmable comprenant une unité de contrôle et de commande qui recueille les données concernant l'altitude dudit axe sensiblement horizontal et la différence d'altitude entre la lame du godet et l'axe sensiblement horizontal, déduit de ces données la valeur de consigne qu'il faut imposer à l'altitude dudit axe sensiblement horizontal et émet un signal représentatif de ladite valeur de consigne en direction dudit distributeur.
  • Dans exemple 1 présenté ci-après, nous décrivons plus en détail ces différentes phases de fonctionnement de l'unité de collecte.
  • Un autre objet selon l'invention est un module de service destiné à être utilisé dans une usine de production d'aluminium par électrolyse ignée et comprenant un chariot et des organes de manutention et d'intervention, caractérisé en ce qu'il comprend en outre une unité de collecte selon l'invention, telle que décrite précédemment.
  • Un autre objet selon l'invention est une unité de service d'une usine de production d'aluminium par électrolyse ignée comprenant un pont roulant et caractérisée en ce qu'elle comprend également au moins un module de service selon l'invention, tel que décrit précédemment.
  • Un autre objet selon l'invention est l'utilisation d'un module de service selon l'invention pour les interventions sur des cellules d'électrolyse destinées à la production d'aluminium par électrolyse ignée, en particulier pour le nettoyage des trous anodiques, dans laquelle ledit premier actionneur est piloté par ledit système de pilotage programmable de telle sorte que ladite ou les dites lame(s) de godet suive(nt) une trajectoire prédéfinie, typiquement située au-dessus et parallèle au fond de cuve.
  • Un autre objet selon l'invention est un procédé pour nettoyer un trou d'anode lors du remplacement d'une anode, dans lequel on utilise une unité de collecte selon invention, ledit premier actionneur étant monté solidaire d'une machine de service et on procède de la manière suivante :
    1. a. on amène à l'aide des actionneurs de la MSE ladite unité de collecte, en position fermée, au droit du dit trou anodique, ledit premier actionneur étant au repos;
    2. b. on actionne ledit premier actionneur en descente rapide jusqu'à une altitude prédéterminée, supérieure au niveau du bain situé dans la cuve, afin d'autoriser l'ouverture de l'unité de collecte ;
    3. c. on actionne ledit deuxième actionneur de telle sorte qu'il ouvre les godets jusqu'à ce que lesdits godets atteignent une position ouverte de référence, typiquement proche de l'ouverture maximale permise par la course du deuxième actionneur;
    4. d. on actionne ledit premier actionneur en descente « lente » jusqu'à une altitude prédéfinie; dans un mode de réalisation spécifique et préféré, l'altitude prédéfinie visée est l'altitude atteinte par un point représentatif de la liaison lorsque la lame du godet arrive en contact avec le fond de cuve. Ainsi, on actionne ledit premier actionneur en descente lente jusqu'à ce qu'on détecte le contact d'au moins une lame sur le fond de cuve; par exemple, si l'actionneur est un vérin hydraulique, on utilise un capteur permettant de détecter le moment où la pression dans le circuit d'huile qui alimente la chambre côté piston augmente brutalement, un capteur permettant de connaître l'angle d'ouverture du godet et un capteur de déplacement qui permet de connaître l'altitude de la liaison lors dudit contact ;
    5. e. on définit, à partir de l'altitude atteinte en fin d'étape précédente, la hauteur à laquelle doit être ladite lame, en tenant compte d'une distance de sécurité et on en déduit la trajectoire que doit suivre ladite lame entre ladite position ouverte de référence et la position fermée;
    6. f. on actionne ledit premier actionneur pour remonter ladite unité de collecte jusqu'au point origine de la trajectoire définie à l'étape précédente ;
    7. g. on actionne ledit deuxième actionneur, ledit premier actionneur étant en mode asservi de façon à ce que la lame suive la trajectoire définie en e) ;
    8. h. une fois l'unité de collecte fermée, on actionne le premier actionneur en mode montée puis, lorsque l'unité de collecte a atteint une certaine altitude, on utilise les actionneurs de la MSE pour déplacer l'ensemble vers une aire de réception des débris récoltés.
    • La figure 1 illustre schématiquement une machine de service dans une salle d'électrolyse typique destinée à la production d'aluminium, vue en section.
    • La figure 2 illustre un mode de réalisation particulier d'une unité de collecte, qui est une pelle à croûte, montée sur un mât de guidage vertical télescopique actionné par un vérin hydraulique.
    • La figure 3 illustre, en perspective, l'embiellage et la pelle à godet du mode de réalisation de la figure 2.
    • Les figures 4 à 7 illustrent, dans quatre configurations différentes, le schéma d'un circuit hydraulique alimentant le premier actionneur (vérin de levage) d'une unité de collecte selon l'invention. Ces configurations correspondent aux modes de fonctionnement suivants: repos (figure 4), descente rapide (figure 5), montée (figure 6) et fonctionnement asservi (figure 7).
    • La figure 8 illustre schématiquement une unité de collecte selon l'invention, dans laquelle le premier actionneur est un vérin électromécanique.
  • Les usines d'électrolyse destinées à la production d'aluminium comprennent une zone de production d'aluminium liquide qui comprend une ou plusieurs salles d'électrolyse. La salle d'électrolyse (1) illustrée sur la figure 1 comporte des cellules d'électrolyse (2) et une machine de service (5). Les cellules d'électrolyse (2) sont normalement disposées en rangées ou files, chaque rangée ou file comportant typiquement plus d'une centaine de cellules. Les cellules (2) sont disposées de manière à dégager une allée de circulation le long de la salle d'électrolyse (1). Les cellules (2) comprennent une série d'anodes (3) munies d'une tige métallique (4) destinée à la fixation et au raccordement électrique des anodes à un cadre anodique métallique (non illustré).
  • L'unité de service (5) sert à effectuer des opérations sur les cellules (2) telles que les changements d'anodes ou le remplissage des trémies d'alimentation en bain broyé et en fluorure d'aluminium (AlF3). Elle peut également servir à manutentionner des charges diverses, telles que des éléments de cuve, des poches de métal liquide qui sont employées lors des coulées ("poches de coulée") ou encore des anodes. Elle peut également être utilisée pour nettoyer le trou d'anode, après l'enlèvement d'une anode usée et avant la mise en place d'une anode neuve.
  • L'unité de service (5) comprend un pont mobile (6) qui peut être translaté au-dessus des cellules d'électrolyse (2), et au moins un module de service (7) comprenant un chariot mobile (8), dit "porte-outils", apte à être déplacé sur le pont mobile (6) et équipé de plusieurs organes de manutention et d'intervention (10), tels que des outils, parmi lesquelles peut figurer la pelle à croûte (100'). Les outils sont ici montés sur des mâts télescopiques verticaux (9) attachés au chariot mobile (8). Comme nous l'avons déjà vu, par exemple dans la demande de brevet européen EP-A-0 440 488 , une pelle à croûte peut également être déplacée et manoeuvrée à partir d'un véhicule autre qu'une machine de service. L'invention s'applique à toute unité de collecte, quel que soit son mode de déplacement et de mise en place au-dessus de la zone de travail.
  • Les figures 2 et 3 illustrent un mode de réalisation particulier d'une unité de collecte (100), qui est une pelle à croûte (100') fixée à l'extrémité d'un bras télescopique, au bout du bras mobile appelé ici "fût de pelle" (11). Le fût de pelle est un mât vertical mobile (9") coulissant dans un mât vertical (9'), qui lui-même se déplace verticalement sous l'effet d'un actionneur (non représenté), apte à effectuer des déplacements plus rapides, tout en restant solidaire de la tourelle porte-outils du chariot mobile (8) d'un module de service (7). La pelle à croûte comprend un châssis (110) muni de deux godets (120a et 120b) placés en vis-à-vis, de façon substantiellement symétrique par rapport à un plan sensiblement vertical et articulés, pivotant autour de deux axes sensiblement horizontaux (115a et 115b). Chaque godet (120a, 120b) présente un bord d'attaque, ou lame (128a, 128b) en vis-à-vis de la lame (128b, 128a) de l'autre godet (120b, 120a). Le deuxième actionneur se présente ici sous la forme de deux vérins (200, 201) solidaires du châssis (110), fonctionnant simultanément, en imposant à chacun des godets, par l'intermédiaire d'une bielle de liaison (300, 300'), un mouvement de rotation sensiblement symétrique par rapport au plan sensiblement vertical, de façon à ce que les débris solides situés entre les deux godets se trouvent piégés par lesdits godets. Jusqu'à la présente invention, les deux vérins du second actionneur étaient des vérins pneumatiques particulièrement bien adaptés pour l'opération de claquage.
  • EXEMPLES DE REALISATION EXEMPLE 1 (Figures 2 A 7)
  • Les figures 4 à 7 illustrent, dans quatre configurations différentes, le schéma d'un circuit hydraulique alimentant le premier actionneur (50) d'une unité de collecte selon l'invention, qui possède par ailleurs les caractéristiques décrites précédemment (figures 2 et 3).
  • Le premier actionneur (50), ou vérin de levage, est un vérin double effet (51) avec un corps (55) et un piston (56) associé à une tige (52). La tige (52) est solidaire de l'unité de collecte (non représentée sur les figures 4 à 7). Le vérin double effet (51) a une chambre côté tige (53), dite inférieure, apte à imposer à tout moment au mât vertical mobile (9") un mouvement vertical vers le haut et une chambre côté piston (54), dite supérieure, apte à imposer à tout moment au dit mât vertical mobile un mouvement vertical vers le bas. Le circuit hydraulique comprend deux portions (63) et (64) qui alimentent les deux chambres (53) et (54) du vérin double effet (51). Le circuit peut être connecté, via un distributeur à trois positions, appelé "distributeur de sens" (80), à la "ligne pression" (P) et à la "ligne retour" (R) d'une centrale hydraulique. Le distributeur de sens (80) est naturellement dans la position (802) qui correspond au repos et peut être excité pour être mis dans l'une des deux autres positions possibles: la position (803) où la tige (52) du vérin fait descendre l'unité de collecte et la position (801) où la tige du vérin fait monter ladite unité de collecte.
  • La portion de circuit (64) comprend une branche principale (640) dont une extrémité est connectée au distributeur de sens (80) et dont l'autre extrémité est connectée à la chambre - piston (54) du vérin (51).
  • La portion de circuit (63) comprend une branche principale (630) dont une extrémité est connectée au distributeur de sens (80) et dont l'autre extrémité se ramifie en deux sous-branches; dont chacune est équipée d'un distributeur à deux positions (81, 82), la première sous-branche (631 comprenant 6310, 6311, 6312 et 6313) étant associée à une valve de retenue (90), la seconde sous-branche (632 comprenant 6320, 6321 et 6322) étant associée au servo-distributeur électrohydraulique (83). Les deux sous-branches se rejoignent en leurs autres extrémités pour constituer la portion de circuit (633) qui alimente la chambre - tige (53) du vérin (51).
  • La figure 4 illustre le circuit lorsque le vérin de levage est au repos. Le distributeur de sens (80) est naturellement dans la position (802), laquelle met les deux portions de circuit (63) et (64) en connexion entre elles par le biais de leurs branches principales respectives (630) et (640). Le distributeur (82) se trouve dans la position (821) qui bloque la circulation dans la deuxième sous-branche. Isolée par le distributeur (82) en position (821) et par la valve de retenue (90) qui est "non passante" (les pressions de pilotage des branchements (92) et (93) sont insuffisantes pour la rendre passante), la chambre-tige (53) est maintenue, en dehors de tout choc, à une pression sensiblement constante, associée au poids de l'unité de collecte. La branche de circuit (633) est équipée d'une sécurité, intégrée dans la fonction de la valve de retenue (90), pour limiter la pression dans la chambre-tige en cas de choc.
  • La figure 5 illustre le circuit lorsque le vérin de levage est en descente rapide. Le distributeur de sens (80) est excité pour occuper la position (803), laquelle met les deux portions de circuit (63) et (64) en communication avec la ligne de pression (P) de la centrale hydraulique, les deux portions de circuit (63) et (64) communiquant également entre elles, par le biais de leurs branches principales respectives (630) et (640), au niveau du distributeur de sens (80) lorsqu'il est dans cette position (803). Le distributeur (82) se trouve dans la position (821) qui bloque la circulation dans la deuxième sous-branche. Le distributeur (81) se trouve dans la position (811) et autorise le fonctionnement de la valve de retenue (90): dès que la résultante des efforts dus aux pressions de pilotage provenant d'une part de la branche (92) et d'autre part de la branche (93) est supérieure à une certaine valeur, la valve de retenue (90) devient "passante".
  • La valve de retenue (90) est réglée à une valeur critique, typiquement voisine de 180 bars, de sorte que, dès que ses pilotages disposent des pressions suffisantes, elle devient passante et l'huile peut s'écouler de la chambre-tige (53) vers la chambre-piston (54), via les branches (630) et (640), qui communiquent entre elles au niveau du distributeur de sens (80), placé en position (803). De la sorte, le débit d'huile provenant de la centrale hydraulique se trouve augmenté du débit d'huile provenant de la chambre-piston. Si le x est le rapport (section de la chambre-piston (54)) / (section de la tige (52)), le débit provenant de la centrale hydraulique est multiplié par x, de sorte qu'avec un tel montage différentiel, la tige de piston peut descendre avec une vitesse x fois plus rapide qu'avec un montage classique.
  • La figure 6 illustre le circuit lorsque le vérin de levage monte la tige (52). Le distributeur de sens (80) est excité pour occuper la position (801), laquelle met la branche principale (630) en connexion avec la ligne pression (P) de la centrale hydraulique et la branche principale (640) en communication avec le réservoir de la centrale hydraulique, via la ligne retour (R). Le distributeur (82) se trouve dans la position (821) et le distributeur (81) se trouve dans la position (811). L'huile sous pression passe par la branche principale (630), traverse le distributeur (81) en position (811) et rejoint les portions (6313) et (633) via le clapet anti-retour (91), pour alimenter la chambre-tige (53). Au fur et à mesure de la montée du piston, l'huile située dans la chambre-piston (54) est évacuée vers la ligne retour (R) de la centrale hydraulique, via la branche principale (640).
  • La figure 7 illustre le circuit lorsque le vérin de levage est activé dans un mode asservi lors de la collecte des débris. Le distributeur de sens (80) est excité pour occuper la position (801), laquelle met la branche principale (630) en connexion avec la ligne de pression (P) de la centrale hydraulique et la branche principale (640) en connexion avec la ligne retour (R) de la centrale hydraulique. Le distributeur (82) se trouve dans la position (822) et le distributeur (81) se trouve dans la position (812). Suivant que l'on veut faire monter ou descendre le vérin, le servo-distributeur est activé pour être mis dans la position (831) pour la descente ou (833) pour la montée.
  • Le servo-distributeur est piloté par un automate programmable (84) qui est reçoit les indications fournies par deux capteurs:
    • le premier indique la distance (H) entre un niveau horizontal de référence (N) (par exemple une plate-forme de la tourelle porte-outils) et un point fixe du châssis (110') de l'unité de collecte (représenté sur la figure 7 par le niveau horizontal commun des axes de rotation des godets), ce qui permet de connaître l'altitude de l'axe (115') autour duquel pivote le godet (120') dont la forme est schématisée en pointillés;
    • - le second indique la course (L) de la tige du vérin de fermeture (200'), lequel, par le biais d'une bielle commune (300'), commande l'ouverture et la fermeture des deux godets.
  • A toute valeur L de la course du piston du vérin de fermeture correspond un angle d'ouverture déterminé des godets, égal à deux fois l'angle (α) que fait le bord (129') du godet avec la verticale. En désignant par d la distance de ce bord (129') à l'axe de pivotement (115') et par h la distance entre la lame (128') et la projection orthogonale de l'axe de pivotement sur ledit bord (129'), on connaît à tout moment la différence d'altitude entre l'axe (115') et ladite lame, qui est donnée par l'expression: ΔZ= d cos α + h sin α.
  • Ainsi, à toute position de la tige du vérin de fermeture correspond une altitude à laquelle doit se trouver ledit axe pour que la lame (128') se trouve à une altitude supérieure ou égale à une valeur donnée correspondant à l'altitude théorique du fond de cuve augmentée d'une certaine marge de sécurité, typiquement une ou quelques dizaines de millimètres. Le système de pilotage programmable est un automate programmable (84) associé à une mémoire informatique (85) qui lui permet, en fonction des valeurs de mesure de (H) et (L) transmises, de définir une altitude de consigne au vérin de levage (50). Si l'altitude de consigne est supérieure à l'altitude effective du vérin de levage, il y a danger de collision entre la lame du godet et le fond de cuve et il faut que le servo-distributeur soit activé vers une position (833) pour corriger rapidement la trajectoire de ladite lame. L'automate programmable (84) envoie un signal (S) au servo-distributeur (83), qui est un servo-distributeur à action proportionnelle, imposant à la portion de circuit alimentant la chambre côté tige un débit d'huile (Φ) d'autant plus important que l'écart par rapport à la position de consigne est grand. Le signal présente des caractéristiques qui permettent de déplacer l'organe mobile du servo-distributeur dans une position de type (833) plus ou moins avancée, selon le débit d'huile sous pression voulu, l'huile provenant des branches (630) et (632) et alimentant la chambre côté tige via les branches (6321), (6322) et (633).
  • Lorsque par contre l'altitude de consigne est inférieure à l'altitude effective du vérin de levage (50), il faut que le servo-distributeur soit activé pour abaisser l'altitude de la lame. L'automate programmable (84) envoie un signal (S) au servo-distributeur (83) pour le mettre dans une configuration correspondant à une position (831), où l'huile sous pression n'alimente plus la chambre côté-tige, laquelle est mise en relation avec la ligne retour (R), via les branches (65), (6321), (6322) et (633), le débit (Φ) d'évacuation de l'huile vers la ligne retour étant contrôlé par l'ouverture du servo-distributeur, laquelle est commandée par le signal émis par l'automate programmable.
  • L'automate programmable (84) recueille à intervalles de temps réguliers, typiquement quelques dizaines de millisecondes, l'altitude H de l'axe de pivotement du godet et la valeur L de la course du vérin de fermeture et déduit de ces valeurs, à l'aide d'un programme informatique basé sur un modèle cinématique qui décrit la trajectoire de la lame dans un référentiel approprié, la valeur de consigne qu'il faut imposer à l'altitude de l'axe de pivotement du godet et émet un signal (S) en direction du servo-distributeur (83) de façon à introduire ou évacuer le volume d'huile nécessaire pour atteindre la bonne altitude.
  • Le second actionneur (200'), ici simplement schématisé essentiellement pour illustrer le rôle qu'il joue dans le principe de fonctionnement du premier actionneur (50), ce dernier étant piloté en particulier en fonction de la configuration spatiale dudit second actionneur. Ce second actionneur, dont le corps est solidaire de la tige (52) du premier actionneur (50), est ici un vérin hydraulique double effet relié à un circuit d'alimentation dont une partie permet un montage en différentiel pour assurer la fonction de claquage.
  • Ainsi, pour nettoyer un trou d'anode lors du remplacement d'une anode, on peut utiliser une unité de collecte selon l'invention, telle qu'illustrée sur les figures 2 à 7, montée sur un mât vertical télescopique solidaire d'une machine de service électrolyse (MSE) et on procède de la matière suivante :
    • On amène à l'aide des actionneurs de la MSE ladite unité de collecte, en position fermée, au droit du dit trou anodique, le vérin de levage étant au repos (configuration illustrée par la figure 4) ;
    • On actionne le vérin de levage en descente rapide (configuration illustrée par la figure 5) jusqu'à une altitude prédéterminée, supérieure au niveau du bain situé dans la cuve, afin d'autoriser l'ouverture de l'unité de collecte;
    • On actionne l'actionneur des godets, dit « vérin de fermeture », de telle sorte qu'il ouvre les godets jusqu'à ce qu'ils atteignent une position ouverte de référence, typiquement proche de l'ouverture maximale des godets permise par la course du dit vérin de fermeture.
    • On actionne le vérin de levage en descente « lente » (alimentation spécifique de la chambre côté piston) jusqu'à ce qu'on détecte le contact d'au moins une lame sur le fond de cuve ; on utilise par exemple un capteur permettant de détecter le moment où la pression dans le circuit d'huile qui alimente la chambre côté piston augmente brutalement et un capteur de déplacement qui permet de relever l'altitude de la lame lors dudit contact;
    • On définit à partir de cette altitude la hauteur à laquelle doit être ladite lame, en tenant compte d'une distance de sécurité et on en déduit la trajectoire que doit suivre ladite lame entre ladite position ouverte de référence et la position fermée;
    • On actionne ledit vérin de levage pour remonter ladite unité de collecte jusqu'au point origine de la trajectoire définie à l'étape précédente (configuration illustrée par la figure 6);
    • On actionne le vérin de fermeture, le vérin de levage étant en mode asservi de façon à ce que la lame suive la trajectoire définie précédemment (configuration illustrée par la figure 7) ;
    • Une fois l'unité de collecte fermée, on actionne le vérin de levage en mode montée (configuration illustrée par la figure 6) puis, lorsque l'unité de collecte a atteint une certaine altitude, on utilise les actionneurs de la MSE pour déplacer l'ensemble vers une aire de réception des débris récoltés.
    EXEMPLE 2 (Figure 8)
  • La figure 8 illustre schématiquement une unité de collecte, dans laquelle le premier actionneur (50) est un moteur électrique (53') alimenté à l'aide d'un circuit qui permet d'asservir la rotation dudit moteur. Ici, le moteur électrique est celui d'un vérin électrique (51') qui impose un déplacement vertical à la liaison (52') solidaire du châssis (110'). Dans une variante de cet exemple, on remplace le vérin électrique par un treuil électrique, la liaison étant alors un câble relié audit châssis, le déplacement vertical de celui-ci étant par exemple guidé par un dispositif de guidage fixé sur le support mobile.
  • Le moteur (53'), suivant le courant de commande (I) envoyé par le variateur de vitesse (83'), est à tout moment apte à imposer à la liaison (52') un mouvement vertical vers le haut ou vers le bas à la vitesse requise. Le variateur de vitesse (83') est piloté par un automate programmable (84) qui reçoit les indications fournies par deux capteurs :
    • le premier indique la distance (H) entre un niveau horizontal de référence (N) (par exemple une plate-forme de la tourelle porte-outils) et un point fixe du châssis (110') de l'unité de collecte (représenté sur la figure par le niveau horizontal commun des axes de rotation des godets), ce qui permet de connaître l'altitude de l'axe (115') autour duquel pivote le godet (120') dont la forme est schématisée en pointillés;
    • le second indique la course (L) de la tige du vérin de fermeture (200'), lequel, par le biais d'une bielle commune (300'), commande l'ouverture et la fermeture des deux godets.
  • A toute valeur L de la course du piston du vérin de fermeture correspond un angle d'ouverture déterminé des godets, égal à deux fois l'angle (α) que fait le bord (129') du godet avec la verticale. En désignant par d la distance de ce bord (129') à l'axe de pivotement (115') et par h la distance entre la lame (128') et la projection orthogonale de l'axe de pivotement sur ledit bord (129'), on connaît à tout moment la différence d'altitude entre l'axe (115') et ladite lame, qui est donnée par l'expression: ΔZ= d cos α + h sin α.
  • Ainsi, à toute position de la tige du vérin de fermeture correspond une altitude à laquelle doit se trouver ledit axe pour que la lame (128') se trouve à une altitude supérieure ou égale à une valeur donnée correspondant à l'altitude théorique du fond de cuve augmentée d'une certaine marge de sécurité, typiquement une ou quelques dizaines de millimètres. Le système de pilotage programmable comprend un automate programmable (84) associé à une mémoire informatique (85) qui lui permet, en fonction des valeurs de mesure de (H) et (L) transmises, de définir l'altitude de consigne de l'axe sensiblement horizontal autour du quel pivote un godet. Si l'altitude de consigne est supérieure à l'altitude effective, il y a danger de collision entre la lame du godet et le fond de cuve. Le variateur de vitesse (83') est alors activé de telle manière qu'il puisse corriger rapidement la trajectoire de la lame. L'automate programmable (84) envoie un signal (S) au variateur de vitesse (83'), qui convertit ledit signal en un courant de commande (I) qui impose au dit moteur électrique un sens de rotation et une vitesse d'autant plus importants que l'écart par rapport à la position de consigne est grand. Inversement, lorsque l'altitude de consigne est inférieure à l'altitude effective, le variateur de vitesse (83') est activé de telle manière qu'il puisse corriger rapidement l'asservissement du moteur, pour abaisser l'altitude de la lame. L'automate programmable (84) envoie un signal (S) au variateur de vitesse (83') qui impose au moteur un sens de rotation et une vitesse d'autant plus importants que l'écart par rapport à la position de consigne est grand.

Claims (19)

  1. Unité de collecte (100) destinée à collecter les débris solides et les boues se trouvant dans les milieux liquides d'une cellule de production d'aluminium, tels que le bain d'électrolyse et le métal liquide, en particulier pelle à croûte (100') destinée au nettoyage des trous anodiques, comprenant:
    a) un moyen de fixation permettant de fixer ladite unité de collecte sur un support mobile (5') apte à déplacer ladite unité de collecte au-dessus de la zone à nettoyer ;
    b) une liaison (520) actionnée par un premier actionneur (50) qui impose à ladite liaison un déplacement par rapport audit support mobile suivant la direction verticale;
    c) un châssis (110) solidaire de ladite liaison;
    d) au moins un godet (120a, 120b) articulé, pivotant autour d'un axe (115a, 115b) sensiblement horizontal, monté sur ledit châssis, présentant une lame (128a, 128b) sensiblement horizontale et actionné par un deuxième actionneur (200, 201), solidaire dudit châssis, qui impose audit godet un mouvement de rotation autour dudit axe sensiblement horizontal,
    caractérisée en ce que ledit premier actionneur (50) est relié à un système de pilotage programmable (83 + 84 + 85 ; 83' + 84 + 85) apte à :
    i) déterminer, directement ou indirectement, l'altitude dudit axe sensiblement horizontal et la différence d'altitude entre ladite lame dudit godet et ledit axe sensiblement horizontal;
    ii) définir, à partir des valeurs déterminées en i), le déplacement vertical devant être imposé à ladite liaison pour que l'altitude de ladite lame soit au moins égale à une valeur prédéterminée;
    iii) définir et transmettre audit premier actionneur un flux de commande (Φ, I) approprié, permettant audit premier actionneur d'imposer ledit déplacement vertical à ladite liaison.
  2. Unité de collecte (100, 100') selon la revendication 1, caractérisée en ce que ledit système de pilotage programmable comprend :
    a) une unité de contrôle et de commande qui recueille les données concernant ladite altitude dudit axe sensiblement horizontal et ladite différence d'altitude entre la lame du godet et l'axe sensiblement horizontal, déduit de ces données une valeur de consigne qui doit être imposée à l'altitude dudit axe sensiblement horizontal de façon à ce que l'altitude de la lame soit au moins égale à une valeur prédéterminée, ce qui permet d'éviter tout risque de contact entre ladite lame et un obstacle situé en dessous de ladite unité de collecte, typiquement le fond de cuve, et émet un signal (S) représentatif de ladite valeur de consigne ;
    b) un convertisseur qui traduit ledit signal en un flux de commande (Φ, I) et transmet ledit flux de commande audit premier actionneur.
  3. Unité de collecte (100, 100') selon la revendication 1 ou 2 , caractérisée en ce que ledit système de pilotage programmable est relié à un premier capteur permettant de mesurer le déplacement vertical de ladite liaison par rapport à un niveau de référence (N) et à un deuxième capteur permettant de mesurer, directement ou indirectement, la différence d'altitude entre ladite lame (128a, 128b) dudit godet (120a, 120b) et ledit axe (115a, 115b) sensiblement horizontal, par exemple un capteur permettant de déterminer la position angulaire (α) dudit godet.
  4. Unité de collecte (100, 100') selon la revendication 3, caractérisée en ce que ledit deuxième actionneur est un vérin imposant une rotation audit godet par le biais d'une bielle, et en ce que ledit moyen permettant de mesurer indirectement la différence d'altitude entre ladite lame (128a, 128b) dudit godet (120a, 120b) est un capteur de déplacement mesurant le déplacement (L) de la tige dudit vérin par rapport au corps dudit vérin.
  5. Unité de collecte (100, 100') la revendication 3 ou 4, dans laquelle ladite unité de contrôle et de commande est un automate programmable industriel qui :
    a) recueille à intervalles de temps réguliers, typiquement quelques dizaines de millisecondes, les données fournies par ledit premier capteur et ledit deuxième capteur ;
    b) déduit de ces données, à l'aide d'un programme informatique basé sur un modèle cinématique décrivant la trajectoire de la lame dans un référentiel approprié, la valeur de consigne qu'il faut imposer à l'altitude de l'axe de pivotement du godet et
    c) transmet audit convertisseur un signal (S) représentatif de ladite valeur de consigne.
  6. Unité de collecte (100, 100') selon la revendication 5, dans laquelle ledit programme informatique implémenté dans ledit automate programmable est basé sur un modèle cinématique décrivant une trajectoire de la lame qui est déduite du profil théorique du fond de cuve par translation suivant un vecteur orienté verticalement vers le haut et dont l'intensité correspond à une distance de sécurité prédéfinie.
  7. Unité de collecte (100, 100') selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comprend un châssis (110) et deux godets (120a, 120b) montés sur ledit châssis, disposés symétriquement par rapport à un plan sensiblement vertical et articulés, pivotant autour de deux axes sensiblement horizontaux (115a, 115b), chaque godet présentant une lame (128a, 128b) en vis-à-vis de la lame de l'autre godet, le deuxième actionneur, solidaire dudit châssis, imposant à chacun desdits godets un mouvement de rotation sensiblement symétrique par rapport audit plan sensiblement vertical, de façon à ce que les débris solides situés entre les deux godets se trouvent piégés par lesdits godets.
  8. Unité de collecte (100, 100') selon l'une quelconque des revendications 1 à 7, caractérisée en ce que ledit second actionneur (200, 201, 200') est un vérin hydraulique alimenté par un circuit qui présente au moins deux schémas de fonctionnement pour la fermeture des godets:
    a) un premier schéma, où des efforts suffisants sont transmis aux godets pour permettre d'entraîner les débris solides rencontrés par les godets,
    b) un deuxième schéma, correspondant à un montage différentiel, où une énergie cinétique suffisante est transmise aux godets pour que la fonction de claquage puisse être remplie.
  9. Unité de collecte (100, 100') selon l'une quelconque des revendications 2 à 8, caractérisée en ce que ledit premier actionneur comprend un moteur électrique (53') solidaire dudit support mobile, une liaison (52') solidaire de ladite unité de collecte et couplée audit moteur de telle sorte que la rotation dudit moteur électrique entraîne le déplacement de ladite unité de collecte par le biais de ladite liaison, en ce que ledit convertisseur est un variateur de vitesse (83') qui transmet audit moteur électrique un courant de commande (I), dont les caractéristiques permettent audit moteur électrique d'imposer ledit déplacement vertical par le biais de ladite liaison.
  10. Unité de collecte (100, 100') selon la revendication 9, dans laquelle ledit moteur électrique est le moteur d'un vérin électro-mécanique et dans laquelle ladite liaison est la tige du dit vérin électro-mécanique.
  11. Unité de collecte (100, 100') selon la revendication 9, dans laquelle ledit moteur électrique est le moteur d'un treuil électrique et dans laquelle la dite liaison est le câble du dit treuil.
  12. Unité de collecte (100, 100') selon l'une quelconque des revendications 2 à 8, dans laquelle ledit premier actionneur comprend un vérin hydraulique (51) comprenant un corps (55) solidaire dudit support mobile, ladite liaison étant la tige (52) dudit vérin hydraulique, et dans laquelle ledit convertisseur est un distributeur monté sur la portion du circuit hydraulique qui alimente avec un débit contrôlé la chambre côté tige du dit vérin hydraulique.
  13. Unité de collecte (100, 100') selon la revendication 12 dans laquelle ledit distributeur (83) est un servo-distributeur électrohydraulique asservi en débit pour contrôler le volume d'huile à l'intérieur de la chambre côté tige, de préférence, un servo-distributeur à action proportionnelle commandé électriquement.
  14. Unité de collecte (100, 100') selon la revendication 12 ou 13, dans laquelle ledit distributeur (83) est piloté par un automate programmable (84) qui recueille à intervalles de temps réguliers, typiquement quelques dizaines de millisecondes, l'altitude H de l'axe (115') de pivotement du godet et la valeur L du déplacement de la tige du piston du deuxième actionneur (200'), déduit de ces valeurs, à l'aide d'une mémoire informatique (85) associée, la valeur de consigne qu'il faut imposer à l'altitude de l'axe de pivotement du godet et injecte un signal (S) en direction dudit distributeur (83) de façon à diminuer ou augmenter le volume de l'huile qui alimente la chambre côté tige et qui est nécessaire pour atteindre la bonne altitude.
  15. Unité de collecte (100, 100') selon l'une quelconque des revendications 12 à 14, dans laquelle ledit vérin hydraulique (51) est un vérin double effet dont la tige (52) est solidaire de ladite unité de collecte, avec une chambre côté tige (53) apte à imposer à tout moment à ladite tige un mouvement vertical vers le haut et une chambre côté piston (54) apte à imposer à tout moment à ladite tige un mouvement vertical vers le bas, les deux chambres pouvant être connectées, par l'intermédiaire d'au moins un distributeur (80), à une source de pression (P) ou à un réservoir (R), le circuit d'alimentation comprenant plusieurs portions de circuits qui permettent de réaliser les schémas d'alimentation hydraulique suivants:
    a) un schéma différentiel, où la chambre côté tige (53) et la chambre côté piston (54) sont connectées à ladite source de pression (P), permettant d'assurer la descente à grande vitesse du mât;
    b) un schéma correspondant au repos, l'unité de collecte restant suspendue, le circuit étant aménagé de telle sorte que ladite unité de collecte peut se déplacer verticalement sans effort en cas de rencontre d'obstacle;
    c) un schéma où la chambre côté tige (53) est connectée à la source de pression (P), correspondant à la montée de l'unité de collecte;
    d) un schéma en fonctionnement asservi, où la portion de circuit alimentant la chambre côté tige comprend un distributeur (83) asservi en débit et piloté par un système de pilotage programmable comprenant une unité de contrôle et de commande qui recueille les données concernant l'altitude dudit axe sensiblement horizontal et la différence d'altitude entre la lame du godet et l'axe sensiblement horizontal, déduit de ces données la valeur de consigne qu'il faut imposer à l'altitude dudit axe sensiblement horizontal et émet un signal représentatif de ladite valeur de consigne en direction dudit distributeur.
  16. Module de service (7) destiné à être utilisé dans une usine de production d'aluminium par électrolyse ignée et comprenant un chariot (8) et des organes de manutention et d'intervention (10), caractérisé en ce qu'il comprend en outre une unité de collecte (100) selon l'une quelconque des revendications 1 à 15.
  17. Unité de service (5) d'une usine de production d'aluminium par électrolyse ignée comprenant un pont roulant (6) caractérisée en ce qu'elle comprend également au moins un module de service (7) selon la revendication 16.
  18. Utilisation d'un module de service (7) selon la revendication 16 pour les interventions sur des cellules d'électrolyse (2) destinées à la production d'aluminium par électrolyse ignée, en particulier pour le nettoyage des trous anodiques, dans laquelle ledit premier actionneur est piloté par ledit système de pilotage programmable de telle sorte que ledit axe sensiblement horizontal suit une trajectoire prédéfinie, typiquement située au-dessus et parallèle au fond de cuve.
  19. Procédé pour nettoyer un trou d'anode lors du remplacement d'une anode, dans lequel on utilise une unité de collecte selon l'une quelconque des revendications 1 à 15, ledit premier actionneur étant monté solidaire d'une machine de service (5) et on procède de la manière suivante :
    a. on amène à l'aide des actionneurs de la MSE ladite unité de collecte, en position fermée, au droit du dit trou anodique, ledit premier actionneur étant au repos;
    b. on actionne ledit premier actionneur en descente rapide jusqu'à une altitude prédéterminée, supérieure au niveau du bain situé dans la cuve, afin d'autoriser l'ouverture de l'unité de collecte ;
    c. on actionne ledit deuxième actionneur de telle sorte qu'il ouvre les godets jusqu'à ce que lesdits godets atteignent une position ouverte de référence, typiquement proche de l'ouverture maximale permise par la course du deuxième actionneur;
    d. on actionne ledit premier actionneur en descente « lente » jusqu'à une altitude prédéfinie;
    e. on définit, à partir de l'altitude atteinte en fin d'étape précédente, la hauteur à laquelle doit être ladite lame, en tenant compte d'une distance de sécurité et on en déduit la trajectoire que doit suivre ladite lame entre ladite position ouverte de référence et la position fermée;
    f. on actionne ledit premier actionneur pour remonter ladite unité de collecte jusqu'au point origine de la trajectoire définie à l'étape précédente ;
    g. on actionne ledit deuxième actionneur, ledit premier actionneur étant en mode asservi de façon à ce que la lame suive la trajectoire définie en e) ;
    h. une fois l'unité de collecte fermée, on actionne le premier actionneur en mode montée puis, lorsque l'unité de collecte a atteint une certaine altitude, on utilise les actionneurs de la MSE pour déplacer l'ensemble vers une aire de réception des débris récoltés.
EP10799073.1A 2009-12-11 2010-12-07 Dispositif destine a collecter des debris solides dans une cuve d'electrolyse destinee a la production d'aluminium Active EP2510136B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0905992A FR2953862B1 (fr) 2009-12-11 2009-12-11 Dispositif destine a collecter des debris solides dans une cuve d'electrolyse destinee a la production d'aluminium
PCT/FR2010/000813 WO2011070245A1 (fr) 2009-12-11 2010-12-07 Dispositif destine a collecter des debris solides dans une cuve d'electrolyse destinee a la production d'aluminium

Publications (2)

Publication Number Publication Date
EP2510136A1 EP2510136A1 (fr) 2012-10-17
EP2510136B1 true EP2510136B1 (fr) 2013-10-23

Family

ID=42131884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10799073.1A Active EP2510136B1 (fr) 2009-12-11 2010-12-07 Dispositif destine a collecter des debris solides dans une cuve d'electrolyse destinee a la production d'aluminium

Country Status (9)

Country Link
US (1) US20120234690A1 (fr)
EP (1) EP2510136B1 (fr)
CN (1) CN102666933B (fr)
AU (1) AU2010329754B2 (fr)
CA (1) CA2780166A1 (fr)
FR (1) FR2953862B1 (fr)
RU (1) RU2012129271A (fr)
WO (1) WO2011070245A1 (fr)
ZA (1) ZA201202644B (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103849889B (zh) * 2013-05-15 2016-06-29 洛阳宇航重工机械有限公司 残阳极电解质清理设备
CN104087972B (zh) * 2014-05-19 2017-04-19 江苏建筑职业技术学院 抬包吸铝管气压驱动清理机
CN108796577A (zh) * 2018-09-04 2018-11-13 苏州奥特金属制品有限公司 一种大型金属制品阳极氧化固定架
EP4293141A1 (fr) 2022-06-13 2023-12-20 Dubai Aluminium PJSC Ensemble d'entretien d'anode pour une installation d'électrolyse d'aluminium et ses procédés de fonctionnement

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3131624A1 (de) * 1980-09-02 1982-06-16 VEB Schwermaschinenbaukombinat TAKRAF-Stammbetrieb-Betrieb für Anlagenbau und Rationalisierung, DDR 7010 Leipzig Greifer mit beeinflussbarem bewegungsverlauf der schneiden von greiferschalen
SE436436B (sv) * 1981-06-18 1984-12-10 Eurotrade Machine Pool Ab Djupmetare vid grevmaskiner
NO176283C (no) 1990-02-02 1995-03-08 Hydeq As Kjöretöy hovedsakelig innrettet for opprensking av badskorpe- og kullrester fra elektrolyseceller
IT1263968B (it) 1993-02-25 1996-09-05 Gianfranco Zannini Apparecchiatura automatizzata per il cambio degli anodi delle celle elettrolitiche per la produzione di alluminio
DE19806816B4 (de) * 1998-02-18 2005-04-14 Rohr Gmbh Motor-Unterwassergreifer mit Überwachungseinrichtung
EP1178004B1 (fr) * 2000-08-04 2006-03-08 Reel Unité de collecte, de nettoyage et de calibrage de cuves d'électrolyse mise en oeuvre pour la production d'aluminium
FR2868086B1 (fr) * 2004-03-25 2006-05-26 Ecl Soc Par Actions Simplifiee Module de service compact destine aux usines de production d'aluminium par electrolyse
CN201087073Y (zh) * 2007-08-08 2008-07-16 四川启明星铝业有限责任公司 铝电解多功能天车
CN201183832Y (zh) * 2008-03-31 2009-01-21 中国铝业股份有限公司 铝电解槽专用捞块装置
CN201193190Y (zh) * 2008-04-18 2009-02-11 中国有色(沈阳)冶金机械有限公司 一种铝电解多功能起重机的工具小车
CN201195667Y (zh) * 2008-04-18 2009-02-18 中国有色(沈阳)冶金机械有限公司 铝电解多功能起重机的工具小车装置
CN201195666Y (zh) * 2008-04-18 2009-02-18 中国有色(沈阳)冶金机械有限公司 铝电解多功能起重机回转装置下支架装置

Also Published As

Publication number Publication date
ZA201202644B (en) 2013-06-26
AU2010329754A1 (en) 2012-05-10
US20120234690A1 (en) 2012-09-20
RU2012129271A (ru) 2014-01-20
FR2953862A1 (fr) 2011-06-17
FR2953862B1 (fr) 2011-12-16
EP2510136A1 (fr) 2012-10-17
CN102666933A (zh) 2012-09-12
WO2011070245A1 (fr) 2011-06-16
AU2010329754B2 (en) 2013-10-31
CA2780166A1 (fr) 2011-06-16
CN102666933B (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
CA2737927C (fr) Machine de service utilisee pour intervenir sur les cellules d'electrolyse de production d'aluminium par electrolyse ignee
EP2510136B1 (fr) Dispositif destine a collecter des debris solides dans une cuve d'electrolyse destinee a la production d'aluminium
CA2560675C (fr) Module de service compact destine aux usines de production d'aluminium par electrolyse
CA2591495C (fr) Dispositif de manutention des capots d'une cellule de production d'aluminium par electrolyse
EP2430215B1 (fr) Dispositif pour collecter les debris solides presents dans le bain et le metal liquide d'une cuve d lectrolyse destinee a la production d'aluminium, par raclage du fond de ladite cuve
EP3114257B1 (fr) Système pour la réalisation d'opérations liées à l'exploitation de cellules d'une installation de production d'aluminium par électrolyse
EP2761061B1 (fr) Module de service compact et son utilisation dans une usine de production d'aluminium par electrolyse
EP2373567A1 (fr) Dispositif d'attache de recipients pour collecter des debris solides et pivotant a l'extremite d'un bras mobile, en particulier dispositif d'attache des godets articules d'une pelle a croute
EP1178004B1 (fr) Unité de collecte, de nettoyage et de calibrage de cuves d'électrolyse mise en oeuvre pour la production d'aluminium
FR3032456B1 (fr) Machine de service pour l'exploitation d'une installation de production d'aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B66C 3/20 20060101ALI20130327BHEP

Ipc: B66C 3/02 20060101ALI20130327BHEP

Ipc: C25C 3/06 20060101AFI20130327BHEP

Ipc: B66C 3/16 20060101ALI20130327BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 637669

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010011257

Country of ref document: DE

Effective date: 20131219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 637669

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

BERE Be: lapsed

Owner name: E.C.L.

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010011257

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131207

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

26N No opposition filed

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131207

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010011257

Country of ref document: DE

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20151123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 14

Ref country code: DE

Payment date: 20231121

Year of fee payment: 14