Beschreibung Halbleiterlampe Die Erfindung betrifft eine Halbleiterlampe, insbesondere ei¬ ne Glühlampen-Retrofitlampe, welche mindestens eine Halblei¬ terlichtquelle, einen Treiber zum Betreiben der mindestens einen Halbleiterlichtquelle und mindestens einen Kühlkörper zum Kühlen der mindestens einen Halbleiterlichtquelle und des Treibers aufweist.
DE 10 2007 059 471 AI bezieht sich auf eine Scheinwerferlampe mit einem Sockel und einer durch internationale Normung be¬ züglich Abstand und Lage zu einer Referenzebene des Sockels vorgegebenen Lichtabgabe, wobei die Lichtabgabe durch eine oder mehrere Halbleiterlichtquellen erfolgt. Eine Betriebs¬ elektronik oder ein Teil der Betriebselektronik zum Betreiben der einen oder mehreren Halbleiterlichtquellen kann in dem Sockel der Scheinwerferlampe angeordnet sein. Eine oder meh- rere Halbleiterlichtquellen können auf einer tragenden Struktur mit einer ersten und einer zu dieser parallelen zweiten flächigen Seite angeordnet sein.
Es ist die Aufgabe der vorliegenden Erfindung, eine Möglich- keit zur besonders effektiven Kühlung von Halbleiterlampen, insbesondere Retrofitlampen, bereitzustellen.
Diese Aufgabe wird gemäß den Merkmalen des unabhängigen Anspruchs gelöst. Bevorzugte Ausführungsformen sind insbesonde- re den abhängigen Ansprüchen entnehmbar.
Die Aufgabe wird gelöst durch eine Halbleiterlampe, aufwei¬ send mindestens eine Halbleiterlichtquelle, einen Treiber zum Betreiben der mindestens einen Halbleiterlichtquelle und min- destens einen Kühlkörper zum Kühlen der mindestens einen Halbleiterlichtquelle und des Treibers, wobei der mindestens eine Kühlkörper einen ersten Kühlkörper, welcher mit der min-
destens einen Halbleiterlichtquelle thermisch verbunden ist, und einen zweiten Kühlkörper, welcher mit dem Treiber thermisch verbunden ist, umfasst, wobei der erste Kühlkörper und der zweite Kühlkörper thermisch voneinander isoliert sind.
Durch die Verwendung von thermisch isolierten Kühlkörpern für die Halbleiterlichtquelle (n) und den Treiber kann deren ther¬ mische Beeinflussung, insbesondere der empfindlicheren Bauteile, z.B. des Treibers, durch die thermisch unempfindliche- ren Bauteile, z.B. die Halbleiterlichtquellen, gering gehalten werden. So kann beispielsweise ein Großteil der thermischen Verlustleistung an den Halbleiterlichtquellen anfallen. Durch die thermisch separaten Kühlkörper oder Kühlkörperteile wird die Treiberkühlung unabhängig von der Lichtquellenküh- lung und kann somit auf einem geringeren Temperaturniveau aufsetzen. Für temperatursensitive Bauteile in dem Treiber, wie integrierte Bauelemente oder Elektrolytkondensatoren, bleibt ein größerer Temperaturunterschied zur Entwärmung, so dass auf zusätzliche Maßnahmen wie z.B. den Einsatz von Wär- mepads verzichtet werden kann. Durch die geringeren Tempera¬ turen an z.B. dem Treiber wird auch dessen Ausfallwahrscheinlichkeit reduziert und seine Lebensdauer verlängert. Das Kon¬ zept des geteilten bzw. thermisch separaten Kühlkörpers kann sowohl für passiv gekühlte Lampen als auch für aktiv gekühlte Lampen verwendet werden.
Eine thermische Isolation der Kühlkörper kann beispielsweise dann vorliegen, wenn eine Grenzfläche vorhanden ist, welche nicht mittels einer entsprechenden Anbindung und/oder Materi- alwahl für einen signifikanten Wärmefluss ausgelegt ist. In anderen Worten kann eine thermische Isolation der Kühlkörper beispielsweise dann vorliegen, wenn eine Temperaturdifferenz zwischen den angrenzenden Kühlkörpern im Bereich der Grenzfläche besteht.
Der Grad der thermischen Isolierung kann je nach Ausführungsform unterschiedlich sein. Um eine thermische Trennung der
beiden Kühlkörper zu erreichen, kann zwischen ihnen z.B. ein Luftspalt und/oder ein schlecht wärmeleitendes Material, eine schlecht wärmeleitende Kleberverbindung, ein schlecht wärme¬ leitendes Tape, eine schlecht wärmeleitende Paste, ein Dich- tungsmaterial wie Silikon/PU oder ein schlecht wärmeleitender Kunststoff usw. vorgesehen sein. Um einen Luftspalt zu garantieren, könnten z.B. geeignete Abstandshalterpins oder Auf- rauungen an den Verbindungsflächen der beiden Kühlkörper vorgesehen werden.
In einer Ausgestaltung mit einem thermisch gut leitenden ersten Kühlkörper, z.B. aus Metall, und einem relativ dazu weit schlechter wärmeleitenden zweiten Kühlkörper, z.B. aus Kunststoff, kann eine ausreichende thermische Isolierung der bei- den Kühlkörper auch bei direktem Materialkontakt der beiden Kühlkörper erzielt werden, und zwar aufgrund der Tatsache, dass die Wärme des ersten Kühlkörpers eher an Luft abgeführt wird als an den schlechter thermisch leitenden zweiten Kühlkörper und so ein Aufheizen der Treiberelektronik durch die Verlustleistung der Lichtquelle reduziert bzw. verhindert wird .
Beispielsweise kann von einer thermischen Isolation ausgegangen werden, wenn
- ein Spalt zwischen den beiden Kühlkörpern mit mindestens einem wärmeisolierenden Material mit einer Wärmeleitfähigkeit von 1 W/ (m-K) oder weniger, insbesondere von nicht mehr als 0,5 W/(m-K), insbesondere von nicht mehr als 0,3 W/(m-K), insbesondere von nicht mehr als 0,1 W/(m-K) ge- füllt ist, z.B. Luft oder einige Kunststoffe oder Kleber; und/oder
- ein Unterschied in der Wärmeleitfähigkeit zwischen den beiden Kühlkörpern zumindest im Bereich der Grenzfläche (n) mindestens einen Faktor 10 beträgt, z.B. bei einem ersten Kühlkörper aus einer Aluminium-Magnesium-Legierung mit ca.
50 W/ (m-K) und einem zweiten Kühlkörper aus Kunststoff mit nicht mehr als 5 W/ (m-K)
vorliegt. Bei einem Unterschied in der Wärmeleitfähigkeit um mindestens den Faktor 10 braucht kein Spalt zwischen den bei¬ den Kühlkörpern vorhanden zu sein, kann es für eine noch weiter verbesserte Wärmeisolierung aber.
Besonders bevorzugt wird eine Füllung des Spalts aus einer Kombination mit mindestens einem Luftspalt und mindestens ei¬ nem wärmeisolierenden Material, in der Reihenfolge Luft¬ spalt/wärmeisolierendes Material /Luftspalt .
Für eine kompakte Ausgestaltung der Halbleiterlampe kann es eine bevorzugte Weiterbildung sein, dass ein kleinster Abstand zwischen den beiden Kühlkörpern ca. 5 mm oder weniger, insbesondere 3 mm oder weniger, insbesondere 1 mm oder weni- ger beträgt.
Die Halbleiterlampe kann insbesondere eine Retrofitlampe, speziell eine Glühlampen-Retrofitlampe, sein. Jedoch ist die Halbleiterlampe nicht darauf beschränkt, sondern kann z.B. auch eine Halogenlampen-Retrofitlampe sein, insbesondere mit einer flachen Vorderseite.
Bevorzugterweise umfasst die mindestens eine Halbleiterlicht¬ quelle mindestens eine Leuchtdiode. Bei Vorliegen mehrerer Leuchtdioden können diese in der gleichen Farbe oder in verschiedenen Farben leuchten. Eine Farbe kann monochrom (z.B. rot, grün, blau usw.) oder multichrom (z.B. weiß) sein. Auch kann das von der mindestens einen Leuchtdiode abgestrahlte Licht ein infrarotes Licht (IR-LED) oder ein ultraviolettes Licht (UV-LED) sein. Mehrere Leuchtdioden können ein Mischlicht erzeugen; z.B. ein weißes Mischlicht. Die mindestens eine Leuchtdiode kann mindestens einen wellenlängenumwandelnden Leuchtstoff enthalten (Konversions-LED) . Die mindestens eine Leuchtdiode kann in Form mindestens einer einzeln ge- häusten Leuchtdiode oder in Form mindestens eines LED-Chips (Multichip-LED) vorliegen. Mehrere LED-Chips können auf einem gemeinsamen Substrat ("Submount") montiert sein. Die mindes-
tens eine Leuchtdiode kann mit mindestens einer eigenen und/oder gemeinsamen Optik zur Strahlführung ausgerüstet sein, z.B. mindestens einer Fresnel-Linse, Kollimator, und so weiter. Anstelle oder zusätzlich zu anorganischen Leuchtdio- den, z.B. auf Basis von InGaN oder AlInGaP, sind allgemein auch organische LEDs (OLEDs, z.B. Polymer-OLEDs ) einsetzbar. Als eine andere Halbleiterlichtquelle kann z. B. ein Dioden¬ laser verwendet werden. Der Treiber (auch als Treiberelektronik, Betriebselektronik oder Vorschaltelektronik bezeichnet) kann auf ein oder mehrere Bauelemente aufgeteilt sein und z.B. auf einer Treiberpla¬ tine angeordnet sein. Der erste Kühlkörper und der zweite Kühlkörper können auch als thermisch voneinander isolierte Teile eines einzigen Kühlkörpers angesehen werden.
Es ist eine Ausgestaltung, dass der erste Kühlkörper und der zweite Kühlkörper jeweils Kühlvorsprünge, insbesondere Kühl¬ rippen, aufweisen, wobei die Kühlvorsprünge der beiden Kühlkörper ineinandergreifen. Dies ermöglicht beiden Kühlkörpern oder Kühlkörperteilen einen Kontakt zur kühlen Frischluft, ohne in einem erwärmten Luftbereich des jeweils anderen Kühl- körpers zu liegen. Dies gilt unabhängig davon, ob die Lampe in einer Orientierung "Licht nach unten" oder "Licht nach oben" betrieben wird. In der "Licht nach unten"-Orientierung kann dabei z.B. bei einer Glühlampen-Retrofitlampe die küh¬ lende Frischluft durch freie Konvektion zunächst den Lampen- kolben umströmen und danach nahezu gleichzeitig an beide Kühlkörper gelangen, die dann Kontakt zu der Frischluft auf etwa Raumtemperaturniveau haben. Dabei kann das zur Verfügung stehende Gesamtkühlkörpervolumen je nach dem individuellen Kühlbedarf für die Halbleiterlichtquellen und die Treiber- elektronik entsprechend aufgeteilt sein.
Es ist noch eine Ausgestaltung, dass die Halbleiterlampe min¬ destens einen Lüfter zum Erzeugen eines Luftstroms an dem ersten Kühlkörper und/oder an dem zweiten Kühlkörper aufweist. Dadurch kann die Kühlleistung stark erhöht werden. Der Lüfter kann somit einen Luftstrom im Wesentlichen nur an dem ersten Kühlkörper, im Wesentlichen nur an dem zweiten Kühlkörper oder an beiden Kühlkörpern erzeugen.
Es ist ferner eine Ausgestaltung, dass der erste Kühlkörper und der zweite Kühlkörper in einem Ausblasbereich des Lüfters angeordnet sind. Die Luft kann z.B. durch einen Luftspalt zwischen den beiden Kühlkörpern angesaugt werden.
Es ist noch eine Ausgestaltung, dass der zweite Kühlkörper in einem Ansaugbereich des Lüfters und der erste Kühlkörper in einem Ausblasbereich des Lüfters angeordnet ist. Dadurch, dass an dem Treiber typischerweise nur ein geringerer Teil der Verlustleistung der Lampe anfällt, wird der erste Kühlkörper für die Halbleiterlichtquellen von dem zweiten Kühl- körper nur geringfügig vorgewärmt.
Es ist auch eine Ausgestaltung, dass einer der Kühlkörper, insbesondere der zweite Kühlkörper, mindestens eine Ansaug¬ öffnung oder Lufteinlassöffnung zum Ansaugen von Luft durch den oder Führen von Luft zu dem Lüfter aufweist. So lässt sich eine gut kühlbare und besonders kompakte Halbleiterlampe erreichen .
Es ist zudem eine Ausgestaltung, dass der Lüfter zur Kühlung des ersten Kühlkörpers oder des zweiten Kühlkörpers einge¬ richtet und angeordnet ist. Dabei kann gewährleistet werden, dass der Kühlkörper mit dem größeren Kühlbedarf (in einem typischen Fall der mit der (den) Halbleiterlichtquelle (n) ther¬ misch verbundene Kühlkörper) gezielt aktiv mit einem Lüfter gekühlt wird, und davon räumlich getrennt (z.B. 90° gedreht dazu) der Kühlkörper mit dem geringeren Kühlbedarf (z.B. für den Treiber) noch mit passiver Kühlung (freie Konvektion)
auskommt. Dies ermöglicht eine besonders einfache und kompak¬ te Ausgestaltung einer aktiven Kühlung, z.B. mit einem besonders kleinen und preiswerten Lüfter. Es ist außerdem eine Ausgestaltung, dass der erste Kühlkörper und der zweite Kühlkörper mindestens bereichsweise mittels mindestens eines Luftspalts thermisch voneinander isoliert sind. Dies ergibt eine gute thermische Isolierung und spart ein dediziertes Isolationsmaterial ein.
Es ist noch eine Ausgestaltung, dass der erste Kühlkörper und der zweite Kühlkörper mittels mindestens eines Abstandshal¬ ters voneinander beabstandet fixiert sind. Dadurch kann ein Luftspalt präzise eingestellt werden, und die Kühlkörper kön- nen einfach und mechanisch stabil miteinander verbunden werden .
Es ist eine Weiterbildung, dass der Lüfter Luft durch den mindestens einen Luftspalt ansaugt und durch die Kühlstruktur des ersten Kühlkörpers ausbläst.
Es ist ferner eine Ausgestaltung, dass der erste Kühlkörper und der zweite Kühlkörper mindestens bereichsweise mittels mindestens einer Kunststoffläge thermisch voneinander iso- liert sind. Dies ergibt eine besonders stabile Verbindung und verhindert ein Eindringen von Schmutz zwischen die beiden Kühlkörper .
Es ist auch eine Ausgestaltung, dass die Kühlvorsprünge, ins- besondere Kühlrippen (aber auch Kühlstifte, Kühllamellen usw.), senkrecht ausgerichtet sind und die Kühlvorsprünge des ersten Kühlkörpers und die Kühlvorsprünge des zweiten Kühl¬ körpers in einer Umfangsrichtung abwechselnd ineinandergrei¬ fen. Insbesondere bei ineinandergreifenden Kühlkörpern, die in einem Ausblasbereich eines Lüfters sitzen, gelangt kühle Frischluft gleichzeitig an beide Kühlkörperteile, eine Vor¬ wärmung der Kühlluft kann dadurch vermieden werden. Bei ent-
sprechender Anordnung des Lüfters können die ineinandergrei¬ fenden Kühlkörper auch in einem Ansaugbereich des Lüfters angeordnet werden. Dadurch kann die Gesamtkühloberfläche ver¬ größert werden und eine Kühlleistung gesteigert werden. Unter einer senkrechten Ausrichtung kann insbesondere eine Ausrichtung verstanden werden, bei der die Kühlvorsprünge im Wesent¬ lichen in einer Ebene liegen, in welcher auch die Längsachse der Halbleiterlampe liegt. Es ist zudem eine Ausgestaltung, dass die Kühlvorsprünge, insbesondere Kühlrippen, der beiden Kühlkörper gruppenweise, insbesondere sektorweise, ineinandergreifen. In Umfangsrich- tung können sich somit insbesondere Gruppen von Kühlvorsprüngen des ersten Kühlkörpers mit Gruppen von Kühlvorsprüngen des zweiten Kühlkörpers abwechseln. Beispielsweise können sich die Gruppen in entsprechenden Sektoren oder an entsprechenden Seiten befinden, z.B. um etwa 90° senkrecht zur Längsachse oder für einen Kühlkörper gegenüberliegend und in Bezug auf den anderen Kühlkörper um ca. 90° um die Längsachse gedreht.
Es ist noch eine Ausgestaltung, dass die Kühlvorsprünge, ins¬ besondere Kühlrippen, des ersten Kühlkörpers und die Kühlvor¬ sprünge, insbesondere Kühlrippen, des zweiten Kühlkörpers (z.B. in Längsrichtung) ineinander übergehend angeordnet sind und durch eine im Wesentlichen senkrecht zur Längsachse der Halbleiterlampe liegende Ebene (horizontale Ebene) voneinan¬ der getrennt sind (horizontale Teilung. Dies ermöglicht eine besonders einfach herstellbare Halbleiterlampe. Alternativ oder zusätzlich ist auch eine vertikale Teilung mit einer im Wesentlichen zu der Längsachse parallel liegenden vertikalen Trennebene möglich.
Es ist auch eine Ausgestaltung, dass die Halbleiterlampe eine Glühlampen-Retrofitlampe ist und wobei an dem ersten Kühlkör¬ per ein lichtdurchlässiger Kolben befestigt ist und an dem zweiten Kühlkörper ein Sockel befestigt ist.
Allgemein kann einer der Kühlkörper, insbesondere der erste Kühlkörper, zur besonders guten Wärmeabfuhr aus einem elektrisch leitenden Material bestehen, insbesondere Metall, z.B. Aluminium und/oder Kupfer, aber z.B. auch aus einem elektrisch und thermisch leitfähigen Kunststoff. Alternativ kann der Kühlkörper auch elektrisch isolierenden, aber thermisch leitfähigen Kunststoff oder Keramik aufweisen. In diesem Fall braucht die Halbleiterlichtquelle nicht besonders elektrisch gegen den ersten Kühlkörper isoliert zu sein. Eine Wärmeleitfähigkeit dieses Kühlkörpers kann insbesondere mindestens 5 W/ (m-K), insbesondere mehr als 15 W/ (m-K), insbesondere mehr als 20 W/(m-K), insbesondere mehr als 50 W/(m-K), betragen. Allgemein kann einer der Kühlkörper, insbesondere der zweite Kühlkörper, aus einem thermisch leitfähigen und elektrisch isolierenden Material bestehen, z.B. entsprechenden Kunststoffen oder Keramik. So kann der Treiber ausreichend gekühlt und elektrisch isoliert werden. Eine Wärmeleitfähigkeit die- ses Kühlkörpers kann insbesondere mindestens zwischen ca. 1 bis 2,5 W/ (m-K) betragen, bevorzugt von ca. 3,5 bis ca. 5 W/ (m-K), besonders bevorzugt von mehr als 5 W/ (m-K) .
In den folgenden Figuren wird die Erfindung anhand von Aus- führungsbeispielen schematisch genauer beschrieben. Dabei können zur Übersichtlichkeit gleiche oder gleichwirkende Ele¬ mente mit gleichen Bezugszeichen versehen sein.
Fig.l zeigt in Seitenansicht eine Halbleiterlampe gemäß einer ersten Ausführungsform in einer nach unten gerichteten Orientierung;
Fig.2 zeigt die Halbleiterlampe gemäß der ersten Ausfüh¬ rungsform als Schnittdarstellung in Seitenansicht;
Fig.3 zeigt in Seitenansicht eine Halbleiterlampe gemäß einer zweiten Ausführungsform mit nach unten gerichteter Orientierung;
Fig.4 zeigt die Halbleiterlampe gemäß der zweiten Ausfüh¬ rungsform als Schnittdarstellung in Seitenansicht;
Fig.5 zeigt in Seitenansicht eine Halbleiterlampe gemäß einer dritten Ausführungsform in einer nach oben gerichteten Orientierung;
Fig.6 zeigt in Ansicht von schräg unten einen ersten
Kühlkörper der Halbleiterlampe gemäß der dritten Ausführungsform;
Fig.7 zeigt in Seitenansicht einen zweiten Kühlkörper der
Halbleiterlampe gemäß der dritten Ausführungsform;
Fig.8 zeigt in Seitenansicht eine Halbleiterlampe gemäß einer vierten Ausführungsform;
Fig.9 zeigt die Halbleiterlampe gemäß der vierten Ausfüh¬ rungsform als Schnittdarstellung in Seitenansicht; Fig.10 zeigt als Schnittdarstellung in Draufsicht eine An¬ ordnung von Kühlrippen der Halbleiterlampe gemäß der vierten Ausführungsform; und
Fig.11 zeigt als Schnittdarstellung in Seitenansicht eine nach oben ausgerichtete Halbleiterlampe gemäß einer fünften Ausführungsform.
Fig.l zeigt in Seitenansicht eine Halbleiterlampe 1, welche als eine Glühlampen-Retrofitlampe ausgestaltet ist. Fig.2 zeigt die Halbleiterlampe 1 als Schnittdarstellung in Seiten- ansieht.
Die Halbleiterlampe 1 weist in etwa die äußere Form einer herkömmlichen Glühlampe einschließlich eines Sockels 2 zum elektrischen Anschluss der Halbleiterlampe 1 durch Verbinden mit einer geeigneten Fassung einer Leuchte (o. Abb.) sowie einen lichtdurchlässigen Kolben 3 auf. Der Kolben 3 kann transparent oder opak (diffus) ausgestaltet sein. Die Halb¬ leiterlampe 1 ist hier nach unten orientiert dargestellt, wo¬ bei eine Lichtabstrahlung durch den Kolben 3 im Wesentlichen in einen unteren Halbraum ermöglicht wird ("Licht nach unten") . Die Spitze des Kolbens 3 stellt ein vorderes Ende der Halbleiterlampe dar, und der Sockel 2 entspricht einem hinte-
ren Ende oder Bereich der Halbleiterlampe 1. Die Halbleiterlampe 1 weist ferner eine Längsachse L auf, um welche sie im Wesentlichen eine rotationssymmetrische Grundform aufweist. Zwischen dem Sockel 2 und dem Kolben 3 befindet sich ein Gehäuse 4, in welchem zumindest ein Teil eines Treibers 5 un¬ tergebracht ist. Das Gehäuse 4 bildet dazu einen Hohlraum 6, welcher, wie in Fig.2 gezeigt, bis in den Sockel 2 weiterge¬ führt wird. Dieser Hohlraum 6 ist an seiner vorderen Seite durch eine Trennplatte 8 des Gehäuses 4 abgeschlossen.
Auf einer Vorderseite der Trennplatte 8 des Gehäuses 4 befin¬ det sich eine Platine 9, welche mit mindestens einer Leucht¬ diode 10 als der Halbleiterlichtquelle bestückt ist. Genauer gesagt liegt die Rückseite der Platine 9 auf der Trennplatte 8 flächig auf, um eine gute Wärmeübertragung zu ermöglichen, und ist an ihrer Vorderseite mit der mindestens einen LED 10 bestückt. Zur Durchführung elektrischer Leitungen von dem Treiber 5 zu der Platine 9 bzw. der mindestens einen LED 10 ist eine den Hohlraum 6 und die Vorderseite der Platine 9 verbindende Kabeldurchführung 11 vorhanden. An einem äußeren Rand der Vorderseite des Gehäuses 4 sitzt der Kolben 3 so auf, dass er die gesamte Vorderseite des Gehäuses 4 ein¬ schließlich der mindestens einen LED 10 überwölbt.
Der Sockel 2 ist nicht auf eine bestimmte Sockelart be¬ schränkt sondern kann beispielsweise als ein Edison-Sockel , ein Bajonettsockel, ein Stecksockel usw. ausgebildet sein. Das Gehäuse 4 weist an seiner Außenseite eine Kühlkörper¬ struktur auf.
Bei einer herkömmlichen LED-Lampe ist das Gehäuse einstückig aus einem gut leitenden Material, z.B. Aluminium, gefertigt und kann an seiner Außenseite Kühlrippen aufweisen. Bei einem Betrieb einer solchen LED-Lampe wird der Kühlkörper durch die Abwärme der mindestens einen LED erwärmt, welche über die
Platine auf ihn übertragen wird. Gleichzeitig gibt auch der Treiber Wärme ab. Häufig ist die Wärmeabgabe durch die min¬ destes eine LED erheblich höher als die Wärmeabgabe durch den Treiber. Dadurch kann das Gehäuse so stark aufgewärmt werden, dass ein Temperaturunterschied zwischen dem Treiber und dem Gehäuse für eine effektive Kühlung des Treibers zu klein wird oder im Extremfall der Treiber sogar darüber weiter erwärmt wird . Bei der vorliegenden erfindungsgemäßen Halbleiterlampe 1 wird zur Vermeidung einer Überhitzung des Treibers 5 das Gehäuse 4 in einen ersten Kühlkörper 12 und einen zweiten Kühlkörper 13 unterteilt, welche voneinander praktisch thermisch isoliert sind. Die Halbleiterlampe 1, der erste Kühlkörper 12 und der zweite Kühlkörper 13 sind entlang einer horizontalen Ebene H, welche senkrecht zu der Längsachse L liegt, voneinander ge¬ trennt. An dem ersten Kühlkörper 12 ist somit der Kolben 3 befestigt, während an dem zweiten Kühlkörper 13 der Sockel 2 befestigt ist. Der Hohlraum 6 wird durch den ersten Kühlkör- per 12 und den zweiten Kühlkörper 13 gebildet. Je nach Kühlbedarf des Treibers 5 bzw. der Leuchtdiode 10 kann die Tei¬ lungsebene entlang der Längsachse L verschoben werden. Der erste Kühlkörper 12 und der zweite Kühlkörper 13 sind an ihrer Außenseite jeweils mit Kühlrippen 14 bzw. 15 ausgestat- tet, welche jeweils im Wesentlichen senkrecht ausgerichtet sind und sich in einem in Umfangsrichtung gleichen Abstand um die Längsachse L befinden. Die Kühlrippen 14, 15 sind aneinander anschließend angeordnet, wobei sich ein oberer Rand ei¬ ner Kühlrippe 15 an einen unteren Rand einer Kühlrippe 14 an- schließt. Alternativ kann es vorteilhaft sein, dass die anei- nandergrenzenden Kühlrippen 14 und 15 gegeneinander versetzt sind. Die Kühlrippen 14 und 15 können auch versetzt ineinander eingreifen, z.B. kammartig. Die beiden Kühlkörper 12, 13 können auch als Teile eines einzigen, zweigeteilten Kühlkörpers angesehen werden.
Der erste Kühlkörper 12 und der zweite Kühlkörper 13 sind dadurch thermisch voneinander isoliert, dass sich zwischen ihnen eine schlecht wärmeleitende KunststoffSchicht 16 befin¬ det, welche auch den Hohlraum 6 zur Herstellung ausreichender Kriechstrecken und Luftstrecken auskleidet und die Kühlkörper 12, 13 gegen den Treiber 5 elektrisch isoliert. Anstelle der Kunststoffläge können der erste Kühlkörper 12 und der zweite Kühlkörper 13 auch durch einen Luftspalt voneinander getrennt sein; der Hohlraum 6 kann dann immer noch durch eine Kunst- stofflage, z.B. eine Kunststoffhülse, ausgekleidet sein.
Diese Halbleiterlampe 1 weist den Vorteil auf, dass nun der Treiber 5 nur noch in einem geringeren Maße von der Verlustwärme der mindestens einen LED 10 beeinflusst ist. Im Bereich des zweiten Kühlkörpers 13 ist die Temperaturdifferenz zu dem Treiber 5 und damit die Wärmeübertragung von dem Treiber 5 auf den zweiten Kühlkörper 13 höher als bei einem einstückigen Gehäuse bzw. Kühlkörper. Die gezeigte geometrisch einfache Teilung zwischen dem ersten Kühlkörper 12 und dem zweiten Kühlkörper 13 ermöglicht eine einfache Herstellung und Monta¬ ge. Alternativ zu der horizontalen Aufteilung zwischen den Kühlkörpern 12, 13 kann zusätzlich oder alternativ auch eine vertikale Aufteilung (parallel zu der Längsachse L) durchge¬ führt werden.
Fig.3 zeigt in Seitenansicht eine Halbleiterlampe 21 gemäß einer zweiten Ausführungsform. Fig.4 zeigt die Halbleiterlampe 21 als Schnittdarstellung in Seitenansicht. Die Halblei¬ terlampe 21 ist eine Glühlampen-Retrofitlampe und ähnlich zu der Halbleiterlampe 1 gemäß dem ersten Ausführungsbeispiel aufgebaut. Jedoch sind der erste Kühlkörper 22 und der zweite Kühlkörper 23 nun nicht mehr entlang einer horizontalen Ebene H aufgeteilt, sondern weisen jeweils durchgehende senkrecht ausgerichtete Kühlrippen 24 bzw. 25 auf. Die Kühlrippen 24 und 25 sind jeweils senkrecht und zinnenartig oder kammartig in Richtung des jeweils anderen Kühlkörpers 23 bzw. 22 ge¬ richtet, so dass sie bei einem Zusammensetzen der Halbleiter-
lampe 21 in Umfangsrichtung wechselseitig ineinander eingreifen, jedoch ohne sich zu berühren. Der erste Kühlkörper 22 und der zweite Kühlkörper 23 und deren Kühlrippen 24 bzw. 25 sind weiterhin thermisch voneinander isoliert, z.B. durch ei- ne Kunststoffläge 26 oder einen Luftspalt. Durch das zinnen¬ artige oder kammartige Ineinandergreifen der Kühlrippen 24 und 25 wird erreicht, dass jede der Kühlrippen 24, 25 unab¬ hängig von einer Orientierung oder Raumlage der Halbleiterlampe 21 ausreichend mit Kühlluft versorgt werden kann, so dass eine ausreichende Kühlung der mindestens einen LED 10 und des Treibers 5 sichergestellt werden kann. Beispielsweise kann bei der in Fig.3 und Fig.4 gezeigten nach unten ausgerichteten Orientierung "Licht nach unten" Kühlluft an beiden Kühlrippen 24, 25 entlangströmen, ohne dass diese zuvor durch die andere Art von Kühlrippen 25 bzw. 24 erwärmt worden ist.
Fig.5 zeigt in Seitenansicht eine Halbleiterlampe 31 mit ei¬ ner Ausrichtung nach oben entsprechend einer Orientierung "Licht nach oben". Die Halbleiterlampe 31 weist nun einen ersten Kühlkörper 32 auf, an dessen unteren Ende ein Lüfter 37 befestigt ist. Fig.6 zeigt den ersten Kühlkörper 32 mit dem Lüfter 37 in Schrägansicht. Von einer als Ansaugseite dienenden Unterseite 38 des Lüfters 37 wird Luft angesaugt und durch beabstandete Kühlrippen 34 wieder ausgeblasen. Da- durch kann ein starker forcierter Luftstrom an den Kühlrippen 34 vorbei erzeugt werden, was eine sehr gute Kühlung ergibt. Dies ist insbesondere vorteilhaft bei der Kühlung der ein ho¬ hes Maß an Verlustwärme abgebenden Leuchtdioden 10. Der erste Kühlkörper 32 ist jedoch nicht entlang seiner gesamten Um- fangsrichtung mit den Kühlrippen 34 ausgestattet, sondern nur an zwei gegenüberliegenden Seiten bzw. Sektoren.
Bei der Halbleiterlampe 31 wird die Luft zur Unterseite 38 des Lüfters 37 durch einen breiten Luftspalt 39 zwischen dem ersten Kühlkörper 32 und dem zweiten Kühlkörper 33 angesaugt. Der zweite Kühlkörper 33 wird somit praktisch nicht durch den Lüfter 37 mitgekühlt, was auch aufgrund der vergleichsweise
geringeren Wärmeabstrahlung des Treibers 5 nicht notwendig ist. Dadurch kann ein vergleichsweise kompakter, energiespa¬ render und preiswerter Lüfter 37 verwendet werden. Von den beiden Kühlkörpern 32, 33 ist somit der erste Kühlkörper 32 aktiv kühlbar und der zweite Kühlkörper 33 im Wesentlichen nur passiv kühlbar.
Zum Zusammensetzen der beiden Kühlkörper 32, 33 weist der zweite Kühlkörper 33, wie auch in Fig.7 gezeigt, eine obere Aussparung 40 auf, in welche der erste Kühlkörper 32 eingesetzt werden kann. Dabei befindet sich zwischen den beiden Kühlkörpern 32, 33 ein Luftspalt oder eine Kunststoffläge 36. Die Aussparung 40 wird seitlich durch zwei sich gegenüberliegende Gruppen von Kühlrippen 35 gebildet. Die Kühlrippen 34 des ersten Kühlkörpers 32 und die Kühlrippen 35 des zweiten Kühlkörpers 33 schließen somit als jeweilige Seite bzw. Grup¬ pe in Umfangsrichtung aneinander an, sind aber bezüglich der Längsachse L um 90° gegeneinander verdreht. Unterhalb der Kühlrippen 35 befindet sich in dem zweiten Kühlkörper 33 eine Aufnahme 41 zur Unterbringung des Treibers 5.
Fig.8 zeigt als Seitenansicht eine Halbleiterlampe 51 gemäß einer vierten Ausführungsform. Fig.9 zeigt die Halbleiterlampe 51 als Seitenansicht in Schnittdarstellung.
Die Halbleiterlampe 51 weist einen ersten Kühlkörper 52 auf, welcher in Umfangsrichtung umlaufende Kühlrippen oder Kühl- streben 54 aufweist. Die Kühlstreben 54 umgeben zumindest einen Ausblasbereich 57b eines Lüfters 57, so dass der Lüfter 57 Luft zwischen den Kühlstreben 54 hindurch ausblasen kann und so eine Zwangskühlung des ersten Kühlkörpers 52 ermög¬ licht .
Ein Ansaugbereich 57a des Lüfters 57 ist von dem zweiten Kühlkörper 53 umgeben, wobei der Ansaugbereich 57a über einen
oder mehrere Luftkanäle 58 mit Lufteinlassöffnungen 59 in dem zweiten Kühlkörper 53 lufttechnisch verbunden ist. Während des Betriebs des Lüfters 57 wird Kühlluft von außen durch die Lufteinlassöffnungen 59 und durch die Luftkanäle 58 zu dem Ansaugbereich 57a gesaugt, wodurch auch der zweite Kühlkörper 53 etwas gekühlt wird. Auch hier sind der erste Kühlkörper 52 und der zweite Kühlkörper 53 durch eine Isolationsschicht 56, z.B. auch Kunststoff oder einen Luftspalt, voneinander thermisch getrennt.
Fig.10 zeigt als Schnittdarstellung in Draufsicht eine mögli¬ che Anordnung von Kühlrippen 54a des ersten Kühlkörpers 52 und von optional vorhandenen Kühlrippen 55 des zweiten Kühlkörpers 53 der Halbleiterlampe 51. Die Kühlrippen 54a und 55 greifen radial kammartig ineinander ein. So kann ein erhöhter Kühlbedarf des zweiten Kühlkörpers 53 abgedeckt werden.
Fig.11 zeigt als Seitenansicht in Schnittdarstellung eine Halbleiterlampe 61 gemäß einer fünften Ausführungsform. Der erste Kühlkörper 62 und der zweite Kühlkörper 63 sind durch einen Luftspalt 66 thermisch voneinander isoliert. Zur Realisierung der mechanischen Fixierung der beiden Kühlkörperteile 62, 63 miteinander weist der untere, zweite Kühlkörper 63 mehrere mit Rasthaken ausgerüstete Distanzbolzen 64 auf, wel- che in entsprechende Rastausnehmungen 65 des ersten Kühlkörpers 62 einrasten oder einschnappen können und diesen festhalten .
Selbstverständlich ist die vorliegende Erfindung nicht auf die gezeigten Ausführungsbeispiele beschränkt.
So kann der Hohlraum 6 zur Aufnahme des Treibers 5 (Treiber- kavität) allgemein bis in den Sockel 2 ragen, oder der Sockel 2 mag nicht zur Bildung des Hohlraums beitragen.
Auch kann beispielsweise bei der Halbleiterlampe 1 auf ein Vorsehen eines definierten Spalts 16 zwischen den Kühlkörpern
verzichtet werden und sich diese, z.B. innerhalb einer Her¬ stellungstoleranz auch berühren. Zur Beibehaltung einer thermischen Isolation zwischen den beiden Kühlkörpern kann z.B. der erste (vordere) Kühlkörper aus einem weit besser leiten- den Material, z.B. einer Aluminiumlegierung mit einer Wärmeleitfähigkeit von mehr als 50 W/ (m-K), bestehen als der zwei¬ te (hintere) Kühlkörper, welcher z.B. aus einem Kunststoff mit einer Wärmeleitfähigkeit von nicht mehr als 1 W/ (m- K) bestehen kann. Dann wird die in dem ersten Kühlkörper vorhandene Wärme trotz eines mechanischen Kontakts zwischen den beiden Kühlkörpern im Wesentlichen an die Luft abgegeben und nicht auf den zweiten Kühlkörper übertragen.
Bezugs zeichenliste
1 Halbleiterlampe
2 Sockel
3 Kolben
4 Gehäuse
5 Treiber
6 Hohlraum
8 Trennplatte
9 Platine
10 LED
11 Kabeldurchführung
12 erster Kühlkörper
13 zweiter Kühlkörper
14 Kühlrippe
15 Kühlrippe
16 KunststoffSchicht
21 Halbleiterlampe
22 erster Kühlkörper
23 zweiter Kühlkörper
24 Kühlrippe
25 Kühlrippe
26 Kunststoffläge
31 Halbleiterlampe
32 erster Kühlkörper
33 zweiter Kühlkörper
34 Kühlrippe
35 Kühlrippe
36 Kunststoffläge
37 Lüfter
38 Unterseite des Lüfters
39 Luftspalt
40 Aussparung
41 Aufnahme
51 Halbleiterlampe
52 erster Kühlkörper
53 zweiter Kühlkörper
54 Kühlstrebe
54a Kühlrippe
55 Kühlrippe
56 IsolationsSchicht
57 Lüfter
57a Ansaugbereich
57b Ausblasbereich
58 Luftkanal
59 Lufteinlassöffnung
61 Halbleiterlampe
62 erster Kühlkörper
63 zweiter Kühlkörper
64 Distanzbolzen
65 Rastausnehmung
66 Luftspalt
L Längsachse
H horizontale Ebene