EP2501842B1 - Procédés de grossissement de nanoparticules avec une haute résolution spatiale sur une surface de substrat - Google Patents

Procédés de grossissement de nanoparticules avec une haute résolution spatiale sur une surface de substrat Download PDF

Info

Publication number
EP2501842B1
EP2501842B1 EP10778575.0A EP10778575A EP2501842B1 EP 2501842 B1 EP2501842 B1 EP 2501842B1 EP 10778575 A EP10778575 A EP 10778575A EP 2501842 B1 EP2501842 B1 EP 2501842B1
Authority
EP
European Patent Office
Prior art keywords
precious metal
substrate
metal nanoparticles
substrate surface
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10778575.0A
Other languages
German (de)
English (en)
Other versions
EP2501842A2 (fr
Inventor
Christoph Morhard
Claudia Pacholski
Joachim P. Spatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of EP2501842A2 publication Critical patent/EP2501842A2/fr
Application granted granted Critical
Publication of EP2501842B1 publication Critical patent/EP2501842B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1605Process or apparatus coating on selected surface areas by masking
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1667Radiant energy, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1841Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1889Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • Y10T428/24909Free metal or mineral containing

Definitions

  • the present invention relates to methods for spatially resolved magnification and size fine tuning of noble metal nanoparticles on a substrate surface, and to the nanoparticle assemblies and nanostructured substrate surfaces so prepared and their use.
  • nanostructures especially ordered structures of noble metal nanoparticles on substrate surfaces, have found great interest in a variety of applications in various fields.
  • gold nanoparticles can be used in biochemical sensors ( Dyckman and Bogatyrev (2007), Russian Chemical Reviews 76 (2), 181-194 ) and as etching masks for the production of biomimetic interfaces and interfaces ( Lohmüller et al. (2008), NANO LETTERS 8 (5): 1429-1433 ).
  • noble metal nanoparticles of given diameters could also be advantageously used in new transistors (Sato et al. (1997), American Institute of Physics 82 (2), 696-702) or for fluorescence quenching (US Pat. Fan et al. (2003), PNAS, 100 (1), 6297-6301 ) be used.
  • the size of noble metal nanoparticles, in particular gold nanoparticles can in principle be applied before application to the substrate surface, eg when using metal colloids (US Pat. Kimling et al. (2006) J. Phys. Chem. B., 110, 15700-15707 ), or after application, eg by electroless deposition using a reducing agent ( Hrapovic et al.
  • particle size gradients are generated either by electroless deposition from a solution containing elemental gold as above, but varying the rate at which a nanoparticle-coated substrate surface is withdrawn from this solution or by irradiation with a laterally intensity-modulated light field.
  • a related task was to provide the appropriate nanoparticle assemblies and nanostructured substrate surfaces.
  • a further object was the provision of the nanoparticle arrangements and nanostructured substrate surfaces prepared according to the invention for various uses which hitherto were not suitable for such noble metal nanoparticle arrangements owing to the inadequate or inadequate size possible fine adjustment of noble metal nanoparticles on a substrate surface.
  • the above-mentioned main object can be achieved by providing the method according to claim 1, in which a substrate coated with (preferably fixed) noble metal nanoparticles is contacted with a noble metal salt solution and localized by UV irradiation of certain predetermined areas and controlled enlargement of the nanoparticles in these areas is initiated.
  • a substrate coated with (preferably fixed) noble metal nanoparticles is contacted with a noble metal salt solution and localized by UV irradiation of certain predetermined areas and controlled enlargement of the nanoparticles in these areas is initiated.
  • EP 1 626 106 A2 For example, a dried metal colloid film is subjected to laser irradiation.
  • the laser irradiation is not used for reduction, but for removal of molecules of the dispersion medium, which initially keep the fine metal particles separated. After removal, aggregation and formation of larger metal particles occurs.
  • EP 1760 527 A1 discloses the irradiation of a polymer film on a substrate to fix or chemically modify the polymer components of that film.
  • a substrate coated with noble metal nanoparticles in the above step a) can in principle be carried out by all methods known in the prior art.
  • a noble metal colloid layer can be applied to the substrate surface (see Hrapovic et al., Supra).
  • Another preferred method according to the invention is the production of a noble metal nanoparticle arrangement on a substrate by micellar nanolithography, more particularly micellar block copolymer nanolithography (BCML) (see, for example, US Pat EP 1 027 157 ).
  • micellar block copolymer nanolithography a micellar solution of a block copolymer is deposited on a substrate, for example by dip coating, and forms, under suitable conditions on the surface, an ordered film structure of chemically distinct polymer domains including, but not limited to, type, molecular weight, and concentration Block copolymer depends.
  • the micelles in the solution can be loaded with inorganic salts, which can be reduced to inorganic nanoparticles after deposition with the polymer film.
  • a plasma treatment for example with hydrogen plasma, is generally carried out.
  • the substrate material used in the invention is basically not particularly limited and may include any material as long as it is stable under the conditions of the process of the present invention and does not interfere with or interfere with the reactions taking place.
  • the substrate can be made, for example, of glass, SiO 2 , silicon, metals (with or without passivated surfaces), semiconductor materials, eg GaAs, GaP, GaInP, AlGaAs, (optionally doped) metal oxides, eg ZnO, TiO 2 , carbon (graphite , Diamond), polymers, etc., and composite materials thereof.
  • transparent substrates such as glass or ITO on glass are preferred.
  • the noble metal of the nanoparticles is not particularly limited and may include any noble metal known in the art for such nanoparticles, or composites of plural noble metals (hybrid particles) or mixtures of a noble metal with another metal.
  • the noble metal is selected from the group consisting of Au, Pt, Pd, Ag or mixtures / composites of these metals and most preferably is gold.
  • the original nanoparticles typically have diameters in the range of 1 nm to 100 nm, preferably 4 nm to 30 nm.
  • the interparticle distances can be varied over a wide range as desired, for example in one Range of 20 to 1000 nm, typically in the range of 30 to 250 nm.
  • the substrate may, if necessary, after the application of the nanoparticles, but before their enlargement, be treated with an agent which supports the adhesion of the nanoparticles.
  • an agent which supports the adhesion of the nanoparticles it is preferable to treat the substrate with an agent which the adhesion of the Supported gold nanoparticles.
  • silane in particular selected from the group consisting of 3-aminopropyltriethoxysilane (APS), 3-mercaptopropyltriethoxysilane (MPS), N- [3- (tri-methoxysilyl) propyl) ethylenediamine, 3- [2- (2-aminoethylamino) ethylamino] propyltrimethoxysilane, 3-aminopropyldimethylmethoxysilane, 3-aminopropyl) tris (trimethylsiloxy) silane and 3-mercaptopropyltrimethoxysilane.
  • APS 3-aminopropyltriethoxysilane
  • MPS 3-mercaptopropyltriethoxysilane
  • 3- [2- (2-aminoethylamino) ethylamino] propyltrimethoxysilane 3-
  • the noble metal salt solution contacted with the substrate surface in step c) is an aqueous metal salt solution to which has been added an organic compound which upon or after UV irradiation forms organic radicals which act as a reductant for the noble metal ions serve.
  • This organic compound is preferably selected from the group consisting of aldehydes, ketones or alcohols, in particular C 1 -C 10 -alcohols. More preferably, the C 1 -C 10 alcohol is selected from methanol, ethanol, propanol, butanol and ethylene glycol.
  • the proportion of organic compound can vary the speed and the extent of reduction by the skilled person can be easily adjusted by routine experimentation.
  • the volume ratio of aqueous metal salt solution to organic compound will range from 100: 1 to 1: 2, more preferably 10: 1 to 1: 1, eg 3: 1 or 1: 1.
  • the noble metal salt solution is a gold salt solution, preferably a HAuCl 4 solution.
  • the duration of UV irradiation may vary depending on the extent of nanoparticle enlargement desired and the particular substrate parameters, and a suitable irradiation time may readily be set by a person skilled in the art with routine experimentation.
  • the UV irradiation is carried out for a duration in the range of 1 to 60 minutes, preferably 1 to 15 minutes, and at a wavelength in the range of 200 to 600 nm, preferably 200 to 400 nm.
  • the method according to the invention is preferably carried out such that the conditions of the UV irradiation are varied for at least two different regions of the substrate so that at least two different regions with different average diameters of the noble metal nanoparticles are produced on the substrate.
  • This variation of the conditions of UV irradiation is or includes, for example, a variation of the irradiation time.
  • the method of the invention is performed using a mask (step e)) to cause localized growth of the noble metal nanoparticles in predetermined regions of the substrate.
  • the mask has structures which allow diffraction of the irradiated UV light under suitable irradiation conditions, and the method is carried out under such conditions, in particular a suitable wavelength, that a diffraction pattern or pattern of brightness is formed on the substrate surface during the irradiation and the growth of noble metal nanoparticles is selectively induced in the more irradiated areas of the diffraction pattern or pattern of brightness.
  • These structures may include, for example, one or more pinhole apertures having a small hole diameter, preferably ⁇ 100 ⁇ m, more preferably ⁇ 10 ⁇ m, other diffraction gratings, diffraction edges, periodic patterns or gradients such as gradual gray filters.
  • the pinhole diaphragms may, for example, have a circular, elliptical, rectangular or triangular shape.
  • the pinhole (n) has a circular diameter such that a diffraction pattern of concentric rings is formed on the substrate surface during irradiation, and the generated different regions having different mean diameters of the noble metal nanoparticles also become a pattern form concentric rings.
  • These arrangements include two or more distinct regions of noble metal nanoparticles with one average diameter in the range of 5-200 nm, preferably 5-20 nm, and an average spacing in the range of less than 1 .mu.m, preferably from 30 to 250 nm, wherein in each of the different areas noble metal nanoparticles having a predetermined different average diameter and the various areas of differing mean diameters of the noble metal nanoparticles form one or more geometric patterns which are formed by diffracting radiation at circular, elliptical, rectangular, triangular pinholes, edges or other periodically arranged patterns as well as gradients like gradual gray filters resulting diffraction patterns or brightness patterns / correspond.
  • the various regions form a pattern of concentric rings.
  • nanostructured substrate surfaces and arrangements of noble metal nanoparticles obtainable with the above inventive methods on a substrate form advantageous application possibilities in a wide variety of fields due to the possibility of finely adjusting the particle size with high spatial resolution and precise representation of geometric patterns with several sharply separated regions of different particle size.
  • another aspect of the present invention also relates to the use of these nanostructured substrate surfaces and devices in the fields of biochip technology, imaging technology, electronics, information processing, spectroscopy, sensor technology, optics, lithography.
  • the devices are selected from the group consisting of a mask, in particular a lithographic or photomask, a biochip, a sensor, an optical device, in particular a Fresnel lens, an optical grating, a microlens array or a transistor.
  • a further subject of the invention also relates to the devices themselves, which comprise such nanostructured substrate surfaces or arrangements.
  • these devices are a mask, in particular a lithographic or photomask, a biochip, a sensor, an optical device, in particular a Fresnel lens, an optical grating, a microlens array or a transistor.
  • the sample to be exposed consisting of SiO 2 whose surface had gold nanoparticles with a mean diameter of about 9 nm ( Fig. 2 ) was treated with silane (gas phase deposition of 3-aminopropyltriethoxysilane (APS): Sample + 30 ⁇ L APS (in separate dish) in a desiccator for 30 minutes at 0.3 mbar, then 1 h at 80 ° C in the oven Exposure in a small container. To the vessel was added a 1: 1 mixture of 0.25% gold salt solution (HAuCl 4 ) and ethanol. The amount of solution was measured so that the sample was covered by a liquid film about 1 mm high.
  • silane gas phase deposition of 3-aminopropyltriethoxysilane (APS): Sample + 30 ⁇ L APS (in separate dish) in a desiccator for 30 minutes at 0.3 mbar, then 1 h at 80 ° C in the oven Exposure in a small container.
  • To the vessel was added
  • UV was irradiated without a mask (commercial UV lamp, wavelength: 410 nm). Exposure times of 2 '30 "gave particle diameter of about 13 nm ( Fig. 4 ); Exposure times of 3 'diameter of about 15 nm ( Fig. 5 ).
  • the diffraction integral can not be solved analytically after application of the Fresnel approximation, but only numerically.
  • the resulting diffraction pattern reacts extremely sensitive to the smallest changes in the distance or the aperture diameter. Since a realization of constant conditions (completely planar sample, completely planar mask, no "wave formation" of the solution,) can be realized only with great effort, a simpler (qualitative) approach was chosen for the subsequent experimental arrangements and images.
  • the sample to be exposed was placed in a small vessel. To the vessel was added a solution of 1.5 ml of 0.25% gold salt solution (HAuCl 4 ) and 0.5 ml of ethanol. The amount of the solution was so dimensioned that the sample is covered by a ca. 1 mm high liquid film. As a mask, aluminum foil perforated with holes between 0.6 mm and 2 mm was used. This mask was placed about 1.1 mm above the sample. It was then exposed to UV light for 10 or 30 minutes.
  • AuCl 4 gold salt solution
  • Fig. 6 shows the localized growth of gold nanoparticles at 10 minutes UV irradiation using a mask with a circular pinhole (approximate diameter: 1 mm).
  • a circular pinhole approximately 1 mm.
  • no (at least not clear) further diffraction rings can be seen. This could eg at an unfavorable exposure time for the mask size.
  • Fig. 9 shows the results using a slightly elliptical shadow mask and an exposure time of 10 minutes. Diffraction structures are visible and these were recorded with increasing magnification. Again, the relatively sharp demarcation of the individual rings becomes clear.
  • Fig. 8 shows the results using a circular shadow mask and an exposure time of 30 minutes.
  • the longer exposure time leads to a very strong growth in the exposed areas. This can be seen in particular at the overview shot (very bright ring structure).
  • the area between the dark interior and the edge has been enlarged to a greatly enlarged area.
  • the gold particles in the highest magnification ( Fig. 8d ) form a clearly recognizable edge.
  • a purely qualitative determination of the size in the SEM leads to a radius of about 10 nm of the smaller (upper half of the picture) and about 17 nm of the larger particles (lower half of the picture).
  • Fig. 7 shows the results using a further circular shadow mask and an exposure time of 30 minutes. Here again diffraction patterns can be seen. Again, the clearly demarcated ring structure is clearly visible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Claims (17)

  1. Procédé servant à agrandir avec une résolution spatiale des nanoparticules de métaux précieux, qui sont présentes sur un substrat, comprenant les étapes suivantes :
    a) la fourniture d'un substrat revêtu de nanoparticules de métaux précieux,
    b) éventuellement la fonctionnalisation du substrat avec un agent, qui soutient l'adhérence des nanoparticules de métaux précieux au niveau du substrat,
    c) l'établissement d'un contact du substrat avec une solution saline de métaux précieux, dans lequel la solution saline de métaux précieux est une solution saline de métaux précieux aqueuse, à laquelle a été ajouté un composé organique, qui forme, dans le cas d'une exposition à un rayonnement UV, des radicaux organiques, qui servent de moyens de réduction pour les ions de métaux précieux,
    d) l'exposition à un rayonnement UV du substrat au contact de la solution saline de métaux précieux, ce qui permet d'entraîner une réduction du sel de métaux précieux et une séparation sans courant du métal précieux élémentaire sur les nanoparticules de métaux précieux et un accroissement correspondant des nanoparticules de métaux précieux dans les zones exposées au rayonnement du substrat,
    e) éventuellement l'utilisation d'un masque pour entraîner un accroissement localisé des nanoparticules de métaux précieux dans des zones prédéfinies du substrat.
  2. Procédé selon la revendication 1, caractérisé en ce que le métal précieux est choisi parmi le groupe composé d'or, d'argent, de palladium et de platine.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le substrat revêtu de nanoparticules de métaux précieux est fourni par une lithographie micellaire à copolymères séquencés (BCML) ou par application d'une couche de colloïdes de métaux précieux sur la surface de substrat.
  4. Procédé selon l'une quelconque des revendications 1 - 3, caractérisé en ce que l'agent, qui soutient l'adhérence de nanoparticules de métaux précieux au niveau du substrat, est un silane, en particulier choisi parmi le groupe, qui est constitué de 3-aminopropyltriéthoxysilane (APS), de 3-mercaptopropyltriéthoxysilane (MPS), de N-[3-(triméthoxysilyle)propyle)éthylène-diamine, de 3-[2-(2-aminoéthylamino)éthylamino]propyltriméthoxy-silane, de 3-aminopropyldiméthylméthoxysilane, de 3-aminopropyle)-tris-triméthylsiloxy)silane et de 3-mercaptopropyltriméthoxy-silane.
  5. Procédé selon l'une quelconque des revendications 1 - 4, caractérisé en ce que le composé organique, qui a été ajouté à la solution saline de métaux précieux, est un aldéhyde, une cétone ou un alcool, de préférence un alcool en C1-C10.
  6. Procédé selon l'une quelconque des revendications 1-5, caractérisé en ce que les conditions de l'exposition à un rayonnement UV varient pour au moins deux zones différentes du substrat de sorte qu'au moins deux zones différentes avec des diamètres moyens différents des nanoparticules de métaux précieux soient produites sur le substrat.
  7. Procédé selon l'une quelconque des revendications 1 - 6, caractérisé en ce que l'étape e) est réalisée en utilisant un masque, qui contient un ou plusieurs diaphragmes perforés avec un diamètre de trou < 10 µm, d'autres réseaux de diffraction, des arêtes de diffraction ou des gradients tels des filtres de gris graduels, et dans des conditions telles que dans le cas de l'exposition à un rayonnement, un motif de diffraction ou un motif de clarté est formé sur la surface de substrat et l'accroissement des nanoparticules de métaux précieux est entraîné de manière sélective dans les zones plus fortement exposées à un rayonnement du motif de diffraction ou du motif de luminosité.
  8. Procédé selon la revendication 7, caractérisé en ce que l'étape e) est réalisée en utilisant un masque, qui contient un ou plusieurs diaphragmes perforés avec un diamètre de trou < 10 µm de forme circulaire, elliptique, rectangulaire ou triangulaire.
  9. Procédé selon la revendication 8, caractérisé en ce que le/les diaphragme(s) perforé(s) a/ont un diamètre de forme circulaire de sorte que lors de l'exposition à un rayonnement, un motif de diffraction soit formé par des anneaux concentriques sur la surface de substrat et les différentes zones produites avec différents diamètres moyens des nanoparticules de métaux précieux forment également un motif d'anneaux concentriques.
  10. Procédé servant à fabriquer une surface de substrat nanostructurée, comprenant les étapes a) - e) selon l'une quelconque des revendications 1 - 9 ainsi qu'en outre l'étape suivante :
    f) la soumission du substrat avec l'ensemble de nanoparticules de métaux précieux obtenu lors des étapes a) - e) selon l'une quelconque des revendications 1 - 9 à au moins une étape de décapage, lors de laquelle les nanoparticules de métaux précieux agissent en tant que masque décapant, ce qui permet de produire une forme en relief souhaitée de la surface de substrat par décapage sélectif dans des zones prédéfinies du substrat en conservant le motif de l'ensemble de nanoparticules de métaux précieux.
  11. Procédé servant à fabriquer une surface de substrat nanostructurée selon la revendication 10, comprenant les étapes a) - e) selon l'une quelconque des revendications 7 - 8, ainsi qu'en outre l'étape suivante :
    f) la soumission du substrat avec l'ensemble de nanoparticules de métaux précieux obtenu lors des étapes a) - e) selon l'une quelconque des revendications 7 - 8 à au moins une étape de décapage, lors de laquelle les nanoparticules de métaux précieux agissent en tant que masque décapant, ce qui permet de produire une forme en relief souhaitée de la surface de substrat par décapage sélectif dans des zones prédéfinies du substrat en conservant le motif de l'ensemble de nanoparticules de métaux précieux.
  12. Procédé servant à fabriquer une surface de substrat nanostructurée selon la revendication 10, comprenant les étapes a) - e) selon la revendication 9 ainsi qu'en outre l'étape suivante :
    f) la soumission du substrat avec l'ensemble de nanoparticules de métaux précieux obtenu lors des étapes a) - e) selon la revendication 9, pour lequel différentes zones avec des diamètres moyens différents des nanoparticules de métaux précieux forment un motif d'anneaux concentriques, à au moins une étape de décapage, lors de laquelle les nanoparticules de métaux précieux agissent en tant que masque décapant, ce qui permet de produire une forme en relief de la surface de substrat, qui correspond à une lentille de Fresnel, par décapage sélectif dans des zones prédéfinies du substrat en conservant le motif de l'ensemble de cercles concentriques.
  13. Surface de substrat nanostructurée pouvant être obtenue avec le procédé selon la revendication 11 ou 12.
  14. Ensemble de nanoparticules de métaux précieux, en particulier de nanoparticules d'or, d'argent, de palladium et de platine ou de particules hybrides de celles-ci, sur un substrat, pouvant être obtenu selon l'une quelconque des revendications 7 à 9, dans lequel l'ensemble comprend deux zones différentes ou plus de nanoparticules de métaux précieux avec un diamètre moyen dans la plage de 5 - 200 nm et avec un espacement moyen dans la plage inférieure à 1 µm, dans lequel sont présentes dans les différentes zones respectivement des nanoparticules de métaux précieux avec un diamètre moyen différent spécifié, et que les différentes zones avec différents diamètres moyens des nanoparticules de métaux précieux forment un ou plusieurs motifs géométriques, qui correspondent à des motifs de diffraction ou des motifs de luminosité se formant par diffraction du rayon au niveau de diaphragmes, arêtes de forme circulaire, elliptiques, rectangulaires, triangulaires ou au niveau d'autres motifs disposés de manière périodique ainsi qu'au niveau de gradients tels que des filtres de gris graduels.
  15. Utilisation de la surface de substrat nanostructurée selon la revendication 13 ou l'ensemble selon la revendication 14 dans les domaines de la technologie de la biopuce, de la technique d'imagerie, de l'électronique, du traitement des informations, de la spectroscopie, de la technologie de détection, de l'optique, de la lithographie, en particulier pour fabriquer un masque de lithographie ou un photomasque, une biopuce, un capteur, un dispositif optique, en particulier une lentille de Fresnel, un réseau optique, un réseau de microlentilles ou un transistor.
  16. Dispositif comprenant la surface de substrat nanostructurée selon la revendication 13 ou l'ensemble selon la revendication 14.
  17. Dispositif selon la revendication 16, dans lequel un masque, en particulier un masque de lithographie ou un photomasque, est une biopuce, un capteur, un dispositif optique, en particulier une lentille de Fresnel, un réseau optique, un réseau de microlentilles ou un transistor.
EP10778575.0A 2009-11-16 2010-11-15 Procédés de grossissement de nanoparticules avec une haute résolution spatiale sur une surface de substrat Active EP2501842B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009053406A DE102009053406A1 (de) 2009-11-16 2009-11-16 Verfahren zur räumlich aufgelösten Vergrößerung von Nanopartikeln auf einer Substratoberfläche
PCT/EP2010/006938 WO2011057816A2 (fr) 2009-11-16 2010-11-15 Procédés de grossissement de nanoparticules avec une haute résolution spatiale sur une surface de substrat

Publications (2)

Publication Number Publication Date
EP2501842A2 EP2501842A2 (fr) 2012-09-26
EP2501842B1 true EP2501842B1 (fr) 2018-08-29

Family

ID=43877657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10778575.0A Active EP2501842B1 (fr) 2009-11-16 2010-11-15 Procédés de grossissement de nanoparticules avec une haute résolution spatiale sur une surface de substrat

Country Status (4)

Country Link
US (1) US9169566B2 (fr)
EP (1) EP2501842B1 (fr)
DE (1) DE102009053406A1 (fr)
WO (1) WO2011057816A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010023490A1 (de) 2010-06-11 2011-12-15 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Dreidimensionale metallbedeckte Nanostrukturen auf Substratoberflächen,Verfahren zu deren Erzeugung sowie deren Verwendung
WO2015053828A2 (fr) 2013-06-15 2015-04-16 Brookhaven Science Associates, Llc Formation de surfaces antiréfléchissantes
US10290507B2 (en) 2013-06-15 2019-05-14 Brookhaven Science Associates, Llc Formation of antireflective surfaces
DE102013111785A1 (de) * 2013-10-25 2015-04-30 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes
US11135649B2 (en) * 2018-02-27 2021-10-05 Arizona Board Of Regents On Behalf Of Arizona State University Direct metal printing with stereolithography

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1665299A (en) 1997-10-29 1999-05-17 Universitat Ulm Nanostructures
JP2006038999A (ja) * 2004-07-23 2006-02-09 Sumitomo Electric Ind Ltd レーザ照射を用いた導電性回路形成方法と導電性回路
US8361553B2 (en) * 2004-07-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Methods and compositions for metal nanoparticle treated surfaces
EP1760527B1 (fr) * 2005-09-05 2012-06-06 DWI an der RWTH Aachen e.V. Méthode photochimique pour fabriquer des substrats surface-décorés à l'échelle nanométrique
DE102007014538A1 (de) 2007-03-27 2008-10-02 Carl Zeiss Ag Verfahren zur Erzeugung einer Antireflexionsoberfläche auf einem optischen Element sowie optische Elemente mit einer Antireflexionsoberfläche
DE102007017032B4 (de) * 2007-04-11 2011-09-22 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren zur Herstellung von flächigen Größen- oder Abstandsvariationen in Mustern von Nanostrukturen auf Oberflächen

Also Published As

Publication number Publication date
EP2501842A2 (fr) 2012-09-26
WO2011057816A3 (fr) 2011-08-11
WO2011057816A2 (fr) 2011-05-19
US9169566B2 (en) 2015-10-27
DE102009053406A1 (de) 2011-05-19
US20120244322A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
EP2295617B1 (fr) Procédé de fabrication de variations à plat de grandeurs ou de distances dans des motifs de nanostructures sur des surfaces
DE602004005652T2 (de) Mikrostrukturkörper für die Raman-Spektroskopie und Verfahren zu dessen Herstellung
EP2501842B1 (fr) Procédés de grossissement de nanoparticules avec une haute résolution spatiale sur une surface de substrat
CN108844943B (zh) Sers单元及其制备方法与应用
EP2931937B1 (fr) Procédé de fabrication de réseaux de nanoparticules métalliques
KR101269871B1 (ko) 3차원 다공성 구조체 및 이의 제조 방법
DE112011100503T5 (de) Ein verfahren und eine vorrichtung zur vorbereitung eines substrats für eine molekulare detektion
DE102015004114B4 (de) Oberflächenverstärkendes plasmonisches Substrat
DE102010023490A1 (de) Dreidimensionale metallbedeckte Nanostrukturen auf Substratoberflächen,Verfahren zu deren Erzeugung sowie deren Verwendung
DE112013004006T5 (de) Element zur oberflächenverstärkten Ramanstreuung
DE102015115004A1 (de) Verfahren zur Herstellung von strukturierten Oberflächen
DE112005002689T5 (de) Mit Teilchen laminiertes Substrat und Verfahren zu dessen Herstellung
CH703728A2 (de) Verfahren zur Abscheidung von Metall-Nanopartikeln auf einer Oberfläche und nach dem Verfahren hergestellte Oberfläche sowie deren Anwendung.
DE60123921T2 (de) Verfahren zur Herstellung von ultrafeinen Metallchalkogenidteilchen
DE102012200454A1 (de) Verfahren zur Herstellung eines reflektiven optischen Elements und reflektives optisches Element
DE102005011345A1 (de) Verfahren zum Herstellen einer Nanostruktur auf einem Substrat
WO2010133217A1 (fr) Dispositif et procédé de métallisation de pointes de sonde de trame
DE102018106707A1 (de) Verfahren zur Herstellung und Verwendung eines Substrats mit einer funktionalisierten Oberfläche
DE102016118440B4 (de) Aktivierte 3-D-Nanooberfläche, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102016208987A1 (de) Optisches Element und EUV-Lithographiesystem
CH703612B1 (de) Verfahren zur Beschichtung von hydrophilen Festkörpern mit einer Goldschicht mit ausgedehnter Oberfläche sowie ein mit einer Goldschicht mit ausgedehnter Oberfläche beschichteter hydrophiler Festkörper.
DE102013008104A1 (de) SERS-Substrat
DE102023104498A1 (de) Strukturiertes Halbleiterbauteil und Verfahren zur Herstellung eines strukturierten Halbleiterbauteils
DE102009023796B4 (de) Vorrichtung und Verfahren zur Metallisierung von Rastersondenspitzen
DE102020212940A1 (de) Strukturierte Schichtanordnung und Verfahren zum Herstellen einer derartigen Schichtanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120613

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170807

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 18/16 20060101AFI20180329BHEP

Ipc: C23C 18/44 20060101ALI20180329BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180511

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PACHOLSKI, CLAUDIA

Inventor name: SPATZ, JOACHIM P.

Inventor name: MORHARD, CHRISTOPH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KASCHE AND PARTNER AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1035222

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015314

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015314

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

26N No opposition filed

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1035222

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181115

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180829

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201119

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 14

Ref country code: DE

Payment date: 20231120

Year of fee payment: 14

Ref country code: CH

Payment date: 20231202

Year of fee payment: 14