EP2496518A1 - Chemischer reaktor mit wärmeauskopplung - Google Patents

Chemischer reaktor mit wärmeauskopplung

Info

Publication number
EP2496518A1
EP2496518A1 EP10770820A EP10770820A EP2496518A1 EP 2496518 A1 EP2496518 A1 EP 2496518A1 EP 10770820 A EP10770820 A EP 10770820A EP 10770820 A EP10770820 A EP 10770820A EP 2496518 A1 EP2496518 A1 EP 2496518A1
Authority
EP
European Patent Office
Prior art keywords
gas
reactor
water
heat exchanger
chemical reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10770820A
Other languages
English (en)
French (fr)
Inventor
Roland Birley
Frank Hannemann
Daniel Hofmann
Nicolas Vortmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2496518A1 publication Critical patent/EP2496518A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • F05D2220/722Application in combination with a steam turbine as part of an integrated gasification combined cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a chemical reactor with continuous heat extraction.
  • IGCC Integrated Gasification Combined Cycle
  • the CO2 is then separated by an additional wash, compacted and transported to the storage sites.
  • the synthesis gas from other pollutants such as dust and Sweden ⁇ feltagenen is cleaned demands of air pollution control and technical requirements in the gas turbine to genü-
  • the remaining hydrogen is diluted with nitrogen and water vapor and burned in a gas turbine.
  • the resulting hot exhaust gases are used to generate steam;
  • the steam is used for further power generation in a steam turbine.
  • the task is to further develop the shift reactor and the CO shift process so that improved plant efficiency is achieved.
  • the catalytically active surfaces would be on the swept by the raw gas heat exchanger outer surfaces and the heat can be delivered directly to a suitable medium. It is expedient if the surface of the réelletau ⁇ shear surfaces catalyzes or effects a conversion of carbon monoxide and water into hydrogen and carbon dioxide.
  • the gas-tight wall also has a catalytically active surface. Thus, the catalytically active surface can be increased while maintaining a low pressure loss.
  • the feed means for the second fluid are arranged distributed in the direction of a longitudinal axis of the Gaska ⁇ nals in the gas channel, the second fluid is admiffleßi ⁇ wise water, which must be fed to the shift process.
  • the gradual addition of water has the advantage of being able to use a small amount of additional water (just as much as necessary for the process) to achieve the highest possible efficiency.
  • the gas duct is designed in a horizontal construction and can be flowed through in a substantially horizontal direction by gas, the heat exchanger surfaces being evaporator heating surfaces or economizer heating surfaces.
  • the heat generated during the conversion can be used directly in the power plant process.
  • the reactor is integrated in a power plant with a gas turbine, a steam turbine ⁇ ne and a gas turbine upstream BrennstoffVerga ⁇ solution, wherein it is connected between the BrennstoffVergasung and the gas turbine.
  • the object is achieved in that a carbon monoxide-containing gas over several heat exchanger surfaces with kata- lytically effective surface is passed and water in the flow direction of the gas is distributed to the gas supplied.
  • the heat exchanger surfaces are formed by tubes through which water is passed, wel ⁇ ches thereby heated and can be used elsewhere in the power plant process.
  • the previously split in stages shift reaction is transferred into a quasi-continuous reaction and heat removal process.
  • the inventive chemical reactor offers large catalyst surfaces and lower pressure losses than the usual catalyst bed.
  • the technology is not limited to IGCC applications, but could also be used in other reactions, such as the production of synthetic natural gas or substitute natural gas (SNG), a natural gas substitute based on coal , especially Lignite, or biomass (Bio-SNG or Biome ⁇ than) is produced via synthesis gas.
  • SNG synthetic natural gas or substitute natural gas
  • Bio-SNG or Biome ⁇ than is produced via synthesis gas.
  • Figure 2 is a schematic synthesis gas temperature profile over the reactor according to the invention.
  • Figure 3 is a schematic synthesis gas temperature profile over prior art reactors.
  • the arrangement in Figure 1 has two main components: the gasification reactor 1 and the chemical reactor 2 according to the invention for the conversion of carbon monoxide.
  • the conversion of the feedstock 3 (which are fossil or renewable fuels and residues, such as natural gas, Erd ⁇ olfr hopeen, coal, biomass or waste) takes place in the gasification reactor 1 in a flame reaction.
  • the amongst other things resulting hot raw gas 4 flows from the gasification reactor 1 through various stations, such as a waste heat ⁇ unit 19 for cooling the raw gas from the gasification Tempe ⁇ temperature to about 700 ° C to 900 ° C at which ideally high ⁇ pressure steam
  • the aim of the quench is an increase in the proportion of water vapor in the raw gas for the subsequent water gas shift reaction in the chemical reactor 2, and / or a quench unit 20.
  • the gas channel 5 of the chemical reactor 2 comprises heat exchanger surfaces 6 constructed from tubes. These can be arranged in the gas channel 5 or can also form the surrounding wall 7 of the gas channel 5.
  • the steam generator tubes which are not illustrated in more detail, are gas-tightly welded to one another at their longitudinal sides via webs or so-called fins. A plurality of mutually adjacent tubes is combined in this way to a heat exchanger surface 6.
  • the inlet ends 8 of the tubes forming a heat exchanger surface 6 at the downstream end 9 of the chemical reactor 2 are supplied, for example, with feed water via a common inlet collector (not shown). In this case, the heat exchanger surface 6 is used as the economizer heating surface 10.
  • the feed water heated in the tubes of the economizer heating surface 10 as a result of the heating by the synthesis gas flows via a common outlet collector (not shown) and is subsequently fed to an evaporator unit.
  • the evaporator ⁇ unit 11 may also in the chemical reactor 2, ⁇ example, in the direction of flow of the synthesis gas upstream of the economizer 10 may be disposed.
  • the water preheated by the economizer 10 can also be supplied to the heat exchanger surfaces 6 in the evaporator 11 via an inlet header. In the evaporator unit 11, the preheated water is evaporated to low, medium or high pressure steam and, likewise via corresponding collector, for example, a superheat purity ⁇ 12 supplied.
  • the heat exchange surfaces 6 can also embritthit- for wetting of the effluent 13 from a first turbine stage of a steam turbine, partially relaxed flow medium into ⁇ sets, so that the flow medium then again the next stage of the steam turbine is fed to heated.
  • heat transfer to the flow medium flowing through the heat exchanger surfaces 6 heat of the synthesis gas flowing in the gas channel 5 is continuously removed as the flow path progresses. However, heat is generated again as a result of the water gas shift reaction. To control this reaction, and thus the temperature of the synthesis gas What ⁇ ser is distributed at various points and in the longitudinal direction of the gas channel 5 introduced into the synthesis gas stream.
  • the What ⁇ serein technischevortechnischevorraum 14.
  • the nozzles of the Eindüsevorraum are adjusted and oriented such that the smallest possible water quantity (even as much as for the process necessary) is provided to the highest possible system efficiency to Errei ⁇ chen.
  • the heating surfaces of the economizer and the evaporator and, if necessary, superheater are provided with a catalyst layer for the water ⁇ gas shift reaction. Through the catalyst material, the activation energy for the shift reaction in which carbon monoxide and water into carbon dioxide and hydrogen are converted, lowered and thus changed ⁇ changed their kinetics.
  • FIG. 2 shows schematically the temperature profile of the synthesis ⁇ gas from the reactor inlet 15 to the reactor outlet 9.
  • this temperature profile is not necessarily horizontal (A), but according to the Equil ⁇ weight of the water gas shift reaction tend to fall towards the end of the gas channel 5 (B) to take into account the fact that at higher temperature but a fast kinetics there is an unfavorable chemical equilibrium and at lower temperatures the equilibrium is stronger on the right side of the reaction equation, but the kinetics decrease.
  • the temperature profile does not have to be linear.
  • Figure 3 shows the temperature profile, as in the prior art when using a high-temperature 16 and a
  • Low-temperature shift stage 17 with interposed heat ⁇ exchanger 18 would look like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Industrial Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung betrifft einen chemischen Reaktor (2) einer technischen Anlage, insbesondere einer Kraftwerksanlage, umfassend eine gasdichte Wand, die einen Gaskanal (5) bildet, wobei Wärmetauscherflächen im Gaskanal (5) angeordnet sind, die von einem ersten Fluid durchströmbar sind und mindestens zum Teil eine katalytisch wirksame Oberfläche aufweisen. Sie betrifft ferner ein Verfahren zur CO-Konvertierung mit einem solchen Reaktor.

Description

Beschreibung
Chemischer Reaktor mit Wärmeauskopplung Die Erfindung betrifft einen chemischen Reaktor mit kontinuierlicher Wärmeauskopplung.
Kohle als Primärenergiequelle ist im Preis relativ stabil und viele Länder haben eigene Reserven. Zukünftig werden an fos- sil befeuerte Kraftwerke neue Anforderungen, wie zum Beispiel niedrigste Emissionen und zusätzliche C02~Abtrennung, ge¬ stellt werden. Eines der am weitesten entwickelten Kraftwerkskonzepte der C02~Abtrennung stellt der Integrated Gasi- fication Combined Cycle (IGCC) dar. Diese Technologie umfasst eine Vergasung des Brennstoffs vor dem eigentlichen Gas- und Dampfkraftwerk (GuD) . Da C02-Capture-Maßnahmen immer mit einem Wirkungsgradverlust (8% - 12%, je nach technischen Rand¬ bedingungen) verbunden sind, ist es für die Realisierung einer IGCC-Anlage wichtig, für die einzelnen Teilprozesse einen hohen Wirkungsgrad anzustreben.
Bei einer IGCC-Anlage mit C02~Abtrennung wird die Kohle zu¬ nächst in einem Vergaser in so genanntes Synthesegas umgewan¬ delt, das im Wesentlichen aus Kohlenmonoxid (CO) , Wasserstoff (H2) , Kohlendioxid ( C02 ) und Wasser (H20 ) besteht. Das CO wird anschließend mit Wasser möglichst vollständig in CO2 und H2 konvertiert (CO-Shift) . Bei höherer Temperatur liegt eine schnelle Kinetik aber ein ungünstiges chemisches Gleichge¬ wicht vor. Bei niedrigen Temperaturen ist das Gleichgewicht stärker auf der rechten Seite der Reaktionsgleichung, aber die Kinetik nimmt ab. Daher wird momentan die Shift-Reaktion in ein bis drei Stufen durchgeführt um zwischen den Reaktio¬ nen Wärme abzuführen und ggf. Wasserdampf zuzuführen. Das CO2 wird dann durch eine zusätzliche Wäsche abgetrennt, verdich- tet und zu den Speicherstätten transportiert. Außerdem wird das Synthesegas von anderen Schadstoffen wie Staub und Schwe¬ felverbindungen gereinigt, um Anforderungen der Luftreinhaltung und technischen Anforderungen in der Gasturbine zu genü- gen. Der verbleibende Wasserstoff wird mit Stickstoff und Wasserdampf verdünnt und in einer Gasturbine verbrannt. Die entstehenden heißen Abgase dienen zur Dampferzeugung; der Dampf dient zur weiteren Stromerzeugung in einer Dampfturbi- ne .
Die Shift-Reaktion, bei der aus CO unter Zugabe von Wasserdampf in Gegenwart eines Katalysators Wasserstoff und CO2 er¬ zeugt wird, ist stark exotherm und benötigt viel Wasserdampf (sowohl zur Reaktion als auch zur Reduzierung der Temperatur) . Dieser Schritt hat im Prozess signifikanten Einfluss auf den Wirkungsgrad.
Aufgabe ist es, den Shift-Reaktor und das Verfahren der CO- Shift weiterzuentwickeln, so dass ein verbesserter Anlagen- Wirkungsgrad erzielt wird.
Erfindungsgemäß wird diese Aufgabe gelöst durch die Vorrich¬ tung gemäß Anspruch 1 und das Verfahren gemäß Anspruch 9. Vorteilhafte Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen definiert. Indem bei einem chemischen Reaktor mit einer gasdichten Wand, die einen Gaskanal bildet, mehrere Wärmetauscherflächen im Gaskanal angeordnet sind, die von einem ersten Fluid durchströmbar sind, und min- destens zum Teil eine katalytisch wirksame Oberfläche aufwei¬ sen und mehrere Zuführeinrichtungen für ein zweites Fluid vorgesehen sind, wird folgendes erreicht:
Bei niedrigem Druckverlust kann Wärme kontinuierlich aus dem Prozess entfernt und dadurch eine verbesserte Temperaturfüh¬ rung (konstant oder an die Optimierung des Prozesses ange¬ lehnt) des Shift-Prozesses erreicht werden. Die katalytisch wirksamen Oberflächen würden auf den vom Rohgas bestrichenen Wärmetauscheraußenflächen liegen und die Wärme kann direkt an ein geeignetes Medium abgegeben werden. Dabei ist es zweckmäßig, wenn die Oberfläche der Wärmetau¬ scherflächen eine Umwandlung von Kohlenmonoxid und Wasser in Wasserstoff und Kohlendioxid katalysiert oder bewirkt. In bevorzugter Ausführung weist die gasdichte Wand ebenfalls eine katalytisch wirksame Oberfläche auf. Damit kann die ka- talytisch wirksame Oberfläche bei gleich bleibend geringem Druckverlust vergrößert werden. Vorteilhafter Weise sind im Gaskanal die Zuführeinrichtungen für das zweite Fluid in Richtung einer Längsachse des Gaska¬ nals verteilt angeordnet, wobei das zweite Fluid zweckmäßi¬ gerweise Wasser ist, das dem Shift-Prozess zugeführt werden muss. Die gestufte Zugabe von Wasser hat den Vorteil, eine möglichst geringe Zusatzwassermenge (gerade soviel wie für den Prozess notwendig) nutzen zu können um einen möglichst hohen Wirkungsgrad zu erreichen.
Zur besseren Verteilung bzw. Durchmischung des zugeführten Wassers mit dem Gasstrom ist es zweckmäßig, wenn die Zuführ¬ einrichtungen Eindüsevorrichtungen sind.
Vorteilhafter Weise ist der Gaskanal in liegender Bauweise ausgeführt und im Wesentlichen in waagerechter Richtung von Gas durchströmbar, wobei die Wärmetauscherflächen Verdampferheizflächen oder Economizerheizflächen sind. Auf diese Weise lässt sich die bei der Konvertierung anfallende Wärme direkt im Kraftwerksprozess nutzen. Nach besonders vorteilhafter Ausgestaltung ist der Reaktor in eine Kraftwerksanlage mit einer Gasturbine, einer Dampfturbi¬ ne und einer der Gasturbine vorgeschalteten BrennstoffVerga¬ sung integriert, wobei er zwischen die BrennstoffVergasung und die Gasturbine geschaltet ist.
Bezogen auf das Verfahren zum Betrieb eines chemischen Reaktors wird die Aufgabe dadurch gelöst, dass ein Kohlenmonoxid enthaltendes Gas über mehrere Wärmetauscherflächen mit kata- lytisch wirksamer Oberfläche geleitet wird und Wasser in Strömungsrichtung des Gases verteilt dem Gas zugeführt wird.
Dabei ist es zweckmäßig, wenn die Wärmetauscherflächen durch Rohre gebildet werden, durch die Wasser geleitet wird, wel¬ ches dadurch erwärmt und im Kraftwerksprozess an anderer Stelle verwendet werden kann.
Die bisher in Stufen aufgeteilte Shift-Reaktion wird in einen quasi-kontinuierlichen Reaktions- und Wärmeabtransport- Prozess überführt. Der erfindungsgemäße chemische Reaktor bietet große Katalysatorflachen und niedrigere Druckverluste als die übliche Katalysatorschüttung . Die Technologie ist nicht auf IGCC-Anwendungen beschrankt, sondern könnte auch in anderen Reaktionen verwendet werden, wie beispielsweise der Produktion von Synthetic Natural Gas bzw. Substitute Natural Gas (SNG) , einem Erdgassubstitut , das auf der Basis von Koh¬ le, vor allem Braunkohle, oder Biomasse (Bio-SNG bzw. Biome¬ than) über Synthesegas hergestellt wird.
Ggf. kann für die Wärmeauskoppelung aus Abhitzedampferzeugern bekannte Bensontechnologie genutzt werden.
Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch und nicht maßstäblich:
Figur 1 einen Vergaser mit nachgeschaltetem chemischem Reaktor für die CO-Konvertierung,
Figur 2 einen schematischen Synthesegas-Temperaturverlauf über den erfindungsgemäßen Reaktor und
Figur 3 einen schematischen Synthesegas-Temperaturverlauf über Reaktoren nach dem Stand der Technik.
Die Anordnung in Figur 1 weist zwei Hauptkomponenten auf: den Vergasungsreaktor 1 und den erfindungsgemäßen chemischen Reaktor 2 für die Konversion von Kohlenmonoxid . Die Umsetzung des Einsatzstoffes 3 (das sind fossile oder nachwachsende Energieträger und Rückstände, wie Erdgas, Erd¬ ölfraktionen, Kohle, Biomasse oder Abfallstoffe) erfolgt im Vergasungsreaktor 1 in einer Flammenreaktion. Das dabei u.a entstehende heiße Rohgas 4 strömt aus dem Vergasungsreaktor 1 über verschiedene Stationen, wie beispielsweise eine Abhitze¬ einheit 19 zur Kühlung des Rohgases von der Vergasungstempe¬ ratur bis auf ca. 700°C bis 900°C, bei der idealerweise Hoch¬ druckdampf produziert wird, und/oder eine Quencheinheit 20, in den chemischen Reaktor 2. Ziel des Quenches ist ein Anstieg des Wasserdampfanteils im Rohgas für die nachfolgende Wassergas-Shift-Reaktion im chemischen Reaktor 2.
Der Gaskanal 5 des chemischen Reaktors 2 umfasst aus Rohren aufgebaute Wärmetauscherflächen 6. Diese können im Gaskanal 5 angeordnet sein oder auch die Umfassungswand 7 des Gaskanals 5 bilden. Im letzteren Fall sind die nicht näher dargestell¬ ten Dampferzeugerrohre an ihren Längsseiten über Stege oder sogenannte Flossen gasdicht miteinander verschweißt. Eine Mehrzahl von zueinander benachbarten Rohren ist auf diese Weise zu einer Wärmetauscherfläche 6 zusammengefasst . Die Eintrittsenden 8 der eine Wärmetauscherfläche 6 bildenden Rohre am stromabwärtigen Ende 9 des chemischen Reaktors 2 werden über einen (nicht dargestellten) gemeinsamen Ein- trittssammler beispielsweise mit Speisewasser beaufschlagt. Die Wärmetauscherfläche 6 wird in diesem Fall als Economi- zerheizfläche 10 verwendet. Austrittseitig strömt das in den Rohren der Economizerheizfläche 10 in Folge der Beheizung durch das Synthesegas erwärmte Speisewasser über einen (nicht dargestellten) gemeinsamen Austrittssammler ab und wird anschließend einer Verdampfereinheit zugeführt. Die Verdampfer¬ einheit 11 kann ebenfalls im chemischen Reaktor 2, beispiels¬ weise in Strömungsrichtung des Synthesegases stromauf der Economizerheizfläche 10, angeordnet sein. Das vom Economizer 10 vorgewärmte Wasser kann auch beim Verdampfer 11 über einen Eintrittssammler den Wärmetauscherflächen 6 zugeführt werden. In der Verdampfereinheit 11 wird das vorgewärmte Wasser zu Nieder-, Mittel- oder Hochdruckdampf verdampft und, ebenfalls über entsprechende Sammler, beispielsweise einer Überhitze¬ reinheit 12 zugeführt.
Die Wärmetauscherflächen 6 können auch zur Zwischenüberhit- zung 13 des aus einer ersten Turbinenstufe einer Dampfturbine abströmenden, partiell entspannten Strömungsmediums einge¬ setzt werden, so dass das Strömungsmedium anschließend erneut aufgeheizt der nächsten Stufe der Dampfturbine zuführbar ist. Infolge der Wärmeübertragung auf das die Wärmetauscherflächen 6 durchströmende Strömungsmedium wird Wärme des im Gaskanal 5 strömenden Synthesegases mit fortschreitendem Strömungsweg kontinuierlich abgeführt. Infolge der Wassergas-Shift- Reaktion entsteht jedoch wieder Wärme. Zur Regelung dieser Reaktion und somit der Temperatur des Synthesegases wird Was¬ ser an verschiedenen Stellen und in Längsrichtung des Gaskanals 5 verteilt in den Synthesegasstrom eingeleitet. Die Was¬ sereinleitung erfolgt mithilfe einer Eindüsevorrichtung 14. Die Düsen der Eindüsevorrichtung sind derart eingestellt und ausgerichtet, dass eine möglichst geringe Zusatzwassermenge (gerade soviel wie für den Prozess notwendig) bereitgestellt wird, um einen möglichst hohen Anlagenwirkungsgrad zu errei¬ chen . Die Heizflächen des Economizers und der Verdampfer und ggfs. Überhitzer sind mit einer Katalysatorschicht für die Wasser¬ gas-Shift-Reaktion versehen. Durch das Katalysatormaterial wird die Aktivierungsenergie für die Shift-Reaktion, bei der Kohlenmonoxid und Wasser in Kohlendioxid und Wasserstoff um- gewandelt werden, herabgesenkt und somit ihre Kinetik verän¬ dert .
Figur 2 zeigt schematisch den Temperaturverlauf des Synthese¬ gases vom Reaktoreingang 15 zum Reaktorausgang 9. Im Gegen- satz zur Verwendung von Hochtemperatur- 16 und Niedertempera- tur-Shift-Stufen 17 (s. Fig. 3) des Standes der Technik kann bei der vorliegenden Erfindung zur Wirkungsgradoptimierung der Temperaturverlauf im chemischen Reaktor 2 eingestellt bzw. geführt werden. Dabei ist dieser Temperaturverlauf nicht zwangsläufig horizontal (A) , sondern wird gemäß dem Gleichge¬ wicht der Wassergas-Shift-Reaktion eher gegen Ende des Gaskanals 5 abfallen (B) , um der Tatsache Rechnung zu tragen, dass bei höherer Temperatur eine schnelle Kinetik aber ein ungünstiges chemisches Gleichgewicht vorliegt und bei niedrigen Temperaturen das Gleichgewicht stärker auf der rechten Seite der Reaktionsgleichung ist, aber die Kinetik abnimmt. Der Temperaturverlauf muss dabei nicht linear sein. Da die Koh- lenmonoxidkonzentration zu Beginn der Shift-Reaktion am höchsten ist, liegen am Reaktoreingang bevorzugt höhere Temperaturen vor als am Reaktorausgang. Die Wärmetauscherflächen 6 sind dann entsprechend so im chemischen Reaktor 2 angeord¬ net, dass in Strömungsrichtung des Synthesegases auf einer stromaufwärtigen Seite des chemischen Reaktors 2 eher Überhitzer 12,13 und Verdampfer 11 und auf der stromabwärtigen Seite der Economizer 10 ist.
Figur 3 zeigt den Temperaturverlauf, wie er im Stand der Technik bei Verwendung einer Hochtemperatur- 16 und einer
Niedertemperatur-Shift-Stufe 17 mit zwischengeschaltetem Wär¬ metauscher 18 aussähe.

Claims

Patentansprüche
1. Ein chemischer Reaktor (2) einer technischen Anlage, insbesondere einer Kraftwerksanlage, umfassend eine gasdich- te Wand (7), die einen Gaskanal (5) bildet, dadurch ge¬ kennzeichnet, dass mehrere Wärmetauscherflächen (6) im Gaskanal (5) angeordnet sind, die von einem ersten Fluid durchströmbar sind und mindestens zum Teil eine kataly- tisch wirksame Oberfläche aufweisen, und dass im Gaskanal (5) mehrere Zuführeinrichtungen für ein zweites Fluid vorgesehen sind.
2. Der Reaktor (2) nach Anspruch 1, wobei die Oberfläche eine Umwandlung von Kohlenmonoxid und Wasser in Wasserstoff und Kohlendioxid katalysiert oder bewirkt.
3. Der Reaktor (2) nach einem der Ansprüche 1 oder 2, wobei die gasdichte Wand (7) ebenfalls eine katalytisch wirksa¬ me Oberfläche aufweist.
4. Der Reaktor (2) nach einem der vorhergehenden Ansprüche, wobei die Zuführeinrichtungen in Richtung einer Längsachse des Gaskanals (5) verteilt angeordnet sind.
5. Der Reaktor (2) nach einem der vorhergehenden Ansprüche, wobei das zweite Fluid Wasser ist.
6. Der Reaktor (2) nach einem vorhergehenden Ansprüche, wobei die Zuführeinrichtungen Eindüsevorrichtungen sind.
7. Der Reaktor (2) nach einem der vorhergehenden Ansprüche, wobei der Gaskanal (5) in liegender Bauweise ausgeführt ist und im Wesentlichen in waagerechter Richtung von Gas durchströmbar ist, wobei die Wärmetauscherflächen (6) Verdampferheizflächen (11) oder Economizerheizflächen
(10) sind.
8. Eine Kraftwerksanlage mit einer Gasturbine, einer Dampf¬ turbine und einer der Gasturbine vorgeschalteten BrennstoffVergasung, wobei ein Reaktor (2) nach einem der Ansprüche 1 bis 7 zwischen die BrennstoffVergasung und die Gasturbine geschaltet ist.
9. Ein Verfahren zum Betrieb eines chemischen Reaktors (2), dadurch gekennzeichnet, dass ein Kohlenmonoxid enthalten¬ des Gas über mehrere Wärmetauscherflächen (6) mit kataly- tisch wirksamer Oberfläche geleitet wird und Wasser in Strömungsrichtung des Gases verteilt dem Gas zugeführt wird .
10. Das Verfahren nach Anspruch 9, wobei die Wärmetauscherflächen (6) durch Rohre gebildet werden, durch die Wasser geleitet wird.
EP10770820A 2009-11-04 2010-10-26 Chemischer reaktor mit wärmeauskopplung Withdrawn EP2496518A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009051938A DE102009051938A1 (de) 2009-11-04 2009-11-04 Chemischer Reaktor mit Wärmeauskopplung
PCT/EP2010/066140 WO2011054698A1 (de) 2009-11-04 2010-10-26 Chemischer reaktor mit wärmeauskopplung

Publications (1)

Publication Number Publication Date
EP2496518A1 true EP2496518A1 (de) 2012-09-12

Family

ID=43413654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10770820A Withdrawn EP2496518A1 (de) 2009-11-04 2010-10-26 Chemischer reaktor mit wärmeauskopplung

Country Status (6)

Country Link
US (1) US20120216501A1 (de)
EP (1) EP2496518A1 (de)
KR (1) KR20120093259A (de)
CN (1) CN102639434A (de)
DE (1) DE102009051938A1 (de)
WO (1) WO2011054698A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128932B2 (ja) * 2013-04-22 2017-05-17 株式会社神戸製鋼所 処理装置及び処理方法
US10076739B1 (en) 2014-07-22 2018-09-18 Precision Combustion, Inc. Chemical reactor for use with overly reactive chemicals
DE102015219391A1 (de) * 2015-10-07 2017-04-13 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Gas-und-Dampf-Kombinationskraftwerks

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2465235A (en) * 1949-03-22 Production of hydrogen
DE1964810C3 (de) * 1969-12-24 1979-04-05 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zur Gewinnung von Wasserstoff
DE2709768A1 (de) * 1977-03-07 1978-09-21 Metallgesellschaft Ag Verfahren zum katalytischen konvertieren von rohgas aus der vergasung fester brennstoffe
EP1274650A1 (de) * 2000-04-17 2003-01-15 Shell Internationale Researchmaatschappij B.V. Brennstoffbehandlungsvorrichtung
US20040148862A1 (en) * 2003-01-31 2004-08-05 Yu Paul Taichiang WGS reactor incorporated with catalyzed heat exchanger for WGS reactor volume reduction
DE602004019076D1 (de) * 2004-08-05 2009-03-05 Saudi Basic Ind Corp Verfahren mit einem mit Katalysator beschichteten Wärmetauscher
US20070072949A1 (en) * 2005-09-28 2007-03-29 General Electric Company Methods and apparatus for hydrogen gas production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011054698A1 *

Also Published As

Publication number Publication date
KR20120093259A (ko) 2012-08-22
CN102639434A (zh) 2012-08-15
US20120216501A1 (en) 2012-08-30
WO2011054698A1 (de) 2011-05-12
DE102009051938A1 (de) 2011-05-26

Similar Documents

Publication Publication Date Title
DE102014105237B3 (de) Verfahren und Vorrichtung zum Speichern und Rückgewinnen von Energie
EP0127092B1 (de) Mittellastkraftwerk mit einer integrierten Kohlevergasungsanlage
EP2406190B1 (de) Verfahren und anlage zur verwertung von biomasse sowie blockheizkraftwerk
DE69102577T2 (de) Kraftanlage.
DE3014292A1 (de) Verfahren zur energieerzeugung aus kohlenstoffhaltigen brennstoffen
WO2011054698A1 (de) Chemischer reaktor mit wärmeauskopplung
EP2467589A1 (de) Verfahren und vorrichtung zur umwandlung thermischer energie aus biomasse in mechanische arbeit
DE102009049914B4 (de) Kohlekraftwerks-Kombiprozess mit integrierter Methanolherstellung
DE102007022168A1 (de) Verfahren zur Erzeugung motorischer Energie aus fossilen Brennstoffen mit Abführung von reinem Kohlendioxid
EP2105188A1 (de) Verfahren und Vorrichtung zum Abtrennen von Kohlendioxid aus einem Abgas einer fossilbefeuerten Kraftwerksanlage
DE2924245C2 (de) Verfahren zur Deckung von Bedarfsspitzen bei der Erzeugung von elektrischer Energie in einem Kraftwerk unter Verwendung von Gasturbinen
DE102011015717B4 (de) Wärmerückgewinnungseinrichtung
WO2010020439A2 (de) Igcc-anlage
DE102019005452B4 (de) Verfahren zur Erzeugung von Synthesegas für die Herstellung von Ammoniak
BE1030201B1 (de) Ammoniaksynthese und Harnstoffsynthese mit reduziertem CO2-Fußabdruck
DE102020210802B4 (de) System zur Erzeugung von Energie durch Vergasung von kohlenstoffbasiertem Brennstoff
WO2015176943A1 (de) Verbrennung von lithium bei unterschiedlichen temperaturen, drücken und gasüberschüssen mit porösen rohren als brenner
LU103015B1 (de) Anlage und Verfahren zur Erzeugung von grünem Harnstoff
AT502147B1 (de) Verfahren zum katalytischen konvertieren von klärschlamm
DE3327367A1 (de) Mittellastkraftwerk mit einer integrierten kohlevergasungsanlage
EP2395066A1 (de) Produktionsanlage für Chemierohstoffe oder Brennstoffe
EP1116862B1 (de) Verfahren zur Erzeugung von Dampf und eine Dampferzeugeranlage
WO2009149968A1 (de) Reingasvorwärmeinrichtung sowie verfahren zur reingasvorwärmung
BE1030199A1 (de) Ammoniaksynthese und Harnstoffsynthese mit reduziertem CO2-Fußabdruck
DE102013219254B4 (de) Energetisch optimiertes Verfahren zur stofflichen Kohle-/Biomassenutzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120417

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501