EP2496380A1 - Einkristallines schweissen von direktional verfestigten werkstoffen - Google Patents

Einkristallines schweissen von direktional verfestigten werkstoffen

Info

Publication number
EP2496380A1
EP2496380A1 EP10776651A EP10776651A EP2496380A1 EP 2496380 A1 EP2496380 A1 EP 2496380A1 EP 10776651 A EP10776651 A EP 10776651A EP 10776651 A EP10776651 A EP 10776651A EP 2496380 A1 EP2496380 A1 EP 2496380A1
Authority
EP
European Patent Office
Prior art keywords
substrate
welding
powder
melt
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10776651A
Other languages
English (en)
French (fr)
Inventor
Bernd Burbaum
Andres Gasser
Torsten Jambor
Stefanie Linnenbrink
Norbert Pirch
Nikolai Arjakine
Georg Bostanjoglo
Torsten Melzer-Jokisch
Selim Mokadem
Michael Ott
Rolf WILKENHÖNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Siemens AG
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Siemens AG filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2496380A1 publication Critical patent/EP2496380A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/007Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of copper or another noble metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/234Laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/312Layer deposition by plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/606Directionally-solidified crystalline structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/607Monocrystallinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a welding method of directionally solidified metallic materials.
  • ⁇ '-reinforced SX nickel-base superalloys can not be custom-welded in one or more layers by means of conventional welding processes or high-energy processes (laser, electron beam) with similar filler materials in overlapping welding paths.
  • the problem lies in the fact that even with a single welding path in the near-surface edge area, a structure with misorientation is formed. For the subsequent overlap track, this means that the solidification front in this area has no SX seed at its disposal and the area with misorientation (no SX microstructure) continues to expand in the overlap area. Cracking occurs in this area.
  • the welding methods used so far are not in the
  • the object is achieved by a method according to claim 1.
  • FIG. 1 shows a schematic sequence of the method
  • FIG. 2 shows a gas turbine
  • FIG. 3 shows a turbine blade
  • Figure 4 is a list of superalloys.
  • the component 120, 130 to be repaired has a substrate 4 of a superalloy, in particular of a nickel-based superalloy according to FIG.
  • the substrate 4 consists of a
  • Nickel-base superalloy
  • the substrate 4 is repaired by applying new material 7, in particular by means of powder, to the surface 5 of the substrate 4 by build-up welding.
  • Welding beam preferably a laser beam 10 of a
  • powder is preferably used.
  • the diameter of the powder particles 7 is so small that a
  • the apparatus of the invention preferably comprises a laser (not shown) with a powder supply unit and a movement system (not shown), with which the
  • Laser beam interaction zone and the impact area for the powder 7 on the substrate surface 5 can be moved.
  • the component (substrate 4) is preferably neither preheated nor by means of a heat treatment
  • the area to be reconstructed on the substrate 4 is preferably job-welded in layers.
  • the layers are preferably meander-shaped, unidirectionally or bidirectionally applied, the scan vectors of the
  • Meandering from one location to another preferably 90 ° be rotated to avoid tying errors between the layers.
  • the dendrites 31 in the substrate 4 and the dendrites 34 in the up ⁇ transmitted region 13 are shown in FIG. 1
  • a coordinate system 25 is also shown.
  • the substrate 4 moves relatively in the x-direction 22 at the scanning speed V v .
  • the welding process is performed with process parameters regarding feed rate V r , laser power, beam diameter and
  • Freezing front leads which is smaller than 45 ° to the direction of the dendrites 31 in the substrate 4. This ensures that only the growth direction for the dendrites 34 is favored, which continues the dendrite direction 32 in the substrate 4.
  • a beam radius is necessary, which ensures that the part of the three-phase lines that bounds the solidification front 19 is completely covered by the laser beam.
  • V v scan speed
  • thermal conductivity of the substrate
  • a process window results with respect to the intensity of the laser radiation (approximately top hat), the beam radius relative to the powder beam focus, the feed rate V v and the powder mass flow.
  • Laser radiation is in the coaxial process control a longer interaction time of the powder particles with the
  • Particle temperature and residence time in the melt cause the particles to melt completely.
  • FIG. 2 shows by way of example a gas turbine 100 in a partial longitudinal section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103 with a shaft 101, which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • a compressor 105 for example, a toroidal combustion chamber 110, in particular annular combustion chamber, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 110 communicates with an annular annular hot gas channel 111, for example.
  • annular annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed, for example, from two blade rings . As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example.
  • the gas turbine 100 air is sucked in by the compressor 105 through the intake housing 104 and compressed.
  • the 105 ⁇ be compressed air provided at the turbine end of the compressor is ge ⁇ leads to the burners 107, where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 relaxes on the rotor blades 120 in a pulse-transmitting manner, so that the blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the flow direction of the working medium 113, are subjected to the highest thermal stress in addition to the heat shield elements lining the annular combustion chamber 110.
  • substrates of the components may have a directional structure, i. they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • the components in particular for the turbine blade or vane 120, 130 and components of the combustion chamber 110.
  • iron-, nickel- or cobalt-based superalloys are used.
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one member of the group
  • Iron (Fe), cobalt (Co), nickel (Ni), X is an active element and stands for yttrium (Y) and / or silicon, scandium (Sc) and / or at least one element of rare earth or hafnium).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • a thermal barrier coating may still be present on the MCrAlX, consisting for example of ZrO 2, Y 2 O 3 -ZrO 2, i. it is not, partially or completely stabilized by yttria and / or calcium oxide and / or magnesium oxide.
  • Suitable coating processes such as electron beam evaporation (EB-PVD), produce stalk-shaped grains in the thermal barrier coating.
  • the guide vane 130 has an inner housing 138 of the turbine 108 facing guide vane root (not Darge here provides ⁇ ) and a side opposite the guide-blade root vane root.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 3 shows a perspective view of a rotor blade 120 or guide vane show ⁇ 130 of a turbomachine, which extends along a longitudinal axis of the 121st
  • the turbomachine may be a gas turbine of an aircraft or a power plant for power generation, a steam turbine or a compressor.
  • the blade 120, 130 has along the longitudinal axis 121 to each other, a securing region 400, an adjoining blade or vane platform 403 and a blade 406 and a blade tip 415.
  • the vane 130 having at its blade tip 415 have a further platform (not Darge ⁇ asserted).
  • a blade root 183 is formed, which serves for attachment of the blades 120, 130 to a shaft or a disc (not shown).
  • the blade root 183 is designed, for example, as a hammer head. Other designs as Christmas tree or Schwalbenschwanzfuß are possible.
  • the blade 120, 130 has for a medium which flows past the scene ⁇ felblatt 406 on a leading edge 409 and a trailing edge 412th
  • Such superalloys are known, for example, from EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 or WO 00/44949.
  • the blade 120, 130 can be made by a casting process, also by directional solidification, by a forging process, by a milling process or combinations thereof.
  • Workpieces with a monocrystalline structure or structures are used as components for machines which are exposed to high mechanical, thermal and / or chemical stresses during operation.
  • Such monocrystalline workpieces takes place e.g. by directed solidification from the melt.
  • These are casting processes in which the liquid metallic alloy is transformed into a monocrystalline structure, i. to the single-crystal workpiece, or directionally solidified.
  • dendritic crystals are aligned along the heat flow and form either a columnar grain structure (columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified) or a monocrystalline structure, ie the whole workpiece be ⁇ is made of a single crystal.
  • a columnar grain structure columnar, ie grains that run the entire length of the workpiece and here, in common parlance, referred to as directionally solidified
  • a monocrystalline structure ie the whole workpiece be ⁇ is made of a single crystal.
  • directionally solidified microstructures which means both single crystals that have no grain boundaries or at most small angle grain boundaries, and stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries.
  • stem crystal structures that have probably longitudinal grain boundaries but no transverse grain boundaries.
  • second-mentioned crystalline Structures are also called directionally solidified structures.
  • the blades 120, 130 may have coatings against corrosion or oxidation, e.g. B. (MCrAlX, M is at least one element of the group iron (Fe), cobalt (Co),
  • Nickel (Ni) is an active element and stands for yttrium (Y) and / or silicon and / or at least one element of the rare earths, or hafnium (Hf)).
  • Such alloys are known from EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 or EP 1 306 454 A1.
  • the density is preferably 95% of the theoretical
  • the layer composition comprises Co-30Ni-28Cr-8A1-0, 6Y-0, 7Si or Co-28Ni-24Cr-10Al-0, 6Y.
  • nickel-based protective layers such as Ni-10Cr-12Al-0.6Y-3Re or Ni-12Co-21Cr-IIAl-O, 4Y-2Re or Ni-25Co-17Cr-10A1-0, 4Y-1 are also preferably used , 5Re.
  • thermal barrier coating which is preferably the outermost layer, and consists for example of Zr0 2 , Y2Ü3-Zr02, ie it is not, partially or completely stabilized by yttria
  • the thermal barrier coating covers the entire MCrAlX layer.
  • Electron beam evaporation produces stalk-shaped grains in the thermal barrier coating.
  • the heat insulating layer can ⁇ porous, micro- or macro-cracked pERSonal have ner for better thermal shock resistance.
  • the thermal barrier coating is therefore preferably more porous than the
  • Refurbishment means that components 120, 130 may have to be freed of protective layers after use (eg by sandblasting). This is followed by removal of the corrosion and / or oxidation layers or products. Optionally, even cracks in the component 120, 130 are repaired. Thereafter, a ⁇ As the coating of the component 120, 130, after which the component 120, the 130th
  • the blade 120, 130 may be hollow or solid. If the blade 120, 130 is to be cooled, it is hollow and also has, if necessary, film cooling holes 418 (indicated by dashed lines) on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laser Beam Processing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Durch die gezielte Auswahl von Verfahrensparametern bei Laserschweißen, Vorschub, Laserleistungsstrahldurchmesser und Pulvermassenstrom kann der Temperaturgradient gezielt eingestellt werden, der wesentlich entscheidend ist zum einkristallinen Wachstum beim Laserauftragsschweißen.

Description

Einkristallines Schweißen von direktional verfestigten
Werkstoffen
Die Erfindung betrifft ein Schweißverfahren von direktional verfestigten metallischen Werkstoffen. γ ' -verstärkte SX Nickelbasis-Superlegierungen lassen sich weder mittels konventioneller Schweißverfahren noch mit Hochenergieverfahren (Laser, Elektronenstrahl) mit artgleichen Zusatzwerkstoffen in überlappenden Schweißbahnen in ein oder mehreren Lagen auftragsschweißen . Das Problem liegt darin, dass sich bereits bei einer einzelnen Schweißbahn im oberflächennahen Randbereich ein Gefüge mit Fehlorientierung ausbildet. Für die nachfolgende Überlappspur bedeutet das, dass die Erstarrungsfront in diesem Bereich keinen SX Keim zur Verfügung hat und sich der Bereich mit Fehlorientierung (kein SX Gefüge) im Überlappbereich weiter ausdehnt. In diesem Bereich kommt es zur Rissbildung. Die bisher verwendeten Schweißverfahren sind nicht in der
Lage, für γ ' -verstärkte SX Nickelbasis-Superlegierungen ein Schweißgut in Überlappbearbeitung in ein oder mehreren Lagen artgleich mit identischem SX Gefüge aufzubauen. Bei einer Einzelspur auf einem SX Substrat variieren die lokalen Er- starrungsbedingungen in der Weise, dass je nach Position ein dendritisches Wachstums ausgehend von den Primärstämmen oder den Sekundärarmen initiiert wird. Dabei setzt sich von den verschiedenen möglichen dendriten Wachstumsrichtungen die mit den günstigsten Wachstumsbedingungen durch, d.h. die mit dem kleinsten Neigungswinkel zum Temperaturgradienten. Die Ursache für die Ausbildung von Fehlorientierungen im SX Gefüge beim Pulver-Auftragsschweißen von γ ' -verstärkten SX Nickelbasis-Superlegierungen ist z. Zt. nicht vollständig geklärt. Man vermutet, dass beim Aufeinandertreffen der Dendriten aus verschiedenen Wachstumsrichtungen möglicherweise Sekundärarme abbrechen und als Keime für die Ausbildung eines fehlorientierten Gefüges dienen. Darüber hinaus können im oberflächennahen Randbereich nicht vollständig aufgeschmolzene Pulver- Partikel in der Schmelze als Keime für die Ausbildung eines fehlorientierten Gefüges dienen. Zur Lösung des Problems wird deshalb eine Prozessführung für das Pulver-Auftragsschweißen von γ ' -verstärkten SX Nickelbasis-Superlegierungen vorge- schlagen, bei der Wachstumsbedingungen realisiert werden, die nur eine Wachstumsrichtung für die Dendriten favorisieren. Darüber hinaus stellt die Prozessführung ein vollständiges Aufschmelzen der Pulverpartikel in der Schmelze sicher. Es ist daher Aufgabe der Erfindung o. g. Problem zu lösen.
Die Aufgabe wird gelöst durch ein Verfahren gemäß Anspruch 1.
Zur Lösung dieses technischen Problems der Ausbildung eines nicht einkristallinen Gefüges im oberflächennahen Randbereich einer Einzelspur wird eine Prozessführung für das
Auftragsschweißen mit Laserstrahlung vorgeschlagen, bei der dieses Problem nicht auftritt oder in so einem geringen Maße, dass Überlappbearbeitung in ein oder mehreren Lagen ohne Rissbildung bei Raumtemperatur möglich ist.
In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden kön- nen, um weitere Vorteile zu erzielen.
Es zeigen:
Figur 1 einen schematischen Ablauf des Verfahrens,
Figur 2 eine Gasturbine,
Figur 3 eine Turbinenschaufel,
Figur 4 eine Liste von Superlegierungen .
Die Beschreibung und die Figuren stellen nur Ausführungsbei- spiele der Erfindung dar. In Figur 1 ist schematisch der Ablauf des Verfahrens darge¬ stellt mit einer Vorrichtung 1.
Das zu reparierende Bauteil 120, 130 weist ein Substrat 4 aus einer Superlegierung, insbesondere aus einer nickelbasierten Superlegierung gemäß Figur 4 auf.
Ganz insbesondere besteht das Substrat 4 aus einer
Nickelbasissuperlegierung .
Das Substrat 4 wird repariert, indem neues Material 7, insbe- sondere mittels Pulver auf die Oberfläche 5 des Substrats 4 durch Auftragsschweißen aufgebracht wird.
Dies erfolgt durch die Zufuhr von Material 7 und einem
Schweißstrahl, vorzugsweise einem Laserstrahl 10 eines
Lasers, der zumindest das zugeführte Material 7 aufschmilzt und vorzugsweise auch teilweise das Substrat 4.
Dabei wird vorzugsweise Pulver verwendet. Vorzugsweise ist der Durchmesser der Pulverteilchen 7 so klein, dass ein
Laserstrahl sie vollständig aufschmelzen und eine hinreichend hohe Temperatur der Teilchen 7 ergibt.
Dabei gibt es auf dem Substrat 4 während des Schweißens einen aufgeschmolzenen Bereich 16 und eine sich daran anschließende Erstarrungsfront 19 und davor ein schon wieder erstarrter Bereich 13.
Die Vorrichtung der Erfindung umfasst vorzugsweise einen Laser (nicht dargestellt) mit einer Pulverzuführeinheit und ein Bewegungssystem (nicht dargestellt) , mit dem die
Laserstrahlwechselwirkungszone und der Auftreffbereich für das Pulver 7 auf der Substratoberfläche 5 bewegt werden können. Das Bauteil (Substrat 4) wird dabei vorzugsweise weder vorgewärmt, noch mittels einer Wärmebehandlung
überaltert .
Der zu rekonstruierende Bereich auf dem Substrat 4 wird vorzugsweise lagenweise auftragsgeschweißt.
Die Lagen werden vorzugsweise mäanderförmig, uni- oder bidirektional aufgetragen, wobei die Scanvektoren der
Mäanderfahrten von Lage zu Lage vorzugsweise jeweils um 90° gedreht werden, um Anbindefehler zwischen den Lagen zu vermeiden .
Die Dendriten 31 im Substrat 4 und die Dendriten 34 im aufge¬ tragenen Bereich 13 sind in der Figur 1 dargestellt.
Ein Koordinatensystem 25 ist ebenfalls dargestellt.
Das Substrat 4 bewegt sich relativ in x-Richtung 22 mit der Scangeschwindigkeit Vv .
Auf der Erstarrungsfront 19 gibt es den z- Temperaturgradienten 28.
ÖZ
Der Schweißprozess wird mit Verfahrensparametern bzgl. Vorschub Vr , Laserleistung, Strahldurchmesser und
Pulvermassenstrom durchgeführt, die zu einer lokalen
Orientierung des Temperaturgradienten auf der
Erstarrungsfront führt, der kleiner als 45° zur Richtung der Dendriten 31 im Substrat 4 ist. Dadurch wird gewährleistet, dass ausschließlich die Wachstumsrichtung für die Dendriten 34 favorisiert wird, die die Dendritenrichtung 32 im Substrat 4 fortsetzt. Dafür notwendig ist ein Strahlradius, der gewährleistet, dass der Teil der Dreiphasenlinien, der die Erstarrungsfront 19 berandet, vollständig von dem Laserstrahl überdeckt wird.
Die approximative Bedingung für eine geeignete Neigung der Erstarrungsfront 19 zur Dendritenrichtung 32 der Dendriten 31 im Substrat 4 lautet:
A: Absorptionsgrad vom Substrat ,
IL: Laserintensität ,
Vv: Scangeschwindigkeit , λ: Wärmeleitfähigkeit des Substrats ,
T: Temperatur
Aus der Bedingung ergibt sich Werkstoffabhängig ein Prozess- fenster bzgl. der Intensität der Laserstrahlung (approximativ top hat) , dem Strahlradius relativ zum Pulverstrahlfokus, der Vorschubgeschwindigkeit Vv und dem Pulvermassenstrom.
Durch die vollständige Überdeckung der Schmelze mit der
Laserstrahlung wird bei der koaxialen Prozessführung eine längere Wechselwirkungszeit der Pulverpartikel mit der
Laserstrahlung und eine damit höhere Partikeltemperatur beim Kontakt mit der Schmelze gewährleistet. Der Partikeldurchmesser und damit die vorgegebene
Wechselwirkungszeit sollen ein zum vollständigen Aufschmelzen ausreichend hohes Temperaturniveau bewirken. Ein ausreichend hohes Temperaturniveau der Schmelze soll bei gegebener
Partikeltemperatur und Verweilzeit in der Schmelze bewirken, dass die Partikel vollständig in Schmelze gehen.
Durch die oben beschriebenen Verfahrensparameter und Mechanismen werden die Voraussetzungen für ein epitaktisches einkristallines Wachstum im Schweißgut mit einer im Substrat identischen Dendritenorientierung gewährleistet. Dadurch, dass beim Schweißprozess nur eine Dendritenwachstumsrichtung normal zur Oberfläche aktiviert ist, wird beim Erstarren ein Nachfließen der Schmelze in den interdendritischen Raum erleichtert und die Bildung von Heißrissen vermieden.
Dies resultiert in einer Qualität der Schweißung, die für eine strukturelle Schweißung (z. B. zum Zwecke einer Repara¬ tur oder Fügung in einem hochbelasteten Bereich des Bauteils) akzeptabel sind. Die Figur 2 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt .
Die Gasturbine 100 weist im Inneren einen um eine Rotations- achse 102 drehgelagerten Rotor 103 mit einer Welle 101 auf, der auch als Turbinenläufer bezeichnet wird.
Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.
Die Ringbrennkammer 110 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinander geschaltete Turbinenstufen 112 die Tur- bine 108.
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufel¬ ringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.
Die Leitschaufeln 130 sind dabei an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt) .
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und ver- dichtet. Die am turbinenseitigen Ende des Verdichters 105 be¬ reitgestellte verdichtete Luft wird zu den Brennern 107 ge¬ führt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unter- liegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 110 auskleidenden Hitzeschildelementen am meisten thermisch be- lastet.
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.
Ebenso können Substrate der Bauteile eine gerichtete Struktur aufweisen, d.h. sie sind einkristallin ( SX-Struktur) oder weisen nur längsgerichtete Körner auf (DS-Struktur) .
Als Material für die Bauteile, insbesondere für die Turbinen¬ schaufel 120, 130 und Bauteile der Brennkammer 110 werden beispielsweise eisen-, nickel- oder kobaltbasierte Superle- gierungen verwendet.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion (MCrAlX; M ist zumindest ein Element der Gruppe
Eisen (Fe) , Kobalt (Co) , Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium, Scandium (Sc) und/oder zumindest ein Element der Seltenen Erden bzw. Hafnium) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI.
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, und besteht beispielsweise aus Zr02, Y203-Zr02, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Ytt- riumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt. Die Leitschaufel 130 weist einen dem Innengehäuse 138 der Turbine 108 zugewandten Leitschaufelfuß (hier nicht darge¬ stellt) und einen dem Leitschaufelfuß gegenüberliegenden Leitschaufelkopf auf. Der Leitschaufelkopf ist dem Rotor 103 zugewandt und an einem Befestigungsring 140 des Stators 143 festgelegt .
Die Figur 3 zeigt in perspektivischer Ansicht eine Laufschau¬ fel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.
Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.
Die Schaufel 120, 130 weist entlang der Längsachse 121 auf¬ einander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufel¬ spitze 415 eine weitere Plattform aufweisen (nicht darge¬ stellt) .
Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt) .
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausge- staltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schau¬ felblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Ab¬ strömkante 412 auf.
Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise mas- sive metallische Werkstoffe, insbesondere Superlegierungen verwendet .
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 Bl, EP 1 306 454, EP 1 319 729 AI, WO 99/67435 oder WO 00/44949 bekannt.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.
Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück be¬ steht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbil- den, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures) .
Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 AI bekannt.
Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe) , Kobalt (Co) ,
Nickel (Ni) , X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf) ) . Solche Legierungen sind bekannt aus der EP 0 486 489 Bl, EP 0 786 017 Bl, EP 0 412 397 Bl oder EP 1 306 454 AI.
Die Dichte liegt vorzugsweise bei 95% der theoretischen
Dichte.
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer) . Vorzugsweise weist die SchichtZusammensetzung Co-30Ni-28Cr- 8A1-0, 6Y-0, 7Si oder Co-28Ni-24Cr-10Al-0, 6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al- 0,6Y-3Re oder Ni-12Co-21Cr-llAl-0, 4Y-2Re oder Ni-25Co-17Cr- 10A1-0, 4Y-1, 5Re .
Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus Zr02, Y2Ü3-Zr02, d.h. sie ist nicht, teil- weise oder vollständig stabilisiert durch Yttriumoxid
und/oder Kalziumoxid und/oder Magnesiumoxid.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht.
Durch geeignete Beschichtungsverfahren wie z.B. Elektronen- strahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärme¬ dämmschicht kann poröse, mikro- oder makrorissbehaftete Kör- ner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die
MCrAlX-Schicht .
Wiederaufarbeitung (Refurbishment ) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen) . Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidations- schichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wie¬ derbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.
Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeu¬ tet) auf.

Claims

Patentansprüche
1. Verfahren zur direktionalen Verfestigung einer Schweiß- naht (13) während des Auftragsschweißens,
insbesondere zum Auftragsschweißen eines Substrats (4) eines Bauteils (1, 120, 130),
das (4) gerichtet verfestigt ist
und Dendriten (31) aufweist,
die (31) sich in einer Substratdendritenrichtung (32) erstrecken,
bei dem die Verfahrensparameter bezüglich Vorschub,
Laserleistung, Schweißstrahldurchmesser, Pulverstrahlfokus und/oder Pulvermassenstrom derart ausgestaltet sind, dass sie zu einer lokalen Orientierung des Temperaturgra¬ dienten (28) auf einer Erstarrungsfront (19) führen, die kleiner als 45° zur Substratdendritenrichtung (32) der Dendriten (31) im Substrat (4) ist.
2. Verfahren nach Anspruch 1,
bei dem eine Schmelze (16) auf und in dem Substrat (4) entsteht,
die durch die Zufuhr von Pulver (7) und/oder Material des Substrats (4) generiert wird,
und bei dem die Schmelze (16) vollständig von einem
Schweißstrahl (10),
insbesondere einem Laserstrahl,
bedeckt wird,
insbesondere bei dem die Schmelze (16) überlappt wird.
3. Verfahren nach Anspruch 1 oder 2,
bei dem zugeführtes Pulver (7) lagenweise aufgetragen wird.
4. Verfahren nach Anspruch 1, 2 oder 3,
bei dem das Substrat (4) eine nickelbasierte Superlegierung aufweist,
das insbesondere kolumnare Körner aufweist,
ganz insbesondere ein einkristallines Gefüge aufweist.
5. Verfahren nach Anspruch 1, 2, 3 oder 4,
bei dem der Durchmesser der Pulverteilchen (7) so klein ist,
dass sie im Schweißlaserstrahl (10) insbesondere
vollständig aufschmelzen und eine hinreichend hohe
Temperatur aufweisen.
6. Verfahren nach Anspruch 1, 2, 3, 4 oder 5,
bei dem die Temperatur der aufgeschmolzenen Pulverteilchen (7) 20°C über der Schmelztemperatur der Pulverteilchen (7) liegt .
7. Verfahren nach Anspruch 1, 2, 3, 4, 5 oder 6,
bei dem ein Laser zum Schweißen verwendet wird.
8. Verfahren nach Anspruch 1,2, 3, 4, 5, 6 oder 7,
bei dem gilt:
A: Absorptionsgrad von Substrat ,
IL: Laserintensität ,
Vv: Scangeschwindigkeit ,
X: Wärmeleitfähigkeit des Substrats .
EP10776651A 2009-11-04 2010-11-03 Einkristallines schweissen von direktional verfestigten werkstoffen Withdrawn EP2496380A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009051823A DE102009051823A1 (de) 2009-11-04 2009-11-04 Einkristallines Schweißen von direktional verfestigten Werkstoffen
PCT/EP2010/066733 WO2011054864A1 (de) 2009-11-04 2010-11-03 Einkristallines schweissen von direktional verfestigten werkstoffen

Publications (1)

Publication Number Publication Date
EP2496380A1 true EP2496380A1 (de) 2012-09-12

Family

ID=43569167

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10776651A Withdrawn EP2496380A1 (de) 2009-11-04 2010-11-03 Einkristallines schweissen von direktional verfestigten werkstoffen

Country Status (8)

Country Link
US (1) US20120273468A1 (de)
EP (1) EP2496380A1 (de)
JP (1) JP2013510000A (de)
KR (1) KR20120064128A (de)
CN (1) CN102596485A (de)
DE (1) DE102009051823A1 (de)
RU (1) RU2516021C2 (de)
WO (1) WO2011054864A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034337A1 (de) * 2010-08-14 2012-02-16 Mtu Aero Engines Gmbh Verfahren zum Verbinden einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring
EP2522454A1 (de) * 2011-05-09 2012-11-14 Siemens Aktiengesellschaft Einkristallines Schweißen von direktional verfestigten Werkstoffen
CH705327A1 (de) 2011-07-19 2013-01-31 Alstom Technology Ltd Lot zum Hochtemperaturlöten und Verfahren zum Reparieren bzw. Herstellen von Bauteilen unter Verwendung dieses Lotes.
EP2591876A1 (de) * 2011-11-09 2013-05-15 Siemens Aktiengesellschaft Verfahren zum Auftragsschweißen eines Bauteiles aus einkristallinem oder gerichtet erstarrtem Metall
EP2756915A1 (de) * 2013-01-18 2014-07-23 Siemens Aktiengesellschaft Auftragsschweißen mit vorherigem Umschmelzen
AU2014249192B2 (en) 2013-03-11 2017-12-21 The Regents Of The University Of Michigan BET bromodomain inhibitors and therapeutic methods using the same
EP2862663A1 (de) * 2013-10-18 2015-04-22 Siemens Aktiengesellschaft Verfahren zur direktionalen Verfestigtung einer Schweissnaht während des Laser-Auftragsschweissens eines Substrats
JP2017511801A (ja) 2014-02-28 2017-04-27 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン BETブロモドメイン阻害剤としての9H−ピリミド[4,5−b]インドールおよび関連類似体
DE102014206143A1 (de) * 2014-04-01 2015-10-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laserauftragschweißen von hochwarmfesten Superlegierungen mittels oszillierender Strahlführung
US9896944B2 (en) 2014-04-18 2018-02-20 Siemens Energy, Inc. Forming a secondary structure directly onto a turbine blade
WO2016138332A1 (en) 2015-02-27 2016-09-01 The Regents Of The University Of Michigan 9h-pyrimido [4,5-b] indoles as bet bromodomain inhibitors
JP6553102B2 (ja) * 2016-02-03 2019-07-31 ゼネラル・エレクトリック・カンパニイ ダイオードレーザファイバーアレイを用いたレーザ粉体床溶融結合付加製造における凝固制御法
CN109071562B (zh) 2016-02-15 2022-03-22 密执安大学评议会 作为bet溴结构域抑制剂的稠合1,4-氧氮杂䓬和相关类似物
JP6439734B2 (ja) * 2016-04-04 2018-12-19 トヨタ自動車株式会社 レーザ肉盛方法
SG11201808728QA (en) 2016-04-06 2018-11-29 Univ Michigan Regents Mdm2 protein degraders
US10633386B2 (en) 2016-04-12 2020-04-28 The Regents Of The University Of Michigan BET protein degraders
US11466028B2 (en) 2016-09-13 2022-10-11 The Regents Of The University Of Michigan Fused 1,4-oxazepines as BET protein degraders
WO2018052949A1 (en) 2016-09-13 2018-03-22 The Regents Of The University Of Michigan Fused 1,4-diazepines as bet protein degraders
US10174412B2 (en) 2016-12-02 2019-01-08 General Electric Company Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings
WO2018144789A1 (en) 2017-02-03 2018-08-09 The Regents Of The University Of Michigan Fused 1,4-diazepines as bet bromodomain inhibitors
JP6931545B2 (ja) * 2017-03-29 2021-09-08 三菱重工業株式会社 Ni基合金積層造形体の熱処理方法、Ni基合金積層造形体の製造方法、積層造形体用Ni基合金粉末、およびNi基合金積層造形体
GB2565063B (en) 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy
WO2019055444A1 (en) 2017-09-13 2019-03-21 The Regents Of The University Of Michigan DEGRADATION AGENTS OF BROMODOMAIN BET PROTEIN WITH CLEAR BINDERS
CN111058907A (zh) * 2019-11-19 2020-04-24 中国人民解放军第五七一九工厂 一种航空发动机涡轮前缘内壁与轴承配合间隙的调整方法
DE102020207910A1 (de) * 2020-06-25 2021-12-30 Siemens Aktiengesellschaft Nickelbasislegierung, Pulver, Verfahren und Bauteil
CN113458417B (zh) * 2021-06-29 2023-02-14 西北工业大学 一种激光增材制造镍基高温合金定向凝固组织的制备方法
CN114150253A (zh) * 2021-12-14 2022-03-08 湖南工程学院 一种抗冲蚀热障涂层及其制备方法和应用

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002108A1 (de) 1989-08-10 1991-02-21 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
FR2667805B1 (fr) * 1990-10-16 1993-01-22 Aerospatiale Buse de traitement de surface par laser, avec apport de poudre.
US5259242A (en) * 1991-01-25 1993-11-09 Illinois Tool Works Inc. Tire holding fixture for tire processing machine
RU2032513C1 (ru) * 1992-07-29 1995-04-10 Валерий Григорьевич Рудычев Способ лазерной наплавки инструмента
US5554837A (en) * 1993-09-03 1996-09-10 Chromalloy Gas Turbine Corporation Interactive laser welding at elevated temperatures of superalloy articles
EP0786017B1 (de) 1994-10-14 1999-03-24 Siemens Aktiengesellschaft Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
US5993549A (en) * 1996-01-19 1999-11-30 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Powder coating apparatus
EP0892090B1 (de) 1997-02-24 2008-04-23 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
EP0861927A1 (de) 1997-02-24 1998-09-02 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
US5993554A (en) * 1998-01-22 1999-11-30 Optemec Design Company Multiple beams and nozzles to increase deposition rate
EP1306454B1 (de) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
DE69821945T2 (de) * 1998-11-10 2005-07-14 Alstom Technology Ltd Gasturbineteil
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
DE19907105A1 (de) * 1999-02-19 2000-08-31 Volkswagen Ag Verfahren und Vorrichtung zum Herstellen von verschleißfesten, tribologischen Zylinderlaufflächen
JP2003529677A (ja) 1999-07-29 2003-10-07 シーメンス アクチエンゲゼルシヤフト 耐熱性の構造部材及びその製造方法
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1340583A1 (de) * 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Verfahren zum Umschmelzen bzw. Auftragschweissen mittels Laser
EP1348781B1 (de) * 2002-03-26 2004-12-15 Sulzer Markets and Technology AG Verfahren zum epitaktischen Wachstum mit energetischem Strahl
WO2003087439A1 (de) * 2002-04-15 2003-10-23 Siemens Aktiengesellschaft Verfahren zum herstellen von einkristallinen strukturen
EP1396556A1 (de) * 2002-09-06 2004-03-10 ALSTOM (Switzerland) Ltd Verfahren zum Regeln der Mikrostruktur einer mittels Laserschichten hergestellten Hartschicht
US6995334B1 (en) * 2003-08-25 2006-02-07 Southern Methodist University System and method for controlling the size of the molten pool in laser-based additive manufacturing
FR2874624B1 (fr) * 2004-08-30 2007-04-20 Snecma Moteurs Sa Procede de rechargement d'une piece metallique monocristalline ou a solidification dirigee.
CN100494467C (zh) * 2006-08-16 2009-06-03 中国科学院金属研究所 一种定向凝固柱晶或单晶镍基高温合金修复或涂层方法
RU2350441C2 (ru) * 2007-02-21 2009-03-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ получения методом наплавки металлического покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне

Also Published As

Publication number Publication date
DE102009051823A1 (de) 2011-05-05
RU2516021C2 (ru) 2014-05-20
CN102596485A (zh) 2012-07-18
US20120273468A1 (en) 2012-11-01
JP2013510000A (ja) 2013-03-21
KR20120064128A (ko) 2012-06-18
RU2012122743A (ru) 2013-12-10
WO2011054864A1 (de) 2011-05-12

Similar Documents

Publication Publication Date Title
EP2496380A1 (de) Einkristallines schweissen von direktional verfestigten werkstoffen
EP2311597B1 (de) Verfahren zum Laser-Schweißen von Werkstücken aus hochwarmfesten Superlegierungen mit Steuerung mancher Laser-Schweissparameter zum Erreichen einer bestimmten Abkühlrate
EP1957685B1 (de) Verfahren zum reparieren von rissen in bauteilen
EP2322313A1 (de) Verfahren zum Schweissen von Werkstücken aus hochwarmfesten Superlegierungen mit besonderer Massenzufuhrrate des Schweisszusatzwerkstoffes
EP1772228A1 (de) Verfahren zum Reparieren eines Bauteils mit einer gerichteten Mikrostruktur
EP2262608A1 (de) Verfahren zum schweissen in abhängigkeit einer vorzugsrichtung des substrats
EP1790745A1 (de) Verfahren zum Reparieren von Rissen in Bauteilen und Lotmaterial zum Löten von Bauteilen
EP2414127A2 (de) Verfahren zum schweissen einer vertiefung eines bauteils durch ausserhalb oder um die kontur angelegte schweissbahnen; entsprechender bauteil
EP2259892A1 (de) Schweissverfahren mit geregeltem temperaturverlauf und eine vorrichtung dafür
EP2862663A1 (de) Verfahren zur direktionalen Verfestigtung einer Schweissnaht während des Laser-Auftragsschweissens eines Substrats
WO2011058174A1 (de) Einkristallines schweissen von direktional verfestigten werkstoffen
EP2100687A1 (de) Potentialfreie Drahterwärmung beim Schweissen und Vorrichtung dafür
WO2009118313A2 (de) Bauteil mit sich überlappenden schweissnähten und ein verfahren zur herstellung
WO2009127504A1 (de) Bauteil mit schweissnaht und verfahren zur herstellung einer schweissnaht
EP2186594A1 (de) Verfahren und Vorrichtung zur Vorwärmung beim Schweißen unter Verwendung eines zweiten Laserstrahles
EP2450471A1 (de) Verfahren zum Materialauftrag zur Reparatur eines Bauteils und Bauteil
WO2010084036A1 (de) Bauteil mit unterschiedlichem gefüge und verfahren zur herstellung
EP2217400A1 (de) Verfahren zum löten weiter spalte
EP2226149A1 (de) Zweischritt-Schweissverfahren
WO2009100794A1 (de) Verfahren zum aufschmelzen von gekrümmten oberflächen und eine vorrichtung
EP2583784A1 (de) Vorbereitung einer Schweißstelle vor dem Schweißen und Bauteil
WO2012152524A1 (de) Einkristallines schweissen von direktional verfestigten werkstoffen
WO2009118213A1 (de) Vorrichtung zum schweissen mit einer prozesskammer und ein schweissverfahren
WO2009018839A1 (de) Lotlegierung und verfahren zur reparatur eines bauteils
WO2011057661A1 (de) Bauteil mit bereichen unterschiedlicher duktilität und verfahren zur herstellung eines bauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120416

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20141218

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150429