EP2486958B1 - Notfallsauerstoffgerät für eine passagierkabine - Google Patents

Notfallsauerstoffgerät für eine passagierkabine Download PDF

Info

Publication number
EP2486958B1
EP2486958B1 EP11153950.8A EP11153950A EP2486958B1 EP 2486958 B1 EP2486958 B1 EP 2486958B1 EP 11153950 A EP11153950 A EP 11153950A EP 2486958 B1 EP2486958 B1 EP 2486958B1
Authority
EP
European Patent Office
Prior art keywords
energy
emergency
signal
energy storage
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11153950.8A
Other languages
English (en)
French (fr)
Other versions
EP2486958A1 (de
Inventor
Wolfgang Rittner
Rüdiger Meckes
Günter Boomgaarden
Hasso Weinmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aerosystems SAS
Original Assignee
Zodiac Aerotechnics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zodiac Aerotechnics SAS filed Critical Zodiac Aerotechnics SAS
Priority to EP11153950.8A priority Critical patent/EP2486958B1/de
Priority to CN201110057818.3A priority patent/CN102632995B/zh
Priority to BR102012002936-7A priority patent/BR102012002936A2/pt
Publication of EP2486958A1 publication Critical patent/EP2486958A1/de
Application granted granted Critical
Publication of EP2486958B1 publication Critical patent/EP2486958B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/14Respiratory apparatus for high-altitude aircraft

Definitions

  • the invention relates to a passenger cabin emergency oxygen device for an aircraft, in particular for providing oxygen to passenger or crew of an aircraft.
  • the invention further relates to a method for activating a passenger cabin emergency oxygen device for an aircraft in case of emergency.
  • a further aspect of the invention is a method for operating a passenger cabin emergency oxygen device for an aircraft.
  • the invention relates to an aircraft comprising a plurality of emergency oxygen devices.
  • emergency oxygen devices of the aforementioned type see for example EP2090335 A1 , on which the preamble of claim 1 is based, are used for a number of purposes where temporary or permanent supply of oxygen to a human person is necessary.
  • a particular field of application of such emergency oxygen devices is the field of aircraft, wherein a pressure drop within an aircraft flying at high altitudes may make it necessary to supply the passengers and the crew members with oxygen.
  • an emergency oxygen device is provided for each crew member and each passenger or a group thereof and is usually arranged above the passenger.
  • such emergency oxygen device is activated, for example automatically by a cabin pressure monitoring system or manually by a crew member, whereafter an oxygen mask connected via a hose to an oxygen source falls from above the passenger downwards and can be used by the passenger.
  • the flow of oxygen may be started automatically, by activation of the system by the crew member or may be activated by a particular action undertaken by the passenger, e.g. by pulling the mask downwards himself to thus activate the device by a pulling force transferred via a hose guiding the oxygen flow or an additional lanyard coupled to the oxygen mask.
  • Emergency oxygen devices of the aforementioned type known from the state of the art are connected to the aircraft energy system and receive the energy needed to activate the emergency oxygen device from this aircraft energy system.
  • cabin pressure drop goes together with other defects on the aircraft, e.g. damage of a turbine or other damages. In such an emergency case it is essential to save as much energy as possible.
  • the activation of a plurality of emergency oxygen devices in a passenger cabin of an aircraft may cause an undesirable high peak of energy consumption, which may cause a total breakdown of the aircraft energy system.
  • the invention aims to provide a passenger cabin emergency oxygen device for an aircraft which overcomes at least some of the aforementioned drawbacks and provides better safety to a person supplied by the emergency oxygen device, in particular in case of a severe emergency situation.
  • this object is achieved by providing a passenger cabin emergency oxygen device for an aircraft as described beforehand, comprising at least one electrically driven activation device for activating the emergency oxygen device and at least one emergency storage device for storing electrical energy and supplying said electric energy to the at least one activation device and at least one controller adapted for receiving and processing a signal to activate the emergency oxygen device and a source of electrical energy, wherein said source of electrical energy and said energy storage device are coupled together for substantially constant energy transmission from the source of electrical energy to the energy storage device at a first energy level, wherein said activation device and said controller are coupled together for signal transmission from the controller to the activation device, wherein said activation device and said energy storage device are coupled together for energy transmission from the energy storage device to the activation device at a second energy level which is higher than the first energy level, wherein said activation device said energy storage device and said controller build one single unit adapted to be inserted into a roof element of an aircraft cabin interior.
  • an emergency oxygen device which omits high-peak energy transmission from the aircraft energy system to the emergency oxygen device in an emergency case.
  • This allows simultaneous activation of multiple emergency oxygen devices in an aircraft without the risk of overload-induced breakdown of the energy system of the aircraft.
  • the energy storage device receives a substantially constant low first level energy transmission from the source of electrical energy to store this energy.
  • an emergency signal is sent to the controller, which upon receipt of such signal connects the electrically driven activation device with the energy storage device, so that the activation device may receive the required amount of energy from the energy storage device.
  • the source of electrical energy herein is an interface adapted to connect the emergency oxygen device with an energy network of the aircraft and/or an energy harvesting element or the like integral within the emergency oxygen device. It is to be understood, that first level energy transmission herein has a lower energy level than second level energy transmission. Preferably first level energy transmission is lower than the energy transmission required by the activation device for activating the emergency oxygen device.
  • the ratio between first and second level is in the range of 1 to 60 according to the invention, no high-peak second level energy transmission from the aircraft energy system to the emergency oxygen device in case of emergency is required, which leads to a better safety of the aircraft, in particular in two cases: In case of an emergency sufficient energy from the energy storage device to the electrically driven activation device will be supplied so that all emergency oxygen devices may be activated. When no high-peak second level energy transmission from the aircraft energy system is required, the so saved energy may be supplied to other devices, like cockpit safety devices or the like.
  • the invention serves the desire to provide an overall lightweight construction of the aircraft to reduce fuel consumption of the aircraft which is a general problem associated with modern aircrafts. Especially a reduction of weight of cabin interior elements is achieved.
  • a further surprising advantage is the reduction of manufacturing and overhauling costs.
  • a modern aircraft a high variety of interior design is desired.
  • the aircraft especially the cabin interior including the PSU, may be overhauled and modified later without substantial constructive work in case that the interior design is changed.
  • prior art emergency oxygen devices require extensive preparation or design work, isolating and installation in a course of the initial manufacturing as well as later overhaul and modification of an aircraft.
  • said emergency oxygen device is adapted to receive and process an emergency signal, in particular an aircraft cabin decompression signal to set the activation device and the energy storage device into electrical connection.
  • the controller is adapted to receive and process an emergency signal, while the energy storage device is adapted to receive and store a substantially constant low first level energy transmission from the source of electrical energy.
  • the controller sets the activation device and the energy storage device into communication so that electrical energy may flow from the energy storage device to the activation device enabling the emergency oxygen device to be activated.
  • the activation device in this embodiment may comprise an electric motor, an electrically actuated switch, a solenoid switch or latch or an electrically actuated latch or the like.
  • the controller in this embodiment may comprise a transistor or an electromagnet or the like adapted to set the energy storage device and the electrically driven activation device into electric communication.
  • Cabin decompression herein refers to the ambient pressure inside an aircraft cabin.
  • An aircraft may comprise a sensor which is adapted to measure the ambient pressure, which is the pressure inside the cabin of an aircraft. In case of a cabin pressure drop, the pressure difference between the cabin ambient pressure and the ambient pressure outside the aircraft lowers. However, preferably the cabin decompression signal is send in case the cabin ambient pressure falls under a predetermined level.
  • said controller is adapted to receive said signal via a signal wire from a sender. While connecting the controller to a signal wire and coupling the activation device via the controller to the energy storage device, the signal wire may be designed with a small diameter. This leads to a reduction in weight of the aircraft.
  • the signal wire is connected to a sensor which may comprise a sensor inside the aircraft, which supplies cabin decompression signal to the controller via the signal wire.
  • the aircraft may comprise more than one of these sensors, e.g. four sensors distributed over the aircraft. This leads to a further reduction of wiring, since it is not necessary to lead the wire through the whole airplane.
  • said source of electrical energy and said energy storage device are coupled together by means of said signal wire for an energy transmission at said first energy level.
  • a substantially constant low energy is transmitted via the signal wire from the source of electrical energy to the energy storage device and preferably also to the controller.
  • This energy transmission may be of very low energy level so that the cross-section of the signal wire may be kept small.
  • the energy storage device may accumulate the energy transmitted and supply this energy in case of an emergency to the activation device for activating the emergency oxygen device.
  • said controller is adapted to receive and process at least two different signals comprising an emergency signal for activating said activation device in an emergency case, and a test signal for activating said activation device in a test case.
  • Emergency oxygen devices are an essential and life saving part of modern aircrafts. Thus it is essential to test, whether one emergency oxygen device is defect or not.
  • the controller may receive an emergency signal for activating said activation device in an emergency case.
  • the activation device is set into electrical communication with the energy storage device to activate the emergency oxygen device.
  • the controller is also adapted to receive a test signal for activating said activation device in a test case.
  • a test case may be a test case which is performed while maintaining the aircraft on ground.
  • the controller may set the activation device and the energy storage device into electrical communication to activate the emergency oxygen device.
  • the controller is adapted to set the activation device and the energy storage device for short-time period into communication.
  • the controller comprises a signaling means, such as a light or a speaker, and in case the controller receiving the test signals, the controller is adapted to set the energy storage device into communication with the signaling means.
  • said signal is characterized in a change of voltage and/or a change of frequency of an electrical current of said signal wire and preferably the change of voltage and/or the change of frequency signaling the emergency signal is different to the change of voltage and/or the change of frequency signaling the test signal.
  • the signal wire may be connected to the energy storage device for a substantially constant energy transmission from a source of electrical energy to the energy storage device at a first energy level. This transmission may be with a low first level voltage or a specific frequency of the current.
  • the sender may change the voltage for a short period and sending a second level voltage signal which is somewhat higher than the first level.
  • the controller is adapted to recognize this short voltage peak as the desired signal to set the energy storage device into electrical connection with the activation device to activate the emergency oxygen device.
  • the second level voltage peak signaling an emergency case may be different from a second level voltage peak signaling a test case, in particular higher than such test voltage.
  • the sender is the source of electrical energy and is adapted to transmit substantially constant energy from a source of electrical energy to the energy storage device at a first energy level using a specific first frequency of the level. For signaling a test case or an emergency case said first frequency may change, wherein a second frequency level signaling a test case may be different from a third frequency level signaling an emergency case, and the controller is adapted to recognize these differences.
  • a test case may be signaled by a second level voltage peak and an emergency case may be signaled by a change in frequency I level supplied, or vice versa.
  • a test case is signaled by an increase of the voltage and an emergency case is signaled by a reduction of the voltage of the energy transmitted from the sender to the controller and/or the energy storage device.
  • the substantially constant first level energy transmission is formed by an AC current and an emergency signal and/or a test signal is signaled by a change to a DC current, or vice versa.
  • said controller comprises a receiver adapted to receive said signal(s) wireless from a sender and wherein the controller is coupled to a source of electrical energy or an energy storage device integrated into the emergency oxygen device.
  • the use of signal wiring inside the aircraft cabin is omitted. This leads to a further reduction in the overall weight of the aircraft.
  • the wireless receiver may be integral within the controller or may be a separate device. To operate the receiver, the receiver may be connected to a source of electrical energy, such as the aircraft energy system. In case of an emergency, the receiver may receive an emergency signal and direct this signal to the controller, wherein the controller is adapted to set the energy storage device into electrical contact with the activation device to activate the emergency oxygen device.
  • the receiver may be connected to the same source of electrical energy as the energy storage device is connected. In a further alternative embodiment the receiver is connected to the energy storage device. In a further alternative embodiment the receiver comprises an additional energy storage device which is connected to a source of electrical energy. In another further alternative embodiment the receiver comprises an energy storage device which is connected to the same source of electrical energy or the same energy supply as the first energy storage device is connected. In a further alternative embodiment the receiver is adapted to receive at least two different wireless signals, comprising an emergency signal for activating said activation device in an emergency case and a test signal for activating said activation device in a test case.
  • Wiring inside the aircraft cabin for the use of an emergency oxygen device is most widely omitted. Furthermore it may be desired to switch off specific emergency oxygen devices, e.g. in a case only half of the seats of an aircraft is taken by passengers. Furthermore in some cases it may be desired to have additional emergency oxygen devices, like portable emergency oxygen devices, which may also comprise a receiver for receiving and/or processing a wireless emergency signal in case of emergency.
  • said controller comprises a sensor adapted to detect a cabin decompression and to provide a cabin decompression signal to said controller and wherein the controller is preferably coupled to a source of electrical energy or to an energy storage device integrated into the emergency oxygen device.
  • the sensor herein is adapted to measure the ambient pressure, which is the pressure inside the cabin of an aircraft. In case of a cabin pressure drop, the pressure difference between the cabin ambient pressure and the ambient pressure outside the aircraft lowers. However, preferably the sensor is adapted to send a cabin decompression signal in case of measuring a specific cabin ambient pressure.
  • signal transmission means inside the aircraft connecting components at a distance from each other are as far as possible omitted.
  • the sensor may be integral within the controller, and adapted to recognize an aircraft altitude switch, and to generate a signal providing the signal to the controller.
  • the sensor and/or the controller may be connected to a source of electrical energy, like the aircraft energy system.
  • a controller and/or the sensor are connected to the same source of electrical energy which the energy storage device is connected.
  • the controller and/or the sensor are connected to an energy storage device, which may be the same energy storage device adapted to supply energy to the activation device.
  • said source of electrical energy is an interface for energy transmission or an energy harvesting element.
  • an interface for energy transmission may be an interface connected to the aircraft energy system to transmit a substantially constant first level energy to the energy storage device. It may be also in an alternative embodiment an interface connected to other energy systems like the system for the cabin light or speakers in the cabin or the like.
  • an energy harvesting element connected to the energy storage device may be a Peltier element which is in thermal contact to a heat source, to produce electrical energy from the temperature gradient across this Peltier element. This temperature gradient may be a gradient from the temperature of the inside of the cabin to the outside of the cabin, or any other temperature gradients from heat source to another object.
  • the energy harvesting element may be an element adapted to convert oscillatory motion into electrical energy.
  • oscillatory motion may be exerted by the passenger or crew member who is supplied with oxygen by the emergency oxygen device.
  • harvesting elements may comprise a crank, a push button, a handle to apply the shaking force or the like.
  • a controller comprises a receiver, adapted to receive a wireless signal
  • the energy harvesting element is adapted to convert the radiation energy emitted by the wireless sender, into electrical energy, supplied to the energy storage device.
  • said energy storage device comprises at least one capacitor and/or at least one rechargeable battery.
  • the capacitor may be a super capacitor or an ultra capacitor or the like which has preferably a high energy density and a high power density. It may also comprise additionally or alternatively a rechargeable battery like a thin film battery.
  • the energy storage device comprises a plurality of capacitors and/or batteries. Due to the high energy density and power density, these elements are preferred for light weight construction. Additionally they may be recharged in many circles without defects, so that a supply of energy from the energy storage device to the activation device in case of an emergency is secured.
  • the object is achieved by providing a passenger cabin emergency oxygen device for an aircraft comprising one electrically driven activation device for activating the emergency oxygen device, at least one controller adapted for receiving and processing a signal to activate the emergency oxygen device.
  • said activation device comprises a multi-mode-latch adapted to activate the emergency oxygen device by releasing a bottom lid in at least two different modes, comprising a test-case-mode, wherein the bottom lid is released from a closed position to a restrained position and an emergency-case-mode, wherein the bottom lid is released from said closed or said restrained position to a fully open position.
  • said multi-mode-latch is associated with an activation device, adapted to activate the emergency oxygen device in at least two different modes.
  • a multi-mode-latch may be driven by an electromotor, an electromagnet, a solenoid element, a piezoelectric element or the like. In the test case mode the bottom lid is only released to a limited extent.
  • the emergency oxygen device may further comprise oxygen masks held in place by a bottom lid or a hatch or the like, wherein the bottom lid is held by the activation device and in case of activation of the emergency oxygen device the lid is opened and the oxygen masks may fall downward through a bottom opening.
  • the test case mode would refer to a mode in which the bottom lid is retained in a restrained position, so that the oxygen masks do not fall out of a casing comprising the oxygen device and thus are not supplied to a passenger cabin of an aircraft.
  • the bottom lid would be fully opened to supply a passenger cabin with oxygen masks.
  • test-case-mode refers to a mode wherein the emergency oxygen device is activated, so that no oxygen would be supplied, and the emergency-case-mode would refer to a mode where the emergency oxygen device is activated so that oxygen is supplied to passengers and/or the crew of an aircraft. It is to be understood that different kinds of activation are included herewith.
  • one multi-mode-latch to comprise two different modes, in particular a test case mode and an emergency mode, reduces the maintenance costs, especially in cases when the aircraft is on ground.
  • This serves for testing whether the bottom lid is mounted correct and without undue constraints or tensions / compressions into the airplane. Such testing is to be done in frequent times to ensure function of the emergency oxygen system as a whole.
  • it is not desired to completely release the bottom lid in the course of such testing because in such case the oxygen masks are released and fall out and thus have to be packed and stored again behind the bottom lid after the test. Further, remounting the bottom lid after total release may result in improper function due to wrong assembly.
  • the multimode latch restraints the release of the bottom lid in a test situation and allows easy pushing pack of the lid in to the fully closed position after such test. By this, the risk of wrong assembly after such test is significantly reduced. After running a test case mode the aircraft may be easily put into the state of normal flight conditions.
  • an actuation device which is adapted to pull the bottom lid from the position after running a test case mode into the fully closed position.
  • This actuator may be integrated into the multi mode latch or may be a separate device. The actuator allows for easy and safe reconfiguration of all bottom lids after a functionality test and thus minimizes the risk of failure after such test.
  • said multi-mode-latch comprises a first and a second hook, wherein the first hook is adapted to retain the bottom lid in said closed position and said second hook is adapted to retain the bottom lid in said restrained position.
  • the first hook is coupled to the activation device and the second hook is coupled to a release element which may be a plate or a panel.
  • the activation device may be adapted to activate the device in one mode or in two different modes, e.g. a test-case-mode and an emergency-case-mode.
  • the first hook is released by the activation device.
  • the second hook then comprises two different positions, a test-position to hold the bottom lid in a restrained position and an emergency-position to release the bottom lid into a fully open position.
  • the second hook may be brought into the two positions by pushing or pulling the release element. Alternatively it may be brought into the two positions automatically.
  • the multi-mode-latch comprises a hook comprising a first and a second recess, wherein the first recess is adapted to retain the bottom lid in said closed position and said second recess is adapted to retain the bottom lid in said restrained position.
  • the activation device is adapted to activate the emergency oxygen device in two different modes, e.g. a test-case-mode and an emergency-case-mode.
  • the hook is released in a way that the bottom lid which is held in a closed position by means of the first recess opens to a restrained position where it is held by means of the second recess.
  • only one hook is required and the activation of the emergency oxygen device requires no acting of a passenger.
  • an indicator is integrated into the device said indicator being adapted to indicate whether the bottom lid has been released in a test case mode or not.
  • Such indicator may be a mechanical element which is released in case that the bottom lid is released and may protrude from the bottom lid or any other surface of the device to indicate such release.
  • the indicator may automatically be retracted if the bottom lid is set back into the fully closed position or may require manual individual setting back after closing of the lid.
  • the passenger cabin emergency oxygen device for an aircraft comprises the features of the characterizing part of claim 8 to 10.
  • an emergency oxygen device comprising at least one electrically driven activation device for activating the emergency oxygen device according to claim 1, but also having the advantages of increased safety and reduced maintenance time due to an emergency oxygen device according to claim 8 is achieved.
  • the object of the invention is solved in a preferable way.
  • the object is achieved by providing an aircraft, comprising a plurality of emergency oxygen devices, wherein it comprises at least one arrangement for at least one emergency oxygen device of said plurality of emergency oxygen devices according to any of the features of the claims 1 to 10.
  • Such aircraft will be lightweight and have overall reduced maintenance and mounting costs.
  • this object is achieved by a method for activating a passenger cabin emergency oxygen device for an aircraft in a case of emergency, comprising receiving a signal to activate the emergency oxygen device by a controller, setting an electrically driven activation device into electrical connection with an energy storage device and using energy from the energy storage device to activate the emergency oxygen device.
  • a method for activating a passenger cabin emergency oxygen device for an aircraft in a case of emergency comprising receiving a signal to activate the emergency oxygen device by a controller, setting an electrically driven activation device into electrical connection with an energy storage device and using energy from the energy storage device to activate the emergency oxygen device.
  • second level high-peak energy transmission from the aircraft energy system to the emergency oxygen device is omitted in an emergency case.
  • the energy storage device receives a substantially constant energy transmission from the source of electrical energy at a first energy level to store this energy.
  • an emergency signal is sent to the controller, which then connects the electrically driven activation device with the energy storage device.
  • the activation device receives the required amount of energy from the energy storage device to activate the emergency oxygen device.
  • the source of electrical energy may be an interface connected to the aircraft energy system and/or an energy harvesting element.
  • this object is achieved by a method for operating a passenger cabin emergency oxygen device for an aircraft, comprising transmitting substantially constant energy at a first energy level from a source of electrical energy to at least one energy storage device in such a way, that in the energy storage device sufficient energy is stored to temporary supply energy at a second energy level which is higher than said first level to an electrically driven activation device.
  • the substantially constant energy transmission at a first energy level is used to energize the energy storage device.
  • the energy storage device preferably has such a capacity, so that in case of an emergency in the energy storage device sufficient energy is stored to activate the emergency oxygen device.
  • the substantially constant energy transmission at a first energy level is used as a maintenance transmission, to prevent the energy storage device of lacking energy.
  • the safety of an aircraft is improved, since the emergency oxygen device may be activated even if the aircraft energy system broke down.
  • an emergency oxygen device 1 comprises an activation device 11 for activating the emergency oxygen device, a controller 5 and an energy storage device 9. These devices are encased within a housing 2 which is closed by a bottom lid 4 on its bottom side. The bottom lid 4 is attached on one side via a hinge 21 to the housing 2 on the right hand side of fig. 1 . On the opposite side, the bottom lid 4 is secured to the housing by a latch 12 attached to the activation device 11.
  • the controller 5 is coupled to the activation device 11 and the energy storage device 9 is coupled to the controller 9 via a cable 17. Furthermore, the energy storage device 9 is coupled to a source of electrical energy 7, which in this embodiment is placed outside the housing, via an electric cable 15.
  • the source of electrical energy 7 is adapted for substantially constant energy transmission to the energy storage device 9 at a first level.
  • the cable 15 may be designed with a small diameter, since no high energy transmission via the cable 15 is necessary.
  • the controller 5 is coupled to a sender 3 which is adapted to send an emergency signal or a test signal. Normally a signal is not send with a high energy, so that the signal cable 13 may also be designed with a small diameter..
  • the energy storage device 9, 109, 209, 309 may be formed as a rechargeable battery or a capacitor.
  • a rechargeable battery like a thin film battery is preferred, since it is able to store energy for a longer period than a capacitor.
  • a capacitor like a supercapacitor may be preferred because of its good power density. This leads to a weight reduction of the aircraft.
  • Both, the battery and the capacitor may comprise a housing with specific ports for the connection of the cables 15, 17, 115, 117, 215, 217, 314, 317.
  • the sender 3 is sending an emergency signal via the cable 13 to the controller 5, the controller sets the energy storage device 9 into communication with the activation device 11 via the cables 17, 19 to activate the emergency oxygen device 1.
  • the activation device will release the latch 12, and the bottom lid 4 opens following gravity force.
  • the activation device 11 may comprise an electric motor or a piezo-activator. Also an electromagnetic switch or the like could be implemented.
  • Oxygen masks (not shown) may be stored directly above the lid 4, so that in case the lid 4 opens, the oxygen masks are supplied to passengers inside the aircraft.
  • the sender 3 may be an cabin pressure sensor adapted to measure the cabin pressure or may also be a manual sender activated by the cabin crew.
  • the source of electrical energy 7 in this embodiment may be an interface to the aircraft energy system or any other source of electrical energy.
  • the energy storage device 109 is coupled via a cable 114 to the sender 103. Furthermore in this embodiment the controller 105 is coupled to the sender 103 and the activation device 111 is coupled to the controller.
  • the energy storage device 109 receives the electrical energy to be stored from the sender 103.
  • the sender 103 is adapted for a substantially constant voltage and low current amplitude transmission at a first energy level.
  • the energy storage device 109 stores this electrical energy until a specific amount of energy is stored.
  • the constant energy transmission is then used as a maintenance voltage for the energy storage device 109.
  • the sender 103 will send a short high peak voltage signal.
  • the controller 105 recognizes this difference voltage and sets as a result the energy storage device 109 into electrical communication with the activation device 111.
  • the emergency oxygen device 101 In fig. 2 no housing of the emergency oxygen device 101 is shown. However, preferably the emergency oxygen device 101 or at least parts of it are encased in housing. In an alternative embodiment the activation device 111 may also be arranged outside a housing and coupled to a latch to activate the emergency oxygen device by releasing a bottom lid of a housing as shown in fig. 1 .
  • a third embodiment comprises a wireless receiver 203, a first energy storage device 209 and a second energy storage device 225.
  • the first energy storage device 209 is coupled to the controller 205 via a cable 217.
  • the second energy storage device 225 is coupled to the wireless receiver 203 via a cable 227. In an alternative embodiment it may also be integral with the wireless receiver 203.
  • Both energy storage devices 229, 225 are coupled to a source of electrical energy 207.
  • This source of electrical energy 207 may be the aircraft energy system or any other source of electrical energy.
  • the source of electrical energy 207 is an energy harvesting element.
  • Such an energy harvesting element 207 may be attached to a housing of the emergency oxygen device 211 and adapted to convert mechanical energy acting onto such a housing from vibrations, accelerations or the like into electrical energy.
  • the energy harvesting element 207 may comprise an inductive coil with a moveable magnetic core arranged within the coil and biased via a mechanical spring to thus allow induction of electrical energy within the coil in case that the housing and the energy harvesting element 207 is exposed to an oscillatory motion effecting movement of the core in the relation to the coil.
  • the electrical energy generated within the energy harvesting element 207 is supplied via a cable 215 to the first and second energy storage device 209, 255.
  • the wireless receiver is supplied with energy from the second energy storage device 227 and the activation device is supplied with energy from the first energy storage device 209 in case of an emergency.
  • the wireless receiver 203 and the controller 205 are coupled to the same energy storage device. In such an embodiment it is necessary to secure, that to any time the amount of stored energy is sufficient to run the activation device 211.
  • the wireless signal 223 is send to the wireless receiver 203 from a sender inside the aircraft.
  • the sender may be coupled to a sensor and/or adapted for manual activation, e.g. by the cabin crew.
  • the wireless receiver 203 is integral with the controller.
  • the frame size of the emergency oxygen device may be kept small.
  • the emergency oxygen device 301 comprises a controller 305 with an integrated sensor.
  • the energy storage device 309 is coupled with the controller 305 via a cable 317 and to a source of an electrical energy 307, which may be the aircraft energy system or a harvesting element as described above.
  • the controller 305 sets the energy storage device 309 into electrical connection with the activation device 311 to activate the emergency oxygen device 301. All these elements may be incased in one housing, which is preferred. This leads to a reduction in production costs since the complexity of assembling the emergency oxygen device 1, 101, 201, 301 into an aircraft is reduced.
  • the emergency oxygen device 1, 101, 201, 301 will work as follows. After having received an emergency signal via a signal cable 13, 113, a wireless signal way 223 or by the sensor integral within the controller 305, the controller 5, 105, 205, 305 sets the energy storage device 9, 109, 209, 309 into electrical contact with the activation device 11, 111, 211, 311. Thus electrical energy flows via the cables 17, 19, 117, 119, 217, 219, 317, 319 from the energy storage device to the activation device. Parallel to this, the controller sends a signal to the activation device, to fully activate the emergency oxygen device 1, 101, 201, 301.
  • a full activation herein refers to activation, where a bottom lid 4 of a housing 2 is opened, so that oxygen masks are provided to passengers and also a flow of oxygen to the masks is supplied.
  • a not fully activation hence refers to an activation, wherein such a bottom lid 4 is retained in a restrained position.
  • the workflow follows the same steps as explained above, but with the difference, that the sender 3, 103 sends a test signal to the controller 5, 105, 205, 305 or the wireless receiver 203.
  • the controller 5, 105, 205, 305 sets the energy storage device 9, 109, 209, 309 into electrical contact with the activation device 11, 111, 211, 311 and also sends a signal to not fully activate the emergency oxygen device 1, 101, 201, 301.
  • the emergency oxygen device 1, 101, 201, 301 is not fully activated by the activation device 11, 111, 211, 311.
  • an incomplete activation herein refers to an activation where the bottom lid 4 is retained in a restrained position, so that the oxygen masks stay inside the device and are not supplied to passengers. In this test case no oxygen flows to the masks.
  • the emergency oxygen device 1, 101, 201, 301 comprises a lamb or other signaling means, which are activated to signal that the emergency oxygen device 1, 101, 201, 301 is working correctly.
  • a frame 400 for an emergency oxygen device 1, 101, 201, 301, which may be part of the emergency oxygen device, is shown in detail.
  • the frame 400 comprises a bottom panel 404 with an opening 402 which is encircled by a rim 406. On one side of the bottom panel 404 holding means 408 are mounted. On the opposite side, a bottom lid 4 is pivotally fixed by a hinge 21 on one end of the bottom panel. In a closed position ( fig. 5 , 8 ) the bottom lid locks the opening 402. Above the bottom lid oxygen masks (not shown) may be stored, which may fall through the opening 402 upon release of the bottom lid 4 ( Fig. 7 , 10 ).
  • the frame 400 comprises a latch 12.
  • the latch 12 in this embodiment comprises a first hook 418 and a second hook 422.
  • the first hook 418 works together with an eye 420. Both are substantially oriented perpendicular to the bottom panel 404.
  • the eye 420 is fixed to the bottom lid 4 and extends through an opening 414 in the bottom panel 404 when the bottom lid 4 is in a closed position.
  • the first hook 418 is connected to a lever 426 wherein both are pivotally mounted by means of a bar 410 relative to the holding means 408.
  • the lever 426 is pivotally mounted to the activation device 411, which in this embodiment is carried out as an electromagnetic element.
  • the activation device 411 is fixed to the holding means 408 and connected to a source of electrical energy or a controller (both not shown) by means of a cable 419 for high energy transmission.
  • the latch 12 or latching mechanism 12 comprises a second hook 422.
  • the second hook 422 is pivotally mounted to the bottom lid 4 by means of a pivot 428.
  • a release panel 430 is arranged on one end of the second hook 422 .
  • the release panel 422 is substantially flush-mount to the surface of the bottom lid 4.
  • the second hook 422 is hold in this position by means of a guidance spring 424, which is fixed to the bottom lid 4.
  • the guidance spring 424 acts against the bar 410. Both, the second hook 422 and the guidance spring 424 extend trough an opening 416 in the bottom panel 404.
  • the bottom lid 4 is forced to open by means of the guidance spring 424.
  • the second hook 422 may tilt around its pivot 428.
  • a curved end 432 of the second hook 422 is adapted to engage with the bar 410, hence the bottom lid 4 is retained in a restrained position ( fig. 6 , 9 ). Since the second hook 422 is pivoted the release panel 430 is no longer flush-mount to the surface of the bottom lid 4. By pushing the release panel 430, the curved end 432 of the second hook 422 is disengaged of the bar 410 and hence the bottom lid 4 may open fully ( fig. 7 , 10 ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Hybrid Cells (AREA)

Claims (12)

  1. Passagierkabine-Notfallsauerstoffvorrichtung für ein Luftfahrzeug, umfassend:
    - mindestens eine elektrisch angetriebene Aktivierungsvorrichtung (11) um die Notfallsauerstoffvorrichtung zu aktivieren;
    - mindestens eine Energiespeicherungsvorrichtung (9) um elektrische Energie zu speichern und die elektrische Energie an die mindestens eine Aktivierungsvorrichtung bereitzustellen;
    - mindestens ein Steuerungselement (5), das ausgebildet ist, ein Signal zu empfangen, um die Notfallsauerstoffvorrichtung zu aktivieren;
    - eine Quelle von elektrischer Energie (7),
    wobei die Quelle von elektrischer Energie und die Energiespeicherungsvorrichtung für im Wesentlichen konstante Energieübertragung von der Quelle von elektrischer Energie zu der Energiespeicherungsvorrichtung auf einem ersten Energieniveau zusammengekoppelt sind,
    wobei die Aktivierungsvorrichtung und das Steuerungselement für Signalübertragung von dem Steuerungselement zu der Aktivierungsvorrichtung zusammengekoppelt sind,
    wobei die Aktivierungsvorrichtung und die Energiespeicherungsvorrichtung für Energieübertragung von der Energiespeicherungsvorrichtung zu der Aktivierungsvorrichtung auf einem zweiten Energieniveau, das höher ist, als das erste Energieniveau, zusammengekoppelt sind,
    wobei die Aktivierungsvorrichtung, die Energiespeicherungsvorrichtung und das Steuerungselement eine einzelne Einheit (2) bilden, die ausgebildet ist, in ein Dachelement eines Luftfahrzeug-Kabineninneres eingesetzt zu werden,
    wobei das Steuerungselement ausgebildet ist, das Signal über einen Signaldraht (13) von einem Sendeelement (3) zu empfangen,
    dadurch gekennzeichnet, dass
    die Quelle von elektrischer Energie und die Energiespeicherungsvorrichtung durch Mittel des Signaldrahtes für eine Energieübertragung auf dem ersten Energieniveau zusammengekoppelt sind.
  2. Vorrichtung nach dem vorhergehenden Anspruch, wobei das Steuerungselement ausgebildet ist
    - ein Notfallsignal, insbesondere ein Kabinendruckabnahmesignal, zu empfangen und zu verarbeiten;
    - die Aktivierungsvorrichtung und die Energiespeicherungsvorrichtung in elektrische Verbindung zu setzen, vorzugsweise zur Aktivierung eines Schalters.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Steuerungselement ausgebildet ist, mindestens zwei unterschiedliche Signale zu empfangen und zu verarbeiten, umfassend:
    - ein Notfallsignal zur Aktivierung der Aktivierungsvorrichtung in einem Notfall;
    - ein Testsignal zur Aktivierung der Aktivierungsvorrichtung in einem Testfall.
  4. Vorrichtung nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass das Signal durch eine Veränderung der Spannung und/oder eine Veränderung der Frequenz eines elektrischen Stroms des Signaldrahts gekennzeichnet ist und vorzugsweise, dass die Veränderung der Spannung und/oder die Veränderung der Frequenz, die das Notfallsignal signalisiert, von der Änderung der Spannung und/oder der Änderung der Frequenz, die das Testsignal signalisiert, verschieden ist.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Steuerungselement ein Empfängerelement umfasst, das ausgebildet ist, das/die Signal(e) drahtlos von einem Sendeelement zu empfangen und wobei das Steuerungselement mit einer Quelle von elektrischer Energie oder einer Energiespeicherungsvorrichtung, die in die Notfallsauerstoffvorrichtung integriert ist, gekoppelt ist.
  6. Passagierkabine-Notfallsauerstoffvorrichtung eines Luftfahrzeugs nach einem der vorhergehenden Ansprüche, wobei die Steuerungsvorrichtung einen Sensor umfasst, der ausgebildet ist, eine Kabinendruckabnahme zu ermitteln und ein Kabinendruckabnahmesignal an das Steuerungselement bereitzustellen und wobei das Steuerungselement mit einer Quelle von elektrischer Energie oder einer Energiespeicherungsvorrichtung, die in die Notfallsauerstoffvorrichtung integriert ist, gekoppelt ist.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Energiespeicherungsvorrichtung mindestens einen Kondensator oder mindestens eine wiederaufladbare Batterie umfasst.
  8. Passagierkabine-Notfallsauerstoffvorrichtung nach einem der vorhergehenden Ansprüche, weiter umfassend:
    - eine elektrisch angetriebene Aktivierungsvorrichtung zur Aktivierung der Notfallsauerstoffvorrichtung;
    - mindestens ein Steuerungselement, das ausgebildet ist, ein Signal zu empfangen und zu verarbeiten, um die Notfallsauerstoffvorrichtung zu aktivieren;
    dadurch gekennzeichnet, dass die Aktivierungsvorrichtung einen Multimodus-Verschluss umfasst, der ausgebildet ist, die Notfallsauerstoffvorrichtung durch lösen eines Bodendeckels in mindestens zwei unterschiedlichen Modi zu aktivieren, umfassend:
    - einen Testfallmodus, wobei der Bodendeckel von einer geschlossenen Position in eine zurückgehaltene Position gelöst wird;
    - einen Notfallmodus, wobei der Bodendeckel von der geschlossenen Position oder der zurückgehaltenen Position in eine vollständig geöffnete Position gelöst wird.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Multimodus-Verschluss einen ersten und einen zweiten Haken umfasst, wobei der erste Haken ausgebildet ist, den Bodendeckel in der geschlossenen Position zu halten und der zweiten Haken ausgebildet ist, den Bodendeckel in der zurückgehaltenen Position zu halten.
  10. Vorrichtung nach Anspruch 8,
    dadurch gekennzeichnet, dass der Multimodus-Verschluss einen Haken umfasst, der eine erste und eine zweite Aufnahme umfasst, wobei die erste Aufnahme ausgebildet ist, den Bodendeckel in der geschlossenen Position zu halten und die zweite Aufnahme ausgebildet ist, den Bodendeckel in der zurückgehaltenen Position zu halten.
  11. Luftfahrzeug, umfassend eine Mehrzahl von Notfallsauerstoffvorrichtung,
    dadurch gekennzeichnet, dass mindestens eine Notfallsauerstoffvorrichtung, vorzugsweise eine Mehrzahl von der Mehrzahl von Notfallsauerstoffvorrichtungen, nach einem der Merkmale der Ansprüche 1 bis 10 ausgebildet ist.
  12. Verfahren zur Aktivierung einer Passagierkabine-Notfallsauerstoffvorrichtung für ein Luftfahrzeug in einem Notfall,
    umfassend:
    - Empfangen eines Signals durch einen Signaldraht um die Notfallsauerstoffvorrichtung durch ein Steuerungselement zu aktivieren;
    - Setzen einer elektrisch angetriebenen Aktivierungsvorrichtung in elektrische Verbindung mit einer Energiespeichervorrichtung;
    - Verwenden von Energie von der Energiespeicherungsvorrichtung um die Notfallsauerstoffvorrichtung zu aktivieren.
    - umfassend Übertragen von im Wesentlichen konstanter Energie auf einem ersten Energieniveau von einer Quelle von elektrischer Energie durch den Signaldraht an mindestens eine Energiespeicherungsvorrichtung, derart, dass in der Energiespeicherungsvorrichtung ausreichend Energie gespeichert ist, um zeitweise eine elektrisch angetriebene Aktivierungsvorrichtung mit Energie auf einem zweiten Energieniveau zu versorgen.
EP11153950.8A 2011-02-10 2011-02-10 Notfallsauerstoffgerät für eine passagierkabine Not-in-force EP2486958B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11153950.8A EP2486958B1 (de) 2011-02-10 2011-02-10 Notfallsauerstoffgerät für eine passagierkabine
CN201110057818.3A CN102632995B (zh) 2011-02-10 2011-03-10 飞机、乘客舱紧急氧气设备及操作和激活该设备的方法
BR102012002936-7A BR102012002936A2 (pt) 2011-02-10 2012-02-09 Dispositivo de oxigênio de emergência para a cabine de passageiros

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11153950.8A EP2486958B1 (de) 2011-02-10 2011-02-10 Notfallsauerstoffgerät für eine passagierkabine

Publications (2)

Publication Number Publication Date
EP2486958A1 EP2486958A1 (de) 2012-08-15
EP2486958B1 true EP2486958B1 (de) 2016-07-13

Family

ID=44236750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11153950.8A Not-in-force EP2486958B1 (de) 2011-02-10 2011-02-10 Notfallsauerstoffgerät für eine passagierkabine

Country Status (3)

Country Link
EP (1) EP2486958B1 (de)
CN (1) CN102632995B (de)
BR (1) BR102012002936A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4306432A1 (de) * 2022-07-15 2024-01-17 Airbus Operations GmbH Vorrichtung zum verriegeln einer tür eines sauerstoffmaskenbehälters in einer flugzeugkabine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683395B2 (en) 2013-06-14 2017-06-20 B/E Aerospace, Inc. Advanced latch for emergency oxygen container deployment
US20150175104A1 (en) * 2013-12-20 2015-06-25 B/E Aerospace, Inc. Energy harvesting for the electronic regulation of oxygen flow
US11247448B2 (en) 2014-02-27 2022-02-15 B/E Aerospace, Inc. Panel with paint ready surface
US20160138301A1 (en) * 2014-11-14 2016-05-19 The Boeing Company Self-contained electronic stowage bin system
KR102363632B1 (ko) * 2014-12-29 2022-02-16 삼성전자주식회사 구조 신호 발생 장치 및 방법
CN113562181B (zh) * 2021-07-29 2023-04-18 北京安达维尔航空设备有限公司 一种新型长航时乘员供氧装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0128142B1 (de) * 1982-12-09 1986-12-30 The Boeing Company Deckelverschluss für flugzeugsauerstoffbüchse und einrichtung zur funktionsüberprüfung
FR2586007B1 (fr) * 1985-08-08 1987-12-24 Sfim Dispositif entrebailleur pour porte de boite renfermant un equipement de securite tel que masques a oxygene
EP2090335B1 (de) * 2008-02-12 2016-05-04 Zodiac Aerotechnics Sauerstoffatmungsvorrichtung
EP2168635B1 (de) * 2008-09-26 2017-06-28 Zodiac Aerotechnics Sauerstoffatemvorrichtung mit redundanter Signalübermittlung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4306432A1 (de) * 2022-07-15 2024-01-17 Airbus Operations GmbH Vorrichtung zum verriegeln einer tür eines sauerstoffmaskenbehälters in einer flugzeugkabine

Also Published As

Publication number Publication date
CN102632995A (zh) 2012-08-15
EP2486958A1 (de) 2012-08-15
BR102012002936A2 (pt) 2014-01-07
CN102632995B (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
US8882033B2 (en) Passenger cabin emergency oxygen device
EP2486958B1 (de) Notfallsauerstoffgerät für eine passagierkabine
EP2090335B1 (de) Sauerstoffatmungsvorrichtung
EP3020635B1 (de) In sich geschlossenes elektronisches verstauungskastensystem
EP3856641B1 (de) Treibstoffhandhabungsmodul für ein flugzeug
CN106081017A (zh) 一种基于无人机的海上投送式救生装置
US20140084111A1 (en) System and method for deploying loads out of an aircraft
WO2010027620A2 (en) Locator beacon disposed internal to an enclosure of a flight data recorder and method therefor
CN107826264B (zh) 一种车载无人机起降控制系统及其控制方法
US11349166B2 (en) Fire suppressant enclosures for battery cell systems and associated methods of modular operation
CN205971763U (zh) 一种基于无人机的海上投送式救生装置
CA2933560C (en) Energy harvesting for the electronic regulation of oxygen flow
EP3556437A1 (de) Ruhende elektronik zur verwendung für autonome fallkästen oder andere komponenten von sauerstoffversorgungssystemen für fahrgäste im notfall
CN112236338A (zh) 安全带锁、飞机安全带、用于检测安全带的闭合状态的系统以及用于检测闭合状态的方法
CN108820213A (zh) 一种无人机空中投放伞形机器人装置
CN208665493U (zh) 一种遥控救援船
CN201211929Y (zh) 真空弹射航空救生器
CN106205032A (zh) 一种预防人为因素导致的滑梯误放系统
RU86170U1 (ru) Парашютная система спасения самолета
EP3284673B1 (de) Sauerstoffversorgungsanlage
EP4279144A1 (de) Notsauerstoffversorgungsvorrichtung für flugzeuge, flugzeug mit einer solchen notsauerstoffversorgungsvorrichtung und verfahren zum betreiben einer notsauerstoffversorgungsvorrichtung für flugzeuge
CN216301489U (zh) 无人机电池舱及无人机
CN209440127U (zh) 一种飞行器移动工具箱装置
CN2550261Y (zh) 航空多功能救生舟
JP2007062630A (ja) パラシュート押出し装置及びこれを備えた飛翔体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130215

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZODIAC AEROTECHNICS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 811825

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011028040

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011028040

Country of ref document: DE

Representative=s name: VIERING, JENTSCHURA & PARTNER MBB PATENT- UND , DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011028040

Country of ref document: DE

Representative=s name: VIERING, JENTSCHURA & PARTNER MBB PATENT- UND , DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 811825

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161014

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161114

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011028040

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

26N No opposition filed

Effective date: 20170418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200122

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011028040

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901