EP2483967A1 - Verfahren und vorrichtung zur strahllenkung mit lenkbaren richtantennen mit geschalteten parasitären elementen - Google Patents

Verfahren und vorrichtung zur strahllenkung mit lenkbaren richtantennen mit geschalteten parasitären elementen

Info

Publication number
EP2483967A1
EP2483967A1 EP10810952A EP10810952A EP2483967A1 EP 2483967 A1 EP2483967 A1 EP 2483967A1 EP 10810952 A EP10810952 A EP 10810952A EP 10810952 A EP10810952 A EP 10810952A EP 2483967 A1 EP2483967 A1 EP 2483967A1
Authority
EP
European Patent Office
Prior art keywords
parasitic
ground
parasitic elements
antenna
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10810952A
Other languages
English (en)
French (fr)
Inventor
Noam Livneh
Raphael Kastner
Ernest T. Ozaki
Vered Bar Bracha
Mohammad A. Tassoudji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of EP2483967A1 publication Critical patent/EP2483967A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/32Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being end-fed and elongated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • H01Q21/293Combinations of different interacting antenna units for giving a desired directional characteristic one unit or more being an array of identical aerial elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/446Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element the radiating element being at the centre of one or more rings of auxiliary elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element

Definitions

  • the present disclosure relates generally to communication systems. More specifically, the present disclosure relates to methods and apparatus for steerable beam antennas with switched parasitic elements.
  • phase shifters are placed in the line of the signal, high radio frequency (RF) losses may occur. Such losses may decrease the data rate and transmission distance of wireless communication devices used.
  • RF radio frequency
  • the antenna includes a planar circular structure.
  • the antenna also includes a radiating element located at the center of the planar circular structure.
  • the antenna also includes one or more parasitic elements located on a contour around the radiating element.
  • the one or more parasitic elements are aligned in a parallel direction with the radiating element.
  • the one or more parasitic elements protrude from the planar circular structure.
  • Each of the parasitic elements is loaded by a reactive load as part of a passive circuit.
  • the antenna also includes multiple throw switches. The multiple throw switches may separate each of the parasitic elements from ground and/or one or more reactive loads. In a first position of a switch, a short between a parasitic element and ground may be created.
  • an open circuit between the parasitic element and ground may be created.
  • a switch may also create a closed circuit between a parasitic element, a reactive load, and ground.
  • a switch may create a closed circuit between a parasitic element and a lumped or distributed reactive load.
  • the switch position may connect the parasitic element to one or more reactive loads between the parasitic element and ground. If more than one reactive load is included, each reactive load may have a different value.
  • any of the one or more parasitic elements may act as a reflector when the switch between the parasitic element and ground is closed and the parasitic element is shorted to ground.
  • the parasitic element may reflect electromagnetic energy with a phase of 180 degrees.
  • Any of the one or more parasitic elements may act as a director when the switch between the parasitic element and ground is open.
  • the parasitic element may reflect electromagnetic energy with a phase of 0 degrees.
  • Any of the one or more parasitic elements may reflect electromagnetic energy in phases other than 180 or 0 degrees when a switch connects a reactive load between the parasitic element and ground. With one or more reactive loads, a greater flexibility in controlling the radiation patter of the antenna may be achieved.
  • the antenna may be a dipole antenna.
  • the planar circular structure may be a non-conductive material.
  • the radiating element and each of the parasitic elements may protrude perpendicularly from the planar circular structure in both directions.
  • the antenna may be a monopole antenna.
  • the planar circular structure may be a conductive material tied to ground.
  • the radiating element and each of the parasitic elements may protrude perpendicularly from the planar circular structure in one direction.
  • the switches at the parasitic elements may be between the two monopoles of the dipole.
  • the antenna may also include one or more similar antennas stacked perpendicular to the antenna.
  • the similar antennas may have the same number of parasitic elements as the antenna.
  • Each of the similar antennas may have the same configuration of open switches and closed switches between parasitic elements and ground as the antenna.
  • the antenna may be capable of transmitting electromagnetic signals and receiving electromagnetic signals.
  • the antenna may be fed at a single port of the radiating element.
  • the antenna may have no power dividing network.
  • the stacked antennas may be fed as elements of a phased array with an adjustable phase difference between the elements enabling control of an elevation angle of a main radiation beam.
  • a wireless communication device configured for beam steering is also described.
  • the wireless communication device includes two or more one dimensional switched beam antennas stacked vertically, a processor, and memory in electronic communication with the processor. Instructions stored in the memory may be executable by the processor to load one or more parasitic elements on each one dimensional switched beam antenna with reactive loads.
  • One or more of the parasitic elements may be switched to act as reflectors. Any of the one or more parasitic elements may act as a reflector when a switch between a parasitic element and ground is closed and the parasitic element is shorted to ground.
  • the parasitic elements not acting as reflectors may be switched to act as directors. Any of the parasitic elements may act as a director when the switch between the parasitic element and ground is open and no reactive load is connected to the parasitic element.
  • Transmission signal streams may be fed to the radiating elements on each one dimensional switched beam antenna to form a beam.
  • the configuration of parasitic elements acting as reflectors and directors may be adjusted to steer the direction of each one dimensional switched beam antenna over the 360 degree azimuth.
  • Phase differences between each transmission signal stream fed to the radiating elements on the two or more one dimensional switched beam antennas may be adjusted to steer the direction of the vertically stacked two or more one dimensional switched beam antennas in elevation.
  • Each one dimensional switched beam antenna may include a planar circular structure.
  • Each one dimensional switched beam antenna may also include a radiating element located at the center of the planar circular structure.
  • Each one dimensional switched beam antenna may further include one or more parasitic elements located on a contour around the radiating element that are aligned in parallel direction with the radiating element. The parasitic elements may protrude from the planar circular structure, and each of the parasitic elements may be loaded by a reactive load as part of a passive circuit.
  • Each one dimensional switched beam antenna may also include switches separating each of the one or more parasitic elements from ground.
  • a closed switch may create a short between a parasitic element and ground, and an open switch may create an open circuit between the parasitic element and ground.
  • a switch may also create a closed circuit between a parasitic element and the reactive load. For example, a switch may create a closed circuit between a parasitic element and a lumped or distributed reactive load.
  • Each of the vertically stacked one dimensional switched beam antennas may use the same configuration of parasitic elements acting as reflectors and parasitic elements acting as directors.
  • Signal streams may be fed to each radiating element of each one dimensional switched beam antenna to form a beam. Phase differences between the signal streams may steer the elevation of the beam and control a radiation pattern of the beam in elevation.
  • a method for beam steering is described.
  • One or more parasitic elements are loaded on a one dimensional switched beam antenna with reactive loads.
  • One or more of the parasitic elements are switched to act as reflectors. Any of the one or more parasitic elements acts as a reflector when a switch between the parasitic element and ground is closed and the parasitic element is shorted to ground.
  • the parasitic elements not acting as reflectors are switched to act as directors. Any of the parasitic elements acts as a director when the switch between the parasitic element and ground is open.
  • the parasitic elements acting as reflectors and directors are adjusted to steer the direction of each one dimensional switched beam antenna over the 360 degree azimuth.
  • Two or more one dimensional switched beam antennas may be vertically stacked. Transmission signal streams may be fed to the radiating elements on the vertically stacked two or more one dimensional switched beam antennas to form a beam. Phase differences between the transmission signal streams may steer the elevation of the beam and control the beam pattern. [0016] Transmission signal streams may be fed to the radiating elements on the vertically stacked two or more one dimensional switched beam antennas. Phase differences between the transmission signal streams fed to the radiating elements on the vertically stacked two or more one dimensional switched beam antennas may be adjusted to steer the direction of the vertically stacked two or more one dimensional switched beam antennas in elevation. Each of the vertically stacked one dimensional switched beam antennas may use the same configuration of parasitic elements acting as reflectors and parasitic elements acting as directors. Signals of the two dimensional antenna may be digitally combined.
  • a wireless communication device configured for beam steering is also described.
  • the wireless communication device includes means for loading one or more parasitic elements on a one dimensional switched beam antenna with reactive loads.
  • the wireless communication device also includes means for switching one or more of the parasitic elements to act as reflectors. Any of the one or more parasitic elements acts as a reflector when a switch between the parasitic element and ground is closed and the parasitic element is shorted to ground.
  • the wireless communication device further includes means for switching the parasitic elements not acting as reflectors to act as directors. Any of the parasitic elements acts as a director when the switch between the parasitic element and ground is open.
  • a switch may also create a closed circuit between a parasitic element and the reactive load. For example, a switch may create a closed circuit between a parasitic element and a lumped or distributed reactive load.
  • the wireless communication device also includes means for vertically stacking two or more one dimensional beam antennas to form a vertical phased array.
  • the wireless communication device further includes means for feeding transmission signal streams to the radiating elements on the vertically stacked two or more one dimensional switched beam antennas.
  • the wireless communication device also includes means for adjusting the configuration of parasitic elements acting as reflectors and directors to steer the direction of each one dimensional switched beam antenna over the 360 degree azimuth.
  • the wireless communication device further includes means for adjusting phase differences between the transmission signal streams fed to the two or more one dimensional switched beam antennas that form the vertical phased array to steer the direction of the two or more one dimensional switched beam antennas in elevation.
  • the wireless communication device may also include means for combining and processing signals received from each of the vertically stacked two or more one dimensional switched beam antennas.
  • the wireless communication device may further include means for splitting and processing signals transmitted by each of the vertically stacked two or more one dimensional switched beam antennas.
  • a computer-readable medium for beam steering includes instructions thereon.
  • the instructions are for loading one or more parasitic elements on a one dimensional switched beam antenna with reactive loads and for switching one or more of the parasitic elements to act as reflectors. Any of the one or more parasitic elements acts as a reflector when a switch between the parasitic element and ground is closed and the parasitic element is shorted to ground.
  • the instructions are further for switching the parasitic elements not acting as reflectors to act as directors. Any of the parasitic elements acts as a director when the switch between the parasitic element and ground is open.
  • the instructions are also for feeding transmission signal streams to radiating elements on two or more vertically stacked one dimensional switched beam antennas.
  • the instructions are for adjusting the configuration of parasitic elements acting as reflectors and directors to steer the direction of each vertically stacked one dimensional switched beam antenna over the 360 degree azimuth.
  • the instructions also are for adjusting phase differences between the transmission signal streams fed to the radiating elements on the two or more vertically stacked one dimensional switched beam antennas to steer the direction of the vertically stacked two or more one dimensional switched beam antennas in elevation.
  • a wireless communication device configured for beam steering.
  • the wireless communication device includes two or more one dimensional switched beam antennas stacked vertically, a processor, and memory in electronic communication with the processor. Instructions stored in the memory are executable by the processor to load one or more parasitic elements on each one dimensional switched beam antenna with reactive loads. One or more of the parasitic elements are switched to act as reflectors. Any of the one or more parasitic elements acts as a reflector when a switch between a parasitic element and ground is closed and the parasitic element is shorted to ground.
  • the parasitic elements not acting as reflectors are switched to act as directors. Any of the parasitic elements acts as a director when the switch between the parasitic element and ground is open.
  • Transmission signal streams are received from the radiating elements on each one dimensional switched beam antenna.
  • the configuration of parasitic elements acting as reflectors and directors is adjusted to steer the direction of each one dimensional switched beam antenna over the 360 degree azimuth. Phase differences between each transmission signal stream received by the radiating elements on the two or more one dimensional switched beam antennas are adjusted to steer the direction of the vertically stacked two or more one dimensional switched beam antennas in elevation.
  • Each one dimensional switched beam antenna may include a planar circular structure, a radiating element located at the center of the planar circular structure, and one or more parasitic elements located on a contour around the radiating element.
  • the parasitic elements may be aligned in parallel direction with the radiating element.
  • the parasitic elements may protrude from the planar circular structure.
  • Each of the parasitic elements may be loaded by a reactive load as part of a passive circuit.
  • Each one dimensional switched beam antenna may also include switches separating each of the one or more parasitic elements from ground. A closed switch may create a short between a parasitic element and ground and an open switch may create either an open circuit between the parasitic element and ground or allows the reactive load to be switched in.
  • Each of the vertically stacked one dimensional switched beam antennas may use the same configuration of parasitic elements acting as reflectors and parasitic elements acting as directors.
  • a wireless communication device configured for beam steering is also described.
  • the wireless communication device includes means for loading one or more parasitic elements on each one dimensional switched beam antenna with reactive loads.
  • the wireless communication device also includes means for switching one or more of the parasitic elements to act as reflectors. Any of the one or more parasitic elements acts as a reflector when a switch between a parasitic element and ground is closed and the parasitic element is shorted to ground.
  • the wireless communication device further includes means for switching the parasitic elements not acting as reflectors to act as directors. Any of the parasitic elements acts as a director when the switch between the parasitic element and ground is open and no reactive load is connected to the parasitic element.
  • the wireless communication device also includes means for receiving transmission signal streams from the radiating elements on each one dimensional switched beam antenna.
  • the wireless communication device further includes means for adjusting the configuration of parasitic elements acting as reflectors and directors to steer the direction of each one dimensional switched beam antenna over the 360 degree azimuth.
  • the wireless communication device also includes means for adjusting phase differences between each transmission signal stream received by the radiating elements on the two or more one dimensional switched beam antennas to steer the direction of the vertically stacked two or more one dimensional switched beam antennas in elevation.
  • the wireless communication device may include means for combining and processing signals received from each of the vertically stacked two or more one dimensional switched beam antennas.
  • a wireless communication device configured for beam steering.
  • the wireless communication device includes computer-executable instructions for loading one or more parasitic elements on each one dimensional switched beam antenna with reactive loads.
  • the wireless communication device also includes computer- executable instructions for switching one or more of the parasitic elements to act as reflectors. Any of the one or more parasitic elements acts as a reflector when a switch between a parasitic element and ground is closed and the parasitic element is shorted to ground.
  • the wireless communication device further includes computer-executable instructions for switching the parasitic elements not acting as reflectors to act as directors. Any of the parasitic elements acts as a director when the switch between the parasitic element and ground is open.
  • the wireless communication device also includes computer-executable instructions for receiving transmission signal streams from the radiating elements on each one dimensional switched beam antenna.
  • the wireless communication device further includes computer-executable instructions for adjusting the configuration of parasitic elements acting as reflectors and directors to steer the direction of each one dimensional switched beam antenna over the 360 degree azimuth.
  • the wireless communication further device includes computer-executable instructions for adjusting phase differences between each transmission signal stream received by the radiating elements on the two or more one dimensional switched beam antennas to steer the direction of the vertically stacked two or more one dimensional switched beam antennas in elevation.
  • Figure 1 shows a wireless communication system with a first wireless communication device and a second wireless communication device
  • Figure 2 illustrates a one dimensional switched beam antenna for use in the present methods and apparatus
  • Figure 2A illustrates switching between parasitic elements, reactive loads, and ground
  • Figure 3 illustrates a two dimensional steerable beam antenna for use in the present methods and apparatus
  • Figure 4 shows a wireless communication system with a one dimensional switched beam antenna and a receiving wireless communication device
  • Figure 5 shows a wireless communication system with a one dimensional switched beam antenna directing transmissions towards a receiving wireless communication device
  • Figure 6 shows a wireless communication system with a one dimensional switched beam antenna directing transmissions towards the previous location of a receiving wireless communication device that has moved outside of the directed signal transmission path;
  • Figure 7 shows a wireless communication system with a one dimensional switched beam antenna having adjusted the direction of transmission towards the new location of a receiving wireless communication device
  • Figure 8 shows a wireless communication system with an M-element vertical phased array and a receiving wireless communication device
  • Figure 9 shows a wireless communication system with an M-element vertical phased array and a receiving wireless communication device with a recently changed elevation;
  • Figure 10 is a flow diagram illustrating a method for beam steering using a one dimensional switched beam antenna;
  • Figure 10A illustrates means-plus-function blocks corresponding to the method of Figure 10;
  • Figure 1 1 is a flow diagram illustrating a method for beam steering over 360 degrees in azimuth and almost 180 degrees in elevation using a two dimensional steerable beam antenna;
  • Figure 1 1A illustrates means-plus-function blocks corresponding to the method of Figure 11 ;
  • Figure 12 illustrates certain components that may be included within a wireless communication device.
  • Figure 1 shows a wireless communication system 100 with a first wireless communication device 102a and a second wireless communication device 102b.
  • a wireless communication device 102 may be configured to transmit wireless signals, receive wireless signals, or both.
  • the first wireless communication device 102a may transmit data as part of a signal stream 106a to the second wireless communication device 102b.
  • the first wireless communication device 102a may transmit data using a first antenna 108.
  • An antenna may be configured for both transmitting signals and receiving signals.
  • the first wireless communication device 102a may use the first antenna 108 for both transmitting and receiving signals.
  • the second wireless communication device 102b may receive signals transmitted from the first wireless communication device 102a using a second antenna 1 10. The second wireless communication device 102b may thus receive the signal stream 106b from the first wireless communication device 102a.
  • FIG. 2 illustrates a one dimensional switched beam antenna 220 for use in the present apparatus and methods.
  • the one dimensional switched beam antenna 220 may be a stackable unit, such that multiple one dimensional switched beam antennas 220 may each be used as an element in a vertical phased array. A vertical phased array is discussed in more detail in relation to Figure 3.
  • the one dimensional switched beam antenna 220 may include a radiating element 212.
  • the radiating element 212 may be capable of radiating and receiving electromagnetic waves.
  • the radiating element 212 may be a piece of foil, a conductive rod, or a coil.
  • the radiating element 212 may be located at the center of a planar circular structure 216.
  • the radiating element 212 may be either a monopole or a dipole.
  • the planar circular structure 216 may be a conductive ground plane.
  • the conductive planar circular structure 216 may be made out of copper or aluminum.
  • the radiating element 212 may protrude perpendicularly from the planar circular structure 216 a distance of one quarter of the wavelength radiated from the radiating element 212.
  • the radiating element 212 may protrude other distances out of the planar circular structure 216.
  • the wavelength of the signal may be approximately 5 mm and the radiating element 212 may protrude from the planar circular structure 216 a distance of 1.25 mm.
  • the planar circular structure 216 may be a conductive or non-conductive plane.
  • the non-conductive planar circular 216 structure may be formed out of silicon.
  • the radiating element 212 may protrude perpendicularly out of each side of the planar circular structure 216 the same distance but the planar structure in this case is not made of conductive material.
  • the radiating element 212 may be present at an arbitrary distance from the planar circular structure 216 on one or both sides.
  • the one dimensional switched beam antenna 220 may also include N (one or more) parasitic elements 214.
  • the parasitic elements 214 may be of the same size and structure as the radiating element 212. Alternatively, the parasitic elements 214 may be of different size than the radiating element 212. For example, if the radiating element 212 is of the monopole type, the parasitic elements 214 may also be of the monopole type. Likewise, if the radiating element 212 is of the dipole type, the parasitic elements 214 may also be of the dipole type.
  • the parasitic elements 214 may be placed on a contour around the radiating element 212 and aligned in a parallel direction with the radiating element 212.
  • the parasitic elements 214 may also protrude perpendicularly from the planar circular structure 216.
  • the parasitic elements 214 may be equidistant from the radiating element 212.
  • the parasitic elements 214 may be separated from the radiating element 212 by different distances.
  • the number of parasitic elements 214 may be either odd or even. It may be preferable for N to be an odd number.
  • Each of the parasitic elements 214 may be loaded by a reactive load such as a short circuit, an open circuit, an inductive load and/or a capacitive load.
  • the inductive or capacitive loads may be distributed or lumped.
  • the reactive load may be a passive circuit.
  • the circuitry may be simple and of very low cost. The circuitry may be low cost since each of the loads are on the parasitic elements 214 rather than within the RF signal path. Simple circuitry may keep complexity to a minimum.
  • Each of the parasitic elements 214 may have switching capabilities.
  • the parasitic elements 214 may be separated from ground by a switch 218.
  • a parasitic element 214 may act as a director.
  • a parasitic element 214 may act as a reflector.
  • the electromagnetic signals received by the parasitic element 214 from the radiating element 212 may be reflected back towards the radiating element 212.
  • the reflected electromagnetic signals may be added in phase to the electromagnetic signals radiated by the radiating element 212 in the direction of a main radiation beam.
  • the main radiation beam may refer to the main or largest lobe of a radiation pattern.
  • the radiation pattern may be a graph of field strength or relative antenna gain as a function of angle.
  • the electromagnetic signals received by the parasitic element 214 from the direction of the radiating element 212 may be reflected back towards the radiating element 212, thereby increasing the signal gain. Furthermore, electromagnetic signals received by the parasitic element 214 from directions other than the radiating element 212 may be reflected away from the radiating element 212, thereby decreasing signal noise received by the radiating element 212.
  • a plurality of parasitic elements 214 may act as reflectors.
  • the electromagnetic signals received by the parasitic element 214 from the radiating element 212 may be received and reradiated.
  • the signal reradiated from the parasitic element 214 may be added in phase to the signal radiated from the radiating element 212 in the direction of the main radiation beam, thereby adding to the total transmitted signal.
  • the electromagnetic signals received by the parasitic element 214 from directions other than that of the radiating element 212 may be absorbed and reradiated in phase, thereby adding to the total signal strength received by the radiating element 212.
  • the one dimensional switched beam antenna 220 may be capable of beam steering over the entire 360 degree azimuth range using different combinations of parasitic elements 214 acting as reflectors and parasitic elements 214 acting as directors.
  • one of the parasitic elements 214 may act as a reflector and the N-l other parasitic elements 214 may act as directors. Because the reactive loads of the parasitic elements 214 are not in the RF signal path and the center radiating element 212 is fed by a single port, with no power dividing network, losses may be kept to a minimum.
  • N independent beams may be formed by loading the N parasitic elements 214. Additional beams may be formed by superposition of the N independent beams or by the use of a plurality of parasitic elements 214 operating as reflectors.
  • Figure 2A illustrates switching between parasitic elements 254, reactive loads 251, and ground.
  • the parasitic elements 254 of Figure 2A may be one configuration of the parasitic elements 214 of Figure 2.
  • Each parasitic element 254a, 254b may be connected to a switch 258a, 258b.
  • the switch 258 may be a multiple throw switch.
  • a switch 258 may have a first position, a second position, and a third position.
  • a switch 258 may switch the connection of the parasitic element 254a, 254b with a short 255a, 255b between the parasitic element 254a, 254b and ground in a first position, an open circuit 253a, 253b between the parasitic element 254a, 254b and ground in a second position, or a closed circuit between the parasitic element 254a, 254b, a reactive load 251a, 251b, and ground in a third position.
  • a parasitic element 254a, 254b may act as a reflector with a phase difference when the switch 258a, 258b is in the third position creating a closed circuit between the parasitic element 254a, 254b, a reactive load 251a, 251b, and ground.
  • the phase difference of the reflector may depend on the reactive load 251.
  • a switch 258 may include additional positions creating a closed circuit between the parasitic element 254, another reactive load (not shown), and ground.
  • FIG. 3 illustrates a two dimensional steerable beam antenna 330 for use in the present methods.
  • a two dimensional steerable beam antenna 330 may be formed by stacking M (two or more) one dimensional switched beam antennas 320.
  • Each one dimensional switched beam antenna 320 may have a radiating element 312, 322, 332 surrounded by N parasitic elements 314, 324, 334 on a circular planar structure 216.
  • Each one dimensional switched beam antenna 320 may have the same number N of parasitic elements 314, 324, 334 in the same configuration on each planar circular structure 216.
  • each one dimensional switched beam antenna 320 in Figure 3 has seven parasitic elements 314, 324, 334.
  • Each of the stacked one dimensional switched beam antennas 320 may be separated by a distance of one half to one wavelength.
  • each of the one dimensional switched beam antennas 320 may be used as an element in an M-element vertical phased array.
  • An M- element vertical phased array may also be referred to as a two dimensional steerable beam antenna.
  • each of the individual one dimensional switched beam antennas 320 may be vertically aligned such that the parasitic elements line up.
  • parasitic element 314a may be directly above parasitic element 324a which may be directly above parasitic element 334a.
  • Each of the individual one dimensional switched beam antennas 320 may also be configured to form the same horizontal beam.
  • each one dimensional switched beam antenna 320 may use the same switching scheme for the parasitic elements 314, 324, 334.
  • a vertical phase array of M elements is formed and by feeding each of the M vertical elements with appropriate phase, a narrower and scannable beam may be formed in elevation.
  • elevation beam steering may be attained.
  • a vertically scanned beam is produced by a progressive phase shift between adjacent vertical elements 314, 324, 334.
  • This phase shift may be achieved by a conventional phased array feed with digital phase shifters or by a switching mechanism that is connected to a bootlace lens, such as a Rotman lens or a Butler matrix. Simplicity of this feed network is afforded by the inherent limited angular coverage in elevation.
  • Figure 4 shows a wireless communication system 400 with a one dimensional switched beam antenna 220 and a receiving wireless communication device 102b.
  • the one dimensional switched beam antenna 220 may include a radiating element 212 and one or more parasitic elements 214.
  • the one dimensional switched beam antenna 220 shown has five parasitic elements 214.
  • the one dimensional switched beam antenna 220 is shown acting as a transmitting antenna, the one dimensional switched beam antenna 220 may be equally operative as a receiving antenna.
  • the one dimensional switched beam antenna 220 may operate as part of a two dimensional steerable beam antenna 330.
  • additional one dimensional switched beam antennas 220 may be stacked above or below the single one dimensional switched beam antenna 220 with similar horizontal steering functionality.
  • the one dimensional switched beam antenna 220 and/or the two dimensional steerable beam antenna 330 may operate as part of a wireless communication device 102a.
  • the link budget for transmitting a high data rate over the 60 GHz frequency band may require considerable antenna gain as well as flexibility in the orientation of the end point devices.
  • the receiving wireless communication device 102b may use a one dimensional switched beam antenna 220 to receive transmissions, thereby allowing the receiving wireless communication device 102b to steer the direction of reception to optimize the received signal gain.
  • the receiving wireless communication device 102b may use any antenna suitable for receiving wireless transmissions.
  • the one dimensional switched beam antenna 220 shown in Figure 4 may be capable of beam steering over 360 degrees in azimuth.
  • a number of options of antenna gain and steering capabilities may be possible by appropriate selection of the number of parasitic elements 214 used in the one dimensional switched beam antenna 220.
  • a discrete number of switchable beams covering the 360 degree horizontal field of view may be produced according to the number of parasitic elements 214 used. For example, N discrete switchable beams may be produced, each covering a different portion of the 360 degree horizontal field, using N parasitic elements 214 in the one dimensional switched beam antenna 220.
  • FIG. 5 shows a wireless communication system 500 with a one dimensional switched beam antenna 220 directing transmissions 540 towards a receiving wireless communication device 102b.
  • the one dimensional switched beam antenna 220 may include five parasitic elements 214.
  • the switches 218 on the one dimensional switched beam antenna 220 may be adjusted. For example, the switch S4 218d may be closed, thereby shorting parasitic element 214d to ground. Parasitic element 214d may then act as a reflector.
  • the switches 218a, 218b, 218c and 218e may each be open, thereby creating an open circuit between parasitic elements 214a, 214b, 214c and 214e and ground.
  • parasitic elements 214a, 214b, 214c and 214d may be connected by the switch to lumped or distributed reactive loads.
  • Parasitic elements 214a, 214b, 214c and 214e may thus act as directors for signals transmitted by the radiating element.
  • the signals transmitted 540 by the radiating element 212 may thus be directed away from parasitic element 214d acting as a reflector. Reflectors and directors were discussed in more detail above in relation to Figure 2.
  • Figure 6 shows a wireless communication system 600 with a one dimensional switched beam antenna 220 directing transmissions 640 towards the previous location of a receiving wireless communication device 102b that has moved outside of the directed signal transmission 640 path.
  • the one dimensional switched beam antenna 220 may be directing signal transmissions 640 towards the previous location of the receiving wireless communication device 102b.
  • parasitic element 214d may be acting as a reflector while parasitic elements 214a, 214b, 214c and 214e are acting as directors. It may be beneficial for the one dimensional switched beam antenna 220 to redirect transmissions 640 towards the current location of the receiving wireless communication device 102b.
  • a different combination of parasitic elements 214 acting as reflectors and parasitic elements 214 acting as directors may be used.
  • Figure 7 shows a wireless communication system 700 with a one dimensional switched beam antenna 220 having adjusted the direction of transmission 740 towards the new location of a receiving wireless communication device 102b.
  • the one dimensional switched beam antenna 220 may adjust the configuration of parasitic elements 214 acting as reflectors and parasitic elements 214 acting as directors.
  • the switch S5 218e may be closed, thereby creating a short between parasitic element 214e and ground.
  • Parasitic element 214e may act as a reflector.
  • the switches S1-S4 218a-d may each be open, thereby creating an open circuit between parasitic elements 214a-d and ground.
  • parasitic elements 214a-d may be connected by the switch to lumped or distributed reactive loads. Parasitic elements 214a-d may then act as directors. Based on the new configuration of parasitic elements 214 acting as reflectors and parasitic elements 214 acting as directors, the one dimensional switched beam antenna 220 may direct transmissions 740 from the radiating element 212 towards the receiving wireless communication device 102b.
  • FIG. 8 shows a wireless communication system 800 with an M-element vertical phased array 830 and a receiving wireless communication device 102b.
  • the M- element vertical phased array 830 may include M one dimensional switched beam antennas 820 stacked in a direction perpendicular to the antenna planes.
  • Each of the one dimensional switched beam antennas 820 may include the same number of radiating elements 812, 822, 832 and parasitic elements 814, 824, 834.
  • each one dimensional switched beam antenna 820 includes one radiating element 812, 822, 832 surrounded by five parasitic elements 813, 824, 834.
  • the parasitic elements 814, 824, 834 may be vertically aligned.
  • the parasitic element 824a on the second one dimensional switched beam antenna 820b may be directly above the parasitic element 834a on the first one dimensional switched beam antenna 820a.
  • Each of the parasitic elements 814, 824, 834 on each of the one dimensional switched beam antennas 820 may include a switch and reactive circuitry between the parasitic element 814, 824, 834 and ground.
  • Vertically aligned parasitic elements 814, 824, 834 may use similar reactive circuitry.
  • vertically aligned parasitic elements may share the reactive circuitry.
  • parasitic element 814a may share one reactive circuit with parasitic element 824a and parasitic element 834a.
  • Each of the one dimensional switched beam antennas 820 in the vertical phased array antenna 830 may be synchronized.
  • each of the one dimensional switched beam antennas 820 in the vertical phased array antenna 830 may use the same configuration of parasitic elements 814, 824, 834 acting as reflectors and parasitic elements 814, 824, 834 acting as directors.
  • parasitic element 814a is switched to act as a reflector by creating a short between the parasitic element 814a and ground using a switch
  • parasitic element 824a and parasitic element 834a may also be switched to act as reflectors by creating a short between parasitic element 824a and ground and a short between parasitic element 834a and ground.
  • each parasitic element 814, 824, 834 of each one dimensional switched beam antenna 820 in the vertical phased array antenna 830 may act as either a reflector or a director, thereby allowing the vertical phased array antenna 830 to direct transmissions covering the 360 degree horizontal field of view.
  • the parasitic elements 814d, 824d, and 834d may each be shorted to ground so that the parasitic elements 814d, 824d and 834d each act as reflectors.
  • the other parasitic elements 814, 824, 834 of each one dimensional switched beam antenna 830 in the vertical phased array antenna 830 may have an open circuit between the parasitic element 814, 824, 834 and ground. Therefore, the other parasitic elements 814, 824, 834 of each one dimensional switched beam antenna 820 may each act as directors.
  • the vertical phased array antenna 830 may thus steer transmissions 840 over the 360 degree azimuth towards the receiving wireless communication device 102b.
  • the receiving wireless communication device 102b may be located at a different elevation than the vertical phased array antenna 830. It may thus be advantageous for the vertical phased array antenna 830 to provide elevation steering in addition to the 360 degree azimuth steering.
  • the vertical phased array antenna 830 may achieve almost 180 degrees of elevation steering by feeding each of the radiating elements 812, 822, 832 of the vertical phased array antenna with the appropriate phase.
  • Transmission signals may be combined by the vertical phased array antenna 830.
  • the transmission signals for each one dimensional switched beam antennas 820 may be digitally split and digitally combined.
  • the transmit signal may be split into phase different streams for transmission.
  • the phase shifted streams may then be combined for reception.
  • Both digitally splitting and digitally combining the transmission signals may take place in the baseband and may be performed in the complex domain.
  • the combining and splitting may also take place near the transmit and receive antennas at the antenna frequency or at an intermediate frequency (IF). In both cases, the operations may be in the real analog domain.
  • FIG. 9 shows a wireless communication system 900 with an M-element vertical phased array antenna 830 and a receiving wireless communication device 102b with a recently changed elevation. Because the M-element vertical phased array antenna 830 is capable of almost 180 degrees in elevation steering, the transmission beam 940 may be directed towards the location of the receiving wireless communication device 102b despite changes in elevation of the receiving wireless communication device 102b. Thus, the M-element vertical phased array antenna 830 may more accurately direct transmissions 940 towards the receiving wireless communication device 102b, thereby improving the link budget between the M-element vertical phased array antenna 830 and the receiving wireless communication device 102b.
  • FIG 10 is a flow diagram illustrating a method 1000 for beam steering using a one dimensional switched beam antenna 220.
  • the one dimensional switched beam antenna 220 may load 1002 one or more parasitic elements 214 with reactive loads.
  • the reactive loads may be inductive and/or capacitive.
  • the one dimensional switched beam antenna 220 may then switch 1004 one or more of the parasitic elements 214 to act as a reflector.
  • the one dimensional switched beam antenna 220 may switch a parasitic element 214 to act as a reflector by shorting the parasitic element 214 to ground.
  • the one dimensional switched beam antenna 220 may switch 1006 the parasitic elements 214 that are not acting as reflectors to act as directors.
  • the one dimensional switched beam antenna 220 may switch a parasitic element 214 to act as a director by creating an open circuit between the parasitic element 214 and ground.
  • the one dimensional switched beam antenna 220 may then feed 1008 a signal stream to a radiating element 212.
  • the one dimensional switched beam antenna 220 may adjust 1010 the parasitic elements 214 acting as reflectors and directors to steer the beam over the 360 degree azimuth.
  • the one dimensional switched beam antenna 220 may switch certain parasitic elements 214 from acting as directors to acting as reflectors and certain parasitic elements 214 from acting as reflectors to acting as directors, according to the location of the destination device.
  • the method 1000 of Figure 10 described above may be performed by various hardware and/or software component(s) and/or module(s) corresponding to the means-plus-function blocks 1000A illustrated in Figure 10A.
  • blocks 1002 through 1010 illustrated in Figure 10 correspond to means-plus-function blocks 1002A through 1010A illustrated in Figure 10A.
  • FIG 11 is a flow diagram illustrating a method 1 100 for beam steering over 360 degrees in azimuth and almost 180 degrees in elevation using a two dimensional steerable beam antenna 330.
  • a two dimensional steerable beam antenna 330 may be formed by stacking 1 102 two or more one dimensional switched beam antennas 220 vertically. As discussed above, a two dimensional steerable beam antenna 330 may also be referred to as an M-element vertical phased array antenna. The two dimensional steerable beam antenna 330 may then switch 1 104 one or more parasitic elements 314, 324, 334 within each of the one dimensional switched beam antennas 220 to act as reflectors.
  • a parasitic element 314, 324, 334 may act as a reflector when the parasitic element 314, 324, 334 is shorted to ground.
  • the two dimensional steerable beam antenna 330 may then switch 1 106 the parasitic elements 314, 324, 334 not acting as reflectors to act as directors.
  • a parasitic element 314, 324, 334 may act as a director when a switch between the parasitic element 314, 324, 334 and ground is open, such that there is an open circuit between the parasitic element 314, 324, 334 and ground.
  • the two dimensional steerable beam antenna 330 may then feed 1 108 similar signal streams 106 to each radiating element 312, 322, 332 of each one dimensional switched beam antenna 320. There may be a controlled phase difference between any two consecutive radiating elements that determines the direction in elevation of the steerable beam.
  • the radiating element 312, 322, 332 may transmit the signal stream 106 as electromagnetic waves.
  • the two dimensional steerable beam antenna 330 may adjust 11 10 the parasitic elements 314, 324, 334 acting as reflectors and directors to steer the beam azimuth.
  • the two dimensional steerable beam antenna 330 may then adjust 11 12 the phase difference between the signal streams fed to the radiating elements 312, 322, 332 to steer the beam elevation.
  • the method 1 100 of Figure 11 described above may be performed by various hardware and/or software component(s) and/or module(s) corresponding to the means-plus-function blocks 1100A illustrated in Figure 1 1A.
  • blocks 1 102 through 11 12 illustrated in Figure 1 1 correspond to means-plus-function blocks 1 102A through 1 112A illustrated in Figure 1 1A.
  • FIG. 12 illustrates certain components that may be included within a wireless communication device 1202.
  • the wireless communication device 1202 includes a processor 1203.
  • the processor 1203 may be a general purpose single- or multi-chip microprocessor (e.g., an ARM), a special purpose microprocessor (e.g., a digital signal processor (DSP)), a microcontroller, a programmable gate array, etc.
  • the processor 1203 may be referred to as a central processing unit (CPU). Although just a single processor 1203 is shown in the wireless communication device 1202 of Figure 12, in an alternative configuration, a combination of processors (e.g., an ARM and DSP) could be used.
  • the wireless communication device 1202 also includes memory 1205.
  • the memory 1205 may be any electronic component capable of storing electronic information.
  • the memory 1205 may be embodied as random access memory (RAM), read only memory (ROM), magnetic disk storage media, optical storage media, flash memory devices in RAM, on-board memory included with the processor, EPROM memory, EEPROM memory, registers, and so forth, including combinations thereof.
  • Data 1207 and instructions 1209 may be stored in the memory 1205.
  • the instructions 1209 may be executable by the processor 1203 to implement the methods disclosed herein. Executing the instructions 1209 may involve the use of the data 1207 that is stored in the memory 1205.
  • the wireless communication device 1202 may also include a transmitter 121 1 and a receiver 1213 to allow transmission and reception of signals between the wireless communication device 1202 and a remote location.
  • the transmitter 121 1 and receiver 1213 may be collectively referred to as a transceiver 1215.
  • An antenna 1217 may be electrically coupled to the transceiver 1215.
  • the wireless communication device 1202 may also include (not shown) multiple transmitters, multiple receivers, multiple transceivers and/or multiple antenna.
  • the various components of the wireless communication device 1202 may be coupled together by one or more buses, which may include a power bus, a control signal bus, a status signal bus, a data bus, etc.
  • buses may include a power bus, a control signal bus, a status signal bus, a data bus, etc.
  • the various buses are illustrated in Figure 12 as a bus system 1219.
  • the techniques described herein may be used for various communication systems, including communication systems that are based on an orthogonal multiplexing scheme.
  • Examples of such communication systems include Orthogonal Frequency Division Multiple Access (OFDMA) systems, Single-Carrier Frequency Division Multiple Access (SC-FDMA) systems, and so forth.
  • OFDMA orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • An OFDMA system utilizes orthogonal frequency division multiplexing (OFDM), which is a modulation technique that partitions the overall system bandwidth into multiple orthogonal sub- carriers. These sub-carriers may also be called tones, bins, etc. With OFDM, each sub- carrier may be independently modulated with data.
  • OFDM orthogonal frequency division multiplexing
  • An SC-FDMA system may utilize interleaved FDMA (IFDMA) to transmit on sub-carriers that are distributed across the system bandwidth, localized FDMA (LFDMA) to transmit on a block of adjacent sub- carriers, or enhanced FDMA (EFDMA) to transmit on multiple blocks of adjacent sub- carriers.
  • IFDMA interleaved FDMA
  • LFDMA localized FDMA
  • EFDMA enhanced FDMA
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDMA.
  • determining encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing
  • processor should be interpreted broadly to encompass a general purpose processor, a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a controller, a microcontroller, a state machine, and so forth.
  • a “processor” may refer to an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc.
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor may refer to a combination of processing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • memory should be interpreted broadly to encompass any electronic component capable of storing electronic information.
  • the term memory may refer to various types of processor-readable media such as random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), programmable read-only memory (PROM), erasable programmable read only memory (EPROM), electrically erasable PROM (EEPROM), flash memory, magnetic or optical data storage, registers, etc.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read only memory
  • EEPROM electrically erasable PROM
  • flash memory magnetic or optical data storage, registers, etc.
  • instructions and “code” should be interpreted broadly to include any type of computer-readable statement(s).
  • the terms “instructions” and “code” may refer to one or more programs, routines, sub-routines, functions, procedures, etc.
  • "Instructions” and “code” may comprise a single computer-readable statement or many computer-readable statements.
  • the functions described herein may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions on a computer-readable medium.
  • computer-readable medium refers to any available medium that can be accessed by a computer.
  • a computer-readable medium may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu- ray ® disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • Software or instructions may also be transmitted over a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of transmission medium.
  • DSL digital subscriber line
  • the methods disclosed herein comprise one or more steps or actions for achieving the described method.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a device.
  • a device may be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via a storage means (e.g., random access memory (RAM), read only memory (ROM), a physical storage medium such as a compact disc (CD) or floppy disk, etc.), such that a device may obtain the various methods upon coupling or providing the storage means to the device.
  • RAM random access memory
  • ROM read only memory
  • CD compact disc
  • floppy disk floppy disk
EP10810952A 2009-10-01 2010-10-01 Verfahren und vorrichtung zur strahllenkung mit lenkbaren richtantennen mit geschalteten parasitären elementen Withdrawn EP2483967A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/571,667 US8421684B2 (en) 2009-10-01 2009-10-01 Methods and apparatus for beam steering using steerable beam antennas with switched parasitic elements
PCT/US2010/051232 WO2011053431A1 (en) 2009-10-01 2010-10-01 Methods and apparatus for beam steering using steerable beam antennas with switched parasitic elements

Publications (1)

Publication Number Publication Date
EP2483967A1 true EP2483967A1 (de) 2012-08-08

Family

ID=43640938

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10810952A Withdrawn EP2483967A1 (de) 2009-10-01 2010-10-01 Verfahren und vorrichtung zur strahllenkung mit lenkbaren richtantennen mit geschalteten parasitären elementen

Country Status (6)

Country Link
US (2) US8421684B2 (de)
EP (1) EP2483967A1 (de)
JP (3) JP2013507076A (de)
KR (2) KR20120080231A (de)
CN (1) CN102576937B (de)
WO (1) WO2011053431A1 (de)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421684B2 (en) 2009-10-01 2013-04-16 Qualcomm Incorporated Methods and apparatus for beam steering using steerable beam antennas with switched parasitic elements
TWI488364B (zh) * 2011-04-12 2015-06-11 Htc Corp 手持式裝置以及輻射場型調整方法
CN103066387A (zh) * 2011-10-24 2013-04-24 瑞昱半导体股份有限公司 可切换波束的智能型天线装置与相关的无线通信电路
US9794807B2 (en) * 2011-11-30 2017-10-17 Maxlinear Asia Singapore PTE LTD Management of backhaul nodes in a microwave backhaul
EP2803113B1 (de) * 2012-01-11 2017-06-28 Adant Technologies Inc. Rekonfigurierbare antennenstruktur
CN102710275A (zh) * 2012-05-11 2012-10-03 中兴通讯股份有限公司 一种智能开关移动终端天线的方法及相应移动终端
EP2850741B1 (de) 2012-05-13 2019-05-01 Amir Khandani Verteilte kollaborative signalisierung bei drahtlosen vollduplex-senderempfängern
US9997830B2 (en) 2012-05-13 2018-06-12 Amir Keyvan Khandani Antenna system and method for full duplex wireless transmission with channel phase-based encryption
WO2013190369A2 (en) * 2012-06-22 2013-12-27 Adant Technologies, Inc. A reconfigurable antenna system
US9319125B2 (en) * 2012-07-19 2016-04-19 Electronics And Telecommunications Research Institute Method and apparatus of wireless communication by using multiple directional antennas
US8970435B2 (en) * 2012-10-05 2015-03-03 Cambridge Silicon Radio Limited Pie shape phased array antenna design
KR101880971B1 (ko) * 2012-12-07 2018-07-23 삼성전자주식회사 빔형성 방법 및 장치
GB201223250D0 (en) * 2012-12-21 2013-02-06 Sec Dep For Business Innovation & Skills The Antenna assembly and system
KR20140115231A (ko) 2013-03-20 2014-09-30 삼성전자주식회사 안테나, 사용자 단말 장치, 및 안테나 제어 방법
US20140313080A1 (en) * 2013-04-19 2014-10-23 Telefonaktiebolaget L M Ericsson Multi-beam smart antenna for wylan and pico cellular applications
US10177896B2 (en) 2013-05-13 2019-01-08 Amir Keyvan Khandani Methods for training of full-duplex wireless systems
EP3033806A4 (de) * 2013-08-13 2017-07-12 Amir Khandani Antennensystem und verfahren für drahtlose vollduplex-übertragung mit kanalphasenbasierter verschlüsselung
KR101515477B1 (ko) * 2013-11-22 2015-05-04 한국공항공사 기생 방사기의 고장 감지 장치 및 그 방법
US9413516B2 (en) 2013-11-30 2016-08-09 Amir Keyvan Khandani Wireless full-duplex system and method with self-interference sampling
US9236996B2 (en) 2013-11-30 2016-01-12 Amir Keyvan Khandani Wireless full-duplex system and method using sideband test signals
US9820311B2 (en) 2014-01-30 2017-11-14 Amir Keyvan Khandani Adapter and associated method for full-duplex wireless communication
KR101852894B1 (ko) * 2014-02-17 2018-04-27 후아웨이 디바이스 (둥관) 컴퍼니 리미티드 안테나 스위칭 시스템 및 방법
CN105874648B (zh) * 2014-06-30 2020-04-21 华为技术有限公司 具有径向波导的宽带灵活圆柱形天线阵列的装置和方法
US9490535B2 (en) 2014-06-30 2016-11-08 Huawei Technologies Co., Ltd. Apparatus and assembling method of a dual polarized agile cylindrical antenna array with reconfigurable radial waveguides
US9502765B2 (en) 2014-06-30 2016-11-22 Huawei Technologies Co., Ltd. Apparatus and method of a dual polarized broadband agile cylindrical antenna array with reconfigurable radial waveguides
EP3118931A1 (de) * 2015-07-16 2017-01-18 Centre National De La Recherche Scientifique Antennenvorrichtung mit gezielt ausrichtbarer richtcharakteristik
EP3353849A1 (de) 2015-09-25 2018-08-01 Telefonaktiebolaget LM Ericsson (publ.) Schaltbarer hochfrequenzwellenleiter
US20170133202A1 (en) * 2015-11-09 2017-05-11 Lam Research Corporation Computer addressable plasma density modification for etch and deposition processes
WO2017115422A1 (ja) * 2015-12-28 2017-07-06 三菱電機株式会社 ガス絶縁開閉装置の監視装置
CN105490008B (zh) * 2016-01-29 2018-08-07 康凯科技(杭州)股份有限公司 具有动态辐射方向图的天线系统
US10778295B2 (en) 2016-05-02 2020-09-15 Amir Keyvan Khandani Instantaneous beamforming exploiting user physical signatures
US10439297B2 (en) 2016-06-16 2019-10-08 Sony Corporation Planar antenna array
US10892550B2 (en) 2016-06-16 2021-01-12 Sony Corporation Cross-shaped antenna array
CN107851897A (zh) * 2016-06-17 2018-03-27 华为技术有限公司 一种天线
KR101803196B1 (ko) 2016-06-28 2017-11-29 홍익대학교 산학협력단 상유전체를 이용한 고이득 안테나 빔 조향 시스템
US11145982B2 (en) * 2016-06-30 2021-10-12 Hrl Laboratories, Llc Antenna loaded with electromechanical resonators
CN107768810B (zh) * 2016-08-23 2020-09-04 上海诺基亚贝尔股份有限公司 天线及其制造方法
US10135122B2 (en) * 2016-11-29 2018-11-20 AMI Research & Development, LLC Super directive array of volumetric antenna elements for wireless device applications
TWI713659B (zh) * 2016-12-21 2020-12-21 智邦科技股份有限公司 天線調諧系統及其方法
US10700766B2 (en) 2017-04-19 2020-06-30 Amir Keyvan Khandani Noise cancelling amplify-and-forward (in-band) relay with self-interference cancellation
CN109411876B (zh) 2017-08-16 2020-12-22 华为技术有限公司 一种天线及通信设备
US11057204B2 (en) 2017-10-04 2021-07-06 Amir Keyvan Khandani Methods for encrypted data communications
US20190214723A1 (en) * 2018-01-05 2019-07-11 Wispry, Inc. Beam-steerable antenna devices, systems, and methods
US11012144B2 (en) 2018-01-16 2021-05-18 Amir Keyvan Khandani System and methods for in-band relaying
CN110265792B (zh) * 2018-03-12 2022-03-08 杭州海康威视数字技术股份有限公司 天线装置和无人机
CN108832279B (zh) * 2018-06-05 2020-07-28 北京星网锐捷网络技术有限公司 全向天线及辐射角度切换方法
CN108987949B (zh) * 2018-07-26 2021-10-15 中国电建集团成都勘测设计研究院有限公司 一种可重构辐射模式的天线系统
RU2688949C1 (ru) * 2018-08-24 2019-05-23 Самсунг Электроникс Ко., Лтд. Антенна миллиметрового диапазона и способ управления антенной
WO2020061865A1 (zh) 2018-09-26 2020-04-02 华为技术有限公司 天线和终端
WO2020240073A1 (en) * 2019-05-28 2020-12-03 Corehw Semiconductor Oy An antenna switching solution
US11474228B2 (en) 2019-09-03 2022-10-18 International Business Machines Corporation Radar-based detection of objects while in motion
EP4082080A4 (de) * 2019-12-24 2023-09-20 Intel Corporation Antenneneinheiten, strahlungs- und strahlform von antenneneinheiten und verfahren dafür
CN111146564B (zh) * 2019-12-27 2022-03-18 宇龙计算机通信科技(深圳)有限公司 射频前端电路和终端
US11431102B2 (en) * 2020-09-04 2022-08-30 Dell Products L.P. Pattern reflector network for a dual slot antenna
CN112054311B (zh) * 2020-09-10 2023-10-31 南京尤圣美电子科技有限公司 一种平面型和低剖面型准八木方向图可重构5g天线
US11870162B2 (en) * 2021-01-22 2024-01-09 The Boeing Company High gain tightly coupled dipole antenna array
KR102593557B1 (ko) * 2021-05-04 2023-10-24 한국전자통신연구원 드론 식별을 위한 안테나 장치 및 그 동작 방법

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560978A (en) * 1968-11-01 1971-02-02 Itt Electronically controlled antenna system
JPS5552603A (en) * 1978-10-12 1980-04-17 Japan Radio Co Ltd Rotating directional antenna
CA1239223A (en) * 1984-07-02 1988-07-12 Robert Milne Adaptive array antenna
US5767807A (en) * 1996-06-05 1998-06-16 International Business Machines Corporation Communication system and methods utilizing a reactively controlled directive array
US6188373B1 (en) * 1996-07-16 2001-02-13 Metawave Communications Corporation System and method for per beam elevation scanning
US6989797B2 (en) * 1998-09-21 2006-01-24 Ipr Licensing, Inc. Adaptive antenna for use in wireless communication systems
JP2001036337A (ja) * 1999-03-05 2001-02-09 Matsushita Electric Ind Co Ltd アンテナ装置
JP3672770B2 (ja) * 1999-07-08 2005-07-20 株式会社国際電気通信基礎技術研究所 アレーアンテナ装置
JP2001127540A (ja) * 1999-10-27 2001-05-11 Nippon Telegr & Teleph Corp <Ntt> アンテナ装置
US6421005B1 (en) * 2000-08-09 2002-07-16 Lucent Technologies Inc. Adaptive antenna system and method
US6313807B1 (en) * 2000-10-19 2001-11-06 Tyco Electronics Corporation Slot fed switch beam patch antenna
JP4726306B2 (ja) * 2001-01-31 2011-07-20 パナソニック株式会社 無線通信システム、移動端末局及び方位決定方法
US6606057B2 (en) * 2001-04-30 2003-08-12 Tantivy Communications, Inc. High gain planar scanned antenna array
US6917338B2 (en) * 2001-12-06 2005-07-12 Koninklijke Philips Electronics N.V. Parasitic elements diversity antenna
US7038626B2 (en) * 2002-01-23 2006-05-02 Ipr Licensing, Inc. Beamforming using a backplane and passive antenna element
US6888504B2 (en) * 2002-02-01 2005-05-03 Ipr Licensing, Inc. Aperiodic array antenna
JP2003258533A (ja) * 2002-02-28 2003-09-12 Tsutomu Yoneyama 指向性切り替えアンテナ
US6987493B2 (en) * 2002-04-15 2006-01-17 Paratek Microwave, Inc. Electronically steerable passive array antenna
JP2004064741A (ja) * 2002-06-05 2004-02-26 Fujitsu Ltd 移動端末用適応アンテナ装置
US6894653B2 (en) * 2002-09-17 2005-05-17 Ipr Licensing, Inc. Low cost multiple pattern antenna for use with multiple receiver systems
DE10304909B4 (de) * 2003-02-06 2014-10-09 Heinz Lindenmeier Antenne mit Monopolcharakter für mehrere Funkdienste
DE10335216B4 (de) * 2003-08-01 2005-07-14 Eads Deutschland Gmbh Im Bereich einer Außenfläche eines Fluggeräts angeordnete phasengesteuerte Antenne
WO2005027265A1 (en) * 2003-09-15 2005-03-24 Lg Telecom, Ltd Beam switching antenna system and method and apparatus for controlling the same
JP4265418B2 (ja) * 2004-01-23 2009-05-20 よこはまティーエルオー株式会社 アレーアンテナの配置方法、多周波共用アンテナ装置、及び到来方向推定装置
KR20050078991A (ko) * 2004-02-03 2005-08-08 가부시키가이샤 고쿠사이 덴키 츠신 기소 기주츠 겐큐쇼 안테나 특성을 제어 가능한 어레이 안테나
JP2004312774A (ja) * 2004-06-14 2004-11-04 Advanced Telecommunication Research Institute International アレーアンテナ装置
US7551680B2 (en) * 2004-10-28 2009-06-23 Interdigital Technology Corporation Wireless communication method and apparatus for forming, steering and selectively receiving a sufficient number of usable beam paths in both azimuth and elevation
CN101199083B (zh) * 2005-04-13 2012-04-04 松下电器产业株式会社 自适应天线装置及无线通信装置
JP4205758B2 (ja) * 2005-12-21 2009-01-07 パナソニック株式会社 指向性可変アンテナ
US7535409B1 (en) * 2006-12-18 2009-05-19 The United States Of America As Represented By The Secretary Of The Navy Imaging radar method and system
JP4807705B2 (ja) * 2007-01-12 2011-11-02 株式会社国際電気通信基礎技術研究所 低姿勢型アンテナ構造体
EP2117075A4 (de) * 2007-02-28 2011-04-20 Nec Corp Gruppenantenne, funkkommunikationsvorrichtung und gruppenantennensteuerverfahren
JP4877155B2 (ja) * 2007-08-24 2012-02-15 日本電気株式会社 アンテナ装置及び水平面パターンの切替え方法
JP4840300B2 (ja) * 2007-09-05 2011-12-21 日本電気株式会社 フェーズドアレイアンテナおよびフェーズドアレイレーダ
JP2009094696A (ja) * 2007-10-05 2009-04-30 National Institute Of Information & Communication Technology セクタアンテナ
US8421684B2 (en) 2009-10-01 2013-04-16 Qualcomm Incorporated Methods and apparatus for beam steering using steerable beam antennas with switched parasitic elements
JP5983422B2 (ja) * 2013-01-21 2016-08-31 旭硝子株式会社 ガラス基板の研磨方法及び製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011053431A1 *

Also Published As

Publication number Publication date
JP2014222913A (ja) 2014-11-27
JP2013507076A (ja) 2013-02-28
US20110080325A1 (en) 2011-04-07
JP5964364B2 (ja) 2016-08-03
CN102576937B (zh) 2016-01-20
US8842050B2 (en) 2014-09-23
US8421684B2 (en) 2013-04-16
WO2011053431A1 (en) 2011-05-05
US20130201060A1 (en) 2013-08-08
KR101665585B1 (ko) 2016-10-24
KR20150027306A (ko) 2015-03-11
JP2016167822A (ja) 2016-09-15
KR20120080231A (ko) 2012-07-16
CN102576937A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
US8842050B2 (en) Methods and apparatus for beam steering using steerable beam antennas with switched parasitic elements
EP3120416B1 (de) Kompaktes antennenarray mit virtueller strahlungsvektorrotation
CN106576280B (zh) 具有波束宽度控制的天线系统
US6529170B1 (en) Two-frequency antenna, multiple-frequency antenna, two- or multiple-frequency antenna array
US9379437B1 (en) Continuous horn circular array antenna system
US7167136B2 (en) Wideband omnidirectional radiating device
JP2013519281A (ja) 車載指向性平板アンテナ、かかるアンテナを含む車両、およびかかる車両を含む衛星通信システム
WO2013190369A2 (en) A reconfigurable antenna system
WO2020190926A1 (en) Multi-mode antenna system
KR20160011704A (ko) 파라볼릭 안테나용 소스
JP2024512974A (ja) デュアルビーム機能を備えたセンターフィード型とエッジフィード型のハイブリッドメタサーフェスアンテナ
US7505011B2 (en) Antenna apparatus
WO2018102326A1 (en) Super directive array of volumetric antenna elements for wireless device applications
KR20220063357A (ko) 5g 듀얼 포트 빔포밍 안테나
JP4272154B2 (ja) 指向性デュアル周波数アンテナ装置
EP1920496A1 (de) Systeme und verfahren für eine umkonfigurierbare multimodus-sektorantenne
EP3079202A1 (de) Mikrowellenantenne, und verfahren zur generierung erster signale und zur detektierung zweiter signale
Pal et al. A high gain reduced side‐lobe miniaturized frequency and pattern reconfigurable planar array operating in higher‐order mode
WO2022271172A1 (en) Spatially reconfigurable antenna array
Telikepalli et al. A multilayered, dual beam microstrip phased array for mobile satellite communications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171121

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190501