EP2481129B1 - Steckkupplungssystem - Google Patents

Steckkupplungssystem Download PDF

Info

Publication number
EP2481129B1
EP2481129B1 EP10765936.9A EP10765936A EP2481129B1 EP 2481129 B1 EP2481129 B1 EP 2481129B1 EP 10765936 A EP10765936 A EP 10765936A EP 2481129 B1 EP2481129 B1 EP 2481129B1
Authority
EP
European Patent Office
Prior art keywords
coupling
plug
socket
inner conductor
coupling socket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10765936.9A
Other languages
English (en)
French (fr)
Other versions
EP2481129A1 (de
Inventor
Gerhard SCHLÖGL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2481129A1 publication Critical patent/EP2481129A1/de
Application granted granted Critical
Publication of EP2481129B1 publication Critical patent/EP2481129B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/005Electrical coupling combined with fluidic coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/70Structural association with built-in electrical component with built-in switch
    • H01R13/703Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part
    • H01R13/7036Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part the switch being in series with coupling part, e.g. dead coupling, explosion proof coupling
    • H01R13/7038Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part the switch being in series with coupling part, e.g. dead coupling, explosion proof coupling making use of a remote controlled switch, e.g. relais, solid state switch activated by the engagement of the coupling parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles

Definitions

  • the invention relates to a plug-in coupling system according to the preamble of claim 1.
  • the US5810048 discloses a plug-in coupling system according to claim 1.
  • plug-in couplings are also required, which also produce a fluid connection for transmitting the respective cooling channels in addition to an electrical connection.
  • Such plug-in couplings high electrical power in the range of 50KW to 300KW are transmitted at an electrical current of 50A to 400A.
  • an electrical current of 50A to 400A When interrupting a DC circuit of such high power arcs may arise, which can lead to a threat to the operator.
  • the present invention seeks to provide a plug-in coupling system that allows reliable separation and connection of high electrical power of a DC circuit.
  • the object is achieved on the basis of the preamble of claim 1 by its characterizing features.
  • high electrical powers are understood to mean performances in the range of 50 kW to 300 kW with an electrical current of 50A to 400A.
  • the plug-in coupling system comprises at least one electromechanical protection system consisting of at least one electronic switching means and at least one disposed within the coupling socket and / or the coupling plug mechanical switching means for producing or separating the electrically conductive connection, wherein the electronic switching means and the mechanical switching means are independently controllable. Due to the two-stage electromechanical protection system, overvoltages, in particular arcs, which are particularly advantageous when disconnecting and connecting high electrical powers of a DC circuit are avoided.
  • the at least one electronic switching means is formed by a relay or by an electronic circuit having at least one high-performance electronic component, preferably a high-power transistor.
  • the mechanical switching means for producing or separating the electrically conductive connection by inserting the coupling plug into the coupling socket or by removing the coupling plug from the coupling socket is formed switchable.
  • the coupling plug and the coupling socket further have an inner conductor surrounded by a fluid channel, wherein the inner conductor of the
  • Coupling plug and the coupling socket are at least partially surrounded by an electrically conductive contact sleeve, which is designed to be displaceable relative to the inner conductor or vice versa.
  • the contact sleeve of the coupling plug is provided for electrically conductive connection of the inner conductor of the coupling plug and the coupling socket in the coupled state.
  • the inner conductor of the coupling socket is formed in several parts, which preferably has at least two inner conductor elements which are electrically isolated from each other.
  • the at least two inner conductor elements are particularly advantageously connected to one another via a pin of electrically insulating material, preferably a ceramic pin, wherein an electrically conductive connection of the at least two inner conductor elements in the coupling socket in the coupled state by a displaceable contact sleeve, for example by means of at least one annular spring contact which is provided between the contact sleeve and the inner conductor.
  • FIG. 1 is a plug-in coupling 1 according to the invention in decoupled state and in FIG. 2 in coupled state each shown in lateral sectional views.
  • the plug-in coupling 1 which is designed for transmitting high-power electrical energy and the simultaneous transmission of a pressurized fluid, in particular a cooling fluid, consists of at least one coupling plug 2 and at least one coupling socket 3, each with an electrically conductive inner conductor 4, 5.
  • Der Coupling plug 2 is at least partially inserted into the coupling socket 3 for producing a coupled state and removable from the coupling socket 3 for producing a decoupled state.
  • the plug-in coupling 1 shown in the exemplary embodiment which is preferably provided for operation in a medium-voltage DC network, for example with a power of up to 300KV and a current of 400A, has at least one electromechanical protection system consisting of at least one electronic switching means 35 and at least one mechanical, within the coupling socket 3 and / or the coupling plug 2 arranged switching means 4, 11 for the preparation or separation of the electrically conductive connection.
  • the electronic switching means 35 and the mechanical switching means 4, 11 are preferably independently actuated or actuated. This achieves a protection concept that offers the highest standards of operator safety.
  • the electrically conductive inner conductors 4, 5 of the coupling socket 3 and the coupling plug 2 are peripherally surrounded by a fluid channel 6 which is formed to flow through a pressurized fluid through the plug-in coupling 1. Furthermore, in each case a valve body 7, 8 are arranged both in the coupling plug 2 and in the coupling socket 3, which are designed to close the fluid channel 6 in the decoupled state of the plug-in coupling 1.
  • valve body 7, 8 are in this case slidably disposed within the coupling socket 3 and the coupling plug 2 and are in the decoupled state by means of springs 14, 15, in particular coil springs, positioned such that the coupling plug 2 through the valve body 7 and the coupling socket 3 through the valve body 8 am Clutch plug end 2.1 or 3.1 are sealed liquid-tight at the coupling socket end.
  • the valve body 7 When inserting the coupling plug 2 into the coupling socket 3, the valve body 7 is displaced within the coupling plug 2 and the valve body 8 within the coupling socket 3 such that the plug-in coupling 1 has a continuous fluid channel 6 in the coupled state.
  • an electrical connection between the inner conductors 4, 5 of the coupling plug 2 and the coupling socket 3 is produced and indeed due to the insertion or the release of the coupling plug 2 in or out of the coupling socket 3.
  • the inner conductor 5 of the coupling socket 3 is in this case designed in several parts and preferably has a first to third inner conductor element 5.1 to 5.3.
  • the coupling socket 3 consists of a substantially circular tubular, electrically conductive, preferably metallic coupling socket housing 3.2, which has a circular opening with the diameter d at the first coupling socket end 3.1, which by the annular cross-section in the front cross-section, a circular opening of the diameter b having valve body 8 and the first inner conductor element 5.1 accommodated in this valve body 8 is closed in a liquid-tight manner with its thickened end 5.1.1.
  • Both the first inner conductor element 5.1 and the adjoining second and third inner conductor elements 5.2, 5.3 and the valve body 8 are concentric with the longitudinal axis LA1 of the coupling socket 3.
  • the on the inner conductor 5 at least partially guided, this circumferentially enclosing valve body 8 is between the inner conductor. 5 and the coupling socket housing 3.2 displaced arranged, along the longitudinal axis LA1.
  • the coupling socket housing 3.2 on its inner side 3.2.1 in the region of the first coupling socket end 3.1 a groove 3.2.2 for receiving a seal 16, wherein both the groove 3.2.2 and the seal 16 preferably annularly around the valve body 8 circulating are formed.
  • the valve body 8 has on its the inside 3.2.1 of the coupling box housing 3.2 side facing, for example, a first and second stages 8.1, 8.2, so that three portions on the outer peripheral side of the valve body 8 arise, preferably concentric to the longitudinal axis LA1 of the coupling socket 3 and run with different radial distance to this longitudinal axis LA1.
  • the first grading 8.1 is in this case adapted to the grading 3.2.3 of the inside 3.2.1 of the coupling socket housing 3.2.
  • the outer diameter d of the valve body 8 in the subsection 8.3 of the valve body 8 is adapted to the diameter d of the opening of the coupling socket housing 3.2 at the first coupling socket end 3.1.
  • the seal 16 seals circumferentially with respect to the portion 8.3 of the valve body 8 and closes the coupling socket 3 at this interface liquid-tight.
  • the inner circumferential side of the valve body 8 which faces the inner conductor 5 is likewise stepped, with a first inner side area 8.5 lying close to the first coupling socket end 3.1 and a second inner side area 8.6 separated by a stepping 8.7 or chamfering.
  • the first inner side region 8.5 and the second inner side region 8.6 extend concentrically with respect to the longitudinal axis LA1, wherein the first inner side region 8.5 has a smaller distance from the longitudinal axis LA1 than the second inner side region 8.6.
  • the first inner side region 8.5 in this case has a distance of approximately b / 2 to the longitudinal axis LA1, so that the head region 5.1.1 of the first inner conductor element 5.1, which has a diameter b, is snugly received in the interior of the valve body 8 in the decoupled state.
  • the first inner conductor element 5.1 of the coupling socket 3 tapers in the end of the head region 5.1.1 facing away from the first coupling socket end 3.1 and merges into an inner conductor region 5.1.2 of a cylindrical shape and an outer diameter c.
  • the inner conductor region 5.1.2 is in this case surrounded over a partial length of an electrically conductive, round tubular shaped contact sleeve 11 which is firmly connected via an electrically non-conductive insulating body 17, for example made of plastic, with the valve body 8 in the second inner side region 8.6.
  • the insulating body 17 in this case preferably has a plurality of parallel to the longitudinal axis LA1 extending flow channels through which in the coupled state of the plug-in coupling 1, a fluid flow is made possible.
  • first to third inner conductor elements 5.1, 5.2, 5.3 are separated by insulator 18, 19 and the first inner conductor element 5.1 from the second inner conductor element 5.2 by a ceramic pin 10, which is preferably made of zirconium oxide.
  • a ceramic pin 10 which is preferably made of zirconium oxide.
  • the displaceably guided on the first inner conductor element 5.1 contact sleeve 11 forms together with the first and second inner conductor elements 5.1, 5.2 and preferably in pairs at the adjacent ends of the first and second inner conductor element 5.1, 5.2 disposed spring contacts 13, the mechanical switching means for producing or separating the electrical conductive connection between the first and second inner conductor element 5.1, 5.2 of the coupling socket 3.
  • an insulating washer 21 is provided within the coupling box housing 3.2, which is preferably made of electrically insulating, glass fiber reinforced plastic.
  • the insulating disk 21 preferably has a plurality of flow channels pointing along the longitudinal axis LA1 for producing a fluid channel 6 that runs through the coupling socket 3 in the coupled state of the plug-in coupling 1.
  • the insulating washer 21 in this case ensures both a concentric alignment of the inner conductor elements 5.1, 5.2 within the coupling socket housing 3.2 as well as a displacement protection of the same.
  • the inner conductor 5, in particular the second inner conductor element 5.2 is galvanically separated from the electrically conductive, preferably steel, coupling socket housing 3.2.
  • valve body 8 When inserting the coupling plug 2 into the coupling socket 3, the valve body 8 is displaced against the spring force of the spring 15 along the longitudinal axis LA1 of the coupling socket 3 into its interior, wherein the valve body 8 due to the contact sleeve 11 on the inner conductor portion 5.1.2 of the first inner conductor element 5.1 out becomes.
  • an insulating body 19 is arranged in a central region, which is bounded laterally by the insulating disks 21, 22, approximately centrally between these insulating disks 21, 22 and concentric to the longitudinal axis LA1, the second and third inner conductor element 5.2, 5.3 spaced apart and electrically isolated from each other.
  • the second and third inner conductor element 5.2, 5.3 holes are preferably at right angles to the longitudinal axis LA1 introduced, in which bolts 23 engage with their free ends.
  • These bolts 23 are preferably designed as electrically conductive relay bridges and approximately at right angles out of the coupling socket housing 3.2, wherein the penetration points of the bolt 23 are electrically isolated by the coupling socket housing 3.2 relative to the coupling socket housing 3.2 and liquid-tight.
  • the relay 35 is switched and thus the electrically conductive connection between the second and third inner conductor element 5.2, 5.3 separated.
  • the mechanical switching means is actuated by pulling out the coupling plug 2 from the coupling socket 3, that is, the contact sleeve 11 is moved to the first inner conductor element 5.1 and thus the first inner conductor element 5.1 separated from the second inner conductor element 5.2.
  • the at least one electronically controllable switching means may be formed by an electrical and / or electronic circuit having at least one high-performance component, preferably a high-power transistor, namely an IGBT (insulated-gate bipolar transistor).
  • a high-power transistor namely an IGBT (insulated-gate bipolar transistor).
  • FIG. 4 an inventive coupling plug 2 of the plug-in coupling 1 is shown in a lateral sectional view along its longitudinal axis LA2.
  • the coupling plug 2 has an electrically conductive, preferably metallic coupling plug housing 2.2, which is formed as a hollow body with its inner and outer peripheral sides substantially rotationally symmetrical to the longitudinal axis LA2.
  • the first coupling plug end 2.1 of the coupling plug housing 2.2 is designed for insertion into the coupling socket 3 for producing the coupled state of the plug-in coupling 1.
  • the first coupling plug end 2.1 of the coupling plug housing 2.2 on the front side an annularly shaped face 2.4 with a ring thickness a.
  • the circular geometry of the face 2.4 is approximately equal to the dimension with the face 8.8 of the valve body 8, wherein the insertion of the coupling plug 2 in the coupling socket 3, the end faces 2.4, 8.8 of the coupling connector housing 2.2 and the valve body 8 abut against each other.
  • the first coupling plug end 2.1 has a substantially cylindrical outer shape with a diameter d, which is the same dimension with the opening of the coupling socket housing 3.2 at the first coupling socket end 3.1.
  • the Coupling plug housing 2.2 has, after an insertion depth t (measured from the first coupling plug end 2.1) a grading 2.5, which serves as insertion limit of the coupling plug 2 in the coupling socket 3.
  • the inner conductor 4 In the interior of the coupling plug 2, the inner conductor 4 is slidably received, wherein the displacement of the inner conductor 4 concentric with the longitudinal axis LA2 takes place along this longitudinal axis LA2.
  • the lying in the region of the first coupling plug end 2.1, thickened formed, substantially cylindrical end of the inner conductor 4 forms a valve body 7, which is provided as a closure of the annular annular face 2.4 of the coupling plug 2.
  • the valve body 7 is in this case dimensioned such that the opening of the annular-shaped end face 2.4 of the coupling plug 2 with the diameter b is accurately closed by the valve body 7.
  • the valve body 7 also has circumferentially two circumferential grooves 7.1, which are provided for receiving a seal 16 and a spring contact 13. By means of the seal 16, the frontal opening of the coupling plug housing 2.2 is liquid-tight by means of the valve body 7 is closed.
  • the guide along the longitudinal axis LA2 displaceable inner conductor 4 and thus also the valve body 7 within the coupling connector housing 2.2 is inter alia by means of an insulating 26 preferably made of glass fiber reinforced plastic, which is preferably penetrated by a plurality of parallel to the longitudinal axis LA2 extending flow channels.
  • the insulating washer 26 in this case has an inner bore, preferably with at least one step, and is pushed onto an approximately centered on the inner conductor 4, the stepped region thereof.
  • the gradations of the insulating washer 26 and the inner conductor 4 and the inner bore of the insulating and the outer diameter of the inner conductor 4 are geometrically matched.
  • the insulating disc 26 is spring-loaded in the decoupled state of the plug-in coupling 1 by the spring 14 against a gradation 2.6 or bevel in the interior of the coupling plug housing 2.2.
  • the spring force of the spring 14 is transmitted to the inner conductor 4 and thereby formed as a valve body 7 free end of Inner conductor 4 with its end 4.1 held flush with the end face 2.4 of the coupling connector housing 2.2, so that in the decoupled state, which is arranged at this end face 2.4 opening is closed by the valve body 7 liquid-tight.
  • the inner conductor 4 and thus also the valve body 7 along the longitudinal axis LA2 of the coupling plug 2 is moved inside the coupling plug housing 2.2, wherein the valve body 7 is pushed back into the contact sleeve 12.
  • This contact sleeve 12 is electrically isolated via an insulating body 27 connected to the coupling connector housing 2.2. It has at least one, preferably a plurality of flow channels, which allow a flow of a fluid along the longitudinal axis LA2.
  • the contact sleeve 12 serves in this case the electrically conductive connection of the head portion 5.1.1 and the valve body 7 and thus the inner conductor 4, 5 via the spring contacts 13 in the coupled state of the plug-in coupling. 1
  • a Reduzierhülse 25 is screwed with its free end 25.1.
  • This reduction sleeve 25 serves for connection to a hose fitting of a liquid-cooled electrical conductor, wherein this hose fitting can be screwed onto the free end 25.2 of the reduction sleeve 25.
  • the electrical connection between the free end 4.2 of the inner conductor 4 to the electrical conductor of a screwed at the free end 25.2 of the reducer 25 hose fitting via spring contacts 13, which are arranged on the free end 4.2 of the inner conductor 4 in grooves against displacement.
  • the decoupled state of the plug-in coupling 1 is characterized in particular by the fact that the openings arranged at the first coupling plug end 2.1 and at the first coupling socket end 3.1 are closed in a liquid-tight manner by the spring-loaded displaced valve bodies 7, 8.
  • the free end 4.2 of the inner conductor 4 of the coupling plug 2 is pulled out by the displacement of the valve body 7 and therefore also the displacement of the inner conductor 4 from the inner conductor of a screwed onto the Reduzierhülse 25 hose fitting and thus electrically separated.
  • the first and second inner conductor elements 5.1, 5.2 are electrically isolated from each other in the decoupled state, since the contact sleeve 11 is displaced by the spring load of the valve body 8 towards the first coupling socket end 3.1 and thus no electrical bridging of the insulating body 18 and the ceramic pin 10 by this contact sleeve 11 takes place.
  • these ends are shorted in the decoupled state by means of spring contacts 13 against the Kupplungsstecker- or coupling box housing 2.2, 3.2.
  • the coupling plug 2 By acting in the direction of the longitudinal axes LA1, LA2 pressure on the coupling plug 2, the forces exerted by the springs 14, 15 spring forces are overcome, so that the valve body 8 and the inner conductor 4, the UFdillon the valve body 7 is formed, are moved.
  • the coupling plug 2 penetrates with its first coupling plug end 2.1 with the insertion depth t in the coupling socket 3 until the gradation 2.5 of the coupling plug 2 rests on the front side of the coupling socket housing 3.2 at the first coupling socket end 3.1.
  • the spring contacts 13 which are preferably annular and preferably consist of a Kupferzirkonium chromium alloy, is provided by the first inner conductor element 5.1 via the spring contacts 13 and the contact sleeve 11 an electrically highly conductive connection, the electrical load capacity up to 300 KW at an electric current of up to 400A.
  • the same requirements also apply to all other contact points of the plug-in coupling 1.
  • the valve body 7 of the coupling plug 2 and the head area 5.1.1 of the first inner conductor element 5.1 of the coupling socket 3 come to lie in the region of the contact sleeve 12 and are enclosed by this in a form-fitting manner.
  • the inner conductor 4 is electrically connected to the first inner conductor element 5.1 of the inner conductor 5 via the contact sleeve 12.
  • the openings closed by the valve body 7, 8 openings are at least partially released, so that a fluid flow over the defined by the end face 2.4 interface is made possible.
  • the fluid is preferably an insulating oil which, due to its insulating properties, suppresses arcs that may occur during the coupling or decoupling process, it is advantageous that the fluid flow during the coupling process is timed before and during the decoupling process after the electrical connection or separation of the inner conductor 4, 5 takes place.
  • Fig. 6 is exemplified by arrows the way the fluid flow through the plug-in coupling 1 shown. Due to the substantially predominant rotational symmetry of the plug-in coupling 1 about the longitudinal axis LA, a fluid channel 6 is created, which completely surrounds the inner conductors 4, 5 on the circumferential side. At locations where a support of the inner conductors 4, 5 relative to the coupling plug housing 2.2 or the coupling socket housing 3.2, the supporting elements, ie the insulating discs 21, 22, 26 and the insulating body 17, 27 traversed by flow channels, which are dimensioned in this way in that a loss-free flow of the fluid through the plug-in coupling 1 is made possible. It is understood that the direction of flow can also be in the opposite direction.
  • the valve body 7 and the head area 5.1.1 of the first inner conductor element 5.1 are here in two respects importance. On the one hand, these elements, with their seals 16 extending along their circumference, serve for the volatilely impermeable sealing of the coupling plug 2 or the coupling socket 3 in the decoupled state. In addition, the electrical connection between the inner conductor 4 and the inner conductor 5 takes place in the coupled state via the respectively on Ventilgroper 7 and the head area 5.1.1 of the first inner conductor element 5.1 spring contacts 13, which are adjacent to the respective elements 16 in addition to the seals described above come.
  • both the spring contacts 13 and the seal 16 have approximately the same geometric shapes and external dimensions.
  • the spring contact 13 must be elastically deformable such that it can be inserted on the one hand without tilting into the contact sleeve 12 and on the other hand only by the spring forces of the springs 14, 15 causes a displacement of the valve body 7, 8 without tilting.
  • Fig. 7 is exemplified the contact between the valve body 7 and the contact sleeve 12 in a sectional view perpendicular to the longitudinal axis LA2. Due to the peripheral spiral-shaped design of the spring contact 13 to the valve body 7, this can be introduced, for example, when inserted into the contact sleeve 12 and in the opening located at the first coupling plug end 2.1 of the coupling connector housing 2.2, wherein the diameter b can be dimensioned slightly smaller, so that Spring contact 13 is deformed there such that the individual coils of the spring contacts 13 occupy a smaller angle to the tangent T to the valve body 7 as in the case before the deformation.
  • the plug-in coupling 1 for example, has an electrical load capacity of up to 300 KW with an electrical current of up to 400 A and is preferably designed for the transmission of DC or DC voltage is preferably, as in the FIGS. 8 and 9 shown, arranged in pairs, wherein two coupling plugs 2, 2 'by means of a coupling plug plate 28 adjacent to each other are arranged horizontally spaced, so that the centers of the circular end faces of the coupling plug 2, 2' in the perpendicular to the longitudinal axes LA2, LA2 'extending transverse axis QA added are.
  • the pairwise arrangement of two coupling plugs 2, 2 'on the coupling plug plate 28 is at the same time a Connection of two coupling plugs 2, 2 'with two coupling sockets 3, 3' possible, so that in a single coupling operation, a closed circuit or fluid circuit consisting of forward and return conductors can be realized.
  • an arrangement of two coupling sockets 3, 3 ' is provided on a coupling socket plate 29, wherein the individual coupling sockets 3, 3' are arranged by means of the flanges 3.2.4 on the coupling socket plate 29.
  • the coupling sockets 3, 3 'with their first coupling socket end 3.1, 3.1' penetrate the coupling plate 29 preferably accurately to circular openings
  • the coupling socket plate 29 at the first coupling socket end 3.1, 3.1 'facing end face of the flange 3.2.4 comes into contact and preferably flush with the first coupling socket end 3.1, 3.1 'completes, ie with this essentially forms a plane.
  • a centering bolt 30 and a pastille 31 are provided on the coupling plug plate 28, which project perpendicularly from the coupling plug plate 28 or parallel to the longitudinal axes LA2, LA2 '.
  • the centering pin 30 and the pastille 31 are in this case arranged centrally between the two coupling plugs 2, 2 'and offset from the transverse axis QA.
  • the centering pin 30 is used in the introduction of the coupling plug 2, 2 'in the coupling sockets 3, 3' of centering these elements to each other, ie the centering pin 30 limits the movement of the coupling plug 2, 2 'in the horizontal and vertical direction of movement.
  • the pastille 31 is provided, which is circumferentially preferably prism-shaped machined to compensate for manufacturing tolerances.
  • the centering pin 30 and the lozenge 31 cooperate with the coupling socket plate 29 with flanged bushes 32, and dive into the collar bushes 32 during the coupling process.
  • a sickle lever 33 is provided on the coupling plug plate 28, which cooperates with bolts 34 which are connected to the coupling box plate 29.
  • the sickle lever 33 is formed like a bow, with a handle 33.1 two laterally arranged on the coupling plug plate 28 sickle lever halves 33.2, 33.2 ', with each other.
  • the sickle lever halves 33.2, 33.2 ' are rotatably mounted about a perpendicular to the longitudinal axis LA2, LA2' of the coupling plug 2, 2 'and parallel to the transverse axis QA extending axis of rotation DA and each have a sickle-like recess 33.3, 33.3' on.
  • These recesses 33.3, 33.3 ' are designed to receive bolts 34 fastened to the clutch socket plate 29.
  • the centering pin 30 and the pastille 31 are first brought to the flanged bushes 32 and inserted into this and subsequently the bolts 34 are brought into engagement with the recesses 33.3, 33.3' of the sickle lever 33.
  • the sickle lever 33 By pivoting the sickle lever 33 such that the handle 33.1 is pivoted in the direction of the second coupling plug ends 2.3, 2.3 ', the bolts slide 34 in the recesses 33.3, 33.3', in such a way that their radius relative to the axis of rotation DA to the closed Recess end is getting smaller.
  • an insulating oil is preferably used, which has very good electrical insulation properties and thus ensures electrical insulation of the inner conductor 4, 5 of the female connector housing 2.2 and the coupling socket housing 3.2 in the areas of the fluid channels 6.
  • the coupling plug housing 2.2 and the coupling socket housing 3.2 are each connected to the ground potential, i.
  • the ground potential i.
  • the potential of the vehicle or the attachment connected so that are electrically connected in the coupled state by these ground potentials and thus have a common, same potential.
  • the insulating oil also serves the thermal cooling of the inner conductor 4, 5 of the plug-in coupling 1, wherein the insulating oil is pressed with pressures of up to 20 MPa, preferably pressures less than 6 MPa through the plug-in coupling 1 in the coupled state.
  • the plug-in coupling 1 is designed for a flow rate of the insulating oil of a maximum of 3 m per second at a flow rate of 120 cubic decimeters per minute.
  • the insulating oil also has the task of suppressing arcing, which can occur during the coupling or decoupling process.
  • Fig. 10 shows a schematic representation of a commercial vehicle, such as a tractor with an attachment, wherein the electrical and fluidic coupling between the commercial vehicle and attachment by means of two inventive plug-in couplings 1 takes place.
  • a commercial vehicle such as a tractor with an attachment
  • the commercial vehicle has an internal combustion engine whose mechanical power is used to drive a generator.
  • the output by the generator AC voltage or the AC is converted via a rectifier into DC or DC, which is intended to build a DC network.
  • This direct voltage network serves both to drive the commercial vehicle itself and to drive ancillaries and attachments.
  • All voltage and current carrying elements are surrounded by an electrically conductive, preferably metallic protective sheath 37, which is electrically insulated from the voltage and current carrying elements.
  • the protective cover 37 is formed in the region of the hose lines 38 by a metallic fabric in the hose wall and in the region of the plug-in coupling 1 through the coupling plug or coupling socket housing 2.2, 3.2.
  • EMC electromagnetic radiation
  • a resistance measurement for example, the insulation between the voltage or current-carrying elements and the protective cover 37 can be checked, so that in case of decreasing or lack of isolation appropriate security measures such as the issue of an error message or an emergency shutdown can be initiated.
  • a bus system for monitoring and controlling all arranged in the field of commercial vehicle and the attachment electronic system components, for example, a bus system, preferably a CAN bus ("Controller Area Network Bus") is provided.
  • this bus system serves both to determine the current coupling state, to secure the plug-in coupling 1 against improper separation during current flow via the plug-in coupling 1 and the control of the electronic switching means, in particular the relay 35, for the production or separation of the electrically conductive connection ,
  • 3 'an electronics box 39 which has a connection 40 for the bus system.
  • This electronics box 39 in which the projecting from the coupling sockets 3, 3 'bolt 23rd are guided, in addition to the relay 35 for electrical connection of these bolts 23, inter alia, a solenoid 36 with a locking pin 36.1, which cooperates through the lateral wall of the electronics box 39 through with a bore 41 and socket in the sickle lever 33 in the coupled state.
  • the solenoid 36 is in this case controlled via the bus system such that in the coupled state when transmitting electrical power via the plug-in coupling 1 of the sickle lever 33 is secured by the locking pin 36.1 against pivoting and thus the plug-in coupling 1 against improper loosening.
  • the pivoting of the sickle lever 33 is in this case prevented by the locking bolt 36.1 of the lifting magnet 36 engaging in the bore 41 of the sickle lever 33 (FIG. Fig. 12 ).
  • the solenoid 36 is controlled via the bus system such that the locking pin 36.1 is at least partially withdrawn into the electronics box 39 so that its engagement in the bore 41 is released and the sickle lever 33 is pivotable for releasing the plug-in coupling 1.
  • At least one first proximity sensor is provided for determining the coupling state of the plug-in coupling 1.
  • This first proximity sensor detects the distance of the coupling plug 2, 2 'from the coupling socket 3, 3', in particular on the insertion state of the centering pin 30 in the collar bushing 32.
  • a second proximity sensor is provided which detects the position of the locking bolt 36.1 of the solenoid 36. It is understood that further proximity sensor can be used to query states, for example, an angle sensor for detecting the pivot state of the sickle lever 33.
  • Fig. 13a By way of example, the individual method steps for releasing the plug-in coupling 1 are shown by means of a flowchart.
  • the attachment connected to the utility vehicle by means of the plug-in coupling 1 is first turned off, so that the electric current flow through the plug-in coupling 1 can be stopped.
  • the relay 35 are controlled via the bus system such that in each case the two pins 23 of a coupling socket 3, 3 'are electrically isolated from each other.
  • one relay 35 per coupling socket 3, 3 ' is provided in each case.
  • the solenoid 36 is controlled by the bus system such that the locking pin 36.1 is withdrawn from the bore 41.
  • These processes can be carried out fully automatically by a user in succession or preferably by a sequence control, so that the processes described above are initiated only via a single command, for example "disconnect attachment". Subsequently, the plug-in coupling 1 can be separated by actuating the sickle lever 33 and the coupling plugs 2, 2 'are pulled out of the coupling cans 3, 3'.
  • Fig. 13b shows by way of example in a flow chart the procedures for connecting the plug-in coupling 1.
  • the coupling plug 2, 2 'in the coupling sockets 3, 3' introduced and the sickle lever 33 in the in FIG. 12 pivoted closed position shown.
  • the proximity sensor When released via the proximity sensor, ie the coupling plug 2, 2 'are inserted into the coupling sockets 3, 3', the solenoid 36 is driven such that the locking pin 36.1 dips into the bore 41. After locking, the proximity sensor issues a release, which triggers the control of the relay 35 and thereby an electrically conductive connection between the second and third inner conductor elements 5.2, 5.3 is made via the interconnected by means of the relay pin 23.

Landscapes

  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Description

  • Die Erfindung betrifft ein Steckkupplungssystem gemäß dem Oberbegriff des Patentanspruches 1.
  • Die US5810048 offenbart ein Steckkupplungssystem enstsprechend dem Anspruch 1.
  • Im Bereich der Kraftfahrzeuge, Nutzfahrzeuge, Bau- und Landmaschinen erfolgt bislang die Energieübertragung höherer Leistungen über hydraulische und/oder mechanische Konzepte.
  • Zunehmend gibt es Bestrebungen, beim Fahrantrieb sowie beim Antrieb von Nebenaggregaten Elektromotoren einzusetzen, deren elektrische Energie von einem Generator bereitgestellt wird, der durch einen Verbrennungsmotor angetrieben wird. Hierzu ist es notwendig am Fahrzeug ein elektrisches Netz vorzusehen, an das beliebige elektrische Erzeuger und Verbraucher wie beispielsweise Generator, Fahrantrieb, Nebenabtriebe oder elektrisch angetriebene Arbeitsgeräte angekoppelt werden können.
  • Um hohe elektrische Leistungen in einem derartigen elektrischen Netz übertragen zu können, ist es vorteilhaft die elektrischen Leiter mittels einer Kühlflüssigkeit zu kühlen, um damit den notwendigen Leiterquerschnitt bei einer festen zu übertragenden Leistung minimieren zu können.
  • Als Schnittstelle zwischen den einzelnen elektrischen Erzeugern und Verbrauchern sind ferner Steckkupplungen erforderlich, die neben einer elektrischen Verbindung auch eine Fluidverbindung zur Übertragung der jeweiligen Kühlkanäle herstellen.
  • Über derartige Steckkupplungen werden hohe elektrische Leistungen im Bereich von 50KW bis 300KW bei einer elektrischen Stromstärke von 50A bis 400A übertragen. Beim Unterbrechen eines Gleichstromkreises derartig hoher Leistung können Lichtbögen entstehen, die zu einer Gefährdung des Bedienpersonals führen können.
  • Ausgehend hiervon liegt der Erfindung die Aufgabe zugrunde, ein Steckkupplungssystem anzugeben, das ein zuverlässiges Trennen und Verbinden hoher elektrischer Leistungen eines Gleichstromkreises ermöglicht. Die Aufgabe wird ausgehend vom Oberbegriff des Patentanspruchs 1 durch dessen kennzeichnende Merkmale gelöst.
  • Unter hohen elektrischen Leistungen werden im Rahmen dieser Erfindung Leistungen im Bereich von 50KW bis 300KW bei einer elektrischen Stromstärke von 50A bis 400A verstanden.
  • Der wesentliche Aspekt des erfindungsgemäßen Steckkupplungssystems ist darin zu sehen, dass das Steckkupplungssystem zumindest ein elektromechanisches Schutzsystem bestehend aus zumindest einem elektronischen Schaltmittel und zumindest einem innerhalb der Kupplungsdose und/oder des Kupplungssteckers angeordnetem mechanischen Schaltmittel zur Herstellung oder Trennung der elektrisch leitenden Verbindung aufweist, wobei die elektronischen Schaltmittel und die mechanischen Schaltmittel unabhängig voneinander ansteuerbar sind. Durch das zweistufige elektromechanische Schutzsystem werden besonders vorteilhaft beim Trennen und Verbinden hoher elektrischer Leistungen eines Gleichstromkreises entstehende Überspannungen, insbesondere Lichtbögen vermieden.
  • Weiterhin vorteilhaft ist das zumindest eine elektronische Schaltmittel durch ein Relais oder durch einen zumindest ein elektronisches Hochleistungsbauelement, vorzugsweise einen Hochleistungstransistor aufweisenden elektronischen Schaltkreis gebildet. Das mechanische Schaltmittel zur Herstellung oder Trennung der elektrisch leitenden Verbindung durch das Einführen des Kupplungssteckers in die Kupplungsdose oder durch das Herausnehmen des Kupplungssteckers aus der Kupplungsdose ist schaltbar ausgebildet.
  • Der Kupplungsstecker und die Kupplungsdose weisen ferner einen von einem Fluidkanal umgebenen Innenleiter auf, wobei die Innenleiter des
  • Kupplungssteckers und der Kupplungsdose zumindest teilweise von einer elektrisch leitfähigen Kontakthülse umgeben sind, die verschiebbar gegenüber dem Innenleiter oder vice versa ausgebildet ist. Die Kontakthülse des Kupplungssteckers ist zur elektrisch leitfähigen Verbindung der Innenleiter des Kupplungssteckers und der Kupplungsdose im gekoppelten Zustand vorgesehen. Hierzu ist der Innenleiter der Kupplungsdose mehrteilig ausgebildet, wobei dieser vorzugsweise zumindest zwei Innenleiterelemente aufweist, die elektrisch isoliert miteinander verbunden sind.
  • Die zumindest zwei Innenleiterelemente sind besonders vorteilhaft über einen Stift aus elektrisch isolierendem Material, vorzugsweise einen Keramikstift miteinander verbunden, wobei eine elektrisch leitende Verbindung der zumindest zwei Innenleiterelemente in der Kupplungsdose im gekoppelten Zustand durch eine verschiebbare Kontakthülse erfolgt, und zwar beispielsweise mittels zumindest einem ringförmigen Federkontakt, der zwischen der Kontakthülse und dem Innenleiter vorgesehen ist.
  • Zudem ergeben sich Weiterbildungen, Vorteile und Anwendungsmöglichkeiten der Erfindung auch aus der nachfolgenden Beschreibung von Ausführungsbeispielen und aus den Figuren. Auch wird der Inhalt der Ansprüche zu einem Bestandteil der Beschreibung gemacht. Es zeigen:
  • Fig. 1
    beispielhaft eine erfindungsgemäße Steckkupplung im entkoppelten Zustand in einer seitlichen Schnittdarstellung;
    Fig. 2
    beispielhaft eine erfindungsgemäße Steckkupplung im gekoppelten Zustand in einer seitlichen Schnittdarstellung;
    Fig. 3
    beispielhaft eine erfindungsgemäße Kupplungsdose im entkoppelten Zustand in einer seitlichen Schnittdarstellung;
    Fig. 4
    beispielhaft ein erfindungsgemäßer Kupplungsstecker im entkoppelten Zustand in einer seitlichen Schnittdarstellung;
    Fig. 5
    beispielhaft und schematisch der elektrische Stromfluss durch eine erfindungsgemäße Steckkupplung;
    Fig. 6
    beispielhaft und schematisch der Fluidfluss durch eine erfindungsgemäße Steckkupplung;
    Fig. 7
    beispielhaft die elektrische Kontaktierung der Innenleiter über die Kontakthülse mittels der Federkontakte;
    Fig. 8
    beispielhaft die Anordnung zweier Kupplungsstecker an einer Kupplungssteckerplatte in einer perspektivischen Ansicht;
    Fig. 9
    beispielhaft die Anordnung zweier Kupplungsdosen an einer Kupplungsdosenplatte in einer perspektivischen Ansicht;
    Fig. 10
    beispielhaft eine schematische Ansicht eines Nutzfahrzeugs mit einem über ein erfindungsgemäßes Steckkupplungssystem angekoppelten Anbaugerät;
    Fig. 11
    beispielhaft ein erfindungsgemäßes Steckkupplungssystem im entkoppelten Zustand in einer Seitenansicht;
    Fig. 12
    beispielhaft ein erfindungsgemäßes Steckkupplungssystem im gekoppelten Zustand in einer Seitenansicht;
    Fig. 13 a, b
    beispielhaft je ein Ablaufdiagramm zum Lösen und Verbinden eines erfindungsgemäßen Steckkupplungssystems.
  • In Figur 1 ist eine erfindungsgemäße Steckkupplung 1 in entkoppelten Zustand und in Figur 2 in gekoppelten Zustand jeweils in seitlichen Schnittdarstellungen gezeigt.
  • Die Steckkupplung 1, die zur Übertragung von elektrischer Energie hoher Leistung sowie der gleichzeitigen Übertragung eines unter Druck stehenden Fluids, insbesondere eines Kühlfluids ausgebildet ist, besteht aus zumindest einem Kupplungsstecker 2 und zumindest einer Kupplungsdose 3 mit jeweils einem elektrisch leitfähigen Innenleiter 4, 5. Der Kupplungsstecker 2 ist zumindest teilweise in die Kupplungsdose 3 zur Herstellung eines gekoppelten Zustands einführbar und aus der Kupplungsdose 3 zur Herstellung eines entkoppelten Zustands wieder herausnehmbar.
  • Die im Ausführungsbeispiel gezeigte Steckkupplung 1, die vorzugsweise zum Betrieb in einem Mittelspannungs-Gleichstromnetz beispielsweise mit einer Leistung von bis zu 300KV und einer Stromstärke von 400A vorgesehen ist, weist zumindest ein elektromechanisches Schutzsystem bestehend aus zumindest einem elektronischen Schaltmittel 35 und zumindest einem mechanischen, innerhalb der Kupplungsdose 3 und/oder des Kupplungssteckers 2 angeordnetem Schaltmittel 4, 11 zur Herstellung oder Trennung der elektrisch leitenden Verbindung auf. Die elektronischen Schaltmittel 35 und die mechanischen Schaltmittel 4, 11 sind vorzugsweise unabhängig voneinander ansteuerbar bzw. betätigbar. Dadurch wird ein Schutzkonzept erreicht, das höchste Anforderungen hinsichtlich der Bedienersicherheit bietet.
  • Die elektrisch leitfähigen Innenleiter 4, 5 der Kupplungsdose 3 und des Kupplungssteckers 2 sind umfangsseitig von einem Fluidkanal 6 umgeben, der zum Durchfluss eines unter Druck stehenden Fluids durch die Steckkupplung 1 ausgebildet ist. Des Weiteren sind sowohl im Kupplungsstecker 2 als auch in der Kupplungsdose 3 jeweils ein Ventilkörper 7, 8 angeordnet, die zum Verschließen des Fluidkanals 6 im entkoppelten Zustand der Steckkupplung 1 ausgebildet sind.
  • Die Ventilkörper 7, 8 sind hierbei verschiebbar innerhalb der Kupplungsdose 3 bzw. des Kupplungssteckers 2 angeordnet und werden im entkoppelten Zustand mittels Federn 14, 15, insbesondere Spiralfedern, derart positioniert, dass der Kupplungsstecker 2 durch den Ventilkörper 7 und die Kupplungsdose 3 durch den Ventilkörper 8 am Kupplungssteckerende 2.1 bzw. am Kupplungsdosenende 3.1 flüssigkeitsdicht verschlossen werden.
  • Beim Einführen des Kupplungssteckers 2 in die Kupplungsdose 3 wird der Ventilkörper 7 innerhalb des Kupplungssteckers 2 und der Ventilkörper 8 innerhalb der Kupplungsdose 3 derart verschoben, dass die Steckkupplung 1 im gekoppelten Zustand einen durchgehenden Fluidkanal 6 aufweist. Durch die Verschiebung der Ventilkörper 7, 8 wird neben der Herstellung eines durchgängigen Fluidkanals 6 durch die Steckkopplung 1 auch eine elektrische Verbindung zwischen den Innenleitern 4, 5 des Kupplungssteckers 2 und der Kupplungsdose 3 hergestellt und zwar bedingt durch das Einführen bzw. das Herauslösen des Kupplungssteckers 2 in die bzw. aus der Kupplungsdose 3. Der Innenleiter 5 der Kupplungsdose 3 ist hierbei mehrteilig ausgebildet und weist vorzugsweise ein erstes bis drittes Innenleiterelement 5.1 bis 5.3 auf.
  • Im Folgenden wird zunächst beispielhaft der Aufbau der Kupplungsdose 3 und des Kupplungssteckers 2 anhand der Figuren 3 und 4 beschrieben.
  • Die Kupplungsdose 3 besteht aus einem im Wesentlichen rundrohrförmigen, elektrisch leitfähigen, vorzugsweise metallischen Kupplungsdosengehäuse 3.2, das am ersten Kupplungsdosenende 3.1 eine kreisrunde Öffnung mit dem Durchmessers d aufweist, welche durch den im Frontquerschnitt kreisringförmig ausgebildeten, eine kreisrunde Öffnung des Durchmessers b aufweisenden Ventilkörper 8 und das in diesem Ventilkörper 8 aufgenommene, erste Innenleiterelement 5.1 mit dessen verdicktem Ende 5.1.1 flüssigkeitsdicht verschlossen wird.
  • Sowohl das erste Innenleiterelement 5.1 als auch die daran anschließenden zweiten und dritten Innenleiterelemente 5.2, 5.3 und der Ventilkörper 8 liegen hierbei konzentrisch zur Längsachse LA1 der Kupplungsdose 3. Der auf dem Innenleiter 5 zumindest teilweise geführte, diesen umfangsseitig umschließende Ventilkörper 8 ist zwischen dem Innenleiter 5 und dem Kupplungsdosengehäuse 3.2 verschiebbar angeordnet, und zwar entlang der Längsachse LA1. Zum flüssigkeitsdichten Verschließen weist das Kupplungsdosengehäuse 3.2 an seiner Innenseite 3.2.1 im Bereich des ersten Kupplungsdosenendes 3.1 eine Nut 3.2.2 zur Aufnahme einer Dichtung 16 auf, wobei sowohl die Nut 3.2.2 als auch die Dichtung 16 vorzugsweise ringförmig um den Ventilkörper 8 umlaufend ausgebildet sind.
  • Der Ventilkörper 8 weist an seiner der Innenseite 3.2.1 des Kupplungsdosengehäuses 3.2 zugewandten Seite beispielsweise eine erste und zweite Stufung 8.1, 8.2 auf, so dass drei Teilbereiche an der äußeren Umfangsseite des Ventilkörpers 8 entstehen, die vorzugsweise konzentrisch zur Längsachse LA1 der Kupplungsdose 3 und mit unterschiedlichem radialem Abstand zu dieser Längsachse LA1 verlaufen. Die erste Stufung 8.1 ist hierbei an die Stufung 3.2.3 der Innenseite 3.2.1 des Kupplungsdosengehäuses 3.2 angepasst. Der Außendurchmesser d des Ventilkörpers 8 im Teilbereich 8.3 des Ventilkörpers 8 ist an den Durchmesser d der an Öffnung des Kupplungsdosengehäuses 3.2 am ersten Kupplungsdosenende 3.1 angepasst. Dadurch dichtet die Dichtung 16 gegenüber dem Teilbereich 8.3 des Ventilkörpers 8 umfangseitig ab und verschließt an dieser Grenzfläche die Kupplungsdose 3 flüssigkeitsdicht.
  • Die dem Innenleiter 5 zugewandte Innenumfangsseite des Ventilkörpers 8 ist ebenfalls gestuft ausgebildet mit einem dem ersten Kupplungsdosenende 3.1 naheliegenden ersten Innenseitenbereich 8.5 und einen durch eine Stufung 8.7 bzw. Abschrägung getrennten zweiten Innenseitenbereich 8.6. Der erste Innenseitenbereich 8.5 und der zweite Innenseitenbereich 8.6 verlaufen hierbei konzentrisch zur Längsachse LA1, wobei der erste Innenseitenbereich 8.5 einen geringeren Abstand zur Längsachse LA1 als der zweite Innenseitenbereich 8.6 aufweist. Der erste Innenseitenbereich 8.5 hat hierbei einen Abstand von näherungsweise b/2 zur Längsachse LA1, so dass der Kopfbereich 5.1.1 des ersten Innenleiterelements 5.1, der einen Durchmesser b hat, passgenau im Inneren des Ventilkörpers 8 im entkoppelten Zustand aufgenommen ist.
  • Das erste Innenleiterelement 5.1 der Kupplungsdose 3 verjüngt sich im dem ersten Kupplungsdosenende 3.1 abgewandten Ende des Kopfbereichs 5.1.1 und geht in einen Innenleiterbereich 5.1.2 zylindrischer Form und einem Außendurchmesser c über. Der Innenleiterbereich 5.1.2 ist hierbei über eine Teillänge von einer elektrisch leitenden, rundrohrförmig ausgebildeten Kontakthülse 11 umgeben, die über einen elektrisch nicht leitenden Isolierkörper 17, beispielsweise aus Kunststoff, mit dem Ventilkörper 8 im zweiten Innenseitenbereich 8.6 fest verbunden ist. Der Isolierkörper 17 weist hierbei vorzugsweise mehrere parallel zur Längsachse LA1 verlaufende Strömungskanäle auf, durch die im gekoppelten Zustand der Steckkupplung 1 ein Fluidfluss ermöglicht wird.
  • Zur elektrischen Isolierung der ersten bis dritten Innenleiterelemente 5.1, 5.2, 5.3 voneinander sind diese durch Isolierkörper 18, 19 sowie das erste Innenleiterelement 5.1 vom zweiten Innenleiterelement 5.2 durch einen Keramikstift 10, der vorzugsweise aus Zirkonoxid hergestellt ist, voneinander getrennt. Zu beiden Seiten des Isolierkörpers 18 sind jeweils zumindest eine, vorzugsweise zu jeder Seite mehrere Federkontakte 13 angeordnet, und zwar in Nuten, so dass die um die ersten bzw. zweiten Innenleiterelemente 5.1, 5.2 umfangseitig umlaufenden Federkontakte 13 teilweise in die ersten bzw. zweiten Innenleiterelemente 5.1, 5.2 eingelassen sind. Die auf dem ersten Innenleiterelement 5.1 verschiebbar geführte Kontakthülse 11 bildet zusammen mit den ersten und zweiten Innenleiterelementen 5.1, 5.2 und den vorzugsweise paarweise an den aneinander angrenzenden Enden des ersten und zweiten Innenleiterelements 5.1, 5.2 angeordneten Federkontakten 13 das mechanische Schaltmittel zur Herstellung oder Trennung der elektrisch leitenden Verbindung zwischen dem ersten und zweiten Innenleiterelement 5.1, 5.2 der Kupplungsdose 3 aus. Mittels des beschriebenen mechanischen Aufbaus ist im entkoppelten Zustand der Steckkupplung 1 eine elektrisch isolierte Trennung des ersten und zweiten Innenleiterelementes 5.1, 5.2 auch bei Übertragung von elektrischer Energie hoher Leistung gewährleistet und im gekoppelten Zustand durch Verschiebung der Kontakthülse 11 über den Isolierkörper 18 und die daran angrenzenden Federkontakte 13 ein elektrischer Kurzschluss des Isolierkörpers 18 bzw. des Keramikstifts 10 erreicht, so dass die ersten und zweiten Innenleiterelemente 5.1, 5.2 elektrisch leitend miteinander verbunden sind.
  • Zur lagerichtigen Fixierung des zweiten Innenleiterelements 5.2 und des damit verbundenen ersten Innenleiterelements 5.1 ist innerhalb des Kupplungsdosengehäuses 3.2 eine Isolierscheibe 21 vorgesehen, die vorzugsweise aus elektrisch isolierendem, glasfaserverstärktem Kunststoff hergestellt ist. Die Isolierscheibe 21 weist hierbei vorzugsweise mehrere entlang der Längsachse LA1 weisende Strömungskanäle zur Herstellung eines durch die Kupplungsdose 3 durchgängigen Fluidkanals 6 im gekoppelten Zustand der Steckkupplung 1 auf. Die Isolierscheibe 21 sorgt hierbei sowohl für eine konzentrische Ausrichtung der Innenleiterelemente 5.1, 5.2 innerhalb des Kupplungsdosengehäuses 3.2 als auch für eine Verschiebesicherung derselben.
  • Aufgrund der hohen elektrischen Isolationsfähigkeit der Isolierscheibe 21 ist der Innenleiter 5, insbesondere das zweite Innenleiterelement 5.2 galvanisch gegenüber dem elektrisch leitfähigen, vorzugsweise aus Stahl gebildeten Kupplungsdosengehäuse 3.2 getrennt. Zwischen der Isolierscheibe 21 und dem Ventilkörper 8 ist eine vorgespannte, vorzugsweise konzentrisch um die und beabstandet zur Längsachse LA1 gewendelte Feder 15, insbesondere eine Druckfeder, angeordnet. Diese stützt sich in ihrem Fußbereich an der Seitenfläche der Isolierscheibe 21 und im Kopfbereich an der zweiten Stufung 8.2 des Ventilkörpers 8 ab, so dass dieser Ventilkörper 8 im entkoppelten Zustand, d.h. bei aus der Kupplungsdose 3 herausgezogenen Kupplungsstecker 2 in Richtung dem ersten Kupplungsdosenende 3.1 gedrückt wird, und dabei bedingt durch die erste Stufung 8.1 des Ventilkörpers 8, die mit der Stufung 3.2.3 der Innenseite 3.2.1 des Kupplungsdosengehäuses 3.2 zusammenwirkt, am ersten Kupplungsdosenende 3.1 bündig abschließt. Beim Einführen des Kupplungssteckers 2 in die Kupplungsdose 3 wird der Ventilkörper 8 entgegen der Federkraft der Feder 15 entlang der Längsachse LA1 der Kupplungsdose 3 in deren Inneres verschoben, wobei der Ventilkörper 8 aufgrund der Kontakthülse 11 auf dem Innenleiterbereich 5.1.2 des ersten Innenleiterelements 5.1 geführt wird.
  • Bei der im Ausführungsbeispiel gezeigten Kupplungsdose 3 ist in einem Mittelbereich, der von den Isolierscheiben 21, 22 seitlich begrenzt wird, in etwa mittig zwischen diesen Isolierscheiben 21, 22 und konzentrisch zur Längsachse LA1 ein Isolierkörper 19 angeordnet, der das zweite und dritte Innenleiterelement 5.2, 5.3 zueinander beabstandet und elektrisch voneinander isoliert. In das zweite und dritte Innenleiterelement 5.2, 5.3 sind vorzugsweise im rechten Winkel zur Längsachse LA1 Bohrungen eingebracht, in welche Bolzen 23 mit ihren freien Enden eingreifen. Diese Bolzen 23 sind vorzugsweise als elektrisch leitfähige Relaisbrücken ausgebildet und näherungsweise rechtwinklig aus dem Kupplungsdosengehäuse 3.2 geführt, wobei die Durchdringungsstellen der Bolzen 23 durch das Kupplungsdosengehäuse 3.2 elektrisch isoliert gegenüber dem Kupplungsdosengehäuse 3.2 und flüssigkeitsdicht ausgeführt sind.
  • Mittels dieser elektrisch leitfähige Relaisbrücken bildenden Bolzen 23 wird dabei der Innenleiter 5 aus dem Kupplungsdosengehäuse 3.2 geführt, so dass ein Stromfluss durch die Kupplungsdose 3 nur dann gewährleistet ist, wenn die beispielsweise als Relaisbrücken dienenden Bolzen 23 über ein außerhalb des Kupplungsdosengehäuse 3.2 angeordnetes elektronisches Schaltmittel, vorzugsweise ein Relais 35 überbrückt werden. Dieses Relais 35 bildet somit das elektronische ansteuerbare Schaltmittel zur Herstellung oder Trennung der elektrisch leitenden Verbindung durch die Kupplungsdose 3 aus. Damit wird der elektrische Teil des elektromechanischen Schutzsystems gebildet, der neben vorhandenen mechanischen Schutzreinrichtungen eine elektrische Strom- und Spannungslosschaltung des Innenleiters 5 der Kupplungsdose 3 ermöglicht.
  • Vorzugsweise wird vor dem Trennen Steckkupplung 1, d.h. vor dem Überführen vom gekoppelten Zustand in den entkoppelten Zustand zuerst das Relais 35 geschalten und damit die elektrisch leitende Verbindung zwischen dem zweiten und dritten Innenleiterelement 5.2, 5.3 getrennt. Anschließend wird durch das Herausziehen des Kupplungssteckers 2 aus der Kupplungsdose 3 die mechanischen Schaltmittel betätigt, d.h. die Kontakthülse 11 auf das erste Innenleiterelement 5.1 verschoben und damit das erste Innenleiterelement 5.1 vom zweiten Innenleiterelement 5.2 getrennt. Dadurch ist auch für den Fall, dass z.B. das Relais 35 ausfällt oder eine Nottrennung des Kupplungssteckers 2 von der Kupplungsdose 3 erforderlich ist, durch die Verschiebung der Kontakthülse 11 sichergestellt, dass der Innenleiter 5 im Bereich des ersten Kupplungsdosenendes 3.1 im entkoppelten Zustand strom- und/oder spannungsfrei geschaltet ist.
  • Abweichend von der Verwendung eines Relais 35 kann das zumindest eine elektronische steuerbare Schaltmittel durch einen zumindest ein Hochleistungsbauelement, vorzugsweise einen Hochleistungstransistor, und zwar einen IGBT ("insulated-gate bipolar transistor") aufweisenden elektrischen und/oder elektronischen Schaltkreis gebildet sein.
  • In Fig. 4 ist ein erfindungsgemäßer Kupplungsstecker 2 der Steckkupplung 1 in einer seitlichen Schnittdarstellung entlang seiner Längsachse LA2 gezeigt. Der Kupplungsstecker 2 weist ein elektrisch leitfähiges, vorzugsweise metallisches Kupplungssteckergehäuse 2.2 auf, das als Hohlkörper mit seinen inneren und äußeren Umfangsseiten im Wesentlichen rotationssymmetrisch zur Längsachse LA2 ausgebildet ist. Das erste Kupplungssteckerende 2.1 des Kupplungssteckergehäuses 2.2 ist zum Einführen in die Kupplungsdose 3 zur Herstellung des gekoppelten Zustands der Steckkupplung 1 ausgebildet. Hierzu weist das erste Kupplungssteckerende 2.1 des Kupplungssteckergehäuses 2.2 stirnseitig eine ringförmig ausgebildete Stirnfläche 2.4 mit einer Ringstärke a auf. Die Kreisringgeometrie der Stirnfläche 2.4 ist hierbei näherungsweise dimensionsgleich mit der Stirnfläche 8.8 des Ventilkörpers 8, wobei beim Einführen des Kupplungssteckers 2 in die Kupplungsdose 3 die Stirnflächen 2.4, 8.8 des Kupplungssteckergehäuses 2.2 bzw. des Ventilkörpers 8 gegeneinander anliegen.
  • Das erste Kupplungssteckerende 2.1 weist eine im Wesentlichen zylindrische Außenform mit einem Durchmesser d auf, der dimensionsgleich mit der Öffnung des Kupplungsdosengehäuses 3.2 am ersten Kupplungsdosenende 3.1 ist. Das Kupplungssteckergehäuse 2.2 weist nach einer Einstecktiefe t (vom ersten Kupplungssteckerende 2.1 gemessen) eine Stufung 2.5 auf, die als Einführbegrenzung des Kupplungssteckers 2 in die Kupplungsdose 3 dient.
  • Im Inneren des Kupplungssteckers 2 ist verschiebbar der Innenleiter 4 aufgenommen, wobei die Verschiebung des konzentrisch zur Längsachse LA2 liegenden Innenleiters 4 entlang dieser Längsachse LA2 erfolgt. Das im Bereich des ersten Kupplungssteckerende 2.1 liegende, verdickt ausgebildete, im Wesentlichen zylindrische Ende des Innenleiters 4 bildet einen Ventilkörper 7, der als Verschluss der kreisringförmig ausgebildeten Stirnfläche 2.4 des Kupplungssteckers 2 vorgesehen ist. Der Ventilkörper 7 ist hierbei derart dimensioniert, dass die Öffnung der kreisringförmig ausgebildeten Stirnfläche 2.4 des Kupplungssteckers 2 mit dem Durchmesser b passgenau vom Ventilkörper 7 verschlossen wird. Der Ventilkörper 7 weist zudem umfangsseitig zwei umlaufende Nuten 7.1 auf, die zur Aufnahme einer Dichtung 16 und eines Federkontakts 13 vorgesehen sind. Mittels der Dichtung 16 wird die stirnseitige Öffnung des Kupplungssteckergehäuses 2.2 flüssigkeitsdicht mittels des Ventilkörpers 7 verschlossen.
  • Die Führung des entlang der Längsachse LA2 verschiebbaren Innenleiters 4 und damit auch des Ventilkörpers 7 innerhalb des Kupplungssteckergehäuses 2.2 erfolgt u.a. mittels einer Isolierscheibe 26 vorzugsweise aus glasfaserverstärktem Kunststoff, die bevorzugt von mehreren parallel zur Längsachse LA2 verlaufenden Strömungskanälen durchdrungen ist. Die Isolierscheibe 26 weist hierbei eine Innenbohrung vorzugsweise mit zumindest einer Stufung auf und ist auf einen näherungsweise mittig am Innenleiter 4 angeordneten, gestuften Bereich desselben aufgeschoben. Die Stufungen der Isolierscheibe 26 und des Innenleiters 4 sowie die Innenbohrung der Isolierscheibe und der Außendurchmesser des Innenleiters 4 sind geometrisch aufeinander angepasst. Die Isolierscheibe 26 wird im entkoppelten Zustand der Steckkupplung 1 federbelastet durch die Feder 14, gegen eine Stufung 2.6 bzw. Abschrägung im Inneren des Kupplungssteckergehäuses 2.2 gedrückt. Mittels der zuvor beschriebenen Stufungen der Isolierscheibe 26 sowie des Innenleiters 4 wird die Federkraft der Feder 14 auf den Innenleiter 4 übertragen und dadurch das als Ventilkörper 7 ausgebildete freie Ende des Innenleiters 4 mit seiner Stirnseite 4.1 bündig mit der Stirnfläche 2.4 des Kupplungssteckergehäuses 2.2 gehalten, so dass im entkoppelten Zustand die an dieser Stirnseite 2.4 angeordnete Öffnung durch den Ventilkörper 7 flüssigkeitsdicht verschlossen ist.
  • Beim Einführen des Kupplungssteckers 2 in die Kupplungsdose 3 wird der Innenleiter 4 und damit auch der Ventilkörper 7 entlang der Längsachse LA2 des Kupplungssteckers 2 ins Innere des Kupplungssteckergehäuse 2.2 verschoben, wobei der Ventilkörper 7 in die Kontakthülse 12 zurückgeschoben wird. Diese Kontakthülse 12 ist über einen Isolierkörper 27 elektrisch isoliert mit dem Kupplungssteckergehäuse 2.2 verbunden. Sie weist zumindest einen, vorzugsweise mehrere Strömungskanäle auf, die einen Durchfluss eines Fluids entlang der Längsachse LA2 ermöglichen. Die Kontakthülse 12 dient hierbei der elektrisch leitenden Verbindung des Kopfbereichs 5.1.1 und des Ventilkörpers 7 und damit der Innenleiter 4, 5 über die Federkontakte 13 im gekoppelten Zustand der Steckkupplung 1.
  • Am zweiten Kupplungssteckerende 2.3 des Kupplungssteckergehäuses 2.2 ist eine Reduzierhülse 25 mit ihrem freien Ende 25.1 eingeschraubt. Diese Reduzierhülse 25 dient der Verbindung mit einer Schlaucharmatur eines flüssigkeitsgekühlten elektrischen Leiters, wobei diese Schlaucharmatur auf das freie Ende 25.2 der Reduzierhülse 25 aufschraubbar ist. Die elektrische Verbindung zwischen dem freien Ende 4.2 des Innenleiters 4 mit dem elektrischen Leiter einer am freien Ende 25.2 der Reduzierhülse 25 aufgeschraubten Schlaucharmatur erfolgt über Federkontakte 13, die am freien Ende 4.2 des Innenleiters 4 in Nuten verschiebungssicher angeordnet sind.
  • Bei Einführen des Kupplungssteckers 2 in die Kupplungsdose 3 und dem damit verbundenen Verschieben des Innenleiters 4 wird das freie Ende 4.2 mit den Federkontakten 13 beispielsweise in ein sacklochartig ausgebildetes Innenleiterende der Schlaucharmatur eingeschoben und damit der Innenleiter 4 des Kupplungssteckers 2 über die Federkontakte 13 mit dem elektrischen Leiter der Schlaucharmatur verbunden. Dies stellt ein mechanisch betätigtes Mittel zur Bildung bzw. Trennung der elektrisch leitenden Verbindung innerhalb des Kupplungssteckers 2 dar. Somit kann auch bei nachlaufenden Massen, beispielsweise bei Anbaugeräten, und der dadurch induzierten Spannung eine Übertragung dieser Spannung auf von einem Benutzer berührbare Flächen verhindert werden.
  • Im Folgenden wird insbesondere anhand einer Zusammenschau der Steckkupplung 1, wie sie in den Figuren 1 und 2 gezeigt wird, die Funktionsweise der Steckkupplung 1 erläutert.
  • Ausgangspunkt ist hierbei zunächst der entkoppelte Zustand, wie er in Fig. 1 dargestellt ist. Der entkoppelte Zustand der Steckkupplung 1 zeichnet sich insbesondere dadurch aus, dass die am ersten Kupplungssteckerende 2.1 und am ersten Kupplungsdosenende 3.1 angeordneten Öffnungen durch die federbelastet verschobenen Ventilkörper 7, 8 flüssigkeitsdicht verschlossen sind. Hierbei ist das freie Ende 4.2 des Innenleiters 4 des Kupplungssteckers 2 durch die Verschiebung des Ventilkörpers 7 und demnach auch der Verschiebung des Innenleiters 4 aus dem Innenleiter einer auf die Reduzierhülse 25 aufgeschraubten Schlaucharmatur herausgezogen und damit elektrisch getrennt.
  • In der Kupplungsdose 3 sind im entkoppelten Zustand die ersten und zweiten Innenleiterelemente 5.1, 5.2 elektrisch voneinander isoliert, da die Kontakthülse 11 durch die Federbelastung des Ventilkörpers 8 in Richtung erstes Kupplungsdosenende 3.1 verschoben ist und damit keine elektrische Überbrückung des Isolierkörpers 18 und des Keramikstifts 10 mittels dieser Kontakthülse 11 erfolgt. Zur Vermeidung einer elektrischen Aufladung der berührbaren freien Enden der Innenleiter 4, 5 beispielsweise durch kapazitive oder induktive Effekte werden diese Enden im entkoppelten Zustand mittels Federkontakte 13 gegenüber dem Kupplungsstecker- bzw. Kupplungsdosengehäuse 2.2, 3.2 kurzgeschlossen.
  • Zum Einführen des Kupplungssteckers 2 in die Kupplungsdose 3 wird selbiger mit seinem ersten Kupplungssteckerende 2.1 derart an die Kupplungsdose 3 herangeführt, dass die Stirnfläche 2.4 des Kupplungssteckergehäuses 2.2 zur Anlage gegen die Stirnfläche 8.8 des Ventilkörpers 8 und die Stirnseite 4.1 des Innenleiters 4 gegenüber der Stirnseite des Kopfbereichs 5.1.1 des ersten Innenleiterelements 5.1 zur Anlage gelangt. Die Längsachsen LA1, LA2 des Kupplungssteckers 2 bzw. der Kupplungsdose 3 kommen hierbei deckungsgleich in einer Achse zu liegen. Durch einen in Richtung der Längsachsen LA1, LA2 wirkenden Druck auf den Kupplungsstecker 2 werden die durch die Federn 14, 15 ausgeübten Federkräfte überwunden, so dass der Ventilkörper 8 und der Innenleiter 4, der freiendseitig den Ventilkörper 7 ausbildet, verschoben werden. Hierbei dringt der Kupplungsstecker 2 mit seinem ersten Kupplungssteckerende 2.1 mit der Einstecktiefe t in die Kupplungsdose 3 ein, bis die Stufung 2.5 des Kupplungssteckers 2 an der Stirnseite des Kupplungsdosengehäuses 3.2 am ersten Kupplungsdosenende 3.1 anliegt.
  • Durch die Verschiebung der Ventilkörper 7, 8 wird während dem Einsteckvorgang zunächst ein durchgehender Fluidkanal 6 und damit eine Fluidverbindung in der Steckkupplung 1 hergestellt. Gegen Ende des Einsteckvorgangs erfolgt die elektrische Verbindung, und zwar über das erfindungsgemäße zweitstufige Schutzsystem. Aufgrund der Verschiebung des Ventilkörpers 8 innerhalb der Kupplungsdose 3 wird die Kontakthülse 11 über den das erste und zweite Innenleiterelement 5.1, 5.2 elektrisch isolierenden Isolierkörper 18 geschoben. Mittels der Federkontakte 13, die vorzugsweise ringförmig ausgebildet sind und vorzugsweise aus einer Kupferzirkonium-Chromlegierung bestehen, wird vom ersten Innenleiterelement 5.1 über die Federkontakte 13 und die Kontakthülse 11 eine elektrisch hochleitende Verbindung geschaffen, die eine elektrische Belastbarkeit bis zu 300 KW bei einer elektrischen Stromstärke von bis zu 400 A aufweist. Selbige Anforderungen gelten ebenfalls für alle übrigen Kontaktstellen der Steckkupplung 1.
  • Beim Einsteckvorgang wird durch das Zurückschieben des Ventilkörpers 8 innerhalb der Kupplungsdose 3 das erste Innenleiterelement 5.1 zumindest teilweise, insbesondere im Kopfbereich 5.1.1 freigelegt. Durch das Einschieben des ersten Kupplungssteckerendes 2.1 dringt dieser freigelegte Kopfbereich 5.1.1 und zumindest teilweise der daran anschließende Innenleiterbereich 5.1.2 in den vom Ventilkörper 7 bzw. dem Innenleiter 4 freigegebenen Innenraum des Kupplungssteckergehäuses 2.2 ein. Hierbei liegen die Stirnseite des Kopfbereichs 5.1.1 und die Stirnseite 4.1 des Innenleiters 4 gegeneinander an.
  • Im gekoppelten Zustand der Steckkupplung 1 kommen der Ventilkörper 7 des Kupplungssteckers 2 und der Kopfbereich 5.1.1 des ersten Innenleiterelements 5.1 der Kupplungsdose 3 im Bereich der Kontakthülse 12 zu liegen und werden von dieser formschlüssig umschlossen. Durch die an dem Ventilkörper 7 und dem Kopfbereich 5.1.1 angeordneten Federkontakte 13 wird über die Kontakthülse 12 der Innenleiter 4 elektrisch mit dem ersten Innenleiterelement 5.1 des Innenleiters 5 verbunden. Somit wird über die Kontakthülsen 11, 12 im gekoppelten Zustand eine elektrische Leitfähigkeit des Innenleiters 4 des Kupplungssteckers über das erste Innenleiterelement 5.1 zum zweiten Innenleiterelement 5.2 der Kupplungsdose hergestellt.
  • Für den Fall, dass die aus dem Kupplungsdosengehäuse 3.2 herausgeführten Bolzen 23 außerhalb der Steckkupplung 1, beispielsweise über ein Relais 35, kurzgeschlossen werden, ist eine durchgängige elektrische Leitfähigkeit der Steckkupplung 1, wie in Fig. 5 mittels Pfeilen bildlich dargestellt realisiert.
  • Neben der Herstellung der elektrischen Leitfähigkeit zwischen den Innenleitern 4, 5 des Kupplungssteckers 2 bzw. der Kupplungsdose 3 muss beim Einsteckvorgang des Kupplungssteckers 2 in die Kupplungsdose 3 auch der flüssigkeitsdichte Verschluss derselben aufgehoben werden und ein möglichst verlustarmer durchgängiger Fluidkanal 6 durch die Steckkupplung 1 geschaffen werden. Wie bereits ausgeführt, erfolgt die fluidische Kopplung des Kupplungssteckers 2 mit der Kupplungsdose 3 unmittelbar vor der Herstellung einer elektrisch leitfähigen Verbindung. Im entkoppelten Zustand verschließen die Ventilkörper 7, 8 den Kupplungsstecker 2 bzw. die Kupplungsdose 3 flüssigkeitsdicht.
  • Beim Einführen des Kupplungssteckers 2 in die Kupplungsdose 3 und dem bereits zuvor beschriebenen Verschieben des Innenleiters 4 bzw. des Ventilkörpers 7 und des Ventilkörpers 8 gegen die auf die wirkende Federkraft der Federn 14, 15 werden die durch die Ventilkörper 7, 8 verschlossenen Öffnungen zumindest teilweise freigegeben, so dass ein Fluidfluss über die durch die Stirnseite 2.4 definierte Grenzfläche ermöglicht wird. Aufgrund der Tatsache, dass es sich bei dem Fluid vorzugsweise um ein Isolieröl handelt, das durch seine Isolationseigenschaften eventuell beim Koppel- bzw. Entkoppelvorgang entstehende Lichtbögen unterdrückt, ist es vorteilhaft, dass der Fluidfluss beim Koppelvorgang zeitlich vor und beim Entkoppelvorgang zeitlich nach der elektrischen Verbindung bzw. Trennung der Innenleiter 4, 5 erfolgt.
  • In Fig. 6 ist beispielhaft mit Pfeilen der Weg des Fluids beim Durchfluss durch die Steckkupplung 1 gezeigt. Aufgrund der im Wesentlichen vorherrschenden Rotationssymmetrie der Steckkupplung 1 um die Längsachse LA wird ein Fluidkanal 6 geschaffen, der die Innenleiter 4, 5 umfangsseitig vollständig umgibt. An Stellen, an denen eine Abstützung der Innenleiter 4, 5 gegenüber dem Kupplungssteckergehäuse 2.2 bzw. dem Kupplungsdosengehäuse 3.2 erfolgt, werden die abstützenden Elemente, d.h. die Isolierscheiben 21, 22, 26 sowie die Isolierkörper 17, 27 von Strömungskanälen durchzogen, die derart dimensioniert sind, dass ein möglichst verlustfreier Fluss des Fluids durch die Steckkupplung 1 ermöglicht wird. Es versteht sich, dass die Flussrichtung auch in der umgekehrten Richtung erfolgen kann.
  • Dem Ventilkörper 7 bzw. dem Kopfbereich 5.1.1 des ersten Innenleiterelements 5.1 kommen hierbei in zweifacher Hinsicht Bedeutung zu. Zum einen dienen diese Elemente mit ihren sich entlang ihres Umfangs erstreckenden Dichtungen 16 der flüchtigkeitsdichten Abdichtung des Kupplungssteckers 2 bzw. der Kupplungsdose 3 im entkoppelten Zustand. Zudem erfolgt die elektrische Verbindung zwischen dem Innenleiter 4 und dem Innenleiter 5 im gekoppelten Zustand über die jeweils am Ventilköper 7 bzw. am Kopfbereich 5.1.1 des ersten Innenleiterelementes 5.1 angeordneten Federkontakte 13, die an den jeweiligen Elementen neben den zuvor beschriebenen Dichtungen 16 zu liegen kommen. Um sowohl eine optimale Flüssigkeitsabdichtung im entkoppelten Zustand als auch eine elektrisch hoch leitende Verbindung über die Kontakthülse 12 im gekoppelten Zustand zu erreichen, ist es notwendig, dass sowohl die Federkontakte 13 als auch die Dichtung 16 näherungsweise gleiche geometrische Formen und Außenmaße aufweisen. Zudem muss der Federkontakt 13 derart elastisch verformbar sein, dass er zum einen ohne Verkanten in die Kontakthülse 12 einschiebbar ist und zum anderen alleine durch die Federkräfte der Federn 14, 15 bedingt eine Verschiebung der Ventilkörper 7, 8 ohne Verkanten zulässt.
  • In Fig. 7 ist exemplarisch die Kontaktierung zwischen dem Ventilkörper 7 und der Kontakthülse 12 in einer Schnittdarstellung senkrecht zur Längsachse LA2 gezeigt. Durch die umlaufende spiralförmige Ausbildung des Federkontakts 13 um den Ventilkörper 7 lässt sich dieser beispielsweise beim Einführen in die Kontakthülse 12 bzw. in die am ersten Kupplungssteckerende 2.1 befindliche Öffnung des Kupplungssteckergehäuses 2.2 einführen, wobei deren Durchmesser b geringfügig kleiner dimensioniert sein kann, so dass der Federkontakt 13 dort derart verformt wird, dass die einzelnen Wendeln der Federkontakte 13 einen kleineren Winkel zur Tangente T an den Ventilkörper 7 einnehmen als im Falle vor der Verformung.
  • Die Steckkupplung 1, die beispielsweise eine elektrische Belastbarkeit mit bis zu 300 KW bei einer elektrischen Stromstärke von bis zu 400 A aufweist und vorzugsweise zur Übertragung von Gleichstrom bzw. Gleichspannung ausgebildet ist, wird vorzugsweise, wie in den Figuren 8 und 9 gezeigt, paarweise angeordnet, wobei zwei Kupplungsstecker 2, 2' mittels einer Kupplungssteckerplatte 28 nebeneinander liegend zueinander beabstandet angeordnet sind, so dass die Mittelpunkte der kreisförmigen Stirnseiten der Kupplungsstecker 2, 2' in der senkrecht zu den Längsachsen LA2, LA2' verlaufenden Querachse QA aufgenommen sind. Die Kupplungsstecker 2, 2' durchdringen hierbei mit ihren ersten Kupplungssteckerenden 2.1, 2.1' die Kupplungssteckerplatte 28 in kreisrunden Öffnungen, wobei die Kupplungstecker 2, 2' mit ihren den ersten Kupplungssteckerenden 2.1, 2.1' zugewandten Stirnflächen der Flansche 2.7 rückseitig zur Anlage gegenüber der Kupplungssteckerplatte 28 gebracht und mit dieser vorzugsweise verschraubt sind. Durch die paarweise Anordnung zweier Kupplungsstecker 2, 2' an der Kupplungssteckerplatte 28 ist gleichzeitig eine Verbindung zweier Kupplungsstecker 2, 2' mit zwei Kupplungsdosen 3, 3' möglich, so dass in einem einzigen Kupplungsvorgang ein geschlossener Stromkreis bzw. Fluidkreislauf bestehend aus Hin- und Rückleiter realisiert werden kann.
  • Ebenso ist eine Anordnung zweier Kupplungsdosen 3, 3' an einer Kupplungsdosenplatte 29 vorgesehen, wobei die einzelnen Kupplungsdosen 3, 3' mittels der Flansche 3.2.4 an der Kupplungsdosenplatte 29 angeordnet werden. Hierbei durchdringen die Kupplungsdosen 3, 3' mit ihrem ersten Kupplungsdosenende 3.1, 3.1' die Kupplungsdosenplatte 29 vorzugsweise passgenau an kreisrunden Öffnungen, wobei die Kupplungsdosenplatte 29 an der dem ersten Kupplungsdosenende 3.1, 3.1' zugewandten Stirnseite des Flansches 3.2.4 zur Anlage gelangt und vorzugsweise bündig mit dem ersten Kupplungsdosenende 3.1, 3.1' abschließt, d.h. mit diesem im Wesentlichen eine Ebene bildet.
  • Um einen Kupplungsvorgang ohne Verkanten zu ermöglichen, ist es notwendig, die Kupplungsstecker 2, 2' auf die Kupplungsdosen 3, 3' auszurichten, sodass die Kupplungsstecker 2, 2' leicht in die Kupplungsdosen 3, 3' eintauchen können. Hierzu sind an der Kupplungssteckerplatte 28 ein Zentrierbolzen 30 und eine Pastille 31 vorgesehen, die senkrecht von der Kupplungssteckerplatte 28 bzw. parallel zu den Längsachsen LA2, LA2' abstehen. Der Zentrierbolzen 30 und die Pastille 31 sind hierbei mittig zwischen den beiden Kupplungssteckern 2, 2' und versetzt zur Querachse QA angeordnet. Der Zentrierbolzen 30 dient bei der Einführung der Kupplungsstecker 2, 2' in die Kupplungsdosen 3, 3' der Zentrierung dieser Elemente aufeinander, d.h. der Zentrierbolzen 30 schränkt die Bewegung der Kupplungsstecker 2, 2' in horizontaler und vertikaler Bewegungsrichtung ein. Um eine Rotation um den Zentrierbolzen 30 zu vermeiden, ist die Pastille 31 vorgesehen, die zum Ausgleich von Fertigungstoleranzen umfangsseitig vorzugsweise prismenförmig bearbeitet ist. Der Zentrierbolzen 30 und die Pastille 31 wirken an der Kupplungsdosenplatte 29 mit Bundbuchsen 32 zusammen, und tauchen beim Kupplungsvorgang in diese Bundbuchsen 32 ein.
  • Um eine lösbare, sichere, mechanische Verriegelung der Kupplungsstecker 2, 2' und der Kupplungsdosen 3, 3' zu erreichen, ist ein Sichelhebel 33 an der Kupplungssteckerplatte 28 vorgesehen, der mit Bolzen 34, die mit der Kupplungsdosenplatte 29 verbunden sind, zusammenwirkt. Der Sichelhebel 33 ist bügelartig ausgebildet, wobei ein Griff 33.1 zwei seitlich an der Kupplungssteckerplatte 28 angeordnete Sichelhebelhälften 33.2, 33.2', miteinander verbindet. Die Sichelhebelhälften 33.2, 33.2', sind drehbar um eine senkrecht zur Längsachse LA2, LA2' der Kupplungsstecker 2, 2' und parallel zur Querachse QA verlaufende Drehachse DA gelagert und weisen je eine sichelartige Ausnehmung 33.3, 33.3' auf.
  • Diese Ausnehmungen 33.3, 33.3' sind zur Aufnahme von an der Kupplungdosenplatte 29 befestigten Bolzen 34 ausgebildet. Zur Verriegelung der Steckkupplungen 1,1' werden zunächst der Zentrierbolzen 30 und die Pastille 31 an die Bundbuchsen 32 herangeführt und in diese eingesteckt und anschließend die Bolzen 34 in Eingriff mit den Ausnehmungen 33.3, 33.3' des Sichelhebels 33 gebracht. Durch ein Verschwenken des Sichelhebels 33 derart, dass der Griff 33.1 in Richtung der zweiten Kupplungssteckerenden 2.3, 2.3' geschwenkt wird, gleiten die Bolzen 34 in den Ausnehmungen 33.3, 33.3', und zwar derart, dass deren Radius bezogen auf die Drehachse DA zum geschlossenen Ausnehmungsende hin kleiner wird. Dadurch werden die Kupplungsstecker 2, 2' durch das Verschwenken des Sichelhebels 33 zunehmend an die Kupplungsdosen 3, 3' herangeführt. Der gekoppelte Zustand der Steckkupplungen 1, 1' ist erreicht, wenn die Bolzen 34 an den Enden der Ausnehmungen 33.3, 33.3' und die Kupplungssteckerplatte 28 und die Kupplungsdosenplatte 29 gegeneinander zur Anlage gelangen. Das Lösen der Steckkupplungen 1, 1' erfolgt durch Betätigung des Sichelhebels 33 in umgekehrter Richtung.
  • Als Fluid in der erfindungsgemäßen Steckkupplung 1 wird einen Isolieröl bevorzugt verwendet, das sehr gute elektrische Isolationseigenschaften aufweist und damit eine elektrische Isolation der Innenleiter 4, 5 von dem Kupplungssteckergehäuse 2.2 und dem Kupplungsdosengehäuse 3.2 in den Bereichen der Fluidkanäle 6 gewährleistet.
  • Das Kupplungssteckergehäuse 2.2 und das Kupplungsdosengehäuse 3.2 sind hierbei jeweils mit dem Massepotential, d.h. beispielsweise dem Potential des Fahrzeugs oder des Anbaugerätes verbunden, so dass im gekoppelten Zustand durch diese Massepotentiale elektrisch verbunden sind und damit ein gemeinsames, gleiches Potential aufweisen. Neben der elektrischen Isolation dient das Isolieröl zudem der thermischen Kühlung der Innenleiter 4, 5 der Steckkupplung 1, wobei das Isolieröl hierbei mit Drücken von bis zu 20 MPa, vorzugsweise Drücken kleiner als 6 MPa durch die Steckkupplung 1 im gekoppelten Zustand gedrückt wird. Hierbei ist die Steckkupplung 1 für eine Strömungsgeschwindigkeit des Isolieröls von maximal 3 m pro Sekunde bei einem Volumenstrom von 120 Kubikdezimeter pro Minute ausgelegt. Neben der Isolierung und der Kühlwirkung kommt dem Isolieröl zusätzlich die Aufgabe der Unterdrückung von Lichtbögen, die bei dem Kopplungs- bzw. Entkopplungsvorgang entstehen können, zu.
  • Im Folgenden wird anhand der Figur 10 das gesamte Schutzkonzept, in welches das erfindungsgemäße elektromechanische Schutzsystem des Steckkupplungssystems 1 eingebunden ist, näher erläutert.
  • Fig. 10 zeigt hierbei in einer schematischen Darstellung ein Nutzfahrzeug, beispielsweise einen Traktor mit einem Anbaugerät, wobei die elektrische und fluidische Kopplung zwischen Nutzfahrzeug und Anbaugerät mittels zweier erfindungsgemäßer Steckkupplungen 1 erfolgt. In vorliegender schematischer Darstellung ist aus Übersichtlichkeitsgründen lediglich das elektrische Netz ohne Fluidkreislauf skizziert.
  • Das Nutzfahrzeug weist einen Verbrennungsmotor auf, dessen mechanische Leistung zum Antrieb eines Generators dient. Die vom Generator abgegebene Wechselspannung bzw. der Wechselstrom wird über einen Gleichrichter in Gleichspannung bzw. Gleichstrom umgesetzt, welche zum Aufbau eines Gleichspannungsnetz vorgesehen ist. Dieses Gleichspannungsnetz dient sowohl zum Antrieb des Nutzfahrzeugs selbst als auch zum Antrieb von Nebenaggregaten und Anbaugeräten.
  • Sämtliche spannungs- und stromführenden Elemente sind von einer elektrisch leitfähigen, vorzugsweise metallischen Schutzhülle 37 umgeben, die gegenüber den spannungs- und stromführenden Elementen elektrisch isoliert ist. Die Schutzhülle 37 wird im Bereich der Schlauchleitungen 38 durch ein metallisches Gewebe in der Schlauchwandung und im Bereich der Steckkupplung 1 durch das Kupplungsstecker- bzw. Kupplungsdosengehäuse 2.2, 3.2 gebildet. Durch die sämtliche spannungs- und stromführenden Elemente umgebende Schutzhülle 37 ist eine hoch wirksame Abschirmung gegen elektromagnetische Strahlung (EMV) geschaffen, so dass eine Störung von sensiblen, in der Nähe der spannungs- und stromführenden Elemente angeordnete elektrische Bauelemente bei höheren Spannungs- oder Stromschwankungen erheblich reduziert sind.
  • Über eine Widerstandsmessung ist beispielsweise die Isolation zwischen den spannungs- bzw. stromführenden Elementen und der Schutzhülle 37 überprüfbar, so dass bei nachlassender oder fehlender Isolation geeignete Sicherungsmaßnahmen wie beispielsweise die Ausgabe einer Fehlermeldung oder eine Notabschaltung eingeleitet werden können.
  • Zur Überwachung und Steuerung sämtlicher im Bereich des Nutzfahrzeugs und des Anbaugerätes angeordneter elektronischer Systemkomponenten ist beispielsweise ein Bussystem, vorzugsweise ein CAN-Bus ("Controller Area Network Bus") vorgesehen. Im Bereich der Steckkupplung 1 dient dieses Bussystem sowohl der Feststellung des aktuellen Kopplungszustands, der Sicherung der Steckkupplung 1 gegen unsachgemäße Trennung bei Stromfluss über die Steckkupplung 1 als auch der Steuerung der elektronischen Schaltmittel, insbesondere des Relais 35, zur Herstellung oder Trennung der elektrisch leitfähigen Verbindung.
  • Wie in den Figuren 10 und 11 dargestellt, ist oberhalb der Kupplungsdosen 3, 3' eine Elektronikbox 39 angeordnet, die einen Anschluss 40 für das Bussystem aufweist. Diese Elektronikbox 39, in die die von den Kupplungsdosen 3, 3' abstehenden Bolzen 23 geführt sind, enthält neben den Relais 35 zur elektrischen Verbindung dieser Bolzen 23 u.a. einen Hubmagneten 36 mit einem Verriegelungsbolzen 36.1, der durch die seitliche Wandung der Elektronikbox 39 hindurch mit einer Bohrung 41 bzw. Buchse im Sichelhebel 33 im gekoppelten Zustand zusammenwirkt. Der Hubmagnet 36 ist hierbei über das Bussystem derart ansteuerbar, dass im gekoppelten Zustand bei Übertragung elektrischer Leistung über die Steckkupplung 1 der Sichelhebel 33 durch den Verriegelungsbolzen 36.1 gegen Verschwenken und damit die Steckkupplung 1 gegen unsachgemäßes Lösen gesichert ist. Das Verschwenken des Sichelhebels 33 wird hierbei dadurch unterbunden, dass der Verriegelungsbolzen 36.1 des Hubmagneten 36 in die Bohrung 41 des Sichelhebels 33 eingreift ist (Fig. 12).
  • Zum Lösen der Steckkupplung 1 wird der Hubmagnet 36 über das Bussystem derart angesteuert, dass der Verriegelungsbolzen 36.1 zumindest teilweise in die Elektronikbox 39 zurückgezogen wird, so dass dessen Eingriff in die Bohrung 41 gelöst und der Sichelhebel 33 zum Lösen der Steckkupplung 1 verschwenkbar ist.
  • In einem bevorzugten Ausführungsbeispiel ist zur Bestimmung des Kopplungszustands der Steckkupplung 1 zumindest ein erster Näherungssensor vorgesehen. Dieser erste Näherungssensor detektiert den Abstand des Kupplungssteckers 2, 2' von der Kupplungsdose 3, 3', insbesondere über den Einschubzustand des Zentrierbolzens 30 in die Bundbuchse 32. Vorzugsweise ist ein zweiter Näherungssensor vorgesehen, der die Position des Verriegelungsbolzens 36.1 des Hubmagneten 36 detektiert. Es versteht sich, dass weitere Näherungssensor zur Abfrage von Zuständen Verwendung finden können, beispielsweise ein Winkelsensor zur Detektion des Schwenkzustands des Sichelhebels 33. Mittels dieser Näherungssensoren lassen sich der Kopplungszustand der Steckkupplung 1 und insbesondere auch die Verriegelung selbiger mittels des Sichelhebels 33 über das Bussystem überprüfen und abhängig von den durch die Näherungssensoren ermittelten Messwerten bestimmte Abläufe einleiten bzw. blockieren.
  • In Fig. 13a ist beispielhaft mittels eines Ablaufdiagramms die einzelnen Verfahrensschritte zum Lösen der Steckkupplung 1 gezeigt. Vor dem Lösen der Steckkupplung 1 wird zunächst das mittels der Steckkupplung 1 mit dem Nutzfahrzeug verbundene Anbaugerät abgestellt, so dass der elektrische Stromfluss über die Steckkupplung 1 gestoppt werden kann. Anschließend werden über das Bussystem das Relais 35 derart angesteuert, dass jeweils die beiden Bolzen 23 einer Kupplungsdose 3, 3' voneinander elektrisch getrennt sind.
  • Vorzugsweise ist jeweils ein Relais 35 pro Kupplungsdose 3, 3' vorgesehen. Der Hubmagnet 36 wird durch das Bussystem derart angesteuert, dass der Verriegelungsbolzen 36.1 aus der Bohrung 41 zurückgezogen wird. Diese Abläufe können von einem Benutzer nacheinander oder vorzugsweise von einer Ablaufsteuerung vollautomatisch durchgeführt werden, so dass lediglich über einen einzigen Befehl, beispielsweise "Trennen Anbaugerät", die zuvor beschriebenen Abläufe eingeleitet werden. Anschließend können die Steckkupplung 1 durch Betätigen des Sichelhebels 33 getrennt und die Kupplungsstecker 2, 2' aus den Kupplungsdosen 3, 3' herausgezogen werden.
  • Fig. 13b zeigt beispielhaft in einem Ablaufdiagramm die Abläufe beim Verbinden der Steckkupplung 1. Zunächst werden die Kupplungsstecker 2, 2' in die Kupplungsdosen 3, 3' eingeführt und der Sichelhebel 33 in die in Figur 12 gezeigte Schließposition verschwenkt.
  • Bei erfolgter Freigabe über den Näherungssensor, d.h. die Kupplungsstecker 2, 2' sind in die Kupplungsdosen 3, 3' eingeführt, wird der Hubmagnet 36 derart angesteuert, dass der Verriegelungsbolzen 36.1 in die Bohrung 41 eintaucht. Nach dem Verriegeln erteilt der Näherungssensor eine Freigabe, was die Ansteuerung der Relais 35 anstößt und dadurch eine elektrisch leitende Verbindung zwischen den zweiten und dritten Innenleiterelementen 5.2, 5.3 über die mittels der Relais miteinander verbundenen Bolzen 23 hergestellt wird.
  • Die genannten Abläufe können wiederum getrennt voneinander einzeln durchgeführt werden oder mittels eines einzigen Befehls angestoßen werden. Nach dem Ablauf dieser Schritte sind ein Anschalten des Anbaugerätes und eine Leistungsübertragung zu ebendiesem möglich.
  • Bezugszeichenliste
  • 1
    Steckkupplungssystem
    2, 2'
    Kupplungsstecker
    2.1, 2.1'
    erstes Kupplungssteckerende
    2.2
    Kupplungssteckergehäuse
    2.3
    zweites Kupplungssteckerende
    2.4
    Stirnfläche
    2.5
    Stufung
    2.6
    Stufung
    2.7
    Flansch
    3, 3'
    Kupplungsdose
    3.1, 3.1'
    erstes Kupplungsdosenende
    3.2
    Kupplungsdosengehäuse
    3.2.1
    Innenseite
    3.2.2
    Nut
    3.2.3
    Stufung
    3.2.4
    Flansch
    3.3
    zweites Kupplungsdosenende
    4
    Innenleiter
    4.1
    Stirnseite
    4.2
    freies Ende
    5
    Innenleiter
    5.1
    erstes Innenleiterelement
    5.1.1
    Kopfbereich
    5.1.2
    Innenleiterbereich
    5.2
    zweites Innenleiterelement
    5.3
    drittes Innenleiterelement
    5.3.1
    freies Ende
    6
    Fluidkanal
    7
    Ventilkörper
    7.1
    Nut
    8
    Ventilkörper
    8.1
    erste Stufung
    8.2
    zweite Stufung
    8.3
    Teilbereich
    8.4
    Teilbereich
    8.5
    erster Innenseitenbereich
    8.6
    zweiter Innenseitenbereich
    8.7
    Stufung
    8.8
    Stirnfläche
    10
    Keramikstift
    11
    Kontakthülse
    12
    Kontakthülse
    12.1
    Kontakthülseninnenseite
    13
    Federkontakt
    14
    Feder
    15
    Feder
    16
    Dichtung
    17
    Isolierkörper
    18
    Isolierkörper
    19
    Isolierkörper
    21
    Isolierscheibe
    22
    Isolierscheibe
    23
    Bolzen
    24
    Innengewinde
    25
    Reduzierhülse
    25.1
    freies Ende
    25.2
    freies Ende
    26
    Isolierscheibe
    27
    Isolierkörper
    28
    Kupplungssteckerplatte
    29
    Kupplungsdosenplatte
    30
    Zentrierbolzen
    31
    Pastille
    32
    Bundbuchse
    33
    Sichelhebel
    33.1
    Griff
    33.2, 33.2'
    Sichelhebelhälfte
    33.3, 33.3'
    Ausnehmungen
    34
    Bolzen
    35
    Relais
    36
    Hubmagnet
    36.1
    Verriegelungsbolzen
    37
    Schutzhülle
    38
    Schlauchleitung
    39
    Elektronikbox
    40
    Anschluss
    41
    Bohrung
    a
    Ringstärke
    b
    Durchmesser
    c
    Außendurchmesser
    d
    Durchmesser
    t
    Einstecktiefe
    DA
    Drehachse
    LA1, LA1'
    Längsachse
    LA2, LA2'
    Längsachse
    QA
    Querachse
    T
    Tangente

Claims (13)

  1. Steckkupplungssystem zur Übertragung elektrischer Energie hoher Leistung sowie zur Übertragung eines unter Druck stehenden Fluids bestehend aus zumindest einem Kupplungsstecker (2, 2') und zumindest einer Kupplungsdose (3, 3') mit jeweils zumindest einem elektrischen Leiter (4, 5), wobei der Kupplungsstecker (2, 2') in die Kupplungsdose (3, 3') zur Bildung eines gekoppelten Zustands einführbar ist und aus der Kupplungsdose (3, 3') zur Bildung eines entkoppelten Zustands entfernbar ist, dadurch gekennzeichnet, dass das Steckkupplungssystem zumindest ein elektromechanisches Schutzsystem bestehend aus zumindest einem elektronischen Schaltmittel (35) und zumindest einem innerhalb der Kupplungsdose (3) und/oder des Kupplungssteckers (2) angeordnetem mechanischen Schaltmittel (4, 11) zur Herstellung oder Trennung der elektrisch leitenden Verbindung aufweist, wobei die elektronischen Schaltmittel (35) und die mechanischen Schaltmittel (4, 11) unabhängig voneinander ansteuerbar sind.
  2. Steckkupplungssystem nach Anspruch 1, dadurch gekennzeichnet, dass das zumindest eine elektronische Schaltmittel durch ein Relais (35) gebildet ist oder dass das zumindest eine elektronische Schaltmittel durch einen zumindest ein elektronisches Hochleistungsbauelement, vorzugsweise einen Hochleistungstransistor aufweisenden elektronischen Schaltkreis gebildet ist.
  3. Steckkupplungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zumindest eine mechanische Schaltmittel (4, 11) zur Herstellung oder Trennung der elektrisch leitenden Verbindung durch das Einführen des Kupplungssteckers (2, 2') in die Kupplungsdose (3, 3') oder durch das Herausnehmen des Kupplungssteckers (2, 2') aus der Kupplungsdose (3, 3') schaltbar ist und/oder dass der Kupplungsstecker (2, 2') und die Kupplungsdose (3, 3') einen von einem Fluidkanal (6) umgebenen Innenleiter (4, 5) aufweisen.
  4. Steckkupplungssystem nach Anspruch 3, dadurch gekennzeichnet, dass die Innenleiter (4, 5) des Kupplungssteckers (2, 2') und der Kupplungsdose (3, 3') zumindest teilweise von einer elektrisch leitfähigen Kontakthülse (11, 12) umgeben sind, wobei die elektrisch leitfähige Kontakthülse (11) gegenüber dem Innenleiter (5) verschiebbar ausgebildet ist oder der Innenleiter (4) gegenüber der elektrisch leitfähige Kontakthülse (12) verschiebbar ausgebildet ist.
  5. Steckkupplungssystem nach Anspruch 4, dadurch gekennzeichnet, dass die Kontakthülse (12) des Kupplungssteckers (2, 2') die Innenleiter (4, 5) des Kupplungssteckers (2, 2') und der Kupplungsdose (3, 3') im gekoppelten Zustand elektrisch leitfähig verbindet und/oder dass der Innenleiter (5) der Kupplungsdose (3, 3') mehrteilig ausgebildet ist.
  6. Steckkupplungssystem nach Anspruch 5, dadurch gekennzeichnet, dass der Innenleiter (5) zumindest zwei Innenleiterelemente (5.1, 5.2, 5.3) aufweist, die elektrisch isoliert miteinander verbunden sind, wobei die zumindest zwei Innenleiterelemente (5.1, 5.2) vorzugsweise über einen Keramikstift (10) miteinander verbunden sind.
  7. Steckkupplungssystem nach Anspruch 6, dadurch gekennzeichnet, dass die zumindest zwei Innenleiterelemente (5.1, 5.2) der Kupplungsdose (3, 3') im gekoppelten Zustand durch eine Kontakthülse (11) elektrisch leitend verbindbar sind und/oder dass die elektrisch leitfähige Verbindung zwischen dem Innenleiter (4, 5) und der Kontakthülse (11, 12) mittels zumindest einem ringförmigen Federkontakt (13) herstellbar ist.
  8. Steckkupplungssystem nach einem der vorhergehenden Ansprüche, gekennzeichnet durch jeweils ein vollumfängliches Kupplungssteckergehäuse (2.2) und ein Kupplungsdosengehäuse (3.2) aus elektrisch leitfähigem Material.
  9. Steckkupplungssystem nach Anspruch 8, dadurch gekennzeichnet, dass bei gelöster Verbindung zwischen Kupplungsstecker (2, 2') und Kupplungsdose (3, 3') die Innenleiter (4, 5) des Kupplungssteckers (2, 2') und der Kupplungsdose (3, 3') gegenüber dem Kupplungssteckergehäuse (2.2) oder dem Kupplungsdosengehäuse (3.2) kurzgeschlossen sind und/oder dass im gekoppelten Zustand das Kupplungssteckergehäuse (2.2) und das Kupplungsdosengehäuse (3.2) elektrisch leitend verbunden sind und das Massepotential bilden.
  10. Steckkupplungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Verriegelungsmechanismus zum Einführen und Fixieren des zumindest einen Kupplungssteckers (2, 2') in der zumindest einen Kupplungsdose (3, 3') vorgesehen ist, wobei der Verriegelungsmechanismus durch einen Hebel, vorzugsweise einen Sichelhebel (33) oder durch ein Getriebe gebildet wird.
  11. Steckkupplungssystem nach Anspruch 10, dadurch gekennzeichnet, dass der Verriegelungsmechanismus elektronisch und/oder mechanisch gegen unsachgemäße Betätigung gesichert ist und/oder dass die Sicherung über einen elektrisch ansteuerbaren Hubmagneten (36) erfolgt.
  12. Steckkupplungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Näherungssensor zur Ermittlung des gekoppelten und/oder entkoppelten Zustands vorgesehen ist.
  13. Steckkupplungssystem nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass zumindest ein Sensor zur Ermittlung des Zustands des Hubmagneten (36) vorgesehen ist.
EP10765936.9A 2009-09-23 2010-08-17 Steckkupplungssystem Not-in-force EP2481129B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910042568 DE102009042568B4 (de) 2009-09-23 2009-09-23 Steckkupplungssystem
PCT/DE2010/000969 WO2011035756A1 (de) 2009-09-23 2010-08-17 Steckkupplungssystem

Publications (2)

Publication Number Publication Date
EP2481129A1 EP2481129A1 (de) 2012-08-01
EP2481129B1 true EP2481129B1 (de) 2015-07-08

Family

ID=43066911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10765936.9A Not-in-force EP2481129B1 (de) 2009-09-23 2010-08-17 Steckkupplungssystem

Country Status (4)

Country Link
US (1) US9130286B2 (de)
EP (1) EP2481129B1 (de)
DE (1) DE102009042568B4 (de)
WO (1) WO2011035756A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042569B3 (de) * 2009-09-23 2011-05-05 SCHLÖGL, Hilde Steckkupplung
US9589705B2 (en) 2012-10-17 2017-03-07 Illinois Tool Works Inc. Cooled power connector with shut off valve, induction heating system, and cable for use with connector
CN106450950B (zh) * 2016-08-31 2018-06-08 湖南明盛高新科技有限公司 一种基于物联网的智能家居用智能插座
CN106406135B (zh) * 2016-08-31 2018-09-11 湖南明盛高新科技有限公司 一种基于物联网的智能开关
DE102017108490B4 (de) * 2017-04-21 2018-12-06 Harting Electric Gmbh & Co. Kg Anbaugehäuseanordnung und Verfahren zur Entriegelung sowie Computerprogramm
KR102259191B1 (ko) * 2017-04-21 2021-06-02 하르팅 에렉트릭 게엠베하 운트 코우. 카게 부착 하우징 장치 및 잠금 해제 방법
KR101950891B1 (ko) * 2017-12-26 2019-02-21 주식회사 다원시스 Rf 파워 커플러
DE102018109530A1 (de) 2018-04-20 2019-10-24 Harting Electric Gmbh & Co. Kg Vorrichtung und Verfahren zum lastfreien Trennen einer Steckverbindung
DE102018117815A1 (de) * 2018-07-24 2020-01-30 Amad - Mennekes Holding Gmbh & Co. Kg Überwachung des Kontaktbereiches in einer Steckvorrichtung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649949A (en) * 1970-06-22 1972-03-14 Northrop Corp Quick disconnect fluid-electrical coupler
US3917370A (en) * 1974-08-29 1975-11-04 Amp Inc Interconnect device for use in closed fluid circulating systems
DE3123143C2 (de) * 1981-06-11 1984-01-26 Maschinenfabrik Scharf Gmbh, 4700 Hamm Steckverbindung für den untertägigen Grubenbetrieb
DE8517485U1 (de) * 1985-06-14 1985-07-25 Dinse, Wilhelm, 2000 Hamburg Einpolige elektrische Steckverbindung, insbesondere für die Schutzgasschweißung
DE9401605U1 (de) * 1994-01-08 1994-03-31 Elektron - Bremen Fabrik für Elektrotechnik GmbH, 28197 Bremen Steckverbindung
US5810048A (en) * 1996-08-21 1998-09-22 Zeiner-Gundersen; Dag H. Metal face sealing coupling
DE19916984C1 (de) * 1999-04-15 2000-07-13 Raymond A & Cie Steckverbindung für wassergekühlte, stromführende Leitungen an Werkzeugen und anderen Geräten
US6678131B2 (en) * 2001-04-23 2004-01-13 Redgate Technologies, Inc. Arc-safe electrical receptacles
DE10239395A1 (de) * 2002-08-28 2004-03-11 Zf Friedrichshafen Ag Vorrichtung zur Verbindung eines elektrischen oder elektronischen Bauteils mit wenigstens einem elektrischen Leiter
DE10340467B4 (de) * 2003-09-03 2012-10-04 Man Truck & Bus Ag Vorrichtung zur Führung eines fließfähigen Mediums
US7351098B2 (en) * 2006-04-13 2008-04-01 Delphi Technologies, Inc. EMI shielded electrical connector and connection system
EP1956696B1 (de) * 2006-10-20 2012-03-21 ABB Technology AG Mittel oder Hochspannungsenergieverteilungsschrank mit integrierter digitalen Kommunikation und Multifunktionsbaustein dazu
US7762824B2 (en) * 2007-03-08 2010-07-27 National Coupling Company, Inc. Hydraulic coupling member with electrical bonding contractor
US8517749B2 (en) * 2007-09-07 2013-08-27 American Superconductor Corporation System for quick disconnect termination or connection for cryogenic transfer lines with simultaneous electrical connection
TWM359133U (en) * 2009-02-04 2009-06-11 qi-wen Chen Push socket
US7641489B1 (en) * 2009-02-11 2010-01-05 Chih-Hua Hsu Safety plug socket
US7819680B2 (en) * 2009-02-27 2010-10-26 Amphenol Corporation Surface mount coaxial connector with switching function
TW201037913A (en) * 2009-04-03 2010-10-16 Compal Electronics Inc Electronic apparatus and connector thereof
DE102009042569B3 (de) * 2009-09-23 2011-05-05 SCHLÖGL, Hilde Steckkupplung

Also Published As

Publication number Publication date
US20120276766A1 (en) 2012-11-01
DE102009042568A1 (de) 2011-03-24
US9130286B2 (en) 2015-09-08
EP2481129A1 (de) 2012-08-01
WO2011035756A1 (de) 2011-03-31
DE102009042568B4 (de) 2012-03-01

Similar Documents

Publication Publication Date Title
EP2481129B1 (de) Steckkupplungssystem
EP2481128B1 (de) Steckkupplung
WO2019008051A1 (de) Ladestecker und ladestecker-ladebuchsen-system zum laden eines elektrofahrzeugs
DE112018004505T5 (de) Anschluss-Sperraktuatorvorrichtung für Fahrzeugeingangsanschluss
EP3000645A1 (de) Stromabnehmeranordnung für ein fahrzeug
DE102019212980A1 (de) Elektrische Maschine mit einer Hochspannungsanschlussanordnung und einer Sicherheitssperreinrichtung
EP3867083B1 (de) Primärkopplungsvorrichtung und verfahren zum verbinden einer primärkopplungsvorrichtung
EP3427343B1 (de) Hochvoltverbinder
EP1133813B1 (de) Vorrichtung zum kontaktieren einer elektrischen leitung, insbesondere einer flachbandleitung
DE112018004506T5 (de) Anschluss-Sperraktuatorvorrichtung für Fahrzeugeingangsanschluss
EP2780986B1 (de) Steckverbindung
DE2415486A1 (de) Elektrische steckverbindung
DE102017216783A1 (de) Ladesteckdose für ein elektrisch antreibbares Kraftfahrzeug
DE102013005109A1 (de) Verbindervorrichtung zum mechanischen Verbinden einer Kabelvorrichtung mit einer elektrisch leitenden Komponente sowie mit der Verbindervorrichtung kuppelbare Kabelvorrichtung
WO2020089381A1 (de) Vorrichtung und verfahren zum konduktiven laden
EP3257113B1 (de) Hvil-system
EP3228491B1 (de) Elektrische motoreinheit für mobile arbeitsmaschine
EP2616731B1 (de) Kupplungsanordnung sowie kupplungsstück
EP1248340A1 (de) Kupplung für elektrische Schaltanlagen
DE3247482C2 (de) Verbindungsvorrichtung
EP2466604B1 (de) Antriebseinheit zum Betreiben eines Schalters einer Mittel- oder Hochspannungsschaltanlage
DE102019107330A1 (de) Universaler Schnellladestecker
DE102011086212B4 (de) Vorrichtung zur Verbindung zweier elektrischer Leitungen
EP3391483B1 (de) Antriebsanordnung zur ausbildung einer trennstrecke für einen überspannungsableiter
WO2024032847A1 (de) Steckverbinderteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 736032

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010009840

Country of ref document: DE

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150819

Year of fee payment: 6

Ref country code: GB

Payment date: 20150819

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150820

Year of fee payment: 6

Ref country code: AT

Payment date: 20150820

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150708

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151008

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010009840

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20160411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 736032

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160817

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160817

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010009840

Country of ref document: DE

Representative=s name: GLUECK - KRITZENBERGER PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010009840

Country of ref document: DE

Owner name: SCHLOEGL, STEFAN, DE

Free format text: FORMER OWNER: SCHLOEGL, HILDE, 92533 WERNBERG-KOEBLITZ, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190829

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010009840

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302