EP2472555B1 - Device for the generation of microwaves, comprising a plurality of magnetrons - Google Patents
Device for the generation of microwaves, comprising a plurality of magnetrons Download PDFInfo
- Publication number
- EP2472555B1 EP2472555B1 EP11306793.8A EP11306793A EP2472555B1 EP 2472555 B1 EP2472555 B1 EP 2472555B1 EP 11306793 A EP11306793 A EP 11306793A EP 2472555 B1 EP2472555 B1 EP 2472555B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resonant
- magnetron
- cavity
- anode
- cavities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 claims description 12
- 238000006073 displacement reaction Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 241000826860 Trapezium Species 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/16—Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
- H01J23/18—Resonators
- H01J23/20—Cavity resonators; Adjustment or tuning thereof
- H01J23/213—Simultaneous tuning of more than one resonator, e.g. resonant cavities of a magnetron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J23/00—Details of transit-time tubes of the types covered by group H01J25/00
- H01J23/16—Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
- H01J23/18—Resonators
- H01J23/22—Connections between resonators, e.g. strapping for connecting resonators of a magnetron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/50—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
- H01J25/52—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode
- H01J25/58—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode having a number of resonators; having a composite resonator, e.g. a helix
- H01J25/587—Multi-cavity magnetrons
- H01J25/593—Rising-sun magnetrons
Definitions
- Such devices for generating microwave waves are known ( GB 2052143 ) and are particularly used in radar systems.
- the magnetron is a particular device for generating microwave waves for which the cathode is brought to a potential lower than that of the anode, and behaves as a source of electrons radially emitting electrons in the direction of the anode, in a central space between the cathode and the anode. Under the effect of a longitudinal magnetic field, the emitted electrons begin to rotate transversely between the cathode and the anode, which makes it possible to generate the microwave by interaction with the cavities of the magnetron.
- the known devices are designed to generate microwave waves at a predetermined frequency, and it is impossible to change the frequency of the waves generated by a device without causing a phase shift magnetrons of said device between them, which causes a chaotic operation of the generation device.
- An object of the invention is therefore to provide a microwave generating device of high power with optimized efficiency, adapted to allow extraction in phase on a large number of channels.
- Another preferred objective of the invention is to be able, with the same generation device, to generate waves over a broad frequency spectrum.
- the device 10 comprises two magnetrons 12, 14, arranged substantially parallel to each other and contiguous to one another, and a plurality of waveguides 24.
- Each magnetron 12, 14 comprises a cathode 20 and an anode 22 surrounding the cathode 20.
- the cathode 20 of the magnetron 12, respectively of the magnetron 14, extends along a longitudinal axis Z, respectively along a longitudinal axis Z ', from a first longitudinal end 30 to a second longitudinal end 32. It is preferably revolution about the longitudinal axis Z, Z '.
- Each cathode 20 comprises an electron source 34 sandwiched between two frustoconical fingers 35A, 35B.
- the electron source 34 is typically equidistant from the longitudinal ends 30, 32 of the cathode 20, formed at the opposite ends of the fingers 35A, 35B.
- the electron source 34 is adapted to emit electrons. Typically, the electron source 34 is adapted to emit electrons under the effect of a strong electric field.
- the electron source 34 is for example a tungsten cylinder or, as shown in pyrolytic carbon.
- the cathode 20 is at a lower electric potential than the electric potential of the anode 22, so that there is an electric field between the cathode 20 and the anode 22, oriented from the cathode 20 to the anode 22.
- the anode 22 of each magnetron 12, 14 surrounds the cathode 20 of the magnetron 12, 14.
- the anode 22 extends substantially longitudinally, co-axially with the cathode 20. It has an inner surface 40, oriented towards the cathode 20 , delimiting a plurality of resonant cavities 42 distributed on the periphery of the anode 22, and an outer surface 44, opposite to the inner surface 40.
- the anode 22 is formed of a conductive material, typically steel, graphite or copper.
- the anode 22 is symmetrical with respect to a median radial plane, perpendicular to the longitudinal axis Z.
- the electron source 34 is, as shown, located in the median radial plane of the anode 22.
- the anode 22 comprises a cylindrical body 46 and a plurality of fins 48 extending radially towards the cathode 20.
- the cylindrical body 46 defines the outer surface 44 and a portion of the inner surface 40.
- the fins 48 project from the cylindrical body 46 inwardly of the anode 22 and define a portion of the inner surface 40.
- the fins 48 are identical to each other.
- Each cavity 42 opens into a substantially cylindrical central space 49 extending in the center of the anode 22.
- the central space 49 extends substantially longitudinally.
- the cathode 20 is disposed substantially in the center of the central space 49.
- the plurality of resonant cavities 42 of each magnetron 12, 14 comprises a plurality of large resonant cavities 56 and small resonant cavities 54, alternately arranged around each other around the cathode 20.
- the radial section of each small resonant cavity 54 is smaller than the radial section of each large resonant cavity 56.
- the small 54 and large resonant cavities all have the same longitudinal length I.
- Each large cavity 56 is delimited by two fins 48 and by the cylindrical body 46.
- Each small cavity 54 is delimited inside a fin 48 by a radial opening opening facing the cathode 20.
- the anode 22 thus presents a configuration of the type "rising sun” (in English “rising sun”). This configuration makes it possible to limit the risk of oscillations on parasitic frequencies, and thus to increase the efficiency of the device 10.
- each large cavity 56 constitutes a resonant cavity 50 or outlet 52
- each small cavity 54 constitutes an intermediate resonant cavity.
- each magnetron 12, 14 comprises a single connection cavity 50 and a plurality of outlet cavities 52.
- the cavities 42 are arranged such that the number of intermediate cavities 54 arranged between two consecutive connecting cavities 50 or 52 consecutive is equal for each pair of consecutive connecting cavities 50 or 52 consecutive.
- connection of connection or outlet cavities it is understood both a pair consisting of a connection cavity 50 and an outlet cavity 52, or two connecting cavities 50, or two outlet cavities 52 .
- connection cavity 50 comprises a main portion 50A delimited by the cylindrical body 46 and two fins 48, and a portion 50B of connection to the connection cavity 50 of the other magnetron 12, 14.
- the connection portion 50B s extends from the main portion 50A towards the outside of the anode 22, through the cylindrical body 46, and opens into the outer surface 44.
- the outlet portion 50B consists of a radial orifice formed in the cylindrical body 46 along an axis of radial symmetry of the cavity 50.
- the inner surface 40 of the anode 22 defines an annular surface 51 of connection between the main portion 50A and the connecting portion 50B.
- this annular surface 51 is curved at any point, that is to say that it has no edge or salient point, so as to avoid the risk of breakdown.
- the connecting portion 50B has a constant cross section.
- the connecting portion 50B has an increasing cross section from the inner face 40 to the outer face 44.
- Each connecting portion 50B is symmetrical with respect to a median radial plane of the portion 50B.
- the median radial plane of the portion 50B coincides with the median radial plane of the anode 22.
- the connecting portion 50B of the connection cavity 50 of each magnetron 12, 14 is directly in contact with the connecting portion 50B of the connection cavity 50 of the other magnetron 12, 14.
- the magnetrons 12, 14 are pushed against each other so that the outer surface 44 of each anode 22 is directly in contact with the outer surface 44 of the other anode 22, without an element being interposed between the two outer surfaces 44.
- the connecting surface between the magnetrons 12, 14 is constituted by the outer surface 44 of the anode 22 each magnetron 12, 14.
- Each outlet cavity 52 comprises a main portion 52A delimited by the cylindrical body 46 and two fins 48, and an output portion 52B.
- the outlet portion 52B extends from the main portion 52A towards the outside of the anode 22, through the cylindrical body 46, and opens into the outer surface 44, facing a waveguide 24.
- the outlet portion 52B consists of a radial orifice formed in the cylindrical body 46 along an axis of radial symmetry of the cavity 52.
- the inner surface 40 of the anode 22 defines an annular surface 53 of connection between the main portion 52A and the outlet portion 52B.
- this annular surface 53 is curved at any point, that is to say that it has no edge or salient point, so as to avoid the amplification of parasitic oscillation frequencies.
- the output portion 52B has a constant cross section.
- the outlet portion 52B has an increasing cross section from the inner face 40 to the outer face 44.
- Each output portion 52B is symmetrical with respect to a median radial plane of portion 52B.
- the median radial plane of the outlet portion 52B of each outlet cavity 52 coincides with the median radial plane of the outlet portion 52B of each other outlet cavity 52, and with the plane medial radial of the connecting portion 50B of the connection cavity 50.
- No intermediate cavity 54 opens into the outer face 44.
- each intermediate cavity 54 is identical to each other intermediate cavity 54.
- the anode 22 includes a first portion 58 between the connecting cavity 50 and the outer surface 44, and a plurality of second portions 59, each between an outlet cavity 52 and the outer surface 44.
- Each of said first 58 and second 59 parts is constituted by a portion of the cylindrical body 46 extending between two fins 48 consecutive.
- the first part 58 is identical to each second part 59.
- the behavior of the anode 22 vis-à-vis the electrons emitted by the electron source 34 is similar at the level of the connection cavity 50 as at the level of each outlet cavity 52.
- each magnetron 12, 14 does not comprise any intermediate cavity 54, all the cavities 42 of the magnetron 12, 14 then being connection or output cavities 50.
- the anode 22 also comprises two longitudinal closure rings 60 of the cavities 42. Each ring 60 thus delimits a longitudinal end of the anode 22.
- the anode 22 of each magnetron, respectively 12, 14, is rotationally invariant by an angle 2 ⁇ / n around the longitudinal axis, respectively Z, Z ', where n is the number of connecting cavities or output 50, 52.
- Each waveguide 24 extends from the outer surface 44 of the anode 22 of a magnetron 12, 14 towards the outside of said magnetron 12, 14.
- each magnetron 12, 14 comprises first orifices 66 for fixing the magnetron 12, 14 to the other magnetron 12, 14.
- Each first orifice 66 extends substantially radially from the outer surface 44, without opening into the magnetron 12, 14 the inner surface 40.
- Each first orifice 66 is adapted to receive a screw or a pin for fixing the magnetrons 12, 14 to one another.
- the generation device 10 also comprises flanges 62 connecting each waveguide 24 to the anode 22 of each magnetron 12, 14. Each flange 62 is adapted to maintain an end of a waveguide 24 in contact with each other. against the outer face 44 of an anode 22.
- each anode 22 comprises second orifices 64 for fixing the flanges 62.
- Each second orifice 64 extends substantially radially from the outer surface 44, without opening into the inner surface 40.
- Each second orifice 64 is adapted to receive a second orifice 64. screw or pin fixing the flange 62 to the anode 22.
- Each first orifice 66 is identical to each second orifice 64.
- the generation device 10 also comprises devices 70 for adjusting the longitudinal length I of each resonant cavity 42 of each magnetron 12, 14.
- the longitudinal length I of each resonant cavity 42 is defined between two longitudinal ends 74, 78 of the cavity 42.
- Each adjusting device 70 comprises a first movable element 72 delimiting a first longitudinal end 74 of each resonant cavity 42 of a magnetron 12, 14, a second movable element 76 delimiting a second longitudinal end 78 of each cavity 42 of said magnetron 12, 14 , and means 80, 82 of longitudinal displacement of each movable element 72, 76.
- each adjusting device 70 comprises a single movable element 72, 76, a longitudinal end 74, 78 of each cavity 42 then being defined by a ring 60.
- the displacement means 80, 82 are adapted to move each movable element 72, 76 so that each resonant output cavity 52 remains symmetrical with respect to the median radial plane of its output portion 52B, and that the connection cavity 50 remains symmetrical relative to the median radial plane of its connecting portion 50B.
- the displacement means 80, 82 are adapted to move each movable element 72, 76 so that each resonant cavity 42 remains symmetrical with respect to the median radial plane of the output portions 52B.
- the displacement means 80, 82 are operable independently of one another, for independent movement of the movable elements 72,76.
- each mobile element 72, 76 are typically formed by a plurality of screw-nut systems 84, each screw-nut system 84 comprising a screw 86 driven in rotation and collaborating with a tapping of one rings 60 to transform the rotational movement of the screw 86 into a translational movement thereof along the axis Z, Z '.
- the screw 86 is integral in translation with the movable element 72, 76, so that the longitudinal translation of the screw 86 causes translation of the movable element 72, 76.
- the longitudinal displacement means 80, 82 each comprise three screw-nut systems 84 distributed on the periphery of the anode 22 of each magnetron 12, 14, around the longitudinal axis Z, Z ', so that that the force is distributed homogeneously on each movable element 72, 76.
- the longitudinal displacement means 80, 82 also comprise a system (not shown) for joint driving the three screws 86 in rotation, by a belt.
- the screw-nut 84 systems are all driven simultaneously, which makes it possible to simultaneously vary the longitudinal length of each cavity 42.
- the Figure 3 presents the movable element 72. It will be noted that the mobile element 76 is identical to the mobile element 72 and that the description given below is also valid for the mobile element 76.
- the movable member 72 comprises a cylindrical base 90, extending longitudinally, and an end collar 92, extending radially outwardly from the base 90.
- the base 90 and the collar 92 are integral with each other. the other and are preferably from matter.
- the base 90 comprises a plurality of longitudinal arms 94 separated by longitudinal slots 96.
- the arms 94 are adapted to engage in the cavities 42.
- the slots 96 are adapted to receive the fins 48.
- the collar 92 is made up of a plurality of panels 98. Each panel 98 is connected to an arm 94. Each panel 98 has a shape complementary to the radial section of a cavity 42. For each outlet cavity 52, the panel 98 associated with a shape complementary to the only main part 52A, of the cavity 52.
- the generation device 10 also comprises a single focusing device 100, common to the two magnetrons 12, 14.
- the focusser 100 is adapted to generate a longitudinal magnetic field in each magnetron 12, 14, to cause the rotation of the electrons emitted by the electron source 34.
- the focusser 100 comprises, as shown, two Helmholtz coils 102 arranged parallel to each other, each coil 102 extending in a radial plane.
- the focusser 100 extends around the assembly consisting of two magnetrons 12, 14, without a portion of the focuser 100 extends between the magnetrons 12, 14.
- the generation device 10 is lightened, and the size of the device 10 is reduced.
- the generating device further comprises a voltage source 110 between the cathode 20 and the anode 22 of each magnetron 12, 14.
- the voltage source 110 is adapted to establish a negative potential difference between the cathode 20 and the anode 22 of each magnetron 12, 14.
- each cathode 20 is electrically connected to the voltage source 110 by each of its longitudinal ends 30, 32 so that the electrical potential of each end 30, 32 is equal to the electrical potential of the other end 30. , 32.
- the voltage source 110 is thus adapted to supply the cathode 20 with current by each of these longitudinal ends 30, 32.
- the current flowing between the first end 30 and the source of electrons 34 generates a first transverse magnetic field in the central space 39, between the first end 30 and the electron source 34, while the current flowing between the second end 32 and the electron source 34 generates in the center.
- central space 39, between the second end 32 and the electron source 34 a second transverse magnetic field in the opposite direction to the first magnetic field e transversal.
- the voltage source 110 is preferably a DC voltage source, so that, in operation, the electrical potential of each end 30, 32 of the cathode 20 remains substantially constant.
- the electrical impedance of the magnetron is between 45 and 55 ohms , and the yield is between 35% and 45%.
- the voltage source comprises two branches (not shown) supplying an end of the cathode 20.
- Each branch extends from the anode 22 to an end 30, 32 of the cathode 20.
- each branch is electrically identical to the other branch that is to say that the electrical characteristics (impedance, inductance) of each branch are similar to the electrical characteristics of the other plugged.
- the current flowing in each branch is substantially equal to the current flowing in the other branch, which allows the transverse magnetic fields to have substantially equal values to one another.
- the voltage source 110 comprises two voltage generators 111, 112.
- Each voltage generator 111, 112 comprises a first terminal 114 of electrical connection of a longitudinal end 30, 32 of the cathode 20 of a first magnetron 12, and a second terminal 116 of electrical connection of a longitudinal end 30, 32 of the cathode 20 of the second magnetron 14. These two terminals 114, 116 are at the same electrical potential as the other.
- Each longitudinal end 30, 32 of the cathode 20 is electrically connected to the terminal 114 of a voltage generator 111, 112 via an elongated conduction pin (not shown) substantially longitudinally, co-axially with the cathode 20.
- Each pin of conduction is isolated from the anode 22 by an insulating layer 118 the conduction pin.
- Each insulating layer 118 is typically formed of high density polyethylene, or ceramic.
- Each voltage generator 111, 112 is adapted to establish a negative potential difference between the potential of the anodes 22 and the potential of each terminal 114, 116.
- Each voltage generator 111, 112 is adapted so that its terminal 114, or its terminal 116, is at the same electrical potential as the terminal 114, respectively the terminal 116, of the other voltage generator 111, 112.
- the voltage source 110 is constituted by a single voltage generator establishing a voltage differential between two terminals, the two longitudinal ends 30, 32 of each cathode 20 being electrically connected to the same first terminal of said two terminals, the anode 22 of each magnetron 12, 14 being electrically connected to the other terminal of said two terminals.
- each cathode 20 is connected to the voltage source 110, the other longitudinal end 30, 32 being typically defined by the electron source 34.
- the device 10 comprises a voltage source specific to each magnetron 12, 14.
- a voltage source specific to each magnetron 12, 14. it is possible to control the potential of the cathode 20 of a magnetron 12, 14 independently of the cathode 20 of the other magnetron 12, 14. This allows in particular to generate longer wave pulses, starting a magnetron 12, 14 during the stopping phase of the other magnetron 12, 14. This also makes it possible to accelerate the starting of one of the two magnetrons 12, 14 by starting it shortly after the other magnetron.
- the voltage source 110 establishes a negative potential difference between the anode 22 and the cathode 20. This potential difference generates an oriented radial electric field of the cathode 20 towards the anode 22 and under the effect of which the source of electrons 34 emits electrons.
- each magnetron 12, 14 is adapted to amplify a mode ⁇ of the radiofrequency wave, that is to say a wave mode such that two consecutive resonant cavities 42 oscillate in phase opposition. Due to the "rising sun” configuration of each magnetron 12, 14, the large cavities 56 thus oscillate all in phase with each other and the small cavities 54 also oscillate in phase with each other, each large cavity 56 oscillating in phase opposition with each small cavity 54.
- the large cavities 56 forming the output cavities 52 of each magnetron 12, 14, the portion of the radiofrequency wave picked up at each waveguide 24 of each magnetron 12, 14 is thus in phase with the portion of the magnetron 12. wave captured at each other waveguide 24 of the magnetron 12, 14. It is thus particularly easy to summon said wave portions so as to reconstitute the radiofrequency wave without interference between the different wave portions and therefore without signal loss.
- connection and output cavities 52 of each magnetron 12, 14 are identical to each other also contributes to increasing the efficiency of each magnetron 12, 14.
- connection cavity 50 of each magnetron 12, 14 being constituted by a large cavity 56, oscillates in phase with each output cavity 52 of the magnetron 12, 14.
- connection cavities 50 of the two magnetrons 12, 14 being directly in contact with each other through their connecting portions 50B, without connecting cavity interposed between the connecting cavities, the two connecting cavities 50 oscillate in phase with each other, whatever the wavelength of the radiofrequency wave.
- each output cavity 52 of each magnetron 12, 14 also oscillates in phase with each output cavity 52 of the other magnetron 12, 14.
- the adjustment devices 70 make it possible to vary the wavelength of the radiofrequency wave, by changing the longitudinal length I of the cavities 42.
- each cavity 42 of the magnetron 12, 14 Since the adjustment device 70 of each magnetron 12, 14 comprises a single first element 72 to simultaneously move the first longitudinal end 74 of each resonant cavity 42, and a single second element 76 to simultaneously move the second end 78 of each cavity 42, each cavity 42 of the magnetron 12, 14 always has the same longitudinal length as each other cavity 42 of the magnetron 12, 14, which avoids the amplification of parasitic wavelengths which would reduce the efficiency of the magnetron 12, 14.
- each resonant cavity 42 remains symmetrical with respect to the median radial plane of the anode 22, the amplitude of the portion of the radiofrequency wave picked up at each waveguide. wave 24 is maximum. The efficiency of the device 10 is thus improved.
- first and second transverse magnetic fields of opposite directions, generated by the circulating currents in the cathode 20, make it possible to confine the electrons circulating in the central space 39 close to the median radial plane of the anode 22.
- the cathode 20 comprises two portions 120, 121 independent and electrically insulated from each other.
- a first portion 120 defines the first end 30 of the cathode 20, and a second portion 121 defines the second end 32 of the cathode 20.
- Each portion 120, 121 comprises a cylindrical end section 122 full, and a perforated section 124.
- the portions 120, 121 are arranged head to tail, and the perforated sections 124 are engaged one inside the other, so that they form together a perforated central section 125 of the cathode 20, and that each end section 122 defines a longitudinal end 30, 32, of the cathode 20.
- the perforated section 124 of each portion 120, 121 comprises a plurality of bars 126 extending longitudinally from one longitudinal end of the end section 122 to the end portion 122 of the other portion 120, 121.
- Each bar 126 is connected by a first end 126a with the end portion 122 of the portion 120, 121, the second end 126b of each bar 126 being free.
- a gap 127 is formed between the free end 126b of each bar 126 and the end portion 122 of the other portion 120, 121 of the cathode 20.
- Each bar 126 extends along the periphery of the anode 20, so that the bars 126 together and with the end sections 122 define an empty interior chamber 128. Each bar 126 defines a portion of the outer surface 130 of the cathode 20.
- a window 132 extends between each pair of consecutive bars 126. Each window 132 opens into the outer surface 130 and into the inner chamber 128.
- the portions 120, 121 are arranged so that their perforated sections 124 are interwoven, that is to say that each bar 126 of each pair of consecutive bars is part of a portion 120, 121 different from the portion 120, 121 which includes the other bar 126 of said pair of consecutive bars.
- each bar 126 has a substantially trapezoidal radial section, the short side 134 of the trapezium being oriented towards the chamber 128 and the long side 136 being oriented outwards.
- the two ends 30, 32 of the cathode 20 are electrically insulated from each other, which avoids the circulation of an electric current from one end 30, 32 to the other.
- the interlaced arrangement of the bars 126 of each portion 120, 121 makes it possible, at a constant longitudinal magnetic field intensity, to increase the potential difference between the cathode 20 and the anode 22, which makes it possible to increase the power the wave generated by the device 10 while maintaining a generation device 10 reduced weight and bulk.
- the two portions 120, 121 together constitute a so-called transparent cathode (in English "transparent cathode") which accelerates the start of the generation device 10, including faster access to a stable radio frequency wave generation regime than conventional cathodes.
- the number of magnetrons is two. However, this number is not limiting, and the invention is also directed to devices for generating microwave waves comprising any number, greater than or equal to three, of magnetrons. In this case, some magnetrons have a number of resonant cavities with a connection greater than or equal to two, and these resonant connecting cavities are then identical to each other.
Landscapes
- Microwave Tubes (AREA)
Description
La présente invention concerne un dispositif de génération d'ondes hyperfréquence comprenant une pluralité de magnétrons, chaque magnétron comprenant :
- une cathode, s'étendant selon un axe longitudinal, et
- une anode, entourant la cathode et comprenant une surface intérieure délimitant une pluralité de cavités résonnantes réparties suivant sa périphérie, l'anode comprenant en outre une surface extérieure, opposée à la surface intérieure,
- la ou chaque cavité résonnante de raccordement comprend une portion de raccordement à une cavité résonnante de raccordement d'un autre magnétron, ladite portion de raccordement débouchant dans la surface extérieure de l'anode,
- la ou chaque cavité résonnante de sortie comprend une portion de sortie débouchant dans la surface extérieure de l'anode, en regard d'un guide d'onde.
- a cathode extending along a longitudinal axis, and
- an anode surrounding the cathode and having an inner surface delimiting a plurality of resonant cavities distributed around its periphery, the anode further comprising an outer surface opposed to the inner surface,
- the or each resonant cavity of connection comprises a connecting portion to a resonant cavity connecting another magnetron, said connecting portion opening into the outer surface of the anode,
- the or each resonant output cavity comprises an output portion opening into the outer surface of the anode, facing a waveguide.
De tels dispositifs de génération d'ondes hyperfréquence sont connus (
Il est également connu de coupler différents magnétrons entre eux au sein d'un même dispositif de génération d'ondes hyperfréquence, de façon à augmenter la puissance extraite du dispositif.
Cependant, les dispositifs connus n'offrent pas entière satisfaction.However, the known devices do not offer complete satisfaction.
En effet, les dispositifs connus sont conçus pour générer des ondes hyperfréquence à une fréquence prédéterminée, et il est impossible de changer la fréquence des ondes générées par un dispositif sans occasionner un déphasage des magnétrons dudit dispositif entre eux, ce qui provoque un fonctionnement chaotique du dispositif de génération.Indeed, the known devices are designed to generate microwave waves at a predetermined frequency, and it is impossible to change the frequency of the waves generated by a device without causing a phase shift magnetrons of said device between them, which causes a chaotic operation of the generation device.
Un objectif de l'invention est donc de proposer un dispositif de génération d'ondes hyperfréquence de très forte puissance à rendement optimisé, adapté pour permettre une extraction en phase sur un grand nombre de voies. Un autre objectif préféré de l'invention est de pouvoir, avec un même dispositif de génération, générer des ondes sur un large spectre de fréquence.An object of the invention is therefore to provide a microwave generating device of high power with optimized efficiency, adapted to allow extraction in phase on a large number of channels. Another preferred objective of the invention is to be able, with the same generation device, to generate waves over a broad frequency spectrum.
A cet effet, l'invention a pour objet un dispositif de génération d'ondes hyperfréquence selon la revendication 1, caractérisé en ce que la pluralité de cavités résonnantes de chaque magnétron comprenant une pluralité de cavités résonnantes de raccordement, ou au moins une cavité résonnante de raccordement et au moins une cavité résonnante de sortie, telles que:
- chaque cavité résonnante de raccordement comprend une portion de raccordement à une cavité résonnante de raccordement d'un autre magnétron, ladite portion de raccordement débouchant dans la surface extérieure de l'anode,
- chaque cavité résonnante de sortie comprend une portion de sortie débouchant dans la surface extérieure de l'anode, en regard d'un guide d'onde,
- chaque cavité résonnante de raccordement de chaque magnétron est identique à chaque autre cavité résonnante de raccordement et, si ledit magnétron comprend au moins une cavité de sortie, à chaque cavité résonnante de sortie dudit magnétron.
- each resonant cavity of connection comprises a connecting portion to a resonant cavity connecting another magnetron, said connecting portion opening into the outer surface of the anode,
- each resonant output cavity comprises an output portion opening into the outer surface of the anode, opposite a waveguide,
- each resonant cavity for connecting each magnetron is identical to each other resonant cavity of connection and, if said magnetron comprises at least one output cavity, to each resonant output cavity of said magnetron.
Suivant des modes particuliers de réalisation, le dispositif de génération selon l'invention comprend également l'une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :
- chaque magnétron comprend un dispositif de réglage de la longueur longitudinale de chaque cavité résonnante, la longueur longitudinale étant définie entre des extrémités longitudinales de la cavité résonnante, le dispositif de réglage comprenant au moins un élément mobile définissant une extrémité longitudinale d'au moins une cavité résonnante,
- la pluralité de cavités résonnantes de chaque magnétron comprend une pluralité de cavités résonnantes intermédiaires interposées entre les cavités résonnantes de raccordement ou de sortie, le nombre de cavités résonnantes intermédiaires interposées entre deux cavités résonnantes de raccordement ou de sortie consécutives étant égal pour chaque paire de cavités résonnantes de raccordement ou de sortie consécutives,
- la pluralité de cavités résonnantes de chaque magnétron comprend une pluralité de petites cavités résonnantes et une pluralité de grandes cavités résonnantes, la section radiale de chaque petite cavité résonnante étant inférieure à la section radiale de chaque grande cavité résonnante, les grandes cavités résonnantes constituant les cavités résonnantes de raccordement et/ou de sortie, les petites cavités résonnantes constituant les cavités résonnantes intermédiaires,
- il comprend un unique focalisateur pour générer un champ magnétique longitudinal dans chacun des magnétrons, le focalisateur s'étendant autour de l'ensemble des magnétrons,
- la surface intérieure de l'anode de chaque magnétron définit une pluralité de surfaces annulaires de liaison entre la portion principale et la portion de raccordement ou de sortie de chaque cavité de raccordement ou de sortie, chaque surface annulaire de liaison étant courbe en tout point,
- la portion de raccordement de chaque cavité résonnante de raccordement est directement en contact avec la portion de raccordement d'une autre cavité résonnante de raccordement,
- l'anode de chaque magnétron est invariante par rotation d'un angle 2π/n autour de l'axe longitudinal de la cathode du magnétron, n étant un entier,
- l'anode de chaque magnétron comprend au moins une première partie comprise entre la ou chaque cavité de raccordement et la surface extérieure, et, le cas échéant, au moins une deuxième partie comprise entre la ou chaque cavité résonnante de sortie et la surface extérieure, la ou chaque première partie étant identique à la ou chaque autre première partie et/ou à la ou chaque deuxième partie,
- l'anode de chaque magnétron comprend au moins un premier orifice de fixation du magnétron à un autre magnétron, et, le cas échéant, au moins deuxième orifice de fixation d'une bride de liaison d'un guide d'onde à l'anode, le ou chaque premier orifice de fixation étant identique au ou à chaque autre premier orifice de fixation et/ou au ou à chaque deuxième orifice de fixation.
- each magnetron comprises a device for adjusting the longitudinal length of each resonant cavity, the longitudinal length being defined between longitudinal ends of the resonant cavity, the adjusting device comprising at least one movable element defining a longitudinal end of at least one cavity resonant,
- the plurality of resonant cavities of each magnetron comprises a plurality of intermediate resonant cavities interposed between the resonant connecting or output cavities, the number of intermediate resonant cavities interposed between two consecutive resonant connecting or output cavities being equal for each pair of cavities resonant connection or consecutive output,
- the plurality of resonant cavities of each magnetron comprises a plurality of small resonant cavities and a plurality of large resonant cavities, the section radial of each small resonant cavity being smaller than the radial section of each large resonant cavity, the large resonant cavities constituting the resonant connecting and / or output cavities, the small resonant cavities constituting the intermediate resonant cavities,
- it comprises a single focuser for generating a longitudinal magnetic field in each of the magnetrons, the focusser extending around all the magnetrons,
- the inner surface of the anode of each magnetron defines a plurality of annular connecting surfaces between the main portion and the connecting or outlet portion of each connection or outlet cavity, each annular connecting surface being curved at all points,
- the connecting portion of each resonant connecting cavity is directly in contact with the connecting portion of another resonant connecting cavity,
- the anode of each magnetron is invariant by rotation of an angle 2π / n around the longitudinal axis of the magnetron cathode, n being an integer,
- the anode of each magnetron comprises at least a first portion between the or each connecting cavity and the outer surface, and, where appropriate, at least a second portion between the or each resonant output cavity and the outer surface, the or each first part being identical to the or each other first part and / or to the or each second part,
- the anode of each magnetron comprises at least one first magnetron attachment orifice to another magnetron, and, if appropriate, at least one second orifice for attaching a connection flange of a waveguide to the anode , the or each first fixing orifice being identical to the or each other first fixing orifice and / or to the or each second fixing orifice.
D'autres caractéristiques et avantages apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :
- la
Figure 1 est une vue en coupe partielle selon un plan longitudinal du dispositif de génération selon l'invention, - la
Figure 2 est une vue en coupe du dispositif, selon un plan radial marqué II-II sur laFigure 1 , - la
Figure 3 est une vue en perspective d'un élément d'un dispositif de réglage de la longueur des cavités résonnantes du dispositif de laFigure 1 , - la
Figure 4 est une vue schématique en élévation d'une cathode d'un dispositif de génération, selon une variante de l'invention, et - la
Figure 5 est une vue en perspective d'une portion de la cathode de laFigure 4 .
- the
Figure 1 is a partial sectional view along a longitudinal plane of the generation device according to the invention, - the
Figure 2 is a sectional view of the device, along a radial plane marked II-II on theFigure 1 , - the
Figure 3 is a perspective view of an element of a device for adjusting the length of the resonant cavities of the device of theFigure 1 , - the
Figure 4 is a schematic view in elevation of a cathode of a generating device, according to a variant of the invention, and - the
Figure 5 is a perspective view of a portion of the cathode of theFigure 4 .
Comme visible sur la
Chaque magnétron 12, 14 comprend une cathode 20 et une anode 22 entourant la cathode 20.Each
Dans la suite, on utilisera les termes d'orientation « longitudinal », « radial » et « transversal », qui s'entendent de la façon suivante :
- la
cathode 20 de chaque 12, 14 est allongée suivant la direction longitudinale,magnétron - la direction radiale est orientée de la
cathode 20 de chaque 12, 14 vers l'anode 22 dumagnétron 12, 14, perpendiculairement à la direction longitudinale, etmagnétron - la direction transversale est orthogonale aux directions longitudinale et radiale et définit avec la direction radiale un plan radial perpendiculaire à la direction longitudinale.
- the
cathode 20 of each 12, 14 is elongate in the longitudinal direction,magnetron - the radial direction is oriented from the
cathode 20 of each 12, 14 to themagnetron anode 22 of the 12, 14, perpendicular to the longitudinal direction, andmagnetron - the transverse direction is orthogonal to the longitudinal and radial directions and defines with the radial direction a radial plane perpendicular to the longitudinal direction.
La cathode 20 du magnétron 12, respectivement du magnétron 14, s'étend selon un axe longitudinal Z, respectivement selon un axe longitudinal Z', d'une première extrémité longitudinale 30 jusqu'à une deuxième extrémité longitudinale 32. Elle est de préférence de révolution autour de l'axe longitudinal Z, Z'.The
Chaque cathode 20 comprend une source d'électrons 34 enserrée entre deux doigts tronconiques 35A, 35B. La source d'électrons 34 est typiquement à équidistance des extrémités longitudinales 30, 32 de la cathode 20, formées aux extrémités opposées des doigts 35A, 35B.Each
La source d'électrons 34 est adaptée pour émettre des électrons. Typiquement, la source d'électrons 34 est adaptée pour émettre des électrons sous l'effet d'un fort champ électrique. La source d'électrons 34 est par exemple un cylindre en tungstène ou, comme représenté en carbone pyrolytique.The
La cathode 20 est à un potentiel électrique inférieur au potentiel électrique de l'anode 22, de sorte qu'il existe un champ électrique entre la cathode 20 et l'anode 22, orienté de la cathode 20 vers l'anode 22.The
L'anode 22 de chaque magnétron 12, 14 entoure la cathode 20 du magnétron 12, 14. L'anode 22 s'étend sensiblement longitudinalement, co-axialement avec la cathode 20. Elle présente une surface intérieure 40, orientée vers la cathode 20, délimitant une pluralité de cavités résonnantes 42 réparties sur la périphérie de l'anode 22, et une surface extérieure 44, opposée à la surface intérieure 40. L'anode 22 est formée dans un matériau conducteur, typiquement en acier, en graphite ou en cuivre.The
Dans l'exemple représenté, l'anode 22 est symétrique par rapport à un plan radial médian, perpendiculaire à l'axe longitudinal Z. Dans une variante préférée de l'invention, la source d'électrons 34 est, comme représenté, située dans le plan radial médian de l'anode 22.In the example shown, the
Comme visible sur la
On notera que le terme « cylindrique » est ici à entendre au sens large et couvre aussi bien des cylindres de révolution que des cylindres à section carrée, hexagonale, ou autre.Note that the term "cylindrical" is here to hear in the broad sense and covers both cylinders of revolution cylinders square, hexagonal, or other.
Chaque cavité 42 débouche dans un espace central 49 sensiblement cylindrique s'étendant au centre de l'anode 22. L'espace central 49 s'étend sensiblement longitudinalement. La cathode 20 est disposée sensiblement au centre de l'espace central 49.Each
Dans l'exemple représenté, la pluralité de cavités résonnantes 42 de chaque magnétron 12, 14 comprend une pluralité de grandes cavités résonnantes 56 et de petites cavités résonnantes 54, disposées en alternance les unes des autres autour de la cathode 20. La section radiale de chaque petite cavité résonnante 54 est inférieure à la section radiale de chaque grande cavité résonnante 56. De préférence, les petites 54 et les grandes 56 cavités résonnantes ont toutes la même longueur longitudinale I.In the example shown, the plurality of
Chaque grande cavité 56 est délimitée par deux ailettes 48 et par le corps cylindrique 46. Chaque petite cavité 54 est délimitée à l'intérieur d'une ailette 48 par un orifice radial s'ouvrant en regard de la cathode 20. L'anode 22 présente ainsi une configuration du type « soleil levant » (en anglais « rising sun »). Cette configuration permet de limiter le risque d'oscillations sur des fréquences parasites, et ainsi d'augmenter le rendement du dispositif 10.Each
Selon une variante, chaque grande cavité 56 constitue une cavité résonnante de raccordement 50 ou de sortie 52, et chaque petite cavité 54 constitue une cavité résonnante intermédiaire. Dans l'exemple représenté, chaque magnétron 12, 14 comprend une unique cavité de raccordement 50 et une pluralité de cavités de sortie 52.According to one variant, each
Les cavités 42 sont disposées de sorte que le nombre de cavités intermédiaires 54 disposées entre deux cavités de raccordement 50 ou de sortie 52 consécutives soit égal pour chaque paire de cavités de raccordement 50 ou de sortie 52 consécutives.The
Par « paire de cavités de raccordement ou de sortie », on comprend aussi bien une paire constituée d'une cavité de raccordement 50 et d'une cavité de sortie 52, ou de deux cavités de raccordement 50, ou de deux cavités de sortie 52.By "pair of connection or outlet cavities", it is understood both a pair consisting of a
La cavité de raccordement 50 comprend une portion principale 50A, délimitée par le corps cylindrique 46 et par deux ailettes 48, et une portion 50B de raccordement à la cavité de raccordement 50 de l'autre magnétron 12, 14. La portion de raccordement 50B s'étend depuis la portion principale 50A vers l'extérieur de l'anode 22, à travers le corps cylindrique 46, et débouche dans la surface extérieure 44. La portion de sortie 50B est constituée d'un orifice radial ménagé dans le corps cylindrique 46 suivant un axe de symétrie radial de la cavité 50.The
La surface intérieure 40 de l'anode 22 définit une surface annulaire 51 de liaison entre la portion principale 50A et la portion de raccordement 50B. De préférence, cette surface annulaire 51 est courbe en tout point, c'est-à-dire qu'elle ne présente pas d'arête ou de point saillant, de façon à éviter les risques de claquage.The
Dans l'exemple représenté sur les
Chaque portion de raccordement 50B est symétrique par rapport à un plan radial médian de la portion 50B. Dans une variante préférée de l'invention, le plan radial médian de la portion 50B est confondu avec le plan radial médian de l'anode 22.Each connecting
La portion de raccordement 50B de la cavité de raccordement 50 de chaque magnétron 12, 14 est directement en contact avec la portion de raccordement 50B de la cavité de raccordement 50 de l'autre magnétron 12, 14. En d'autres termes, les magnétrons 12, 14 sont accolés l'un contre l'autre de sorte que la surface extérieure 44 de chaque anode 22 est directement en contact avec la surface extérieure 44 de l'autre anode 22, sans qu'un élément ne soit intercalé entre les deux surfaces extérieures 44. La surface de liaison entre les magnétrons 12, 14 est donc constituée par la surface extérieure 44 de l'anode 22 chaque magnétron 12, 14.The connecting
Chaque cavité de sortie 52 comprend une portion principale 52A, délimitée par le corps cylindrique 46 et par deux ailettes 48, et une portion 52B de sortie. La portion de sortie 52B s'étend depuis la portion principale 52A vers l'extérieur de l'anode 22, à travers le corps cylindrique 46, et débouche dans la surface extérieure 44, en regard d'un guide d'onde 24. La portion de sortie 52B est constituée d'un orifice radial ménagé dans le corps cylindrique 46 suivant un axe de symétrie radial de la cavité 52.Each
La surface intérieure 40 de l'anode 22 définit une surface annulaire 53 de liaison entre la portion principale 52A et la portion de sortie 52B. De préférence, cette surface annulaire 53 est courbe en tout point, c'est-à-dire qu'elle ne présente pas d'arête ou de point saillant, de façon à éviter l'amplification de fréquences d'oscillation parasites.The
Dans l'exemple représenté sur les
Chaque portion de sortie 52B est symétrique par rapport à un plan radial médian de la portion 52B. Dans une variante préférée de l'invention, le plan radial médian de la portion de sortie 52B de chaque cavité de sortie 52 est confondu avec le plan radial médian de la portion de sortie 52B de chaque autre cavité de sortie 52, et avec le plan radial médian de la portion de raccordement 50B de la cavité de raccordement 50.Each
Aucune cavité intermédiaire 54 ne débouche dans la face extérieure 44.No
La cavité de raccordement 50 est identique à chaque cavité de sortie 52 et, de préférence, chaque cavité intermédiaire 54 est identique à chaque autre cavité intermédiaire 54.The connecting
L'anode 22 comprend un première partie 58 comprise entre la cavité de raccordement 50 et la surface extérieure 44, et une pluralité de deuxièmes parties 59, chacune étant comprise entre une cavité de sortie 52 et la surface extérieure 44. Chacune desdites première 58 et deuxième 59 parties est constitué par une partie du corps cylindrique 46 s'étendant entre deux ailettes 48 consécutives.The
La première partie 58 est identique à chaque deuxième partie 59. Ainsi, le comportement de l'anode 22 vis-à-vis des électrons émis par la source d'électrons 34 est semblable au niveau de la cavité de raccordement 50 comme au niveau de chaque cavité de sortie 52.The
En variante, chaque magnétron 12, 14 ne comprend aucune cavité intermédiaire 54, toutes les cavités 42 du magnétron 12, 14 étant alors des cavités de raccordement 50 ou de sortie 52.As a variant, each
De retour à la
De préférence, l'anode 22 de chaque magnétron, respectivement 12, 14, est invariante par rotation d'un angle 2π/n autour de l'axe longitudinal, respectivement Z, Z', où n est le nombre de cavités de raccordement ou de sortie 50, 52.Preferably, the
Chaque guide d'onde 24 s'étend depuis la surface extérieure 44 de l'anode 22 d'un magnétron 12, 14 vers l'extérieur dudit magnétron 12, 14.Each
Comme visible sur les
Le dispositif de génération 10 comprend également des brides 62 de liaison de chaque guide d'onde 24 à l'anode 22 de chaque magnétron 12, 14. Chaque bride 62 est adaptée pour maintenir une extrémité d'un guide d'onde 24 en contact contre la face extérieure 44 d'une anode 22.The
A cet effet, chaque anode 22 comprend des deuxièmes orifices 64 de fixation des brides 62. Chaque deuxième orifice 64 s'étend sensiblement radialement depuis la surface extérieure 44, sans déboucher dans la surface intérieure 40. Chaque deuxième orifice 64 est adapté pour recevoir une vis ou une goupille de fixation de la bride 62 à l'anode 22.For this purpose, each
Chaque premier orifice 66 est identique à chaque deuxième orifice 64.Each
Comme visible sur la
Chaque dispositif de réglage 70 comprend un premier élément mobile 72 délimitant une première extrémité longitudinale 74 de chaque cavité résonnante 42 d'un magnétron 12, 14, un deuxième élément mobile 76 délimitant une deuxième extrémité longitudinale 78 de chaque cavité 42 dudit magnétron 12, 14, et des moyens 80, 82 de déplacement longitudinal de chaque élément mobile 72, 76.Each adjusting
En variante, chaque dispositif de réglage 70 comprend un unique élément mobile 72, 76, une extrémité longitudinale 74, 78 de chaque cavité 42 étant alors définie par un anneau 60.In a variant, each adjusting
Les moyens de déplacement 80, 82 sont adaptés pour déplacer chaque élément mobile 72, 76 de sorte que chaque cavité résonnante de sortie 52 reste symétrique par rapport au plan radial médian de sa portion de sortie 52B, et que la cavité de raccordement 50 reste symétrique par rapport au plan radial médian de sa portion de raccordement 50B. De préférence, les moyens de déplacement 80, 82 sont adaptés pour déplacer chaque élément mobile 72, 76 de sorte que chaque cavité résonnante 42 reste symétrique par rapport au plan radial médian des portions de sortie 52B.The displacement means 80, 82 are adapted to move each
En variante, les moyens de déplacement 80, 82 sont manoeuvrables indépendamment l'un de l'autre, pour un déplacement indépendant des éléments mobiles 72,76.Alternatively, the displacement means 80, 82 are operable independently of one another, for independent movement of the
Les moyens de déplacement longitudinal 80, 82 de chaque élément mobile 72, 76 sont typiquement formés par une pluralité de systèmes vis-écrou 84, chaque système vis-écrou 84 comprenant une vis 86 entraînée en rotation et collaborant avec un taraudage de l'un des anneaux 60 pour transformer le mouvement de rotation de la vis 86 en un mouvement de translation de celle-ci le long de l'axe Z, Z'. A une extrémité, la vis 86 est solidaire en translation de l'élément mobile 72, 76, de sorte que la translation longitudinale de la vis 86 entraîne la translation de l'élément mobile 72, 76.The longitudinal displacement means 80, 82 of each
De préférence, les moyens de déplacement longitudinal 80, 82 comprennent chacun trois systèmes vis-écrou 84 répartis sur la périphérie de l'anode 22 de chaque magnétron 12, 14, autour de l'axe longitudinal Z, Z', de façon à ce que l'effort soit réparti de façon homogène sur chaque élément mobile 72, 76.Preferably, the longitudinal displacement means 80, 82 each comprise three screw-
Dans une variante préférée de l'invention, les moyens de déplacement longitudinal 80, 82 comprennent également un système (non représenté) d'entraînement conjoint des trois vis 86 en rotation, par une courroie. Ainsi, les systèmes vis-écrou 84 sont tous entraînés simultanément, ce qui permet de faire varier simultanément la longueur longitudinale de chaque cavité 42.In a preferred variant of the invention, the longitudinal displacement means 80, 82 also comprise a system (not shown) for joint driving the three
La
L'élément mobile 72 comprend une base cylindrique 90, s'étendant longitudinalement, et un collet d'extrémité 92, s'étendant radialement vers l'extérieur depuis la base 90. La base 90 et le collet 92 sont solidaires l'un de l'autre et sont de préférence venus de matière.The
La base 90 comprend une pluralité de bras longitudinaux 94 séparés par des fentes longitudinales 96. Les bras 94 sont adaptés pour s'engager dans les cavités 42. Les fentes 96 sont adaptées pour accueillir les ailettes 48.The
Le collet 92 est constitué d'une pluralité de panneaux 98. Chaque panneau 98 est lié à un bras 94. Chaque panneau 98 a une forme complémentaire de la section radiale d'une cavité 42. Pour chaque cavité de sortie 52, le panneau 98 associé a une forme complémentaire de la seule partie principale 52A, de la cavité 52.The
Comme visible sur les
Le focalisateur 100 est adapté pour générer un champ magnétique longitudinal dans chaque magnétron 12, 14, pour provoquer la rotation des électrons émis par la source d'électrons 34. De manière connue, le focalisateur 100 comprend, comme représenté, deux bobines de Helmholtz 102 disposées parallèlement l'une à l'autre, chaque bobine 102 s'étendant dans un plan radial. De façon spécifique, le focalisateur 100 s'étend autour de l'ensemble constitué des deux magnétrons 12, 14, sans qu'une portion du focalisateur 100 ne s'étende entre les magnétrons 12, 14.The
Ainsi, le dispositif de génération 10 est allégé, et l'encombrement du dispositif 10 est réduit.Thus, the
Comme visible sur la
Dans l'exemple représenté, chaque cathode 20 est raccordée électriquement à la source de tension 110 par chacune de ses extrémités longitudinales 30, 32 de sorte que le potentiel électrique de chaque extrémité 30, 32 est égal au potentiel électrique de l'autre extrémité 30, 32. La source de tension 110 est ainsi adaptée pour alimenter la cathode 20 en courant par chacune de ces extrémités longitudinales 30, 32. Ainsi, lors du fonctionnement du dispositif de génération 10, le courant circulant entre la première extrémité 30 et la source d'électrons 34 génère un premier champ magnétique transversal dans l'espace central 39, entre la première extrémité 30 et la source d'électrons 34, alors que le courant circulant entre la deuxième extrémité 32 et la source d'électrons 34 génère dans l'espace central 39, entre la deuxième extrémité 32 et la source d'électrons 34, un deuxième champ magnétique transversal, de sens opposé au premier champ magnétique transversal.In the example shown, each
La source de tension 110 est de préférence une source de tension continue, de sorte que, en fonctionnement, le potentiel électrique de chaque extrémité 30, 32 de la cathode 20 reste sensiblement constant. La source de tension 110 est adaptée pour établir une différence de potentiel V entre la cathode 20 et l'anode 22 telle que :
La source de tension comprend deux branches (non représentées) d'alimentation d'une extrémité de la cathode 20. Chaque branche s'étend de l'anode 22 jusqu'à une extrémité 30, 32 de la cathode 20. De préférence, chaque branche est électriquement identique à l'autre branche c'est-à-dire que les caractéristiques électriques (impédance, inductance) de chaque branche sont similaires aux caractéristiques électriques de l'autre branche. Ainsi, en fonctionnement, le courant circulant dans chaque branche est sensiblement égal au courant circulant dans l'autre branche, ce qui permet que les champs magnétiques transversaux aient des valeurs sensiblement égales l'une à l'autre.The voltage source comprises two branches (not shown) supplying an end of the
Dans une variante préférée de l'invention, représenté sur la
Chaque générateur de tension 111, 112 comprend une première borne 114 de branchement électrique d'une extrémité longitudinale 30, 32 de la cathode 20 d'un premier magnétron 12, et une deuxième borne 116 de branchement électrique d'une extrémité longitudinale 30, 32 de la cathode 20 du deuxième magnétron 14. Ces deux bornes 114, 116 sont au même potentiel électrique l'une que l'autre.Each
Chaque extrémité longitudinale 30, 32 de la cathode 20 est raccordée électriquement à la borne 114 d'un générateur de tension 111, 112 via une broche de conduction allongée (non représentée) sensiblement longitudinalement, co-axialement avec la cathode 20. Chaque broche de conduction est isolée de l'anode 22 par une couche isolante 118 la broche de conduction. Chaque couche isolante 118 est typiquement formée par du polyéthylène haute densité, ou par une céramique.Each
Chaque générateur de tension 111,112 est adapté pour établir une différence de potentiel négative entre le potentiel des anodes 22 et le potentiel de chaque borne 114, 116.Each
Chaque générateur de tension 111, 112 est adapté pour que sa borne 114, respectivement sa borne 116, soit au même potentiel électrique que la borne 114, respectivement la borne 116, de l'autre générateur de tension 111, 112.Each
Dans une autre variante, la source de tension 110 est constituée par un unique générateur de tension établissant un différentiel de tension entre deux bornes, les deux extrémités longitudinales 30, 32 de chaque cathode 20 étant raccordées électriquement à une même première borne desdites deux bornes, l'anode 22 de chaque magnétron 12, 14 étant raccordée électriquement à l'autre borne desdites deux bornes.In another variant, the
Dans une troisième variante, une seule extrémité longitudinale 30, 32 de chaque cathode 20 est raccordée à la source de tension 110, l'autre extrémité longitudinale 30, 32 étant typiquement définie par la source d'électrons 34.In a third variant, only one
Dans une quatrième variante, le dispositif 10 comprend une source de tension spécifique à chaque magnétron 12, 14. Ainsi, il est possible de piloter le potentiel de la cathode 20 d'un magnétron 12, 14 indépendamment de la cathode 20 de l'autre magnétron 12, 14. Cela permet notamment de générer des impulsions d'onde plus longues, en démarrant un magnétron 12, 14 lors de la phase d'arrêt de l'autre magnétron 12, 14. Cela permet également d'accélérer le démarrage de l'un des deux magnétrons 12, 14 en le démarrant peu après l'autre magnétron.In a fourth variant, the
Un exemple de fonctionnement du dispositif 10 va maintenant être décrit, en regard des
La source de tension 110 établit une différence de potentiel négative entre l'anode 22 et la cathode 20. Cette différence de potentiel génère un champ électrique radial orienté de la cathode 20 vers l'anode 22 et sous l'effet duquel la source d'électrons 34 émet des électrons.The
Ces électrons, libérés dans l'espace central 49, sont alors soumis au champ électrique radial et au champ magnétique longitudinal. Sous l'effet de la combinaison de ces deux champs, les électrons tournent sur eux-mêmes et se déplacent transversalement dans l'espace central 49, entre la cathode 20 et l'anode 22. Ce déplacement des électrons génère une onde électromagnétique radiofréquence dans chaque magnétron 12, 14. Cette onde est amplifiée grâce aux cavités résonnantes 42 et est captée pour être utilisée, par exemple pour alimenter une antenne d'arme hyperfréquence, grâce aux guides d'onde 24.These electrons, released in the
De préférence, chaque magnétron 12, 14 est adapté pour amplifier un mode π de l'onde radiofréquence, c'est-à-dire un mode de l'onde tel que deux cavités résonnante 42 consécutives oscillent en opposition de phase. Du fait de la configuration « rising sun » de chaque magnétron 12, 14, les grandes cavités 56 oscillent ainsi toutes en phase les unes avec les autres et les petites cavités 54 oscillent également toutes en phase les unes avec les autres, chaque grande cavité 56 oscillant en opposition de phase avec chaque petite cavité 54.Preferably, each
En prélevant l'onde radiofréquence au niveau de plusieurs cavités de sortie 52, il est possible d'extraire une plus grande puissance du dispositif 10, tout en gardant une puissance extraite par cavité de sortie 52 relativement faible, ce qui permet de limiter les risques de claquage au niveau de chaque cavité de sortie 52.By taking the radiofrequency wave at a plurality of
Les grandes cavités 56 constituant les cavités de sortie 52 de chaque magnétron 12, 14, la portion de l'onde radiofréquence captée au niveau de chaque guide d'onde 24 de chaque magnétron 12, 14 est ainsi en phase avec la portion de l'onde captée au niveau de chaque autre guide d'onde 24 du magnétron 12, 14. Il est ainsi particulièrement aisé de sommer lesdites portions d'onde de façon à reconstituer l'onde radiofréquence sans interférence entre les différentes portions d'onde et donc sans perte de signal.The
Cela permet d'augmenter le rendement de chaque magnétron 12, 14.This makes it possible to increase the efficiency of each
Le fait que les cavités de raccordement 50 et de sortie 52 de chaque magnétron 12, 14 soient identiques les unes aux autres contribue également à l'augmentation du rendement de chaque magnétron 12, 14.The fact that the connection and
En outre, la cavité de raccordement 50 de chaque magnétron 12, 14 étant constituée par une grande cavité 56, elle oscille en phase avec chaque cavité de sortie 52 du magnétron 12, 14. Or, les cavités de raccordement 50 des deux magnétrons 12, 14 étant directement en contact l'une avec l'autre à travers leurs portions de raccordement 50B, sans cavité de liaison interposée entre les cavités de raccordement, les deux cavités de raccordement 50 oscillent en phase l'une avec l'autre, quelle que soit la longueur d'onde de l'onde radiofréquence. Ainsi, quelle que soit la longueur d'onde de l'onde radiofréquence, chaque cavité de sortie 52 de chaque magnétron 12, 14 oscille également en phase avec chaque cavité de sortie 52 de l'autre magnétron 12, 14.In addition, the
Cela permet de réduire les interférences entre les portions d'onde captées au niveau des cavités de sortie 52 des différents magnétrons 12, 14, et ainsi d'augmenter le rendement du dispositif 10.This makes it possible to reduce the interference between the wave portions captured at the
Cela permet également de faire varier la longueur d'onde de l'onde radiofréquence générée sur une grande plage de longueurs d'onde, sans diminuer le rendement du dispositif 10.This also makes it possible to vary the wavelength of the radiofrequency wave generated over a wide range of wavelengths, without reducing the efficiency of the
De plus, les dispositifs de réglage 70 permettent de faire varier la longueur d'onde de l'onde radiofréquence, en changeant la longueur longitudinale I des cavités 42.In addition, the
Comme le dispositif de réglage 70 de chaque magnétron 12, 14 comprend un unique premier élément 72 pour déplacer simultanément la première extrémité longitudinale 74 de chaque cavité résonnante 42, et un unique deuxième élément 76 pour déplacer simultanément la deuxième extrémité 78 de chaque cavité 42, chaque cavité 42 du magnétron 12, 14 présente toujours la même longueur longitudinale que chaque autre cavité 42 du magnétron 12, 14, ce qui évite l'amplification de longueurs d'onde parasites qui réduiraient le rendement du magnétron 12, 14.Since the
En outre, les moyens de déplacement 80, 82 étant adaptés pour que chaque cavité résonnante 42 reste symétrique par rapport au plan radial médian de l'anode 22, l'amplitude de la portion de l'onde radiofréquence captée au niveau de chaque guide d'onde 24 est maximale. Le rendement du dispositif 10 est ainsi amélioré.In addition, the displacement means 80, 82 being adapted so that each
Enfin, les premier et deuxième champs magnétiques transversaux, de sens opposés, générés par les courants circulants dans la cathode 20, permettent de confiner les électrons circulant dans l'espace central 39 à proximité du plan radial médian de l'anode 22.Finally, the first and second transverse magnetic fields, of opposite directions, generated by the circulating currents in the
Il est ainsi possible de réduire la longueur longitudinale de l'anode 22 et de réduire l'intensité du champ magnétique longitudinal. Cela a pour conséquence de réduire le poids et l'encombrement de chaque magnétron 12, 14.It is thus possible to reduce the longitudinal length of the
Pour finir, grâce à la combinaison de l'alimentation électrique symétrique des cathodes 20 avec les dispositifs de réglage 70, il est possible de faire varier la longueur d'onde de l'onde générée d'une grande valeur avec de relativement petits déplacements des éléments mobiles 72, 76, et donc de faire varier la longueur d'onde de l'onde générée sur une grande plage de longueur d'onde, en conservant un dispositif 10 à l'encombrement réduit.Finally, by combining the symmetrical power supply of the
Dans la variante représentée sur les
Chaque portion 120, 121, comprend un tronçon d'extrémité cylindrique 122 plein, et un tronçon ajouré 124. Les portions 120, 121 sont disposées tête-bêche, et les tronçons ajourés 124 sont engagés l'un dans l'autre, de sorte qu'ils forment ensemble un tronçon central ajouré 125 de la cathode 20, et que chaque tronçon d'extrémité 122 définit une extrémité longitudinale 30, 32, de la cathode 20.Each
Le tronçon ajouré 124 de chaque portion 120, 121 comprend une pluralité de barreaux 126 s'étendant longitudinalement depuis une extrémité longitudinale du tronçon d'extrémité 122 vers le tronçon d'extrémité 122 de l'autre portion 120, 121. Chaque barreau 126 est lié par une première extrémité 126a avec le tronçon d'extrémité 122 de la portion 120, 121, la deuxième extrémité 126b de chaque barreau 126 étant libre. Un espace 127 vide est ménagé entre l'extrémité libre 126b de chaque barreau 126 et le tronçon d'extrémité 122 de l'autre portion 120, 121 de la cathode 20.The
Chaque barreau 126 s'étend le long de la périphérie de l'anode 20, de sorte que les barreaux 126 définissent ensemble et avec les tronçons d'extrémité 122 une chambre intérieure 128 vide. Chaque barreau 126 définit une portion de la surface extérieure 130 de la cathode 20.Each
Une fenêtre 132 s'étend entre chaque paire de barreaux 126 consécutifs. Chaque fenêtre 132 débouche dans la surface extérieure 130 et dans la chambre intérieure 128.A
Les portions 120, 121 sont disposées de sorte que leurs tronçons ajourés 124 sont entrelacés, c'est-à-dire que chaque barreau 126 de chaque paire de barreaux consécutifs fait partie d'une portion 120, 121 différente de la portion 120, 121 dont fait partie l'autre barreau 126 de ladite paire de barreaux consécutifs.The
Comme visible sur la
Ainsi, les deux extrémités 30, 32 de la cathode 20 sont isolées électriquement l'une de l'autre, ce qui permet d'éviter la circulation d'un courant électrique d'une extrémité 30, 32 à l'autre.Thus, the two ends 30, 32 of the
En outre, la disposition entrelacée des barreaux 126 de chaque portion 120, 121 permet, à intensité de champ magnétique longitudinal constante, d'augmenter la différence de potentiel entre la cathode 20 et l'anode 22, ce qui permet d'augmenter la puissance de l'onde générée par le dispositif 10 en conservant un dispositif de génération 10 à poids et encombrement réduits.In addition, the interlaced arrangement of the
Enfin, les deux portions 120, 121 constituent ensemble une cathode dite transparente (en anglais « transparent cathode ») qui permet d'accélérer le démarrage du dispositif de génération 10, en accédant notamment plus rapidement à un régime stable de génération d'onde radiofréquence que les cathodes classiques.Finally, the two
Dans l'exemple décrit ci-dessus, le nombre de magnétrons est de deux. Cependant, ce nombre n'est pas limitatif, et l'invention vise également les dispositifs de génération d'ondes hyperfréquence comprenant un nombre quelconque, supérieur ou égal à trois, de magnétrons. Dans ce cas, certains magnétrons ont un nombre de cavités résonnantes de raccordement supérieur ou égal à deux, et ces cavités résonnantes de raccordement sont alors identiques les unes aux autres.In the example described above, the number of magnetrons is two. However, this number is not limiting, and the invention is also directed to devices for generating microwave waves comprising any number, greater than or equal to three, of magnetrons. In this case, some magnetrons have a number of resonant cavities with a connection greater than or equal to two, and these resonant connecting cavities are then identical to each other.
Claims (10)
- A hyperfrequency wave generator device (10), comprising a plurality of magnetrons (12, 14), each magnetron (12, 14) comprising:- a cathode (20), extending along a longitudinal axis (Z, Z'), and- an anode (22), surrounding the cathode (20) and comprising an inner surface (40) defining a plurality of resonant cavities (42) distributed along its periphery, the anode (22) also comprising an outer surface (44), opposite the inner surface (42),the generator device (10) also comprising at least one waveguide (24), the or each waveguide (24) extending from the outer surface (44) of the anode (22) of a magnetron (12, 14) toward the outside of said magnetron (12, 14), characterized in that the plurality of resonant cavities (42) of each magnetron (12, 14) comprises a plurality of resonant connecting cavities (50), or at least one resonant connecting cavity (50) and at least one resonant output cavity (52), such that:- each resonant connecting cavity (50) comprises a connecting portion (50B) to a resonant connecting cavity (50) of another magnetron (12, 14), said connecting portion (50B) emerging in the outer surface (44) of the anode (22),- each resonant output cavity (52) comprises an output portion (52B) emerging on the outer surface (44) of the anode (22), opposite a waveguide (24),- each resonant connecting cavity (50) of each magnetron (12, 14) is identical to each other resonant connecting cavity (50) and, if said magnetron (12, 14) comprises at least one output cavity (52), to each resonant output cavity (52) of said magnetron (12, 14).
- The hyperfrequency wave generator device (10) according to claim 1, characterized in that each magnetron (12, 14) comprises a device (70) for adjusting the longitudinal length (I) of each resonant cavity (42), the longitudinal length (I) being defined between the longitudinal ends (74, 78) of the resonant cavity (42), the adjustment device (70) comprising at least one mobile element (72, 76) defining a longitudinal end (74, 78) of at least one resonant cavity (42).
- The hyperfrequency wave generator device (10) according to claim 1, characterized in that the plurality of resonant cavities (42) of each magnetron (12, 14) comprises a plurality of intermediate resonant cavities (54) inserted between the resonant connecting (50) or output (52) cavities, no intermediate resonant cavity (54) emerging in the outer surface (44) of the anode (22), the number of intermediate resonant cavities (54) inserted between two consecutive resonant connecting (50) or output (52) cavities being equal for each pair of consecutive resonant connecting (50) or output (52) cavities.
- The hyperfrequency wave generator device (10) according to claim 3, characterized in that the plurality of resonant cavities (42) of each magnetron (12, 14) comprises a plurality of small resonant cavities (54) and a plurality of large resonant cavities (56), the radial section of each small resonant cavity (54) being smaller than the radial section of each large resonant cavity (56), the large resonant cavities (56) constituting the resonant connecting cavities (50) and, if said magnetron (12, 14) comprises at least one output cavity (52), the or each output cavity (52), the small resonant cavities (54) constituting the intermediate resonant cavities.
- The hyperfrequency wave generator device (10) according to any one of the preceding claims, characterized in that it comprises a single concentrator (100) to generate a longitudinal magnetic field in each of the magnetrons (12, 14), the concentrator (100) extending around the set of magnetrons (12, 14).
- The hyperfrequency wave generator device (10) according to any one of the preceding claims, characterized in that the inner surface (40) of the anode (22) of each magnetron (12, 14) defines a plurality of annular connecting surfaces (51, 53) between the primary portion (50A, 52A) and the connecting (50B) or output (52B) portion of each connecting (50) or output (52) cavity, each annular connecting surface (51, 53) being curved at all points.
- The hyperfrequency wave generator device (10) according to any one of the preceding claims, characterized in that the connecting portion (50B) of each resonant connecting cavity (50) is in direct contact with the connecting portion (50B) of another resonant connecting cavity (50).
- The hyperfrequency wave generator device (10) according to any one of the preceding claims, characterized in that the anode (22) of each magnetron (12, 14) is invariable per rotation by an angle 2π/n around the longitudinal axis (Z, Z') of the cathode (20) of the magnetron (12, 14), n being an integer.
- The hyperfrequency wave generator device (10) according to any one of the preceding claims, characterized in that the anode (22) of each magnetron (12, 14) comprises at least one first portion (58) comprised between the or each connecting cavity (50) and the outer surface (44), and, if said magnetron (12, 14) comprises at least one output cavity (52), at least one second portion (59) comprised between the or each resonant output cavity (52) and the outer surface (44), the or each first portion (58) being identical to the or each other first portion (58) and, if said magnetron (12, 14) comprises at least one output cavity (52), to the or each second portion (59).
- The hyperfrequency wave generator device (10) according to any one of the preceding claims, characterized in that the anode (22) of each magnetron (12, 14) comprises at least one first fastening orifice (66) for fastening the magnetron (12, 14) to another magnetron (12, 14), and, if said magnetron (12, 14) comprises at least one output cavity (52), at least one second fastening orifice (64) for fastening a connecting flange (62) of a waveguide (24) to the anode (22), the or each first fastening orifice (66) being identical to the or each other first fastening orifice (66) and, if said magnetron (12, 14) comprises at least one output cavity (52), to the or each second fastening orifice (64).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1005161A FR2970113B1 (en) | 2010-12-29 | 2010-12-29 | HYPERFREQUENCY WAVE GENERATING DEVICE COMPRISING A PLURALITY OF MAGNETRON |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2472555A1 EP2472555A1 (en) | 2012-07-04 |
EP2472555B1 true EP2472555B1 (en) | 2017-01-11 |
Family
ID=45443002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11306793.8A Active EP2472555B1 (en) | 2010-12-29 | 2011-12-28 | Device for the generation of microwaves, comprising a plurality of magnetrons |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120200223A1 (en) |
EP (1) | EP2472555B1 (en) |
FR (1) | FR2970113B1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2970114B1 (en) * | 2010-12-29 | 2013-04-05 | Thales Sa | HYPERFREQUENCY WAVE GENERATING DEVICE HAVING A CATHODE OF WHICH EACH END IS CONNECTED TO A VOLTAGE SOURCE |
FR3027161B1 (en) * | 2014-10-09 | 2017-05-12 | Centre Nat Rech Scient | METHOD FOR GENERATING HIGH POWER ELECTROMAGNETIC RADIATION |
JP2017111955A (en) * | 2015-12-16 | 2017-06-22 | 東芝ホクト電子株式会社 | Magnetron |
CN111900066B (en) * | 2020-07-15 | 2024-06-04 | 清华大学 | Magnetron with a magnetron body having a plurality of magnetron electrodes |
CN115101396B (en) * | 2021-09-29 | 2024-09-27 | 电子科技大学 | Orthogonal field amplifier with interdigital structure |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB709129A (en) * | 1951-07-13 | 1954-05-19 | English Electric Valve Co Ltd | Improvements in or relating to magnetrons |
GB721967A (en) * | 1952-05-20 | 1955-01-19 | Raytheon Mfg Co | Improvements in or relating to magnetrons |
NL7109134A (en) * | 1971-07-02 | 1973-01-04 | ||
GB2052143B (en) | 1979-06-22 | 1983-04-27 | Dodonov J | Microwave device of the magnetron type |
US4636749A (en) * | 1979-08-13 | 1987-01-13 | Brunswick Corporation | Pulsed magnetron tube having improved electron emitter assembly |
-
2010
- 2010-12-29 FR FR1005161A patent/FR2970113B1/en active Active
-
2011
- 2011-12-27 US US13/338,130 patent/US20120200223A1/en not_active Abandoned
- 2011-12-28 EP EP11306793.8A patent/EP2472555B1/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
FR2970113B1 (en) | 2013-04-05 |
US20120200223A1 (en) | 2012-08-09 |
EP2472555A1 (en) | 2012-07-04 |
FR2970113A1 (en) | 2012-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2472555B1 (en) | Device for the generation of microwaves, comprising a plurality of magnetrons | |
EP0013242B1 (en) | Generator for very high frequency electromagnetic waves | |
EP0248689A1 (en) | Multiple-beam klystron | |
EP2472554A1 (en) | Microwave generating apparatus having a cathode, each extremity thereof being connected to a voltage source | |
EP3171451A1 (en) | Spatial power combiner | |
EP0239466B1 (en) | Klystron output circuit, and klystron comprising it | |
FR2760127A1 (en) | ELECTRON CANON AND KLYSTRON COMPRISING THE SAME | |
EP1432073B1 (en) | Coaxial collinear antenna | |
EP0722651B1 (en) | Device and method for forming a microwave plasma | |
FR2709598A1 (en) | Construction of magnetron usable in particular as a relativistic magnetron. | |
EP2747118B1 (en) | Cathode for electromagnetic wave generator with mutually mobile regions | |
EP2747117B1 (en) | Device for generating microwaves with dual cathodes | |
EP0082769A1 (en) | Frequency multiplier | |
EP0407558B1 (en) | Amplifier or oscillator device operating at ultrahigh frequency | |
EP1982347B1 (en) | Device for coupling between a plasma antenna and a power signal generator | |
EP0122186B1 (en) | Microwave generator | |
WO2009083540A1 (en) | Electron tube electrode protection | |
EP0413018A1 (en) | Hyperfrequency wave generator device with virtual cathode. | |
EP0047684A1 (en) | Missile antenna and missile provided with such an antenna | |
EP1680799B1 (en) | Low spurious radiation microwave tube | |
EP2743962A2 (en) | Microwave generator and related method for generating waves | |
FR2985366A1 (en) | Microwave frequency generator, has waveguides equipped with sealing units, and sealing units allowing supply and/or extraction of electromagnetic waves from cavity by waveguides when sealing units are in pass configuration | |
EP0524295A1 (en) | Small-size coaxial magnetron. | |
FR2784226A1 (en) | Circular crossed field amplifier especially magnetron construction having cylindrical cathode secondary electron transmission and outer cylindrical anode forming cycloidal electronic trajectory. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120611 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160719 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 861960 Country of ref document: AT Kind code of ref document: T Effective date: 20170115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011034240 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170111 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 861960 Country of ref document: AT Kind code of ref document: T Effective date: 20170111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170511 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170411 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170511 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170411 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011034240 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 |
|
26N | No opposition filed |
Effective date: 20171012 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171228 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111228 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170111 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231220 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231220 Year of fee payment: 13 Ref country code: DE Payment date: 20231208 Year of fee payment: 13 |