EP1982347B1 - Device for coupling between a plasma antenna and a power signal generator - Google Patents

Device for coupling between a plasma antenna and a power signal generator Download PDF

Info

Publication number
EP1982347B1
EP1982347B1 EP07712164A EP07712164A EP1982347B1 EP 1982347 B1 EP1982347 B1 EP 1982347B1 EP 07712164 A EP07712164 A EP 07712164A EP 07712164 A EP07712164 A EP 07712164A EP 1982347 B1 EP1982347 B1 EP 1982347B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
laser
plasma
antenna
power signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07712164A
Other languages
German (de)
French (fr)
Other versions
EP1982347A1 (en
Inventor
Emmanuel Marquis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1982347A1 publication Critical patent/EP1982347A1/en
Application granted granted Critical
Publication of EP1982347B1 publication Critical patent/EP1982347B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a coupling device between a plasma antenna and a power signal generator, and to a method of using a plasma antenna comprising such a coupling device.
  • plasma antennas for example according to the patent. US 3404403 .
  • This patent describes a plasma antenna comprising a pulsed laser source, means for focusing the laser beam at different points to ionize a column of air and means for coupling a signal at the base of the ionized air column, this column acting as a radiating element for transmitting and / or receiving a radio signal.
  • Plasma antennas are also known from the patent US 6087993 and the patent FR-2 863 782 .
  • the subject of the present invention is a coupling device between a plasma column acting as an antenna and a power signal generator, which device allows a very good power transfer between the electric generator and the plasma column when the latter is formed.
  • the present invention also relates to an antenna using such a device, antenna can operate at very low frequencies.
  • the present invention relates to a method of forming a plasma column to form an antenna.
  • the coupling device is associated with a laser and is characterized in that it comprises at least two conductive electrodes each pierced by a hole, these holes being coaxial, the electrodes being connected on the one hand to a continuous high voltage source and secondly a power signal generator, the laser being arranged so that its beam arrives along the axis of said electrode holes.
  • the present invention is described below with reference to the creation of an ionized air column, and it is understood that the ionization of this column can be reduced to a filament ionization at the axis of symmetry, as described in the above-mentioned French patent, FR-2 863 782 when using a femtosecond type laser.
  • the preferred embodiment of the device of the invention comprises two electrodes pierced with coaxial holes, but the device of the invention may comprise a number more high electrodes.
  • the device described below is shown in a position oriented so that the plasma column that it can create is vertical, but it is understood that this device can have any other orientation, so that the antenna for example horizontal.
  • the plasma antenna obtained according to the invention is described here as an emission antenna, but it is understood that it can also be used in reception, provided, of course, to keep the low generator connected or connected. very low frequency described below.
  • the device represented in figure 1 comprises two metal plates 1, 2 forming electrodes and each pierced with a hole 3, 4 respectively, the two holes being coaxial, their common axis being referenced 5.
  • the shape of these electrodes is not critical. They may for example be circular or polygonal.
  • the holes 3 and 4 are preferably drilled in the center of these electrodes.
  • the electrodes 1 and 2 are connected on the one hand via ballast resistors 6 and 7 respectively, to a high voltage source 8, a resistor 9 being connected between the two electrodes, at their junction with the resistors 6 and 7. In the following figures, this resistor 9 is not shown, but it is understood that it may be present.
  • the positive pole of the source 8 is preferably connected to the electrode 2 (in particular when these electrodes are arranged horizontally and at a short distance from the ground).
  • the electrodes 1 and 2 are connected via continuous insulation capacitors 10, 11 respectively and a line 12, preferably coaxial, to a power transmitter 13 of low or very low frequency and high voltage peak which may be near or far away from the electrodes 1, 2 of the antenna.
  • the shield of line 12 is grounded.
  • the distance D between the electrodes 1 and 2 is a function of the value of the high voltage of the source 8. In general, this distance D must be greater than the breakdown distance between the electrodes in the environment in the absence of plasma column, and be smaller than the breakdown distance between the electrodes in the presence of the plasma column.
  • a priming laser 14 is disposed under the electrode 1, so that the axis of the beam that it produces coincides with the axis 5 at least just before reaching the electrode 1.
  • a mirror is provided which returns its output beam along the axis 5.
  • a semi-transparent mirror on the axis 5 if the we want to use two lasers. Two lasers can also be used, for example by dedicating one to the shots and the other to the maintenance of the ionized column forming an antenna.
  • the electrodes 1 and 2 are circular and have a diameter of a few tens of centimeters to a few meters, their mutual distance D is about 50 cm to 1 m, the diameter of the holes 3 and 4 is about 1 cm.
  • the voltage of the source 8 is about 10 to 20 kV, and the power provided by the transmitter 13 can be between a few hundred Watts and a few MW. The average power it delivers must be sufficient to maintain the plasma generated by the high voltage source 8.
  • the high voltage source 8 is activated.
  • the laser 14 is fired, focused on the axis 5, beyond the electrode 2. This firing simultaneously produces a discharge between the electrodes 1 and 2 (ionized air column 17 between these electrodes) and the formation of an ionized column 18, thinner than the column 17, centered on the axis 5.
  • the generator 13 is activated, which injects power into the "virtual" antenna constituted by the plasma columns 17 and 18 and which maintains the ionization of these columns, since, as illustrated in FIG. figure 7 , the instantaneous potential difference V DC between the electrodes 1 and 2 is constant from the instant T1 (see relations below). It will be noted that it is necessary to respect between the instants T1 and T2 a minimum time (typically of the order of a few tens of nanoseconds) so that the plasma column is well established between the electrodes 1 and 2.
  • V AC A cos ⁇ t
  • V DC V DC
  • V E ⁇ 1 V AC - V DC
  • V E ⁇ 2 V AC + V DC so that there is constantly the same potential difference between the electrodes 1 and 2.
  • the ionized column 18 forming antenna disappears rapidly (between T3 and T4), and thereby the antenna disappears.
  • figure 8 a variant of the device Figures 1 to 6 .
  • FIG 8 the same elements as those of Figures 1 to 6 are assigned the same numerical references.
  • the figure 8 in order to introduce a continuous potential asymmetry between the electrodes 1 and 2, instead of the resistor 9 of the figure 1 a potentiometric arrangement formed for example by a fixed resistor 19 in series with a variable resistor 20, these two resistors being connected between the electrodes 1 and 2, their common point being connected to the ground.
  • the adjustment of the potentiometer thus formed allows a fine adjustment of the potentials applied to the electrodes 1 and 2, in order to compensate for the losses of direct current absorbed by the plasma conducting antenna. Indeed, the leak resistance on the side of the electrode 2 is lower.
  • FIG. 2 after activating the high voltage source 8 (T0), the laser 14 is activated (T1) to perform a first "shot” focused on the axis 5, between the electrodes 1 and 2, to create by high voltage discharge a thin conductive plasma column 15 between these two electrodes.
  • FIG. 4 The discharge 16 has the effect of widening the conductive plasma column between the electrodes 1 and 2, the enlarged column being noted 17. It will be noted that after the creation of the plasma antenna, it is possible to short-circuit capacitors 10 and 11 until the end of the use of the plasma antenna. The role of the high voltage generator 8 is then to maintain the ionized column 17 made conductive. It will be noted that the phenomena illustrated in Figures 2 to 4 are almost simultaneous, and have been decomposed for easy description.
  • FIG. 5 A second firing of the laser 14 (T2), focused on the axis 5, is carried out beyond the electrode 2. This second firing causes the formation of a plasma column 18 in continuity of electrical conduction with the column. 17. Since the laser 14 is preferably of the femtosecond type, the column 18 is then reduced to plasma filaments, as described for example in the aforesaid French patent. FR-2 863 782 , and its length can reach several kilometers, which gives it the characteristics necessary for a low (or very low) frequency antenna.
  • FIG. figure 6 the transmitter 13 (T3), which injects power, is activated in the "virtual" antenna. Constituted by the plasma columns 17 and 18 and which maintains the ionization of these columns because, as illustrated in FIG. figure 9 , the instantaneous potential difference V DC between the electrodes 1 and 2 is constant from the instant T1 (as explained above with reference to the figure 7 ).
  • the device of the invention in addition to the advantages inherent to the actual plasma antenna, the conductive coupling between the electrodes and the antenna, a very good efficiency of the power transfer between the generator 13 and the generator is obtained.
  • the antenna (these electrodes being brought to the same instantaneous AC potential, practically all the alternative power is injected into the antenna).
  • this device is very economical, since it only requires a source of high voltage at low power.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Burglar Alarm Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

The present invention relates to a device for coupling between a plasma column serving as an antenna and an electric power signal generator, associated with a laser. This device comprises at least two conducting electrodes, each pierced with a hole, these holes being coaxial, the electrodes being connected on the one hand to a high voltage direct current source and on the other hand to power signal alternating current source, the laser(s) being placed do that its (their) beam arrives along the axis of said holes of the electrodes.

Description

La présente invention se rapporte à un dispositif de couplage entre une antenne à plasma et un générateur de signal de puissance, ainsi qu'à un procédé d'utilisation d'une antenne à plasma comportant un tel dispositif de couplage.The present invention relates to a coupling device between a plasma antenna and a power signal generator, and to a method of using a plasma antenna comprising such a coupling device.

Les antennes radioélectriques classiques (métalliques) fonctionnent généralement dans une bande de fréquences étroite, et leurs dimensions sont proportionnelles à la longueur d'onde de fonctionnement. Dans les domaines des basses fréquences (« L.F. »), très basses fréquences (« V.L.F. ») et extrêmement basses fréquénces(« E.L.F. »), la hauteur des antennes de type "quart-d'onde" devrait atteindre plusieurs centaines de mètres à plusieurs centaines de kilomètres (par exemple 750 m à 100 kHz), ce qui rend leur construction très difficile ou même irréalisable. De plus, elles ne peuvent en aucun cas être facilement déplaçables. Or, ces domaines de fréquences sont utilisés notamment pour les communications avec les sous-marins en plongée.Conventional (metallic) radio antennas generally operate in a narrow frequency band, and their dimensions are proportional to the operating wavelength. In the areas of low frequencies ("LF"), very low frequencies ("VLF") and extremely low frequencies ("ELF"), the height of "quarter-wave" antennas is expected to reach several hundred meters at several hundred kilometers (for example 750 m at 100 kHz), which makes their construction very difficult or even unachievable. Moreover, they can not in any case be easily moved. However, these frequency areas are used in particular for communications with submarines underwater.

Pour résoudre ces problèmes, il est connu d'utiliser des antennes dites « antennes à plasma », par exemple d'après le brevet US-3,404,403 . Ce brevet décrit une antenne à plasma comprenant une source laser pulsée, des moyens pour focaliser le faisceau laser en différents points pour ioniser une colonne d'air et des moyens pour coupler un signal à la base de la colonne d'air ionisée, cette colonne faisant fonction d'élément rayonnant pour émettre et/ou recevoir un signal radioélectrique. On connaît également des antennes à plasma d'après le brevet US-6,087,993 et le brevet FR-2 863 782 . Dans le premier document, il s'agit de rendre l'antenne déplaçable et de diminuer la longueur de la colonne d'air ionisée en modulant le courant d'excitation du générateur d'ionisation et en concentrant la production d'électrons dans au moins une partie de cette colonne. Dans le second, on emploie un laser femtoseconde pour générer un filament dans la colonne d'air ionisée.To solve these problems, it is known to use antennas known as "plasma antennas", for example according to the patent. US 3404403 . This patent describes a plasma antenna comprising a pulsed laser source, means for focusing the laser beam at different points to ionize a column of air and means for coupling a signal at the base of the ionized air column, this column acting as a radiating element for transmitting and / or receiving a radio signal. Plasma antennas are also known from the patent US 6087993 and the patent FR-2 863 782 . In the first document, it is a question of making the antenna movable and of reducing the length of the ionized air column by modulating the excitation current of the ionization generator and concentrating the production of electrons in at least part of this column. In the second, a femtosecond laser is used to generate a filament in the ionized air column.

Les antennes à plasma décrites dans ces documents et fonctionnant par ionisation d'air sont furtives et ne nécessitent aucune infrastructure, à l'inverse des antennes classiques. Cependant, dans toutes ces antennes à plasma connues, le couplage entre la colonne de plasma et le générateur électrique de puissance qui génère le signal à émettre n'est pas optimisé. En effet, par exemple le susdit brevet français FR-2 853 782 décrit un dispositif de couplage capacitif (de l'ordre de quelques pF) ou inductif dont l'impédance est très faible, ce qui dégrade nettement le transfert de puissance entre le générateur électrique et l'antenne.The plasma antennas described in these documents and operating by air ionization are stealthy and require no infrastructure, unlike conventional antennas. However, in all these known plasma antennas, the coupling between the plasma column and the electric power generator that generates the signal to be transmitted is not optimized. Indeed, for example the above-mentioned French patent FR-2,853,782 describes a capacitive coupling device (of the order of a few pF) or inductive coupling whose impedance is very low, which significantly degrades the power transfer between the electric generator and the antenna.

La présente invention a pour objet un dispositif de couplage entre une colonne de plasma faisant fonction d'antenne et un générateur de signal de puissance, dispositif qui permette un très bon transfert de puissance entre le générateur électrique et la colonne de plasma lorsque celle-ci est formée. La présente invention a également pour objet une antenne utilisant un tel dispositif, antenne pouvant fonctionner à de très basses fréquences. Enfin, la présente invention a pour objet un procédé de formation d'une colonne de plasma en vue de constituer une antenne.The subject of the present invention is a coupling device between a plasma column acting as an antenna and a power signal generator, which device allows a very good power transfer between the electric generator and the plasma column when the latter is formed. The present invention also relates to an antenna using such a device, antenna can operate at very low frequencies. Finally, the present invention relates to a method of forming a plasma column to form an antenna.

Le dispositif de couplage conforme à l'invention est associé à un laser et il est caractérisé en ce qu'il comporte au moins deux électrodes conductrices percées chacune d'un trou, ces trous étant coaxiaux, les électrodes étant reliées d'une part à une source de haute tension continue et d'autre part à un générateur de signal de puissance, le laser étant disposé de façon que son faisceau arrive selon l'axe desdits trous des électrodes.The coupling device according to the invention is associated with a laser and is characterized in that it comprises at least two conductive electrodes each pierced by a hole, these holes being coaxial, the electrodes being connected on the one hand to a continuous high voltage source and secondly a power signal generator, the laser being arranged so that its beam arrives along the axis of said electrode holes.

La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel :

  • la figure 1 est un schéma simplifié d'un dispositif conforme à l'invention pour la création d'une antenne à plasma;
  • les figures 2 à 6 sont des schémas simplifiés du dispositif de la figure 1 montrant les différentes phases successives d'un exemple de mise en oeuvre de l'invention pour la création d'une antenne à plasma;
  • la figure 7 est un chronogramme simplifié illustrant les phases de mise en oeuvre des figures 2 à 6;
  • la figure 8 est un schéma simplifié d'une variante du dispositif de l'invention; et
  • la figure 9 est un chronogramme d'une variante du procédé de l'invention, avec deux tirs laser.
The present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawing, in which:
  • the figure 1 is a simplified diagram of a device according to the invention for the creation of a plasma antenna;
  • the Figures 2 to 6 are simplified diagrams of the device of the figure 1 showing the different successive phases of an exemplary implementation of the invention for the creation of a plasma antenna;
  • the figure 7 is a simplified chronogram illustrating the phases of implementation of Figures 2 to 6 ;
  • the figure 8 is a simplified diagram of a variant of the device of the invention; and
  • the figure 9 is a chronogram of a variant of the method of the invention, with two laser shots.

La présente invention est décrite ci-dessous en référence à la création d'une colonne d'air ionisée, et il est bien entendu que l'ionisation de cette colonne peut se réduire à une ionisation filamenteuse au niveau de l'axe de symétrie, comme décrit dans le susdit brevet français, FR-2 863 782 lorsque l'on utilise un laser du type femtoseconde. Il est également bien entendu que le mode de réalisation préféré du dispositif de l'invention, tel que décrit ci-dessous, comporte deux électrodes percées de trous coaxiaux, mais le dispositif de l'invention peut comporter un nombre plus élevé d'électrodes. Le dispositif décrit ci-dessous est représenté dans une position orientée de façon que la colonne de plasma qu'il permet de créer soit verticale, mais il est bien entendu que ce dispositif peut avoir n'importe quelle autre orientation, afin que l'antenne soit par exemple horizontale. L'antenne à plasma obtenue selon l'invention est décrite ici en tant qu'antenne d'émission, mais il est bien entendu qu'elle peut également être utilisée en réception, à condition, bien entendu, de garder branché le générateur basse ou très basse fréquence décrit ci-dessous.The present invention is described below with reference to the creation of an ionized air column, and it is understood that the ionization of this column can be reduced to a filament ionization at the axis of symmetry, as described in the above-mentioned French patent, FR-2 863 782 when using a femtosecond type laser. It is also understood that the preferred embodiment of the device of the invention, as described below, comprises two electrodes pierced with coaxial holes, but the device of the invention may comprise a number more high electrodes. The device described below is shown in a position oriented so that the plasma column that it can create is vertical, but it is understood that this device can have any other orientation, so that the antenna for example horizontal. The plasma antenna obtained according to the invention is described here as an emission antenna, but it is understood that it can also be used in reception, provided, of course, to keep the low generator connected or connected. very low frequency described below.

Le dispositif représenté en figure 1 comporte deux plaques métalliques 1, 2 formant électrodes et percées chacune d'un trou 3, 4 respectivement, les deux trous étant coaxiaux, leur axe commun étant référencé 5. La forme de ces électrodes n'est pas critique. Elles peuvent par exemple être circulaires ou polygonales. Les trous 3 et 4 sont percés de préférence au centre de ces électrodes.The device represented in figure 1 comprises two metal plates 1, 2 forming electrodes and each pierced with a hole 3, 4 respectively, the two holes being coaxial, their common axis being referenced 5. The shape of these electrodes is not critical. They may for example be circular or polygonal. The holes 3 and 4 are preferably drilled in the center of these electrodes.

Les électrodes 1 et 2 sont reliées d'une part via des résistances ballast 6 et 7 respectivement, à une source de haute tension 8, une résistance 9 étant branchée entre les deux électrodes, au niveau de leur jonction avec les résistances 6 et 7. Sur les figures suivantes, cette résistance 9 n'est pas représentée, mais il est bien entendu qu'elle peut être présente. Le pôle positif de la source 8 est relié, de préférence, à l'électrode 2 (en particulier lorsque ces électrodes sont disposées horizontalement et à faible distance du sol). D'autre part, les électrodes 1 et 2 sont reliées via des condensateurs d'isolation en continu 10, 11 respectivement et une ligne 12, de préférence coaxiale, à un émetteur de puissance 13 de basse ou très basse fréquence et à haute tension crête, qui peut être proche ou éloigné des électrodes 1, 2 de l'antenne. Le blindage de la ligne 12 est relié à la terre. La distance D entre les électrodes 1 et 2 est fonction de la valeur de la haute tension de la source 8. De façon générale, cette distance D doit être supérieure à la distance de claquage entre les électrodes dans le milieu ambiant en l'absence de colonne de plasma, et être inférieure à la distance de claquage entre les électrodes en présence de la colonne de plasma.The electrodes 1 and 2 are connected on the one hand via ballast resistors 6 and 7 respectively, to a high voltage source 8, a resistor 9 being connected between the two electrodes, at their junction with the resistors 6 and 7. In the following figures, this resistor 9 is not shown, but it is understood that it may be present. The positive pole of the source 8 is preferably connected to the electrode 2 (in particular when these electrodes are arranged horizontally and at a short distance from the ground). On the other hand, the electrodes 1 and 2 are connected via continuous insulation capacitors 10, 11 respectively and a line 12, preferably coaxial, to a power transmitter 13 of low or very low frequency and high voltage peak which may be near or far away from the electrodes 1, 2 of the antenna. The shield of line 12 is grounded. The distance D between the electrodes 1 and 2 is a function of the value of the high voltage of the source 8. In general, this distance D must be greater than the breakdown distance between the electrodes in the environment in the absence of plasma column, and be smaller than the breakdown distance between the electrodes in the presence of the plasma column.

Un laser d'amorçage 14 est disposé sous l'électrode 1, de façon que l'axe du faisceau qu'il produit soit confondu avec l'axe 5 au moins juste avant d'atteindre l'électrode 1. Ainsi, si l'on désire disposer le laser 14 de façon que son axe de sortie soit horizontal, on dispose alors un miroir qui renvoie son faisceau de sortie selon l'axe 5. On peut aussi disposer un miroir semi-transparent sur l'axe 5 si l'on veut utiliser deux lasers. On peut utiliser aussi deux lasers par exemple en dédiant l'un aux tirs et l'autre à l'entretien de la colonne ionisée formant antenne.A priming laser 14 is disposed under the electrode 1, so that the axis of the beam that it produces coincides with the axis 5 at least just before reaching the electrode 1. Thus, if the it is desired to have the laser 14 so that its output axis is horizontal, then a mirror is provided which returns its output beam along the axis 5. It is also possible to have a semi-transparent mirror on the axis 5 if the we want to use two lasers. Two lasers can also be used, for example by dedicating one to the shots and the other to the maintenance of the ionized column forming an antenna.

Selon certains des modes de réalisation typiques de l'invention, nullement limitatifs, les électrodes 1 et 2 sont circulaires et ont un diamètre de quelques dizaines de centimètres à quelques mètres, leur distance mutuelle D est d'environ 50 cm à 1 m, le diamètre des trous 3 et 4 est d'environ 1 cm. La tension de la source 8 est d'environ 10 à 20 kV, et la puissance fournie par l'émetteur 13 peut être comprise entre quelques centaines de Watts et quelques MW. La puissance moyenne qu'il délivre doit être suffisante pour entretenir le plasma engendré par la source haute tension 8.According to some of the typical embodiments of the invention, in no way limiting, the electrodes 1 and 2 are circular and have a diameter of a few tens of centimeters to a few meters, their mutual distance D is about 50 cm to 1 m, the diameter of the holes 3 and 4 is about 1 cm. The voltage of the source 8 is about 10 to 20 kV, and the power provided by the transmitter 13 can be between a few hundred Watts and a few MW. The average power it delivers must be sufficient to maintain the plasma generated by the high voltage source 8.

On va d'abord exposer à l'aide du schéma de la figure 6 et du chronogramme de la figure 7 les différentes phases successives de la création d'une antenne à plasma à l'aide du dispositif de l'invention, dans le cas d'un tir unique du laser 14. Ensuite, en référence aux figures 2 à 6 et au chronogramme de la figure 9, on exposera les différentes étapes de la formation de l'antenne plasma dans le cas de deux tirs du laser 14. Pour des raisons de présentation des explications, ces phases sont exposées consécutivement, mais il est bien entendu que dans les faits ces phases peuvent être simultanées ou quasi simultanées.We will first expose using the diagram of the figure 6 and the chronogram of the figure 7 the different successive phases of the creation of a plasma antenna using the device of the invention, in the case of a single shot of the laser 14. Then, with reference to the Figures 2 to 6 and the chronogram of the figure 9 the various steps of the plasma antenna formation will be explained in the case of two shots of the laser 14. For reasons of presentation of the explanations, these phases are exposed consecutively, but it is understood that in fact these phases can be simultaneous or almost simultaneous.

On suppose qu'initialement aucun des éléments 8, 13 et 14 n'est activé. Pour illustrer la chronologie des différentes phases, on se référera aux repères temporels T0 à T4 du chronogramme de la figure 7.It is assumed that initially none of the elements 8, 13 and 14 is activated. To illustrate the chronology of the different phases, reference will be made to the time references T0 to T4 of the timing diagram of the figure 7 .

A l'instant T0, on active la source de haute tension 8.At time T0, the high voltage source 8 is activated.

A l'instant T1, on effectue un tir du laser 14, focalisé sur l'axe 5, au-delà de l'électrode 2. Ce tir produit simultanément une décharge entre les électrodes 1 et 2 (colonne d'air ionisée 17 entre ces électrodes) et la formation d'une colonne ionisée 18, plus fine que la colonne 17, centrée sur l'axe 5.At time T1, the laser 14 is fired, focused on the axis 5, beyond the electrode 2. This firing simultaneously produces a discharge between the electrodes 1 and 2 (ionized air column 17 between these electrodes) and the formation of an ionized column 18, thinner than the column 17, centered on the axis 5.

A l'instant T2, on active le générateur 13, qui injecte de la puissance dans l'antenne « virtuelle » constituée par les colonnes de plasma 17 et 18 et qui entretient l'ionisation de ces colonnes, car, comme illustré en figure 7, la différence de potentiel instantanée VDC entre les électrodes 1 et 2 est constante à partir de l'instant T1 (voir relations ci-dessous). On remarquera qu'il faut respecter entre les instants T1 et T2 un temps minimal (typiquement de l'ordre de quelques dizaines de nanosecondes) pour que la colonne de plasma soit bien établie entre les électrodes 1 et 2.At time T2, the generator 13 is activated, which injects power into the "virtual" antenna constituted by the plasma columns 17 and 18 and which maintains the ionization of these columns, since, as illustrated in FIG. figure 7 , the instantaneous potential difference V DC between the electrodes 1 and 2 is constant from the instant T1 (see relations below). It will be noted that it is necessary to respect between the instants T1 and T2 a minimum time (typically of the order of a few tens of nanoseconds) so that the plasma column is well established between the electrodes 1 and 2.

Le signal délivré par l'émetteur 13 peut s'écrire sous la forme: V AC = A cos ωt ,

Figure imgb0001
tandis que la tension appliquée par la source 8 aux électrodes 1 et 2 est de la forme -/+ VDC.The signal delivered by the transmitter 13 can be written in the form: V AC = A cos ωt ,
Figure imgb0001
while the voltage applied by the source 8 to the electrodes 1 and 2 is of the form - / + V DC .

Les potentiels instantanés des électrodes 1 et 2 sont de la forme : V E 1 = V AC - V DC

Figure imgb0002
V E 2 = V AC + V DC
Figure imgb0003

ce qui fait qu'il y a constamment la même différence de potentiel entre les électrodes 1 et 2.The instantaneous potentials of electrodes 1 and 2 are of the form: V E 1 = V AC - V DC
Figure imgb0002
V E 2 = V AC + V DC
Figure imgb0003

so that there is constantly the same potential difference between the electrodes 1 and 2.

En régime d'émission, les électrodes 1 et 2 étant portées au même potentiel alternatif, il n'y a pas de déperdition de puissance alternative, cette puissance étant injectée en quasi totalité dans l'antenne à plasma et contribuant à l'entretien du plasma.In transmission mode, the electrodes 1 and 2 being brought to the same AC potential, there is no loss of alternative power, this power being injected almost completely into the plasma antenna and contributing to the maintenance of the plasma.

A la fin de l'émission (T3), le signal de l'émetteur 13 étant supprimé, la colonne ionisée 18 formant antenne disparaît rapidement (entre T3 et T4), et par là-même l'antenne disparaît.At the end of the transmission (T3), the signal of the transmitter 13 being suppressed, the ionized column 18 forming antenna disappears rapidly (between T3 and T4), and thereby the antenna disappears.

On a représenté en figure 8 une variante du dispositif des figures 1 à 6.We have shown in figure 8 a variant of the device Figures 1 to 6 .

Sur cette figure 8, les mêmes éléments que ceux des figures 1 à 6 sont affectés des mêmes références numériques. Dans ce dispositif de la figure 8, afin d'introduire une asymétrie de potentiel continu entre les électrodes 1 et 2, on utilise à la place de la résistance 9 de la figure 1 un montage potentiométrique formé par exemple par une résistance fixe 19 en série avec une résistance variable 20, ces deux résistances étant branchées entre les électrodes 1 et 2, leur point commun étant relié à la terre. Le réglage du potentiomètre ainsi formé permet un réglage fin des potentiels appliqués aux électrodes 1 et 2, afin de compenser les pertes de courant continu absorbé par l'antenne conductrice à plasma. En effet, la résistance de fuite du côté de l'électrode 2 est plus faible.On this figure 8 , the same elements as those of Figures 1 to 6 are assigned the same numerical references. In this device the figure 8 in order to introduce a continuous potential asymmetry between the electrodes 1 and 2, instead of the resistor 9 of the figure 1 a potentiometric arrangement formed for example by a fixed resistor 19 in series with a variable resistor 20, these two resistors being connected between the electrodes 1 and 2, their common point being connected to the ground. The adjustment of the potentiometer thus formed allows a fine adjustment of the potentials applied to the electrodes 1 and 2, in order to compensate for the losses of direct current absorbed by the plasma conducting antenna. Indeed, the leak resistance on the side of the electrode 2 is lower.

En variante de l'invention (voir chronogramme de la figure 9), après l'activation de la source de haute tension (T0), on effectue un premier tir laser (T1), localisé sur l'axe 5 entre les deux électrodes, puis un deuxième tir laser (T2) focalisé sur le même axe 5, mais au-delà de l'électrode 2, puis on active le générateur 13 (T3). L'antenne plasma disparaît (T5) peu après la fin de l'activation du générateur 13 (T4). Dans le détail les différentes étapes de ce processus sont les suivantes :In a variant of the invention (see chronogram of the figure 9 ), after the activation of the high voltage source (T0), a first laser firing (T1), located on the axis 5 between the two electrodes, is carried out, then a second laser firing (T2) focused on the same axis 5, but beyond the electrode 2, then the generator 13 (T3) is activated. The plasma antenna disappears (T5) shortly after the end of the activation of the generator 13 (T4). In detail the different stages of this process are as follows:

Figure 2 : après avoir activé la source haute tension 8 (T0), le laser 14 est activé (T1) pour effectuer un premier « tir » focalisé sur l'axe 5, entre les électrodes 1 et 2, afin de créer par décharge haute tension une fine colonne de plasma conducteur 15 entre ces deux électrodes. Figure 2 : after activating the high voltage source 8 (T0), the laser 14 is activated (T1) to perform a first "shot" focused on the axis 5, between the electrodes 1 and 2, to create by high voltage discharge a thin conductive plasma column 15 between these two electrodes.

Figure 3 : le tir laser provoque la décharge haute tension 16 dans la colonne 15 de plasma, entre les électrodes 1 et 2. Figure 3 laser firing causes the high voltage discharge 16 in the plasma column 15 between the electrodes 1 and 2.

Figure 4 : La décharge 16 a pour effet d'élargir la colonne de plasma conducteur entre les électrodes 1 et 2, la colonne élargie étant notée 17. On notera qu'après la création de l'antenne à plasma, il est possible de court-circuiter les condensateurs 10 et 11, et ce, jusqu'à la fin de l'utilisation de l'antenne à plasma. Le rôle du générateur haute tension 8 est alors d'entretenir la colonne ionisée 17 rendue conductrice. On notera que les phénomènes illustrés en figures 2 à 4 sont pratiquement simultanés, et ont été décomposés pour en faciliter la description. Figure 4 The discharge 16 has the effect of widening the conductive plasma column between the electrodes 1 and 2, the enlarged column being noted 17. It will be noted that after the creation of the plasma antenna, it is possible to short-circuit capacitors 10 and 11 until the end of the use of the plasma antenna. The role of the high voltage generator 8 is then to maintain the ionized column 17 made conductive. It will be noted that the phenomena illustrated in Figures 2 to 4 are almost simultaneous, and have been decomposed for easy description.

Figure 5 : On effectue un deuxième tir du laser 14 (T2), focalisé sur l'axe 5, au-delà de l'électrode 2. Ce deuxième tir entraîne la formation d'une colonne de plasma 18 en continuité de conduction électrique avec la colonne 17. Etant donné que le laser 14 est préférentiellement du type femtoseconde, la colonne 18 se réduit alors à des filaments de plasma, comme décrit par exemple dans le susdit brevet français FR-2 863 782 , et sa longueur peut atteindre plusieurs kilomètres, ce qui lui confère les caractéristiques nécessaires à une antenne basse (ou très basse) fréquence. Figure 5 A second firing of the laser 14 (T2), focused on the axis 5, is carried out beyond the electrode 2. This second firing causes the formation of a plasma column 18 in continuity of electrical conduction with the column. 17. Since the laser 14 is preferably of the femtosecond type, the column 18 is then reduced to plasma filaments, as described for example in the aforesaid French patent. FR-2 863 782 , and its length can reach several kilometers, which gives it the characteristics necessary for a low (or very low) frequency antenna.

Figure 6 : on active l'émetteur 13 (T3), qui injecte de la puissance, alternative dans l'antenne « virtuelle. » constituée par les colonnes de plasma 17 et 18 et qui entretient l'ionisation de ces colonnes, car, comme illustré en figure 9, la différence de potentiel instantanée VDC entre les électrodes 1 et 2 est constante à partir de l'instant T1 (comme expliqué ci-dessus en référence à la figure 7). Figure 6 : the transmitter 13 (T3), which injects power, is activated in the "virtual" antenna. Constituted by the plasma columns 17 and 18 and which maintains the ionization of these columns because, as illustrated in FIG. figure 9 , the instantaneous potential difference V DC between the electrodes 1 and 2 is constant from the instant T1 (as explained above with reference to the figure 7 ).

En conclusion, grâce au dispositif de l'invention, outre les avantages inhérents à l'antenne à plasma proprement dite, le couplage conductif entre les électrodes et l'antenne, on obtient un très bon rendement du transfert de puissance entre le générateur 13 et l'antenne (ces électrodes étant portées au même potentiel alternatif instantané, pratiquement toute la puissance alternative est injectée dans l'antenne). En outre, ce dispositif est très économique, puisqu'il ne nécessite qu'une source de haute tension à basse puissance.In conclusion, thanks to the device of the invention, in addition to the advantages inherent to the actual plasma antenna, the conductive coupling between the electrodes and the antenna, a very good efficiency of the power transfer between the generator 13 and the generator is obtained. the antenna (these electrodes being brought to the same instantaneous AC potential, practically all the alternative power is injected into the antenna). In addition, this device is very economical, since it only requires a source of high voltage at low power.

Claims (6)

  1. Device for coupling between a plasma column serving as an antenna and an electric power signal generator, associated with a laser (14), characterized in that it comprises at least two conducting electrodes (1, 2) each pierced with a hole (3, 4), these holes being coaxial, the electrodes being connected on the one hand to a high voltage direct current source (8) and on the other hand to a power signal alternating current source (13), the laser being placed so that its beam arrives along the axis (5) of said holes of the electrodes.
  2. Device according to Claim 1, characterized in that the laser is a laser of the femtosecond type.
  3. Device according to Claim 1 or 2, characterized in that it comprises, between the two electrodes, a potentiometric assembly (19, 20) in order to fine tune the potentials applied to these electrodes.
  4. Method for using a plasma antenna comprising a coupling device according to one of Claims 1 to 3, characterized in that it comprises the following steps: activation of the high voltage source, firing of the laser, creating a plasma between the electrodes and beyond, on the common axis (5) of the holes of the electrodes, activation of the power signal generator up to the end of the transmission period.
  5. Method according to Claim 4, characterized in that, between the moment of firing the laser and the activation of the power signal generator, a minimal time (Tm) of the order of a few tens of nanoseconds is observed.
  6. Method for using a plasma antenna comprising a coupling device according to one of Claims 1 to 3, characterized in that it comprises the following steps: activation of the high voltage source, first firing of the laser, focused between the electrodes, on the common axis (5) of the holes of the electrodes, second firing of the laser, focused beyond the second electrode, on the same common axis, activation of the power signal generator up to the end of the transmission period.
EP07712164A 2006-02-07 2007-02-07 Device for coupling between a plasma antenna and a power signal generator Active EP1982347B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0601075A FR2897207B1 (en) 2006-02-07 2006-02-07 DEVICE FOR COUPLING BETWEEN A PLASMA ANTENNA AND A POWER SIGNAL GENERATOR
PCT/EP2007/051177 WO2007090850A1 (en) 2006-02-07 2007-02-07 Device for coupling between a plasma antenna and a power signal generator

Publications (2)

Publication Number Publication Date
EP1982347A1 EP1982347A1 (en) 2008-10-22
EP1982347B1 true EP1982347B1 (en) 2009-09-30

Family

ID=36997884

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07712164A Active EP1982347B1 (en) 2006-02-07 2007-02-07 Device for coupling between a plasma antenna and a power signal generator

Country Status (9)

Country Link
US (1) US7965241B2 (en)
EP (1) EP1982347B1 (en)
AT (1) ATE444560T1 (en)
CA (1) CA2641764C (en)
DE (1) DE602007002616D1 (en)
ES (1) ES2333177T3 (en)
FR (1) FR2897207B1 (en)
IL (1) IL193280A (en)
WO (1) WO2007090850A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10601125B2 (en) * 2014-07-23 2020-03-24 Georgia Tech Research Corporation Electrically short antennas with enhanced radiation resistance
US11024950B2 (en) * 2018-11-30 2021-06-01 United States Of America As Represented By The Secretary Of The Navy Wideband laser-induced plasma filament antenna with modulated conductivity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404403A (en) * 1966-01-20 1968-10-01 Itt Laser beam antenna
US6169520B1 (en) * 1999-03-23 2001-01-02 The United States Of America As Represented By The Secretary Of The Navy Plasma antenna with currents generated by opposed photon beams
US6087993A (en) * 1999-05-21 2000-07-11 The United States Of America As Represented By The Secretary Of The Navy Plasma antenna with electro-optical modulator
US20030145790A1 (en) * 2002-02-05 2003-08-07 Hitoshi Sakamoto Metal film production apparatus and metal film production method
US6842146B2 (en) * 2002-02-25 2005-01-11 Markland Technologies, Inc. Plasma filter antenna system
US6710746B1 (en) * 2002-09-30 2004-03-23 Markland Technologies, Inc. Antenna having reconfigurable length
FR2863782B1 (en) 2003-10-17 2007-01-05 France Etat Armement METHOD FOR TRANSMITTING AN ELECTROMAGNETIC SIGNAL AND ANTENNA THEREFOR

Also Published As

Publication number Publication date
US7965241B2 (en) 2011-06-21
IL193280A (en) 2011-11-30
EP1982347A1 (en) 2008-10-22
IL193280A0 (en) 2009-02-11
ATE444560T1 (en) 2009-10-15
CA2641764A1 (en) 2007-08-16
US20090015489A1 (en) 2009-01-15
CA2641764C (en) 2015-03-31
FR2897207B1 (en) 2008-04-04
WO2007090850A1 (en) 2007-08-16
FR2897207A1 (en) 2007-08-10
DE602007002616D1 (en) 2009-11-12
ES2333177T3 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
EP0013242B1 (en) Generator for very high frequency electromagnetic waves
EP0711100B1 (en) Plasma production device, allowing a dissociation between microwave propagation and absorption zones
EP1982347B1 (en) Device for coupling between a plasma antenna and a power signal generator
EP0184475A1 (en) Method and apparatus for igniting a hyperfrequency ion source
EP2472555B1 (en) Device for the generation of microwaves, comprising a plurality of magnetrons
EP0049198B1 (en) Electrons accelerator, and millimeter and infra-millimeter waves generator including the same
EP2356890B1 (en) Method and system for increasing the lifespan of a plasma
FR2617364A1 (en) METHOD AND DEVICE FOR PRODUCING ELECTRONS USING FIELD COUPLING AND PHOTOELECTRIC EFFECT
EP0413018B1 (en) Hyperfrequency wave generator device with virtual cathode
FR2694447A1 (en) Electron gun to supply electrons grouped in short pulses.
WO2014184357A1 (en) Extended plasma generator comprising integrated elementary generators
FR3031189B1 (en) SWITCHED OSCILLATOR NETWORKS
FR2999796A1 (en) ELECTRONIC OPTICAL DEVICE
EP1966888B1 (en) High power electric pulse generator
FR2642584A1 (en) AMPLIFIER OR OSCILLATOR DEVICE OPERATING IN HYPERFREQUENCY
FR2789800A1 (en) VERY HIGH POWER RADIO FREQUENCY GENERATOR
FR3001356A1 (en) DEVICE FOR PRODUCING AND HANDLING PLASMA FROM A FLUID WITH MICROWAVE RESONANT STRUCTURE AND ELECTRIC FIELD PLASMA ACTUATOR
Isaev et al. Pulsed lead vapor laser with high peak and average output powers
EP0020209A1 (en) Travelling-wave tube provided with a microwave delay line structure comprising a conductor with variable cross-section
EP0734048A1 (en) Procedure and device for coating or cleaning a substrate
FR3031191A1 (en) COMPACT SWITCHING OSCILLATOR IN A LIQUID DIELECTRIC
EP0814563A1 (en) Pulsed power supply with a network of coils
BE473992A (en)
BE442357A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007002616

Country of ref document: DE

Date of ref document: 20091112

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2333177

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: THALES

Effective date: 20100228

26N No opposition filed

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20210212

Year of fee payment: 15

Ref country code: IT

Payment date: 20210126

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210127

Year of fee payment: 15

Ref country code: ES

Payment date: 20210310

Year of fee payment: 15

Ref country code: SE

Payment date: 20210210

Year of fee payment: 15

Ref country code: DE

Payment date: 20210126

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007002616

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220207

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220208

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 18