EP2455350A1 - Apparatus for etching glass substrate - Google Patents

Apparatus for etching glass substrate Download PDF

Info

Publication number
EP2455350A1
EP2455350A1 EP11186844A EP11186844A EP2455350A1 EP 2455350 A1 EP2455350 A1 EP 2455350A1 EP 11186844 A EP11186844 A EP 11186844A EP 11186844 A EP11186844 A EP 11186844A EP 2455350 A1 EP2455350 A1 EP 2455350A1
Authority
EP
European Patent Office
Prior art keywords
plate
etchant
glass substrate
vessel
driving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11186844A
Other languages
German (de)
French (fr)
Other versions
EP2455350B1 (en
Inventor
Ah-Ram Lee
Kwanyoung Han
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Mobile Display Co Ltd filed Critical Samsung Mobile Display Co Ltd
Publication of EP2455350A1 publication Critical patent/EP2455350A1/en
Application granted granted Critical
Publication of EP2455350B1 publication Critical patent/EP2455350B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/102Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels

Definitions

  • the present disclosure relates to an etching apparatus.
  • Flat panel displays include glass substrates formed of silicon oxide. Since the glass substrate is the heaviest part of a flat panel display, much research is being conducted to develop lighter glass substrates for providing lighter and slimmer flat panel displays.
  • a representative method of reducing the weight of a glass substrate is to reduce the thickness of the glass substrate.
  • a substrate glass should be smooth after being etched. That is, uniformity of a glass substrate is important in reducing the thickness of the glass substrate because a flat panel display may have an image quality defect if a non-uniform glass substrate is used.
  • An aspect of the present invention is directed toward an apparatus for etching a glass substrate uniformly and efficiently.
  • Embodiments of the present invention provide an apparatus for etching a glass substrate, the apparatus including a vessel configured to contain an etchant; a first plate in the vessel and configured to receive a horizontally placed glass substrate thereon; and a circulating unit in the vessel facing the first plate and configured to create a flow of the etchant on a side of the first plate.
  • the circulating unit may include a second plate facing the first plate; and a rotation blade on a top side or bottom side of the second plate.
  • the first and second plates may have a circular shape in a plan view.
  • the circulating unit may further include a driving unit configured to control the second plate.
  • the driving unit may be configured to adjust a distance between the first and second plates and a rotation velocity of the second plate.
  • the apparatus for etching a glass substrate may further include a sensor on a sidewall of the vessel and adjacent to the first plate and configured to measure a thickness of the glass substrate; and a control unit configured to receive a signal from the sensor and provide a driving signal to the driving unit.
  • the apparatus for etching a glass substrate may further include a collecting pipe connected to a bottom side of the vessel to discharge the etchant. A material or particles etched from the glass substrate may be collected to the collecting pipe by the flow of the etchant.
  • the apparatus for etching a glass substrate may further include a valve configured to control the flow of the etchant in the collecting pipe; a filter configured to remove the material or particles from the etchant after the etchant passes through the valve; a supply pipe configured to supply the etchant into the vessel; and a pump configured to transfer the etchant to the supply pipe after the etchant passes through the filter.
  • the circulating unit may be configured to move horizontally with respect to the first plate to create the flow of the etchant.
  • the circulating unit may include a driving unit configured to control an operation of a body and a horizontally movable blade attached to the body.
  • the driving unit may be configured to adjust a distance between the first plate and the body and a horizontal velocity of the body.
  • the first plate may have a rectangular shape in a plan view.
  • an apparatus for etching a glass substrate includes a vessel configured to contain an etchant; and a plate in the vessel and configured to receive a horizontally placed glass substrate thereon.
  • the plate may be configured to be rotated to induce a flow of the etchant.
  • the apparatus for etching a glass substrate may further include a driving unit configured to control the plate.
  • the driving unit may be configured to control a vertical movement and a rotation velocity of the plate.
  • the apparatus for etching a glass substrate may further include a sensor on a sidewall of the vessel and adjacent to the plate and configured to measure a thickness of the glass substrate; and a control unit configured to receive a signal from the sensor and provide a driving signal to the driving unit.
  • an apparatus for etching a glass substrate includes a vessel configured to contain an etchant; a first plate in the vessel and configured to receive a glass substrate thereon, the glass substrate having a main plane parallel to a side of the first plate; and a circulating unit in the vessel and configured to create a flow of the etchant on the side of the first plate.
  • FIG. 1 is a view illustrating a glass substrate etching apparatus 100 for etching a glass substrate according to a first embodiment of the present invention.
  • FIG. 2 is a detailed perspective view illustrating a vessel 110 and first and second plates 120 and 132 of the glass substrate etching apparatus 100 according to the first embodiment of the present invention.
  • FIG. 3 is a detailed view illustrating the second plate 132 and rotation blades 135 according to the first embodiment of the present invention.
  • the glass substrate etching apparatus 100 includes: the vessel 110 configured to contain an etchant 115; the first plate 120 disposed in the vessel 110 to horizontally place a glass substrate 125 thereon (i.e., the glass substrate 125 has a main plane that is placed to face or oppose or be parallel to a topside of the first plate 120); and a circulating unit 130 disposed in the vessel 110 to circulate the etchant 115 on the topside of the first plate 120.
  • the glass substrate 125 may be placed on the first plate 120 by a vacuum adhesion method.
  • a plurality of glass substrates 125 may be provided on the first plate 120 in the same way. In this case, since the plurality of glass substrates 125 are reduced in thickness at the same or concurrent time, manufacturing costs may be reduced.
  • the etchant 115 may include fluoride salt, sulfate, nitrate, sulfonate, hydrofluoric acid, sulfuric acid, and/or nitric acid. The etchant 115 may be heated to increase the etching rate.
  • the glass substrate 125 may be used for a display such as a touch screen panel.
  • the circulating unit 130 may include a second plate 132 facing the first plate 120, and rotation blades 135 disposed on the backside of the second plate 132 (e.g., the side facing the first plate 120).
  • the first and second plates 120 and 132 may have a circular shape when viewed from the top.
  • the vessel 110 may have a cylindrical shape.
  • the circulating unit 130 may further include a driving unit 138 to control the second plate 132.
  • the driving unit 138 may move the second plate 132 vertically.
  • a distance (L) between the first and second plates 120 and 132 may be adjusted by moving the second plate 132 vertically.
  • the driving unit 138 may control the rotation velocity of the second plate 132.
  • the rotation blades 135 may create a vortex flow so that the flow of the etchant 115 on the glass substrate 125 may be affected by the vortex flow.
  • the driving unit 138 may adjust the etching rate of the glass substrate 125 by controlling the vertical movement and rotation velocity of the second plate 132.
  • the driving unit 138 may create a constant-velocity flow of the etchant 115 by using the rotation blades 135, to etch a side of the glass substrate 125.
  • the glass substrate etching apparatus 100 may further include a sensor 140 disposed on a sidewall of the vessel 110 at a position close to the first plate 120, to measure the thickness of the glass substrate 125.
  • the sensor 140 may be a laser sensor.
  • the sensor 140 may measure the thickness of the glass substrate 125 by providing a signal to the glass substrate and receiving (or measuring) the signal which is reflected by the glass substrate.
  • the glass substrate etching apparatus 100 may further include a control unit 145 configured to receive a signal from the sensor 140 and transmit a driving signal to the driving unit 138.
  • a thickness of the etched (or etched-away) glass substrate 125 may be measured by using the sensor 140, and the velocity of the driving unit 138 may be adjusted by using a driving signal of the control unit 145.
  • the glass substrate 125 may be etched to a small thickness, for example, about 0.02 mm, by using the sensor 140, the driving unit 138, and the control unit 145.
  • a small thickness for example, about 0.02 mm
  • the glass substrate 125 may be bent (or be flexible) owing to its small thickness.
  • the glass substrate 125 may be used for a flexible display.
  • the glass substrate etching apparatus 100 may further include a supply pipe 160 configured to supply an etchant 115 into the vessel 110, collecting pipes 175 connected to the bottom side of the vessel 110 to discharge the etchant 115 therethrough; and discharge holes 150 formed between the first plate 120 and the vessel 110.
  • the discharge holes 150 may be formed through the first plate 120.
  • An etchant 115 supplied through the supply pipe 160 may be circulated by the circulating unit 130 and flow to the collecting pipes 175 through the discharge holes 150. Due to this flow of the etchant 115, the glass substrate 125 may be etched. This may be called 'fluid flow grinding.'
  • the glass substrate etching apparatus 100 may further include valves 172 configured to control the flow of the etchant 115 in the collecting pipes 175, a filter 174 configured to purify the etchant 115 after the etchant 115 passes through the valves 172, and a pump 176 configured to transfer the etchant 115 purified by the filter 174 to the supply pipe 160.
  • a material or particles 127 etched from the glass substrate 125 may be removed from the etchant 115 by the filter 174.
  • the etchant 115 may be circulated through the collecting pipes 175, the filter 174, the pump 176, and the supply pipe 160. That is, the etchant 115 may be reused.
  • FIG. 4 is a view illustrating a glass substrate etching apparatus 200 for etching a glass substrate according to a second embodiment of the present invention.
  • the same description as that of the first embodiment of FIGS. 1 through 3 will not be repeated for brevity of the description.
  • the glass substrate etching apparatus 200 includes: a vessel 210 configured to contain an etchant 215; a first plate 220 disposed in the vessel 210 to horizontally place glass substrates 225 thereon; and a circulating unit 230 disposed in the vessel 210 to circulate the etchant 215 on the bottom side of the first plate 220.
  • the glass substrates 225 may be placed on the first plate 220 by a vacuum adhesion method.
  • the glass substrates 225 may be placed on the backside of the first plate 220 (e.g., the side facing the circulating unit 230) by the vacuum adhesion method.
  • the glass substrates 225 may be used for displays such as touch screen panels.
  • the circulating unit 230 may include a second plate 232 facing the first plate 220, and rotation blades 235 disposed on the topside of the second plate 232 (e.g., the side facing the first plate 220).
  • the first and second plates 220 and 232 may have a circular shape when viewed from the top.
  • the vessel 210 may have a cylindrical shape.
  • the circulating unit 230 may further include a driving unit 238 to control the second plate 232.
  • the driving unit 238 may move the second plate 232 vertically.
  • a distance (L) between the first and second plates 220 and 232 may be adjusted by moving the second plate 232 vertically.
  • the driving unit 238 may control the rotation velocity of the second plate 232.
  • the driving unit 238 may adjust the etching rate of the glass substrates 225 by controlling the vertical movement and rotation velocity of the second plate 232. Exposed sides of the glass substrates 225 to the etchant may be etched by the flow of the etchant 215.
  • the glass substrate etching apparatus 200 may further include a sensor 240 disposed on a sidewall of the vessel 210 at a position close to the first plate 220 to measure the thickness of the glass substrate 225.
  • the sensor 240 may be a laser sensor.
  • the sensor 240 may measure the thickness of the glass substrates 225 by providing a signal to the glass substrates 225 and receiving (or measuring) the reflected signal.
  • the glass substrate etching apparatus 200 may further include a control unit 245 configured to receive a signal from the sensor 240 and transmit a driving signal to the driving unit 238. Thicknesses of the etched (or etched-away) glass substrates 225 may be measured by using the sensor 240, and the velocity of the driving unit 238 may be adjusted by using a driving signal of the control unit 245.
  • the glass substrate etching apparatus 200 may further include a supply pipe 260 configured to supply an etchant 215 into the vessel 210, collecting pipes 275 connected to the bottom side of the vessel 210 to discharge the etchant 215 therethrough; and discharge holes 250 formed between the second plate 232 and the vessel 210.
  • the discharge holes 250 may be formed through the second plate 232.
  • the glass substrate etching apparatus 200 may further include valves 272 configured to control the flow of the etchant 215 in the collecting pipes 275, a filter 274 configured to purify the etchant 215 after the etchant 215 passes through the valves 272, and a pump 276 configured to transfer the etchant 215 purified by the filter 274 to the supply pipe 260.
  • a material or particles 227 etched from the glass substrates 225 may be removed from the etchant 215 by the filter 274.
  • the etchant 215 may be circulated through the collecting pipes 275, the filter 274, the pump 276, and the supply pipe 260. That is, the etchant 215 may be reused.
  • FIG. 5 is a view illustrating a glass substrate etching apparatus 300 for etching a glass substrate according to a third embodiment of the present invention.
  • FIG. 6 is a detailed view illustrating a vessel 310, a first plate 320, and a circulating unit 330 of the glass substrate etching apparatus 300 according to the third embodiment of the present invention. The same description as that of the first embodiment of FIGS. 1 through 3 will not be repeated for brevity of the description.
  • the glass substrate etching apparatus 300 includes: the vessel 310 configured to contain an etchant 315; a first plate 320 disposed in the vessel 310 to horizontally place glass substrates 325 thereon; and a circulating unit 330 disposed in the vessel 310 to circulate the etchant 315 on the topside of the first plate 320 (e.g., the side facing the circulating unit 330).
  • the glass substrates 325 may be placed on the first plate 320 by a vacuum adhesion method.
  • the glass substrates 325 may be placed on the topside of the first plate 320 by the vacuum adhesion method.
  • the glass substrates 325 may be used for displays such as touch screen panels.
  • the circulating unit 330 may include a body 332 disposed above the first plate 320, and a horizontally movable blade 335 disposed on the backside of the body 332 (e.g., the side facing the first plate 320).
  • the first plate 320 may have a rectangular shape when viewed from the top.
  • the circulating unit 330 may further include a driving unit 338 to control movement of the body 332.
  • the driving unit 338 may move the body 332 vertically.
  • a distance (L) between the first plate 320 and the body 332 may be adjusted by moving the body 332 vertically.
  • the driving unit 338 may further control the horizontal movement velocity of the body 332.
  • the driving unit 338 may adjust the etching rate of the glass substrates 325 by controlling vertical and horizontal movements of the body 332. Exposed sides of the glass substrates 325 may be etched by the flow of the etchant 315.
  • the glass substrate etching apparatus 300 may further include a sensor 340 disposed on a sidewall of the vessel 310 at a position close to the first plate 320 to measure the thickness of the glass substrates 325.
  • the sensor 340 may be a laser sensor.
  • the sensor 340 may measure the thickness of the glass substrates 325 by providing a signal to the glass substrates and receiving (or measuring) the signal which is reflected by the glass substrates.
  • the glass substrate etching apparatus 300 may further include a control unit 345 configured to receive a signal from the sensor 340 and to transmit a driving signal to the driving unit 338. Thicknesses of the etched (or etched-away) glass substrates 325 may be measured by using the sensor 340, and the velocity of the driving unit 338 may be adjusted by using a driving signal of the control unit 345.
  • the glass substrate etching apparatus 300 may further include a supply pipe 360 configured to supply an etchant 315 into the vessel 310, collecting pipes 375 connected to the bottom side of the vessel 310 to discharge the etchant 315 therethrough; and discharge holes 350 formed between the first plate 320 and the vessel 310.
  • the discharge holes 350 may be formed through the first plate 320.
  • the glass substrate etching apparatus 300 may further include valves 372 configured to control flows of the etchant 315 in the collecting pipes 375, a filter 374 configured to purify the etchant 315 after the etchant 315 passes through the valves 372, and a pump 376 configured to transfer the etchant 315 purified by the filter 374 to the supply pipe 360.
  • a material or particles 327 etched from the glass substrates 325 may be removed from the etchant 315 by the filter 374.
  • the etchant 315 may be circulated through the collecting pipes 375, the filter 374, the pump 376, and the supply pipe 360. That is, the etchant 315 may be reused.
  • the glass substrate etching apparatus 300 can etch the glass substrates 325 to a small thickness.
  • the glass substrate etching apparatus 300 includes the circulating unit 330 which is vertically movable, the glass substrates 325 can be uniformly etched to the same thickness.
  • FIG. 7 is a view illustrating a glass substrate etching apparatus 400 for etching a glass substrate according to a fourth embodiment of the present invention.
  • the glass substrate etching apparatus 400 includes: a vessel 410 configured to contain an etchant 415; and a plate 420 disposed in the vessel 410 to horizontally place glass substrates 425 thereon.
  • the plate 420 may be rotated to create a flow (e.g., a relative flow) of the etchant 415.
  • the glass substrates 425 may be placed on the plate 420 by a vacuum adhesion method.
  • the glass substrates 425 may be placed on the topside of the plate 420 by the vacuum adhesion method.
  • the glass substrates 425 may be used for touch screen panels.
  • the glass substrate etching apparatus 400 may further include a driving unit 430 configured to control the plate 420.
  • the driving unit 430 may control the rotation velocity of the plate 420.
  • the driving unit 430 may move the plate 420 vertically.
  • the driving unit 430 may adjust the etching rate of the glass substrates 425 by controlling vertical movement and rotation of the plate 420. Exposed sides of the glass substrates 425 may be etched by a flow (e.g., a relative flow) of the etchant 415.
  • a flow e.g., a relative flow
  • the glass substrate etching apparatus 400 may further include a sensor 440 disposed on a sidewall of the vessel 410 at a position close to the plate 420 to measure the thickness of the glass substrates 425.
  • the sensor 440 may be a laser sensor.
  • the glass substrate etching apparatus 400 may further include a control unit 445 configured to receive a signal from the sensor 440 and transmit a driving signal to the driving unit 430. Thicknesses of the etched (or etched-away) glass substrates 425 may be measured by using the sensor 440, and the velocity of the driving unit 430 may be adjusted by using a driving signal of the control unit 445.
  • the glass substrate etching apparatus 400 may further include a supply pipe 460 configured to supply an etchant 415 into the vessel 410, collecting pipes 475 connected to the bottom side of the vessel 410 to discharge the etchant 415 therethrough; and discharge holes 450 formed between the plate 420 and the vessel 410.
  • the discharge holes 450 may be formed through the plate 420.
  • the glass substrate etching apparatus 400 may further include valves 472 configured to control flows of the etchant 415 in the collecting pipes 475, a filter 474 configured to purify the etchant 415 after the etchant 415 passes through the valves 472, and a pump 476 configured to transfer the etchant 415 purified by the filter 474 to the supply pipe 460.
  • a material or particles 427 etched from the glass substrates 425 may be removed from the etchant 415 by the filter 474.
  • the etchant 415 may be circulated through the collecting pipes 475, the filter 474, the pump 476, and the supply pipe 460. That is, the etchant 415 may be reused.
  • Table 1 below shows glass substrate thicknesses obtained according to an embodiment of the present invention in comparison with glass substrate thicknesses obtained according to a comparative example.
  • S1 denotes a comparative example in which substrates are etched by immersing the substrates in an etchant
  • S2 denotes an embodiment of the present invention in which substrates are etched by using a glass substrate etching apparatus according to an embodiment of the present invention.
  • the thicknesses of the substrates can be reduced to about 1/10 the thicknesses of the substrates of the comparative example.
  • substrates fabricated according to an embodiment of the present invention have good flexibility and can have a radius of curvature of about 10 cm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Weting (AREA)

Abstract

An apparatus for etching a glass substrate includes a vessel configured to contain an etchant; a first plate in the vessel and configured to receive a horizontally placed glass substrate thereon; and a circulating unit in the vessel facing the first plate and configured to create a flow of the etchant on a side of the first plate.

Description

  • The present disclosure relates to an etching apparatus.
  • Flat panel displays include glass substrates formed of silicon oxide. Since the glass substrate is the heaviest part of a flat panel display, much research is being conducted to develop lighter glass substrates for providing lighter and slimmer flat panel displays.
  • A representative method of reducing the weight of a glass substrate is to reduce the thickness of the glass substrate. In order to do so, a substrate glass should be smooth after being etched. That is, uniformity of a glass substrate is important in reducing the thickness of the glass substrate because a flat panel display may have an image quality defect if a non-uniform glass substrate is used.
  • An aspect of the present invention is directed toward an apparatus for etching a glass substrate uniformly and efficiently.
  • Embodiments of the present invention provide an apparatus for etching a glass substrate, the apparatus including a vessel configured to contain an etchant; a first plate in the vessel and configured to receive a horizontally placed glass substrate thereon; and a circulating unit in the vessel facing the first plate and configured to create a flow of the etchant on a side of the first plate.
  • The circulating unit may include a second plate facing the first plate; and a rotation blade on a top side or bottom side of the second plate.
  • The first and second plates may have a circular shape in a plan view.
  • The circulating unit may further include a driving unit configured to control the second plate. The driving unit may be configured to adjust a distance between the first and second plates and a rotation velocity of the second plate.
  • The apparatus for etching a glass substrate may further include a sensor on a sidewall of the vessel and adjacent to the first plate and configured to measure a thickness of the glass substrate; and a control unit configured to receive a signal from the sensor and provide a driving signal to the driving unit.
  • The apparatus for etching a glass substrate may further include a collecting pipe connected to a bottom side of the vessel to discharge the etchant. A material or particles etched from the glass substrate may be collected to the collecting pipe by the flow of the etchant.
  • The apparatus for etching a glass substrate may further include a valve configured to control the flow of the etchant in the collecting pipe; a filter configured to remove the material or particles from the etchant after the etchant passes through the valve; a supply pipe configured to supply the etchant into the vessel; and a pump configured to transfer the etchant to the supply pipe after the etchant passes through the filter.
  • The circulating unit may be configured to move horizontally with respect to the first plate to create the flow of the etchant.
  • The circulating unit may include a driving unit configured to control an operation of a body and a horizontally movable blade attached to the body. The driving unit may be configured to adjust a distance between the first plate and the body and a horizontal velocity of the body.
  • The first plate may have a rectangular shape in a plan view.
  • According to another embodiment of the present invention, an apparatus for etching a glass substrate includes a vessel configured to contain an etchant; and a plate in the vessel and configured to receive a horizontally placed glass substrate thereon. The plate may be configured to be rotated to induce a flow of the etchant.
  • The apparatus for etching a glass substrate may further include a driving unit configured to control the plate. The driving unit may be configured to control a vertical movement and a rotation velocity of the plate.
  • The apparatus for etching a glass substrate may further include a sensor on a sidewall of the vessel and adjacent to the plate and configured to measure a thickness of the glass substrate; and a control unit configured to receive a signal from the sensor and provide a driving signal to the driving unit.
  • According to another embodiment of the present invention, an apparatus for etching a glass substrate includes a vessel configured to contain an etchant; a first plate in the vessel and configured to receive a glass substrate thereon, the glass substrate having a main plane parallel to a side of the first plate; and a circulating unit in the vessel and configured to create a flow of the etchant on the side of the first plate.
  • Embodiments of the invention are now described by way of example with reference to the accompanying drawings, in which:
    • FIG. 1 is a view illustrating an apparatus for etching a glass substrate according to a first embodiment of the present invention;
    • FIG. 2 is a detailed view illustrating a vessel and a plate of the glass substrate etching apparatus according to the first embodiment of the present invention;
    • FIG. 3 is a detailed view illustrating the plate and rotation blades of the glass substrate etching apparatus according to the first embodiment of the present invention;
    • FIG. 4 is a view illustrating an apparatus for etching a glass substrate according to a second embodiment of the present invention;
    • FIG. 5 is a view illustrating an apparatus for etching a glass substrate according to a third embodiment of the present invention;
    • FIG. 6 is a detailed view illustrating a vessel, a plate, and a circulating unit of the glass substrate etching apparatus according to the third embodiment of the present invention; and
    • FIG. 7 is a view illustrating an apparatus for etching a glass substrate according to a fourth embodiment of the present invention.
  • FIG. 1 is a view illustrating a glass substrate etching apparatus 100 for etching a glass substrate according to a first embodiment of the present invention. FIG. 2 is a detailed perspective view illustrating a vessel 110 and first and second plates 120 and 132 of the glass substrate etching apparatus 100 according to the first embodiment of the present invention. FIG. 3 is a detailed view illustrating the second plate 132 and rotation blades 135 according to the first embodiment of the present invention.
  • Referring to FIGS. 1 to 3, the glass substrate etching apparatus 100 includes: the vessel 110 configured to contain an etchant 115; the first plate 120 disposed in the vessel 110 to horizontally place a glass substrate 125 thereon (i.e., the glass substrate 125 has a main plane that is placed to face or oppose or be parallel to a topside of the first plate 120); and a circulating unit 130 disposed in the vessel 110 to circulate the etchant 115 on the topside of the first plate 120.
  • The glass substrate 125 may be placed on the first plate 120 by a vacuum adhesion method. A plurality of glass substrates 125 may be provided on the first plate 120 in the same way. In this case, since the plurality of glass substrates 125 are reduced in thickness at the same or concurrent time, manufacturing costs may be reduced. The etchant 115 may include fluoride salt, sulfate, nitrate, sulfonate, hydrofluoric acid, sulfuric acid, and/or nitric acid. The etchant 115 may be heated to increase the etching rate. The glass substrate 125 may be used for a display such as a touch screen panel.
  • The circulating unit 130 may include a second plate 132 facing the first plate 120, and rotation blades 135 disposed on the backside of the second plate 132 (e.g., the side facing the first plate 120). The first and second plates 120 and 132 may have a circular shape when viewed from the top. The vessel 110 may have a cylindrical shape.
  • The circulating unit 130 may further include a driving unit 138 to control the second plate 132. The driving unit 138 may move the second plate 132 vertically. A distance (L) between the first and second plates 120 and 132 may be adjusted by moving the second plate 132 vertically. The driving unit 138 may control the rotation velocity of the second plate 132. The rotation blades 135 may create a vortex flow so that the flow of the etchant 115 on the glass substrate 125 may be affected by the vortex flow.
  • The driving unit 138 may adjust the etching rate of the glass substrate 125 by controlling the vertical movement and rotation velocity of the second plate 132. The driving unit 138 may create a constant-velocity flow of the etchant 115 by using the rotation blades 135, to etch a side of the glass substrate 125.
  • The glass substrate etching apparatus 100 may further include a sensor 140 disposed on a sidewall of the vessel 110 at a position close to the first plate 120, to measure the thickness of the glass substrate 125. The sensor 140 may be a laser sensor. The sensor 140 may measure the thickness of the glass substrate 125 by providing a signal to the glass substrate and receiving (or measuring) the signal which is reflected by the glass substrate. The glass substrate etching apparatus 100 may further include a control unit 145 configured to receive a signal from the sensor 140 and transmit a driving signal to the driving unit 138. A thickness of the etched (or etched-away) glass substrate 125 may be measured by using the sensor 140, and the velocity of the driving unit 138 may be adjusted by using a driving signal of the control unit 145. The glass substrate 125 may be etched to a small thickness, for example, about 0.02 mm, by using the sensor 140, the driving unit 138, and the control unit 145. When the glass substrate 125 has a smaller thickness, it is possible to reduce thickness and weight of a display (for example, a touch screen panel, a liquid crystal display, or an organic electroluminescent device) using the glass substrate 125. The glass substrate 125 may be bent (or be flexible) owing to its small thickness. For example, the glass substrate 125 may be used for a flexible display.
  • The glass substrate etching apparatus 100 may further include a supply pipe 160 configured to supply an etchant 115 into the vessel 110, collecting pipes 175 connected to the bottom side of the vessel 110 to discharge the etchant 115 therethrough; and discharge holes 150 formed between the first plate 120 and the vessel 110. The discharge holes 150 may be formed through the first plate 120. An etchant 115 supplied through the supply pipe 160 may be circulated by the circulating unit 130 and flow to the collecting pipes 175 through the discharge holes 150. Due to this flow of the etchant 115, the glass substrate 125 may be etched. This may be called 'fluid flow grinding.'
  • The glass substrate etching apparatus 100 may further include valves 172 configured to control the flow of the etchant 115 in the collecting pipes 175, a filter 174 configured to purify the etchant 115 after the etchant 115 passes through the valves 172, and a pump 176 configured to transfer the etchant 115 purified by the filter 174 to the supply pipe 160. A material or particles 127 etched from the glass substrate 125 may be removed from the etchant 115 by the filter 174. The etchant 115 may be circulated through the collecting pipes 175, the filter 174, the pump 176, and the supply pipe 160. That is, the etchant 115 may be reused.
  • FIG. 4 is a view illustrating a glass substrate etching apparatus 200 for etching a glass substrate according to a second embodiment of the present invention. The same description as that of the first embodiment of FIGS. 1 through 3 will not be repeated for brevity of the description.
  • Referring to FIG. 4, according to the second embodiment of the present invention, the glass substrate etching apparatus 200 includes: a vessel 210 configured to contain an etchant 215; a first plate 220 disposed in the vessel 210 to horizontally place glass substrates 225 thereon; and a circulating unit 230 disposed in the vessel 210 to circulate the etchant 215 on the bottom side of the first plate 220.
  • The glass substrates 225 may be placed on the first plate 220 by a vacuum adhesion method. The glass substrates 225 may be placed on the backside of the first plate 220 (e.g., the side facing the circulating unit 230) by the vacuum adhesion method. The glass substrates 225 may be used for displays such as touch screen panels.
  • The circulating unit 230 may include a second plate 232 facing the first plate 220, and rotation blades 235 disposed on the topside of the second plate 232 (e.g., the side facing the first plate 220). The first and second plates 220 and 232 may have a circular shape when viewed from the top. The vessel 210 may have a cylindrical shape.
  • The circulating unit 230 may further include a driving unit 238 to control the second plate 232. The driving unit 238 may move the second plate 232 vertically. A distance (L) between the first and second plates 220 and 232 may be adjusted by moving the second plate 232 vertically. The driving unit 238 may control the rotation velocity of the second plate 232.
  • The driving unit 238 may adjust the etching rate of the glass substrates 225 by controlling the vertical movement and rotation velocity of the second plate 232. Exposed sides of the glass substrates 225 to the etchant may be etched by the flow of the etchant 215.
  • The glass substrate etching apparatus 200 may further include a sensor 240 disposed on a sidewall of the vessel 210 at a position close to the first plate 220 to measure the thickness of the glass substrate 225. The sensor 240 may be a laser sensor. The sensor 240 may measure the thickness of the glass substrates 225 by providing a signal to the glass substrates 225 and receiving (or measuring) the reflected signal. The glass substrate etching apparatus 200 may further include a control unit 245 configured to receive a signal from the sensor 240 and transmit a driving signal to the driving unit 238. Thicknesses of the etched (or etched-away) glass substrates 225 may be measured by using the sensor 240, and the velocity of the driving unit 238 may be adjusted by using a driving signal of the control unit 245.
  • The glass substrate etching apparatus 200 may further include a supply pipe 260 configured to supply an etchant 215 into the vessel 210, collecting pipes 275 connected to the bottom side of the vessel 210 to discharge the etchant 215 therethrough; and discharge holes 250 formed between the second plate 232 and the vessel 210. The discharge holes 250 may be formed through the second plate 232.
  • The glass substrate etching apparatus 200 may further include valves 272 configured to control the flow of the etchant 215 in the collecting pipes 275, a filter 274 configured to purify the etchant 215 after the etchant 215 passes through the valves 272, and a pump 276 configured to transfer the etchant 215 purified by the filter 274 to the supply pipe 260. A material or particles 227 etched from the glass substrates 225 may be removed from the etchant 215 by the filter 274. The etchant 215 may be circulated through the collecting pipes 275, the filter 274, the pump 276, and the supply pipe 260. That is, the etchant 215 may be reused.
  • FIG. 5 is a view illustrating a glass substrate etching apparatus 300 for etching a glass substrate according to a third embodiment of the present invention. FIG. 6 is a detailed view illustrating a vessel 310, a first plate 320, and a circulating unit 330 of the glass substrate etching apparatus 300 according to the third embodiment of the present invention. The same description as that of the first embodiment of FIGS. 1 through 3 will not be repeated for brevity of the description.
  • Referring to FIGS. 5 and 6, according to the third embodiment of the present invention, the glass substrate etching apparatus 300 includes: the vessel 310 configured to contain an etchant 315; a first plate 320 disposed in the vessel 310 to horizontally place glass substrates 325 thereon; and a circulating unit 330 disposed in the vessel 310 to circulate the etchant 315 on the topside of the first plate 320 (e.g., the side facing the circulating unit 330).
  • The glass substrates 325 may be placed on the first plate 320 by a vacuum adhesion method. The glass substrates 325 may be placed on the topside of the first plate 320 by the vacuum adhesion method. The glass substrates 325 may be used for displays such as touch screen panels.
  • The circulating unit 330 may include a body 332 disposed above the first plate 320, and a horizontally movable blade 335 disposed on the backside of the body 332 (e.g., the side facing the first plate 320). The first plate 320 may have a rectangular shape when viewed from the top.
  • The circulating unit 330 may further include a driving unit 338 to control movement of the body 332. The driving unit 338 may move the body 332 vertically. A distance (L) between the first plate 320 and the body 332 may be adjusted by moving the body 332 vertically. The driving unit 338 may further control the horizontal movement velocity of the body 332.
  • The driving unit 338 may adjust the etching rate of the glass substrates 325 by controlling vertical and horizontal movements of the body 332. Exposed sides of the glass substrates 325 may be etched by the flow of the etchant 315.
  • The glass substrate etching apparatus 300 may further include a sensor 340 disposed on a sidewall of the vessel 310 at a position close to the first plate 320 to measure the thickness of the glass substrates 325. The sensor 340 may be a laser sensor. The sensor 340 may measure the thickness of the glass substrates 325 by providing a signal to the glass substrates and receiving (or measuring) the signal which is reflected by the glass substrates. The glass substrate etching apparatus 300 may further include a control unit 345 configured to receive a signal from the sensor 340 and to transmit a driving signal to the driving unit 338. Thicknesses of the etched (or etched-away) glass substrates 325 may be measured by using the sensor 340, and the velocity of the driving unit 338 may be adjusted by using a driving signal of the control unit 345.
  • The glass substrate etching apparatus 300 may further include a supply pipe 360 configured to supply an etchant 315 into the vessel 310, collecting pipes 375 connected to the bottom side of the vessel 310 to discharge the etchant 315 therethrough; and discharge holes 350 formed between the first plate 320 and the vessel 310. The discharge holes 350 may be formed through the first plate 320.
  • The glass substrate etching apparatus 300 may further include valves 372 configured to control flows of the etchant 315 in the collecting pipes 375, a filter 374 configured to purify the etchant 315 after the etchant 315 passes through the valves 372, and a pump 376 configured to transfer the etchant 315 purified by the filter 374 to the supply pipe 360. A material or particles 327 etched from the glass substrates 325 may be removed from the etchant 315 by the filter 374. The etchant 315 may be circulated through the collecting pipes 375, the filter 374, the pump 376, and the supply pipe 360. That is, the etchant 315 may be reused.
  • According to the third embodiment of the present invention, the glass substrate etching apparatus 300 can etch the glass substrates 325 to a small thickness. In addition, since the glass substrate etching apparatus 300 includes the circulating unit 330 which is vertically movable, the glass substrates 325 can be uniformly etched to the same thickness.
  • FIG. 7 is a view illustrating a glass substrate etching apparatus 400 for etching a glass substrate according to a fourth embodiment of the present invention.
  • Referring to FIG. 7, according to the fourth embodiment of the present invention, the glass substrate etching apparatus 400 includes: a vessel 410 configured to contain an etchant 415; and a plate 420 disposed in the vessel 410 to horizontally place glass substrates 425 thereon. The plate 420 may be rotated to create a flow (e.g., a relative flow) of the etchant 415.
  • The glass substrates 425 may be placed on the plate 420 by a vacuum adhesion method. The glass substrates 425 may be placed on the topside of the plate 420 by the vacuum adhesion method. The glass substrates 425 may be used for touch screen panels.
  • The glass substrate etching apparatus 400 may further include a driving unit 430 configured to control the plate 420. The driving unit 430 may control the rotation velocity of the plate 420. The driving unit 430 may move the plate 420 vertically.
  • The driving unit 430 may adjust the etching rate of the glass substrates 425 by controlling vertical movement and rotation of the plate 420. Exposed sides of the glass substrates 425 may be etched by a flow (e.g., a relative flow) of the etchant 415.
  • The glass substrate etching apparatus 400 may further include a sensor 440 disposed on a sidewall of the vessel 410 at a position close to the plate 420 to measure the thickness of the glass substrates 425. The sensor 440 may be a laser sensor. The glass substrate etching apparatus 400 may further include a control unit 445 configured to receive a signal from the sensor 440 and transmit a driving signal to the driving unit 430. Thicknesses of the etched (or etched-away) glass substrates 425 may be measured by using the sensor 440, and the velocity of the driving unit 430 may be adjusted by using a driving signal of the control unit 445.
  • The glass substrate etching apparatus 400 may further include a supply pipe 460 configured to supply an etchant 415 into the vessel 410, collecting pipes 475 connected to the bottom side of the vessel 410 to discharge the etchant 415 therethrough; and discharge holes 450 formed between the plate 420 and the vessel 410. The discharge holes 450 may be formed through the plate 420.
  • The glass substrate etching apparatus 400 may further include valves 472 configured to control flows of the etchant 415 in the collecting pipes 475, a filter 474 configured to purify the etchant 415 after the etchant 415 passes through the valves 472, and a pump 476 configured to transfer the etchant 415 purified by the filter 474 to the supply pipe 460. A material or particles 427 etched from the glass substrates 425 may be removed from the etchant 415 by the filter 474. The etchant 415 may be circulated through the collecting pipes 475, the filter 474, the pump 476, and the supply pipe 460. That is, the etchant 415 may be reused.
  • Table 1 below shows glass substrate thicknesses obtained according to an embodiment of the present invention in comparison with glass substrate thicknesses obtained according to a comparative example. In Table 1 below, S1 denotes a comparative example in which substrates are etched by immersing the substrates in an etchant, and S2 denotes an embodiment of the present invention in which substrates are etched by using a glass substrate etching apparatus according to an embodiment of the present invention.
  • As shown in Table 1 below, according to the embodiment of the present invention, the thicknesses of the substrates can be reduced to about 1/10 the thicknesses of the substrates of the comparative example. In addition, substrates fabricated according to an embodiment of the present invention have good flexibility and can have a radius of curvature of about 10 cm. [Table 1]
    S1 S2
    1 0.213 mm 0.019 mm
    2 0.201 mm 0.020 mm
    3 0.199 mm 0.021 mm
    4 0.208 mm 0.018 mm
    5 0.219 mm 0.022 mm
    6 0.188 mm 0.021 mm
    Average 0.205 mm 0.020 mm
  • While the invention has been described with reference to the embodiments in the description, it will be understood that the embodiments may be modified while still falling within the scope of the invention as defined in the claims.

Claims (13)

  1. An apparatus for etching a glass substrate, the apparatus comprising:
    a vessel configured to contain an etchant;
    a first plate in the vessel configured to receive a horizontally placed glass substrate; and
    a circulating unit in the vessel facing the first plate and configured to create a flow of the etchant on a side of the first plate.
  2. The apparatus of claim 1, wherein the circulating unit comprises:
    a second plate facing the first plate; and
    a rotation blade on a top side or bottom side of the second plate.
  3. The apparatus of claim 2, wherein the first and second plates have a circular shape in a plan view.
  4. The apparatus of claim 2 or 3, wherein the circulating unit further comprises a driving unit configured to control the second plate, wherein the driving unit is configured to adjust a distance between the first and second plates and a rotation velocity of the second plate.
  5. The apparatus of any one of the preceding claims, further comprising:
    a sensor on a sidewall of the vessel and adjacent to the first plate and configured to measure a thickness of the glass substrate; and
    a control unit configured to receive a signal from the sensor and provide a driving signal to the driving unit.
  6. The apparatus of any one of the preceding claims, further comprising a collecting pipe connected to a bottom side of the vessel to discharge the etchant, wherein a material or particles etched from the glass substrate are collected to the collecting pipe by the flow of the etchant.
  7. The apparatus of claim 6, further comprising:
    a valve configured to control the flow of the etchant in the collecting pipe;
    a filter configured to remove the material or particles from the etchant after the etchant passes through the valve;
    a supply pipe configured to supply the etchant into the vessel; and
    a pump configured to transfer the etchant to the supply pipe after the etchant passes through the filter.
  8. The apparatus of claim 1, wherein the circulating unit is configured to move horizontally with respect to the first plate to create the flow of the etchant.
  9. The apparatus of claim 8, wherein the circulating unit comprises:
    a driving unit configured to control an operation of a body and a horizontally movable blade attached to the body,
    wherein the driving unit is configured to adjust a distance between the first plate and the body and a horizontal velocity of the body.
  10. The apparatus of claim 9, wherein the first plate has a rectangular shape in a plan view.
  11. An apparatus for etching a glass substrate, the apparatus comprising:
    a vessel configured to contain an etchant; and
    a plate in the vessel configured to receive a horizontally placed glass substrate, wherein the plate is configured to be rotated to induce a flow of the etchant.
  12. The apparatus of claim 11, further comprising a driving unit configured to control the plate, wherein the driving unit is configured to control a vertical movement and a rotation velocity of the plate.
  13. The apparatus of claim 12, further comprising:
    a sensor on a sidewall of the vessel and adjacent to the plate and configured to measure a thickness of the glass substrate; and
    a control unit configured to receive a signal from the sensor and provide a driving signal to the driving unit.
EP11186844.4A 2010-10-28 2011-10-27 Apparatus for etching glass substrate Active EP2455350B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100106208A KR101233687B1 (en) 2010-10-28 2010-10-28 Apparatus of etching a glass substrate

Publications (2)

Publication Number Publication Date
EP2455350A1 true EP2455350A1 (en) 2012-05-23
EP2455350B1 EP2455350B1 (en) 2016-10-26

Family

ID=45065665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11186844.4A Active EP2455350B1 (en) 2010-10-28 2011-10-27 Apparatus for etching glass substrate

Country Status (6)

Country Link
US (1) US9598310B2 (en)
EP (1) EP2455350B1 (en)
JP (1) JP5872221B2 (en)
KR (1) KR101233687B1 (en)
CN (1) CN102557465B (en)
TW (1) TWI563556B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698062B2 (en) * 2013-02-28 2017-07-04 Veeco Precision Surface Processing Llc System and method for performing a wet etching process
US9079210B2 (en) * 2013-07-22 2015-07-14 Infineon Technologies Ag Methods for etching a workpiece, an apparatus configured to etch a workpiece, and a non-transitory computer readable medium
KR102087193B1 (en) 2013-09-09 2020-04-16 삼성디스플레이 주식회사 Method for manufacturing organic light emitting diode display and method for manufacturing touch panel
CN104779188B (en) * 2015-05-04 2017-06-16 武汉华星光电技术有限公司 A kind of Etaching device
WO2019044757A1 (en) * 2017-08-31 2019-03-07 日本電気硝子株式会社 Method for etching glass, etching treatment device and glass sheet
CN108704872A (en) * 2018-06-05 2018-10-26 昆山木利机械设计有限公司 A kind of wiping screen device
EP3931160A1 (en) * 2019-03-01 2022-01-05 Zygo Corporation Method for figure control of optical surfaces
TWI718794B (en) * 2019-10-08 2021-02-11 辛耘企業股份有限公司 Wet processing device
WO2021167787A1 (en) * 2020-02-18 2021-08-26 Corning Incorporated Etching of glass surfaces to reduce electrostatic charging during processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374130A (en) * 1962-12-26 1968-03-19 Pittsburgh Plate Glass Co Etching solution and process for producing a non-reflective surface on transparent glass
DE19639949A1 (en) * 1995-10-03 1997-04-10 Corning Inc Glass article surface treatment esp. acid etching
US20070194145A1 (en) * 2006-02-17 2007-08-23 Gi-Won Lee Apparatus of thinning a glass substrate

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2411298A (en) * 1945-02-12 1946-11-19 Philips Corp Piezoelectric crystal
US3649509A (en) * 1969-07-08 1972-03-14 Buckbee Mears Co Electrodeposition systems
US3798056A (en) * 1972-04-05 1974-03-19 Bell Telephone Labor Inc Electroless plating process
JP2807238B2 (en) * 1988-09-13 1998-10-08 古河電気工業株式会社 Surface treatment method for glass base material
JP3122857B2 (en) * 1992-01-20 2001-01-09 株式会社日立製作所 Apparatus and method for etching semiconductor substrate
US5277715A (en) * 1992-06-04 1994-01-11 Micron Semiconductor, Inc. Method of reducing particulate concentration in process fluids
US5308447A (en) * 1992-06-09 1994-05-03 Luxtron Corporation Endpoint and uniformity determinations in material layer processing through monitoring multiple surface regions across the layer
US5499733A (en) * 1992-09-17 1996-03-19 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
US5891352A (en) * 1993-09-16 1999-04-06 Luxtron Corporation Optical techniques of measuring endpoint during the processing of material layers in an optically hostile environment
JP2912538B2 (en) 1993-12-08 1999-06-28 大日本スクリーン製造株式会社 Immersion type substrate processing equipment
DE4405278C1 (en) * 1994-02-19 1995-05-04 Berthold Lab Prof Dr Process and apparatus for polishing or matting glass surfaces in an acid bath
WO1998048252A1 (en) * 1997-04-22 1998-10-29 The Regents Of The University Of California Laser detection of material thickness
EP0927883B1 (en) * 1997-07-17 2005-09-28 Hoya Corporation Method of inspecting an ununiformity of a transparent material
US6028669A (en) * 1997-07-23 2000-02-22 Luxtron Corporation Signal processing for in situ monitoring of the formation or removal of a transparent layer
US6103096A (en) * 1997-11-12 2000-08-15 International Business Machines Corporation Apparatus and method for the electrochemical etching of a wafer
KR100272513B1 (en) * 1998-09-08 2001-01-15 구본준 Etching Device of Glass Substrate
US6690473B1 (en) * 1999-02-01 2004-02-10 Sensys Instruments Corporation Integrated surface metrology
JP3525830B2 (en) * 1999-11-16 2004-05-10 株式会社デンソー Etching equipment
US6203412B1 (en) * 1999-11-19 2001-03-20 Chartered Semiconductor Manufacturing Ltd. Submerge chemical-mechanical polishing
US6547937B1 (en) * 2000-01-03 2003-04-15 Semitool, Inc. Microelectronic workpiece processing tool including a processing reactor having a paddle assembly for agitation of a processing fluid proximate to the workpiece
US6454916B1 (en) * 2000-01-05 2002-09-24 Advanced Micro Devices, Inc. Selective electroplating with direct contact chemical polishing
ATE396497T1 (en) * 2000-01-21 2008-06-15 Hamamatsu Photonics Kk THICKNESS MEASURING APPARATUS, THICKNESS MEASURING METHOD AND WET ETCHING APPARATUS AND WET ETCHING METHODS USING THE SAME
JP2002087844A (en) * 2000-09-14 2002-03-27 Sony Corp Method for manufacturing display panel
US6558238B1 (en) * 2000-09-19 2003-05-06 Agere Systems Inc. Apparatus and method for reclamation of used polishing slurry
KR100712472B1 (en) * 2000-12-16 2007-04-27 엘지.필립스 엘시디 주식회사 Apparatus and method for etching
US7365860B2 (en) * 2000-12-21 2008-04-29 Sensory Analytics System capable of determining applied and anodized coating thickness of a coated-anodized product
KR100380844B1 (en) 2001-04-12 2003-04-18 니시야마 스테인레스 케미컬 가부시키가이샤 Method and apparatus for chemically polishing a liquid crystal glass substrate
KR100813018B1 (en) * 2001-06-02 2008-03-13 삼성전자주식회사 Apparatus mixing ingredients of cleaning liquid
US7090750B2 (en) * 2002-08-26 2006-08-15 Micron Technology, Inc. Plating
US6955747B2 (en) * 2002-09-23 2005-10-18 International Business Machines Corporation Cam driven paddle assembly for a plating cell
US6875322B1 (en) * 2003-01-15 2005-04-05 Lam Research Corporation Electrochemical assisted CMP
US7691279B2 (en) * 2003-03-27 2010-04-06 Hoya Corporation Method of producing a glass substrate for a mask blank and method of producing a mask blank
KR20050003759A (en) * 2003-07-04 2005-01-12 비오이 하이디스 테크놀로지 주식회사 Cassette for glass substrate loading
TWI310850B (en) * 2003-08-01 2009-06-11 Foxsemicon Integrated Tech Inc Substrate supporting rod and substrate cassette using the same
JP4003882B2 (en) * 2003-09-26 2007-11-07 シャープ株式会社 Substrate transfer system
US7931786B2 (en) * 2005-11-23 2011-04-26 Semitool, Inc. Apparatus and method for agitating liquids in wet chemical processing of microfeature workpieces
JP5016351B2 (en) 2007-03-29 2012-09-05 東京エレクトロン株式会社 Substrate processing system and substrate cleaning apparatus
KR100928050B1 (en) * 2007-08-24 2009-11-24 (주)지원테크 Glass substrate etching method and glass substrate etching device
US20090065478A1 (en) * 2007-09-11 2009-03-12 Dockery Kevin P Measuring etching rates using low coherence interferometry
KR100908936B1 (en) * 2007-11-21 2009-07-22 에이스하이텍 주식회사 Immersion type etching device of display glass substrate
US8177944B2 (en) * 2007-12-04 2012-05-15 Ebara Corporation Plating apparatus and plating method
KR20090070792A (en) * 2007-12-27 2009-07-01 주식회사 디에스티 Etching apparatus of glass substrate
JP5416092B2 (en) * 2008-03-28 2014-02-12 古河電気工業株式会社 Manufacturing method of plate material
JP2009290169A (en) * 2008-06-02 2009-12-10 Canon Inc Method for manufacturing oscillator
US8133097B2 (en) * 2009-05-07 2012-03-13 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374130A (en) * 1962-12-26 1968-03-19 Pittsburgh Plate Glass Co Etching solution and process for producing a non-reflective surface on transparent glass
DE19639949A1 (en) * 1995-10-03 1997-04-10 Corning Inc Glass article surface treatment esp. acid etching
US5846444A (en) * 1995-10-03 1998-12-08 Corning Incorporated Surface treatment of glass
US20070194145A1 (en) * 2006-02-17 2007-08-23 Gi-Won Lee Apparatus of thinning a glass substrate

Also Published As

Publication number Publication date
US9598310B2 (en) 2017-03-21
TWI563556B (en) 2016-12-21
TW201218266A (en) 2012-05-01
KR101233687B1 (en) 2013-02-15
CN102557465A (en) 2012-07-11
KR20120044746A (en) 2012-05-08
CN102557465B (en) 2015-07-22
JP5872221B2 (en) 2016-03-01
JP2012092001A (en) 2012-05-17
EP2455350B1 (en) 2016-10-26
US20120103520A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
EP2455350B1 (en) Apparatus for etching glass substrate
JP6910299B2 (en) Glass substrate and display device equipped with it
TWI725112B (en) Methods for thinning glass
CN110461606B (en) Method for processing substrate
KR20140133797A (en) Method for making glass substrate for display, glass substrate and display panel
CN101799631A (en) Worktable cleaner, drawing apparatus and substrate board treatment
CN101284365A (en) Rotary device, edging device of baseplate and edging method
US20110286818A1 (en) Substrate processing apparatus and method
TWI640399B (en) End processing device for glass plate and end processing method
TW200534236A (en) Method of manufacturing large-size substrate
JP2003321117A (en) Equipment and robot hand for retaining flat panel by pressure zone between flat panel and retaining equipment
JP2016010850A (en) Glass plate manufacturing method and glass plate manufacturing device
KR101607663B1 (en) Apparatus of etching a glass substrate
JP2014229910A (en) Stepper chuck for wafer or flat glass exposure system
WO2016052248A1 (en) Shape measuring device
KR101608898B1 (en) Apparatus of etching a glass substrate
KR101068114B1 (en) Apparatus for etching a glass substrate
KR20120079982A (en) Apparatus for transferring the substarate vertically
KR20170003587U (en) Carrier for supporting a substrate and apparatus therefor
JP2010076047A (en) Method for manufacturing substrate for mask blank and substrate for mask blank
JP2008068224A (en) Slit nozzle, substrate treatment apparatus, and method for treating substrate
CN217504298U (en) Display panel drying device
JP2004179580A (en) Carrier for plate-shaped member
KR101026744B1 (en) Apparatus for etching a glass substrate
JP2007266033A (en) Method of teaching reference position of substrate transfer robot

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120801

R17P Request for examination filed (corrected)

Effective date: 20120731

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAMSUNG DISPLAY CO., LTD.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAMSUNG DISPLAY CO., LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 839866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011031619

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161026

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 839866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011031619

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161027

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170126

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

26N No opposition filed

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161026

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 13