EP2449264B1 - Dispositif de transport de fluides par des pompes centrifuges - Google Patents

Dispositif de transport de fluides par des pompes centrifuges Download PDF

Info

Publication number
EP2449264B1
EP2449264B1 EP10726092.9A EP10726092A EP2449264B1 EP 2449264 B1 EP2449264 B1 EP 2449264B1 EP 10726092 A EP10726092 A EP 10726092A EP 2449264 B1 EP2449264 B1 EP 2449264B1
Authority
EP
European Patent Office
Prior art keywords
fluid
centrifugal pump
entry
pressure
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10726092.9A
Other languages
German (de)
English (en)
Other versions
EP2449264A1 (fr
Inventor
Gerhard Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB SE and Co KGaA
Original Assignee
KSB AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42333438&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2449264(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KSB AG filed Critical KSB AG
Priority to PL10726092T priority Critical patent/PL2449264T3/pl
Publication of EP2449264A1 publication Critical patent/EP2449264A1/fr
Application granted granted Critical
Publication of EP2449264B1 publication Critical patent/EP2449264B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control

Definitions

  • the invention relates to a method for conveying fluids with centrifugal pumps, wherein before a centrifugal pump, machines and / or apparatus are arranged, which influence the pressure and / or the temperature of the fluid. Furthermore, the invention relates to a process for the sequestration of carbon dioxide, wherein the carbon dioxide is brought to a suitable for a proposed reservoir pressure and / or temperature and is conveyed into the deposit.
  • the burning of fossil fuels in power plants generates carbon dioxide, which is responsible for the greenhouse effect.
  • the aim is therefore to reduce the emission of carbon dioxide into the atmosphere.
  • An effective measure is the sequestration of carbon dioxide.
  • the carbon dioxide produced in the power plants is separated and sent to landfill.
  • Deposits are geological formations such as oil reservoirs, natural gas deposits, saline aquifers or coal seams. Also a storage in the deep sea is examined.
  • the pump system comprises a multi-stage pump, like an underwater motor pump, which is arranged in a pot housing. This arrangement relies on a closed conveyor system in which very high pump inlet pressures prevail. Due to the above-mentioned boundary conditions, the carbon dioxide to be produced is exclusively in the liquid phase.
  • the system is being used for Enhanced Oil Recovery (EOR), injecting carbon dioxide into oil fields to increase the yield of extracted oil.
  • EOR Enhanced Oil Recovery
  • the system also serves to sequester carbon dioxide.
  • the WO 99/41490 A1 and the WO 2005/052365 A2 also describe systems for promoting supercritical carbon dioxide.
  • the US 2005/0155378 A1 describes a system for producing high purity carbon dioxide.
  • the object of the present invention is to provide a method which allows the promotion of supercritical fluids with centrifugal pumps, with the certainty of avoiding impermissible density changes of the fluid to be delivered.
  • This object is achieved in that by means of the machines and / or apparatus of the entry state of the fluid is adjusted in the centrifugal pump so that the fluid in the centrifugal pump only assumes conditions in which the real gas factor of the fluid has already reached or exceeded its minimum.
  • the real gas factor While for real gases the real gas factor is one, it deviates for real gases depending on pressure and temperature.
  • the real gas factor below the so-called Boyle temperature, initially decreases with increasing pressure, reaches a minimum and then increases again.
  • the inventive method ensures that the fluid assumes only conditions in the centrifugal pump, in which the real gas factor has already reached or exceeded its minimum. Operating the centrifugal pump in this allow operating areas, so a discontinuous pumping behavior and damage to the centrifugal pump, in the promotion of supercritical fluids are excluded with certainty.
  • a boundary line for the operation of centrifugal pumps is defined for the first time for the supercritical region, which must not be undershot during production.
  • centrifugal pump During the pumping process, there are pressure increases and temperature increases in the centrifugal pump.
  • the conditions which a fluid assumes in the centrifugal pump depend on the delivery situation and the type of centrifugal pump used. These are usually known to the operator.
  • the machines and apparatus used in the method configure the entry state of the fluid so that its real gas factor has already reached or exceeded its minimum at least at the entrance to the centrifugal pump.
  • the fluid may be present in the process already at the entrance to the centrifugal pump in a supercritical state. Likewise, it is possible for the fluid to be initially liquid when entering the centrifugal pump and to assume a supercritical state only in the centrifugal pump. Also in this case, the boundary line according to the invention is observed.
  • the inlet state of the fluid is set with compressors and heat exchangers. It proves to be advantageous if the fluid passes through at least one compression and one cooling stage. The number of compression and cooling stages sets the entry state of the fluid into the centrifugal pump.
  • the state of entry of the fluid at the inlet into the suction port of the centrifugal pump is generally considered to be the entry state. However, at the latest when the fluid enters the impeller, an entry state according to the invention must be reached.
  • the inlet temperature and / or the inlet pressure of the fluid are measured and forwarded to a control and / or regulating unit.
  • a control and / or regulating unit commercially available controllers or controllers can be used. It is also conceivable to use a process control system.
  • the control and / or regulating unit can be used to specifically influence the machines and apparatus in order to determine the state of entry of the Adjust fluids.
  • the control and / or regulating unit sends signals to the machines and apparatuses. The signals influence the drive motors or the actuators of the machines and apparatuses.
  • control and / or regulating unit triggers an alarm when the real gas factor of the fluid at the inlet to the pump has not yet reached its minimum.
  • the system can be brought into a safety position. This can also lead to a shutdown of the centrifugal pump.
  • Fig. 1 a flow chart of the method according to the invention is shown as a schematic representation.
  • the fluid here carbon dioxide, initially enters a compressor 1.
  • the compressor 1 is driven by a motor 2.
  • This schematic diagram applies to single or multi-stage compressor designs.
  • the number of compressor and heat exchanger stages varies. For reasons of clarity, only 2 process stages are shown here; but usually there are several.
  • the fluid In the compressor 1, the fluid is brought to a higher pressure, wherein the temperature of the fluid increases. After the compressor 1, the fluid enters a heat exchanger 3. The flowed through by coolant heat exchanger 3, absorbs heat from the fluid flow and thus lowers its temperature. The amount of coolant is adjusted with a valve 4. As an actuator, the valve 4 is operated with a motor 5.
  • the carbon dioxide can enter another compressor 6 or in another compressor stage, which is operated here with a motor 7.
  • the fluid undergoes a renewed increase in pressure and temperature before it enters a further heat exchanger 8, which may also be designed as an intercooler.
  • the carbon dioxide stream is cooled again. This is also done with a coolant flow, which is regulated via a valve 9, which has a motor 10 as an actuator.
  • the inlet state of the fluid into the centrifugal pump 11 is set via the machines 1, 6 and apparatuses 3, 8 so that the fluid in the centrifugal pump 11 assumes only conditions in which the real gas factor has already reached or exceeded its minimum.
  • the aggregate states of the fluid are detected at the entrance to the centrifugal pump 11 by means of conventional pressure and temperature measuring points 13, 14.
  • the measuring points 13, 14 are connected to a control unit 15, which controls the machines 1, 6 and apparatuses 3, 8.
  • the control unit 15 ensures that before the centrifugal pump 11 those aggregate states are set, due to which the centrifugal pump can be operated without damage.
  • the motor 12 of the centrifugal pump 11 can be influenced by the control unit 15, if it is designed accordingly.
  • Advantageous for the process is the use of variable speed motors. This depends on the given boundary conditions of the process or its installation.
  • the pressure measuring point 13 indicated by the abbreviation PI, measures the pressure of the carbon dioxide. If there is the danger that the carbon dioxide within the centrifugal pump 11 assumes states in the forbidden range at which the real gas factor has not yet reached its minimum, then its signals are forwarded via the control point 15 to the motors 2, 7 of the compressors 1, 6, via which the pressure of the carbon dioxide is adjustable.
  • the carbon dioxide leaves the centrifugal pump 11 in a state required for the subsequent process.
  • high pressure differences in the centrifugal pump can be realized without additional intermediate cooling with the inventive method.
  • a diagram is shown in which for a fluid to be conveyed carbon dioxide whose real gas factor z is plotted as a function of the pressure p.
  • the state of entry of the fluid by means of the machines 1, 6 and / or apparatuses 3, 8 is set so that the fluid when flowing through the centrifugal pump 11 assumes only states in which the real gas factor has already reached or exceeded its minimum.
  • the real gas factor of the fluid remains the same or increases.
  • an operating curve 16 is shown for a centrifugal pump 11, in which both the entry state E, and the exit state A of the fluid are within the permitted range.
  • the fluid is present at the entrance to the centrifugal pump 11 in a state in which the real gas factor z has already exceeded its minimum.
  • the pressure p and the temperature T of the fluid change.
  • the fluid enters the pump 11 at a pressure of 95 bar and leaves the pump 11 at a pressure of 300 bar.
  • the inlet temperature of the fluid is about 35 ° C and the outlet temperature of the fluid is about 70 ° C.
  • the entry state of the fluid through the machines 1, 6 and / or the apparatuses 3, 8 has been adjusted so that the fluid in the centrifugal pump 11 only assumes conditions in which the real gas factor z has already reached or exceeded its minimum.
  • a bold solid boundary curve 17 is defined for pumpable fluids in the supercritical region.
  • This supercritical region is to the right of the supercritical point kP of the fluid.
  • the limit curve 17 for the operation of centrifugal pumps is thereby defined for the supercritical region.
  • the carbon dioxide may take in the centrifugal pump 11 only states that are on this limit curve 17 or to the right. In this area, the real gas factor of carbon dioxide has already reached or exceeded its minimum.
  • the operating curve 16 of the centrifugal pump 11 is completely within the permitted range.
  • Fig. 3 shows a diagram in which the product p ⁇ v is plotted as a function of the pressure p for carbon dioxide.
  • the product p ⁇ v can be considered analogous to the real gas factor z. While the isotherms run horizontally for ideal gas behavior, real gases show a behavior that occurs in Fig. 3 is shown with dashed isotherms.
  • the product p ⁇ v on an isotherm with increasing Pressure smaller until a minimum is reached. After passing through the respective minimum, the product p ⁇ v increases again with increasing pressure.
  • the product p ⁇ v increases approximately linearly.
  • the entry state of the fluid with the aid of machines 1, 6 and / or apparatuses 3, 8 is adjusted so that the product p ⁇ v of the fluid in the centrifugal pump 11 has already reached or exceeded its minimum.
  • FIG. 3 an operating curve 16 is shown for a centrifugal pump 11, in which both the entry state E, and the exit state A of the fluid are within the permitted range.
  • the fluid has at the entrance to the pump 11 a state in which the real gas factor z has already exceeded its minimum.
  • the pressure p and the temperature T of the fluid change.
  • the fluid enters the pump at a pressure of 95 bar and leaves the pump at a pressure of 300 bar.
  • the inlet temperature of the fluid is about 35 ° C.
  • the outlet temperature of the fluid is 70 ° C.
  • the entry state of the fluid through machines 1, 6 and / or apparatuses 3, 8 has been set so that the fluid in the centrifugal pump 11 assumes only conditions in which the real gas factor z of the fluid has already reached or exceeded its minimum.
  • the operating curve 16 is completely within the permitted range. Analogous to Fig. 2 Here, too, the surge limit is shown as a bold solid limit curve 17.
  • FIGS. 4a . 4b and 4c show the phase diagram of carbon dioxide, which is often referred to as a state diagram or pT diagram.
  • the supercritical state ük is also shown. It can be seen from the diagram that carbon dioxide can not be liquid at a standard pressure of 1.013 bar, but only a sublimation at -78.5 ° C is observed. Carbon dioxide can be liquid only at higher pressures.
  • the vapor pressure curve 18 represents a limit line for the operating states that the fluid may take in the centrifugal pump.
  • the liquid carbon dioxide must not assume any conditions in the centrifugal pump at which the vapor pressure curve 18 is reached or exceeded, since otherwise cavitation occurs in the centrifugal pump.
  • the vapor pressure curve 18 is limited by the triple point TP and the critical point kP.
  • Fig. 4a When displayed in Fig. 4a is the entry state E of the fluid to be delivered in the permitted range.
  • the fluid has at the entrance to the centrifugal pump 11 a state in which the real gas factor z has already exceeded its minimum.
  • the pressure and the temperature of the fluid change.
  • the fluid enters the pump at a pressure of 95 bar and leaves the pump at a pressure of 220 bar.
  • the inlet temperature of the fluid is 35 ° C.
  • the outlet temperature of the fluid is 59 ° C.
  • the state of entry of the fluid through machines 1, 6 and / or apparatuses 3, 8 has been adjusted so that the fluid in the centrifugal pump 11 assumes only conditions in which the real gas factor of the fluid has already reached or exceeded its minimum.
  • the operating curve 16 lies completely within the allowed supercritical range divided by the limit curve 17. In this presentation of the Fig. 4a is located to the left of the limit curve 17 of the allowable pump range.
  • the entry state was varied by the machines 1, 6 and / or apparatuses 3, 8 so that the fluid enters the centrifugal pump 11 at a lower inlet temperature T.
  • the entire operating curve shifts from 16 to 16, so that now according to the invention the fluid in the centrifugal pump 11 assumes only states in which the real gas factor z has already reached or exceeded its minimum.
  • a higher inlet pressure p can be set. All states are in the allowed range after this variation of the entry state.
  • the exit state A is in the forbidden range.
  • the fluid is initially present at the inlet to the pump in a state in which the real gas factor z has already exceeded its minimum.
  • the pressure and the temperature of the fluid change.
  • the fluid enters the pump at a pressure of 95 bar and leaves the pump at a pressure of 220 bar.
  • the inlet temperature of the fluid is 35 ° C.
  • the outlet temperature of the fluid is 130 ° C.
  • the operating states of the fluid take from the intersection V of the operating curve 16 with the bold and solid drawn limit curve 17 values at which the real gas factor of the fluid has not yet reached or exceeded its minimum.
  • the operating curve is in the forbidden range.
  • the inlet state of the fluid by means of the machines 1, 6 and apparatuses 3, 8 is varied so that the entire operating curve 16 is within the permitted range, ie that the fluid in the centrifugal pump only assumes conditions in which the real gas factor of the fluid already be Minimum has reached or exceeded.
  • the entry point E of the curve 16 is shifted further to the right, so that the fluid enters the centrifugal pump 11 at a lower inlet temperature at the entry point E '.
  • the entire, here inadmissible operating curve 16 shifts as a new and permissible operating curve 16 'in the allowed supercritical range.
  • a higher inlet pressure p can be set.
  • the fluid in the centrifugal pump now only assumes conditions in which the real gas factor has already reached or exceeded its minimum. All states are in the allowed range after this variation of the entry state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Claims (15)

  1. Procédé de transport de fluides par des pompes centrifuges (11), dans lequel des machines (1, 6) et/ou des appareils (3, 8) sont disposés avant une pompe centrifuge (11), lesquels influencent la pression et/ou la température du fluide, caractérisé en ce que l'on mesure la température d'entrée (T) et/ou la pression d'entrée (p) du fluide et on la retransmet à une unité de commande et/ou de régulation (13, 14), dans lequel l'unité de commande et/ou de régulation (13, 14) retransmet aux machines (1, 6) et/ou aux appareils (3, 8) des signaux par lesquels l'état d'entrée du fluide peut être réglé, dans lequel on règle au moyen des machines (1, 6) et/ou des appareils (3, 8) l'état d'entrée du fluide dans la pompe centrifuge (11), de telle manière que le fluide ne prenne dans la pompe centrifuge (11) que des états dans lesquels le facteur de compressibilité (z) du fluide a déjà atteint ou dépassé son minimum.
  2. Procédé selon la revendication 1, caractérisé en ce que le fluide se trouve à l'entrée dans la pompe centrifuge (11) et/ou dans la pompe centrifuge (11) dans un état hypercritique.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que, lors d'une augmentation de la pression dans la pompe centrifuge (11), le facteur de compressibilité (z) du fluide reste constant ou augmente.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'unité de commande et/ou de régulation (13, 14) place le procédé dans un état de sécurité, lorsque le facteur de compressibilité (z) du fluide à l'entrée dans la pompe centrifuge (11) n'a pas encore atteint son minimum.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'état d'entrée du fluide est réglable avec des machines (1, 6) se présentant sous forme de compresseurs et/ou des appareils (3, 8) se présentant sous forme d'échangeurs de chaleur.
  6. Procédé selon la revendication 5, caractérisé en ce que le fluide à transporter traverse au moins un étage de compression et/ou un étage de refroidissement.
  7. Procédé pour séquestrer du dioxyde de carbone, dans lequel on porte le dioxyde de carbone à une pression et/ou une température appropriée pour un gisement prévu et on le transporte dans le gisement, caractérisé en ce qu'une pompe centrifuge (11) pompe le dioxyde de carbone dans le gisement conformément au procédé selon l'une quelconque des revendications 1 à 6, dans lequel des machines (1, 6) et/ou des appareils (3, 8) sont disposés avant la pompe centrifuge, lesquels influencent la pression et/ou la température du dioxyde de carbone, dans lequel on règle au moyen des machines (1, 6) et/ou des appareils (3, 8) l'état d'entrée du fluide, de telle manière que le fluide ne prenne dans la pompe centrifuge (11) que des états dans lesquels le facteur de compressibilité (z) du fluide a déjà atteint ou dépassé son minimum.
  8. Procédé selon la revendication 7, caractérisé en ce que le fluide se trouve à l'entrée dans la pompe centrifuge (11) et/ou dans la pompe centrifuge (11) dans un état hypercritique.
  9. Procédé selon la revendication 7 ou 8, caractérisé en ce que, lors d'une augmentation de la pression dans la pompe centrifuge (11), le facteur de compressibilité (z) du fluide reste constant ou augmente.
  10. Procédé selon l'une quelconque des revendications 7 à 9, caractérisé en ce que l'on mesure la température d'entrée (T) et/ou la pression d'entrée (p) du fluide et on la retransmet à une unité de commande et/ou de régulation (13, 14).
  11. Procédé selon la revendication 10, caractérisé en ce que l'unité de commande et/ou de régulation (13, 14) retransmet aux machines (1, 6) et/ou aux appareils (3, 8) des signaux par lesquels l'état d'entrée du fluide peut être réglé.
  12. Procédé selon la revendication 10 ou 11, caractérisé en ce que l'unité de commande et/ou de régulation (13, 14) déclenche une alarme, lorsque le facteur de compressibilité (z) du fluide à l'entrée dans la pompe centrifuge (11) n'a pas encore atteint son minimum.
  13. Procédé selon l'une quelconque des revendications 10 à 12, caractérisé en ce que l'unité de commande et/ou de régulation (13, 14) arrête l'installation, lorsque le facteur de compressibilité (z) du fluide à l'entrée de la pompe centrifuge (11) n'a pas encore atteint son minimum.
  14. Procédé selon l'une quelconque des revendications 7 à 13, caractérisé en ce que l'on règle l'état d'entrée du fluide avec des machines (1, 6) se présentant sous forme de compresseurs et/ou des appareils (3, 8) se présentant sous forme d'échangeurs de chaleur.
  15. Procédé selon la revendication 14, caractérisé en ce que le fluide à transporter traverse au moins un étage de compression (1, 6) et/ou un étage de refroidissement (3, 8).
EP10726092.9A 2009-06-30 2010-06-24 Dispositif de transport de fluides par des pompes centrifuges Active EP2449264B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10726092T PL2449264T3 (pl) 2009-06-30 2010-06-24 Sposób przenoszenia płynów za pomocą pomp odśrodkowych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009031309A DE102009031309A1 (de) 2009-06-30 2009-06-30 Verfahren zur Förderung von Fluiden mit Kreiselpumpen
PCT/EP2010/058967 WO2011000761A1 (fr) 2009-06-30 2010-06-24 Dispositif de transport de fluides par des pompes centrifuges

Publications (2)

Publication Number Publication Date
EP2449264A1 EP2449264A1 (fr) 2012-05-09
EP2449264B1 true EP2449264B1 (fr) 2017-06-07

Family

ID=42333438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10726092.9A Active EP2449264B1 (fr) 2009-06-30 2010-06-24 Dispositif de transport de fluides par des pompes centrifuges

Country Status (10)

Country Link
US (1) US8449264B2 (fr)
EP (1) EP2449264B1 (fr)
JP (1) JP5738286B2 (fr)
CN (1) CN102575678B (fr)
BR (1) BRPI1008179B1 (fr)
DE (1) DE102009031309A1 (fr)
DK (1) DK2449264T3 (fr)
ES (1) ES2639405T3 (fr)
PL (1) PL2449264T3 (fr)
WO (1) WO2011000761A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1398142B1 (it) * 2010-02-17 2013-02-14 Nuovo Pignone Spa Sistema singolo con compressore e pompa integrati e metodo.
EP2476476B1 (fr) 2011-01-14 2018-05-30 General Electric Technology GmbH Compression d'un fluide contenant du dioxyde de carbone
ITFI20110262A1 (it) * 2011-12-06 2013-06-07 Nuovo Pignone Spa "heat recovery in carbon dioxide compression and compression and liquefaction systems"
JP5995949B2 (ja) * 2014-12-19 2016-09-21 三菱重工業株式会社 多段圧縮機
US10718346B2 (en) * 2015-12-21 2020-07-21 General Electric Company Apparatus for pressurizing a fluid within a turbomachine and method of operating the same
ES2718742T3 (es) * 2016-02-19 2019-07-04 Linde Ag Procedimiento para la compresión gradual de un gas
FR3061240B1 (fr) * 2016-12-22 2019-05-31 Safran Aircraft Engines Procede ameliore de regulation d'un circuit d'alimentation
EP3686436A1 (fr) * 2019-07-31 2020-07-29 Sulzer Management AG Pompe à plusieurs étages et agencement de pompage sous-marin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498289A (en) 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
WO1999041490A1 (fr) 1998-02-13 1999-08-19 Clean Energy Systems, Inc. Systeme generateur d'energie a combustion d'hydrocarbures avec sequestration du co2
WO2009106160A1 (fr) 2008-02-25 2009-09-03 Siemens Aktiengesellschaft Procédé de compression de dioxyde de carbone ou d’un gaz ayant des propriétés analogues

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848427A (en) * 1971-03-01 1974-11-19 R Loofbourow Storage of gas in underground excavation
US3950958A (en) * 1971-03-01 1976-04-20 Loofbourow Robert L Refrigerated underground storage and tempering system for compressed gas received as a cryogenic liquid
FR2553835B1 (fr) * 1983-10-25 1986-02-28 Bertin & Cie Machine de compression d'un fluide, a plusieurs etages de compression en serie
FR2699986B1 (fr) * 1992-12-29 1995-02-24 Inst Francais Du Petrole Dispositif et méthode permettant de transférer dans une seule conduite un effluent de type polyphasique.
US6332336B1 (en) * 1999-02-26 2001-12-25 Compressor Controls Corporation Method and apparatus for maximizing the productivity of a natural gas liquids production plant
US6224355B1 (en) 1999-04-20 2001-05-01 Occidental Permian Ltd. Carbon dioxide pump and pumping system
US6994104B2 (en) * 2000-09-05 2006-02-07 Enersea Transport, Llc Modular system for storing gas cylinders
US6584781B2 (en) * 2000-09-05 2003-07-01 Enersea Transport, Llc Methods and apparatus for compressed gas
CA2339859A1 (fr) * 2001-02-05 2002-08-05 Glen F. Perry Systeme et produit de transport de gaz naturel
US6751985B2 (en) * 2002-03-20 2004-06-22 Exxonmobil Upstream Research Company Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
US6986647B2 (en) * 2003-11-21 2006-01-17 Tokyo Electron Limited Pump design for circulating supercritical carbon dioxide
US7096669B2 (en) * 2004-01-13 2006-08-29 Compressor Controls Corp. Method and apparatus for the prevention of critical process variable excursions in one or more turbomachines
US7076969B2 (en) * 2004-01-19 2006-07-18 Air Products And Chemicals, Inc. System for supply and delivery of high purity and ultrahigh purity carbon dioxide
DE102004031469A1 (de) * 2004-06-30 2006-01-26 Ksb Aktiengesellschaft Gesteuerte, energiesparende Mindestmengeneinrichtung einer mehrstufigen Kreiselpumpe mit einer Höchstdrucksonderstufe
GB0614250D0 (en) * 2006-07-18 2006-08-30 Ntnu Technology Transfer As Apparatus and Methods for Natural Gas Transportation and Processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498289A (en) 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
WO1999041490A1 (fr) 1998-02-13 1999-08-19 Clean Energy Systems, Inc. Systeme generateur d'energie a combustion d'hydrocarbures avec sequestration du co2
WO2009106160A1 (fr) 2008-02-25 2009-09-03 Siemens Aktiengesellschaft Procédé de compression de dioxyde de carbone ou d’un gaz ayant des propriétés analogues

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GOUQ-JEN SU: "Modified Law of Corresponding States for Real Gases", INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 38, no. 8, 1 August 1946 (1946-08-01), pages 803 - 806, XP007914075
ISALSKI: "Séparation of Gases", 1989, article "9.4 Pumps", pages: 248 - 253, XP055471720
VETTER ET AL.: "Ullmann's Encyclopedia", 2000, WILEY, article "High Pressure Technology", pages: 1 - 40, XP055097188
VOLKER MÜLLER: "ACD introduces its C02 centrifugal pump to the American market", FROSTBYTE, vol. 9, no. 3, 1998, pages 1, XP055471662

Also Published As

Publication number Publication date
US8449264B2 (en) 2013-05-28
PL2449264T3 (pl) 2017-11-30
JP2012531551A (ja) 2012-12-10
CN102575678B (zh) 2015-08-19
EP2449264A1 (fr) 2012-05-09
BRPI1008179B1 (pt) 2020-06-23
DK2449264T3 (en) 2017-09-18
BRPI1008179A8 (pt) 2020-05-12
CN102575678A (zh) 2012-07-11
US20120111419A1 (en) 2012-05-10
ES2639405T3 (es) 2017-10-26
JP5738286B2 (ja) 2015-06-24
DE102009031309A1 (de) 2011-01-05
WO2011000761A1 (fr) 2011-01-06
BRPI1008179A2 (pt) 2016-03-01

Similar Documents

Publication Publication Date Title
EP2449264B1 (fr) Dispositif de transport de fluides par des pompes centrifuges
DE602004010093T2 (de) Vorrichtung und verfahren zur erhöhung der produktivität von erdgasbohrungen
EP3601797B1 (fr) Compresseur à piston avec une zone de reglage étendu
EP2865854A1 (fr) Dispositif et procédé de démarrage fiable de systèmes ORC
WO2011064076A1 (fr) Procédé permettant de faire fonctionner un dispositif de transport d'un agent de réduction
EP2884190B1 (fr) Procédé et dispositif de dégazage d'un milieu dans un circuit
EP0025910A1 (fr) Procédé et dispositif pour le dégazage d'un liquide sous pression d'un système hydraulique
DE102008032825B3 (de) Strahlpumpe sowie Verfahren zu deren Betrieb
DE2400325A1 (de) Mit oeleinspritzung arbeitender kreiselkompressor
DE102015214563B3 (de) Leistungserzeugungsanordnung, Fahrzeug mit einer Leistungserzeugungsanordnung und Verfahren zur Einstellung eines Inertgasdrucks
EP1427931A1 (fr) Procede, programme informatique, appareil de commande et/ou de regulation pour actionner un moteur a combustion interne et systeme de carburant pour moteur a combustion interne
WO2012062542A1 (fr) Procédé et système pour détecter des détériorations dans des pompes à piston-membrane contenant des liquides de travail
EP2212517A1 (fr) Procédé de fonctionnement d'un dispositif compresseur et d'un dispositif compresseur correspondant
DE102016011394A1 (de) Schraubenkompressor für ein Nutzfahrzeug
DE102011012321A1 (de) System zur Zumessung von Fluid
DE102009016790A1 (de) Schraubenverdichteraggregat mit Volumenstromregelung
EP1936205A1 (fr) Procédé destiné au fonctionnement d'un agrégat de pompe centrifuge à vitesse de rotation réglable
DE4303319A1 (de) Vakuum-Pumpeinrichtung
DE102015223848A1 (de) Verfahren zum Ermitteln einer Viskosität eines Kraftstoffs
EP2530323A1 (fr) Système de production et de transformation de gaz naturel
DE102019218289A1 (de) Kühlsystem und Verfahren zum Betreiben eines Kühlsystems
DE102007051498A1 (de) Kraftstoffzumesseinheit für ein Flugzeugtriebwerk
DE102010062440A1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
EP2129975B1 (fr) Centrale thermique
EP2211029A1 (fr) Installation à turbines à gaz et à vapeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 899449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013708

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170911

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170607

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2639405

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170908

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010013708

Country of ref document: DE

Owner name: KSB SE & CO. KGAA, DE

Free format text: FORMER OWNER: KSB AKTIENGESELLSCHAFT, 67227 FRANKENTHAL, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KSB SE & CO. KGAA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502010013708

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

26 Opposition filed

Opponent name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 899449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170624

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170807

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502010013708

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20230621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230615

Year of fee payment: 14

Ref country code: PL

Payment date: 20230524

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230629

Year of fee payment: 14

Ref country code: GB

Payment date: 20230622

Year of fee payment: 14

Ref country code: ES

Payment date: 20230703

Year of fee payment: 14

Ref country code: CH

Payment date: 20230702

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230713

Year of fee payment: 14