EP2446133A1 - Verfahren zum betreiben eines verbrennungsmotors - Google Patents

Verfahren zum betreiben eines verbrennungsmotors

Info

Publication number
EP2446133A1
EP2446133A1 EP10728134A EP10728134A EP2446133A1 EP 2446133 A1 EP2446133 A1 EP 2446133A1 EP 10728134 A EP10728134 A EP 10728134A EP 10728134 A EP10728134 A EP 10728134A EP 2446133 A1 EP2446133 A1 EP 2446133A1
Authority
EP
European Patent Office
Prior art keywords
injection
fuel
pilot fuel
combustion
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10728134A
Other languages
English (en)
French (fr)
Inventor
Carsten Baumgarten
Johannes Eichmeier
Christina Sauer
Arne Schneemann
Ulrich Spicher
Christoph Teetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2446133A1 publication Critical patent/EP2446133A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for operating an internal combustion engine. Furthermore, the invention relates to a combustion chamber for an internal combustion engine for carrying out the presented method.
  • Internal combustion engines can basically be divided into two types, namely spark-ignited and compression-ignited internal combustion engines.
  • a stoichiometric mixture of air and fuel is usually introduced into the cylinder of the internal combustion engine, after which a piston compresses this mixture and ignites a spark plug at a predetermined crankshaft angle.
  • Compression-ignition internal combustion engines by contrast, operate at a higher compression ratio, typically in the range of 15 to 22. In these, air is introduced into a cylinder and compressed. In the area of the end of the compression stroke, when the trapped air has a sufficiently high temperature, fuel is injected, which ignites.
  • PCCI Combustion charge compression ignition
  • HCCI homogeneous charge compression ignition
  • Document DE 10 2006 007 279 A1 describes a method for operating a compression ignition internal combustion engine operating in the PCCI mode with a dual fuel injection system. In this, by injecting a secondary fuel into the intake air flow or directly into the cylinder, the load limit of quietly operating a compression-ignition engine is extended.
  • HCCI combustion processes were presented, which differ mainly in the nature of mixture formation. Examples are PREDIC, HCDC, HCLI, HPLI, etc. In these combustion processes, injection and combustion of the diesel fuel are largely decoupled, so that a direct accessibility to the start of combustion, which strongly influences emissions and fuel consumption, is not given. It should also be noted that HCCI combustion processes have increased emissions of unburned hydrocarbons (HC) and carbon monoxide (CO) due to lean, cold combustion. Another disadvantage is the limited map area in which HCCI methods can be realized.
  • Limiting factors are the maximum permissible pressure gradient and the permissible peak pressure, so that it is necessary to switch over to the respective conventional combustion processes, ie diesel heterogeneous or Otto spark ignited, even in the partial load range. These limiting variables are highly dependent on the motor used and the application. At high loads occur despite charge dilution, steep pressure gradients limit the operating range of HCCI combustion processes.
  • the presented method is for operating an internal combustion engine, in which a homogeneous basic mixture which is typically heavily diluted with exhaust gas and / or air is ignited by additionally injecting a pilot fuel, wherein the injection time of the pilot fuel is chosen such that no complete homogenization, i. only a partial homogenization of the pilot fuel with the base mixture takes place.
  • the pilot fuel is injected about 70 to 20 0 KW before ZOT, preferably 70 to 30 0 KW before ZOT.
  • pilot fuel diesel can be used as a pilot fuel diesel.
  • the pilot fuel amount is about 5% to 15% of the total fuel amount, at low load less, about 5%, than at low load, about 15%.
  • Gasoline can be used as the fuel for the base mixture.
  • Further fuels for the homogeneous basic mixture are iso-octane, ethanol, methanol, LNG, LPG or CNG.
  • the base mixture may also contain portions of a diesel fuel.
  • Alternatives to the pilot fuel are n-heptane, kerosene or naphtha.
  • the injection timing can be selected depending on certain boundary conditions. Thus, the injection timing can be adjusted depending on the number of injection holes. In the embodiment of the method, six to twelve injection holes are used for injecting the pilot fuel.
  • the injection pressure; the pilot injection can be between 300 and 1200 bar, preferably between 800 and 1200 bar.
  • the basic mixture can be achieved with a port injection or a direct injection.
  • the presented combustion chamber in an internal combustion engine serves for a combustion method, in particular for a combustion method of the type described above, and has a first means for introducing a fuel for a base mixture and an injection for injecting a pilot fuel, wherein the combustion chamber is configured such that this injection takes place as a function of a crank angle of the internal combustion engine.
  • six to twelve injection holes are provided for injecting the pilot fuel.
  • a so-called dual-fuel combustion method combustion method with two fuels
  • combustion method with two fuels combustion method with two fuels
  • the fuel in the base mixture is, for example, gasoline.
  • Diesel can be used as a pilot fuel.
  • the pilot fuel has to enter the combustion chamber at a certain time in order to take over the control of the combustion on the one hand and to achieve very low soot and nitrogen oxide emissions on the other hand.
  • the method requires, at least in some of the embodiments, an extremely high charge dilution with external exhaust gas recirculation (EGR), since the ignitability of the mixture is increased by the targeted pilot injection.
  • EGR exhaust gas recirculation
  • the described combustion process can be used in the entire engine map area.
  • future emission regulations can be met without complex and costly exhaust gas treatment measures.
  • a homogeneous basic mixture diluted strongly with air and / or exhaust gas is produced by the heterogeneous injection of a small amount of easily inflammable pilot fuel (for example diesel fuel EN590, kerosene), about 5% to 15% of the total fuel quantity, safely and quickly ignited.
  • a small amount of easily inflammable pilot fuel for example diesel fuel EN590, kerosene
  • the injection of the highly flammable pilot fuel offers the opportunity to control the combustion. At the same time, this ensures reliable ignition even at very high EGR rates.
  • the time of the pilot Injection injection has a decisive influence on combustion and emissions.
  • the auto-ignition is controlled by the supply of a more ignition-willing fuel.
  • Another dual-fuel combustion process is characterized by the combination of an Otto HCCI combustion process with the mechanical design and the field of application of a large diesel engine.
  • This combination makes it possible to cover the complete engine map of a C & I application. This eliminates the need to switch between two combustion processes, which in turn facilitates the controllability and allows the lowest nitrogen oxide and soot emissions in the entire map area.
  • applications in the field of marine engines and generators are conceivable.
  • diesel HCCI homogeneous diesel combustion
  • the high ignitability of the diesel fuel leads to such high pressure gradients that even the mechanical load limits of large diesel engines can be exceeded. Therefore, the diesel HCCI combustion process should be used primarily in the partial load range ( ⁇ 50% load). It should be noted that in today's structure (maximum peak pressure ⁇ 100 bar in naturally aspirated engines) of gasoline engines and the requirements for acoustics and cold start operation, the Otto HCCI combustion process should also be used only at low loads and speeds. In contrast, diesel engines offer the optimal conditions for Otto HCCI.
  • EGR exhaust gas recirculation
  • two-stage supercharging two-stage supercharging
  • the high exhaust gas recirculation rate has the purpose of setting a desired start of combustion and a desired burning time of the charge.
  • the exhaust gas recirculation rate can be adjusted depending on load and speed. Compared to an application in passenger cars, significantly higher pressure gradients, for example 100 bar / ms, are permissible, so that a mean effective pressure of 20 bar at 1,300 l / min can be achieved.
  • the two-stage turbocharger charge should be adjusted to provide the required air at maximum torque. Due to the required exhaust gas recirculation rate for diluting the charge in the combustion chamber, the turbines of the ATL have to be smaller by a factor of 3 to 4 compared to conventional diesel applications with regard to their flow rate.
  • a cooled EGR should be provided in order to achieve maximum torque and maximum power.
  • Figure 1 shows different mixture formation in dual-fuel operation.
  • FIG. 2 shows pressure curves as a function of the injection time.
  • FIG. 3 shows the sequence of injection and combustion.
  • FIG. 1 shows different mixture forms with associated combustion in dual-fuel operation.
  • the injection of the pilot fuel takes place at different times with respect to ignition TDC or ZOT (TDC: top dead center).
  • a combustion chamber 10 is shown, in which a homogeneous gasoline-diesel mixing region 12 is present, wherein a pilot jet 14 is introduced.
  • combustion chamber 20 In the middle of the illustration, another combustion chamber 20 is shown with a homogeneous gasoline-diesel mixing area 22 and a flame front 24.
  • a third combustion chamber 30 On the right side of the illustration, a third combustion chamber 30 is shown with a pilot beam 32 and a flame front 34.
  • Figure 1 illustrates the influence of the injection timing of the pilot fuel amount. If the pilot fuel is injected into the combustion chamber 10 at a very early stage, approximately 180 to 70 0 KW before ZOT, then the pilot-ignition pilot fuel mixes almost with the base mixture until ZOT, which corresponds to an HCCI combustion process. In this case, the injection timing does not affect the combustion position. Very early injection times result in extremely low soot and NO x emissions.
  • the combustion position can be controlled by means of the injection valve. In this case, an early injection in said angular range leads to a later combustion, since the pressure and temperature level here is lower than in a later injection, which has a shorter ignition delay.
  • pilot fuel as shown on the right side of Figure 1, about 20 to 0 0 KW injected before ZOT, the homogenization is insufficient and the combustion shifts in conjunction with strong knocking phenomena towards earlier times. NO x and soot emissions increase significantly.
  • the illustration shows that injection of the pilot fuel in the range of approximately 70 to 20 0 KW before ZOT is to be aimed for, with the pilot injection quantity amounting to approximately 5% to 15% of the total fuel quantity.
  • this range varies depending on further boundary conditions, such as, for example, the number of spray holes in the fuel nozzle of the pilot fuel. With increasing number of spray holes, the homogenization of the fuel improves, so that with twelve spray holes compared to six spray holes about 10 to 20 0 KW can be injected later, without leaving the partially homogeneous range.
  • an injection number of six to twelve, preferably eight to twelve has been found, with their spatial arrangement shows significant effects on the combustion.
  • the spray holes in two or more cascades in conjunction with different spray hole angles, the fuel can be better distributed in the combustion chamber.
  • the igniters arise with better spatial distribution, the tendency to knock decreases.
  • an injection pressure of the pilot injection of 300 to 1,200 bar has been found suitable. Higher pressures are not required due to the small pilot fuel amount.
  • the required EGR rate varies depending on the load point. Although a dilution with air is sufficient up to an indexed mean pressure of 11 bar and, if necessary, an EGR rate of 15% offers advantages in terms of consumption and emissions, 50 to 60% external EGR is required for an indicated mean pressure of 16 bar to prevent knocking burns and to ensure moderate pressure rise burrs.
  • a homogeneous basic mixture can be achieved both with a port injection and with a direct injection.
  • the engine is started in a version with 100% pilot fuel.
  • the basic mixture is continuously increased until the pilot fuel quantity is only approx. 5% to 15% of the total fuel quantity. At loads of more than 3 bar pme and speeds of more than 1,000 rpm, this is about 10%, for loads greater than 12 bar pme it is about 5%.
  • the pilot fuel quantity may need to be increased (15%) to achieve a safe ignition. Then the injection of the pilot fuel takes place between 70 and 20 0 KW. With increasing engine load, the EGR rate increases from 0% at idle to about 50 to 70% at full load.
  • FIG. 2 shows different pressure profiles as a function of the crank angle 0 KW.
  • a first curve shows the course at an injection time of the pilot fuel of 10 C KW before ZOT.
  • a second curve 56 shows the course at 25 ° CA before ZOT.
  • a third curve 58 shows the dependence at 35 0 KW before ZOT again.
  • FIG. 3 shows the sequence of injection and combustion.
  • the abscissa 70 the crank angle is plotted in 0 KW.
  • a curve 72 shows the cylinder pressure curve.
  • the pilot injection takes place.
  • the injection of the gasoline is made.
  • the inlet opens.
  • Figure 3 shows that pilot fuel injection is performed during compression.

Abstract

Es werden ein Verfahren zum Betreiben eines Verbrennungsmotors und eine Brennkammer (10, 20, 30) für ein solchen Verbrennungsmotor vorgestellt. Bei dem Verfahren wird ein verdünntes Grundgemisch durch zusätzliches Einspritzen eines Pilotkraftstoffs zu einem Einspritzzeitpunkt entzündet, wobei der Einspritzzeitpunkt des Pilotkraftstoffs so gewählt wird, dass keine vollständige Homogenisierung des Pilotkraftstoffs mit dem Grundgemisch stattfindet.

Description

Verfahren zum Betreiben eines Verbrennungsmotors
Die Erfindung betrifft ein Verfahren zum Betreiben eines Verbrennungsmotors. Weiterhin betrifft die Erfindung eine Brennkammer für einen Verbrennungsmotor zur Durchführung des vorgestellten Verfahrens.
Verbrennungsmotoren können grundsätzlich in zwei Arten unterschieden werden, nämlich in fremdgezündete und kompres- sionsgezündete Verbrennungsmotoren.
Bei fremdgezündeten Verbrennungsmotoren wird üblicherweise ein stöchiometrisches Gemisch aus Luft und Kraftstoff in den Zylinder des Verbrennungsmotors eingeführt, wonach ein Kolben dieses Gemisch komprimiert und eine Zündkerze dieses bei einem vorbestimmten Kurbelwellenwinkel entzündet.
Kompressionsgezündete Verbrennungsmotoren arbeiten im Gegensatz dazu mit einem höheren Kompressionsverhältnis, ty- pischerweise in einem Bereich von 15 bis 22. Bei diesen wird Luft in einen Zylinder eingeführt und komprimiert. Im Bereich des Endes des Kompressionshubs, wenn die eingeschlossene Luft eine ausreichend hohe Temperatur hat, wird Kraftstoff eingespritzt, der sich entzündet.
Es ist zu beachten, dass zukünftige Emissionsgrenzwerte für sogenannte Off-Highway-Anwendungen (bspw. EPA Tier4 ab 2014) nicht mehr durch Verbesserung der derzeitigen Diesel- brennverfahren eingehalten werden können. Daher kommen zukünftig komplexe Abgasnachbehandlungssysteme zum Einsatz, die jedoch mit hohem technischen Aufwand und erhöhten Kosten verbunden sind. Um bei vergleichbaren Kosten zukünftig Emissionsvorschriften einzuhalten, sind neue verbesserte Brennverfahren notwendig.
Aufgrund der aufgezeigten gestiegenen Anforderungen hinsichtlich Kraftstoffwirtschaftlichkeit und Emissionen wer- den verstärkt Bemühungen unternommen, hocheffiziente, kom- pressionsgezündete Verbrennungsmotoren mit effizienten Brennverfahren und niedrigen Emissionen zu entwickeln. Hierbei werden u.a. Brennverfahren der Kompressionszündung mit vorgemischter Ladung (PCCI: premixed Charge compression ignition) und Verfahren der Kompressionszündung mit homogener Ladung (HCCI: homogeneous Charge compression ignition) untersucht .
Die Druckschrift DE 10 2006 007 279 Al beschreibt ein Ver- fahren zum Betreiben eines kompressionsgezündeten Verbrennungsmotors, der in der PCCI-Betriebsart mit einem dualen Kraftstoffeinspritzsystem arbeitet. Bei diesem wird durch Einspritzen eines sekundären Kraftstoffs in den Einlassluftstrom oder direkt in den Zylinder die Lastgrenze eines ruhigen Betreibens eines Kompressionszündungsmotors ausgedehnt .
Ein weiteres PCCI-Brennverfahren ist in der Druckschrift US 6 659 071 B2 beschrieben. Bei diesem wird ein erster Kraft- Stoff mit Einlassluft vermischt und ein zweiter Kraftstoff direkt eingespritzt. Um die Entstehung der Schadstoffe Partikel und Stickoxide bereits im Brennraum zu vermeiden, wurden in den letzten Jahren verstärkt die HCCI-Brennverfahren untersucht. Bei der homogenen Selbstzündung wird ein homogenes, mageres Kraftstoff-Luft-Gemisch in den Brennraum eingebracht, das sich während des Verdichtungstakts annähernd gleichzeitig im gesamten Brennraum entzündet. Zur Vermeidung unzulässig hoher Druckgradienten ist eine hohe Ladungsverdünnung notwendig, wodurch deutlich geringere lokale Verbrennungstem- peraturen entstehen und somit auch nahezu keine thermische Stickoxidbildung auftritt. Aufgrund des homogenen, mageren Gemischs, das fast zeitgleich verbrennt, werden keine Rußpartikel gebildet.
Es wurden zahlreiche HCCI-Brennverfahren vorgestellt, die sich vornehmlich in der Art der Gemischbildung unterscheiden. Beispiele sind PREDIC, HCDC, HCLI, HPLI usw. Bei diesen Brennverfahren laufen Einspritzung und Verbrennung des Dieselkraftstoffs weitgehend entkoppelt ab, so dass eine direkte Zugriffsmöglichkeit auf den Brennbeginn, der die Emissionen und den Kraftstoffverbrauch stark beeinflusst, nicht gegeben ist. Weiterhin ist zu beachten, dass HCCI- Brennverfahren durch die magere, kalte Verbrennung erhöhte Emissionen an unverbrannten Kohlenwasserstoffen (HC) und Kohlenmonoxid (CO) aufweisen. Ein weiterer Nachteil besteht in dem begrenzten Kennfeldbereich, in dem HCCI-Verfahren realisiert werden können. Begrenzende Faktoren sind der maximal zulässige Druckgradient und der zulässige Spitzendruck, so dass bereits im Teillastbereich auf die jeweili- gen konventionellen Brennverfahren, d.h. Diesel heterogen bzw. Otto fremdgezündet, umgeschaltet werden muss. Diese begrenzenden Größen sind stark von dem verwendeten Motor und dem Anwendungsfall abhängig. Bei hohen Lasten treten trotz Ladungsverdünnung steile Druckgradienten auf, die den Betriebsbereich der HCCI-Brennverfahren begrenzen.
Das vorgestellte Verfahren dient zum Betreiben eines Ver- brennungsmotors, bei dem ein typischerweise stark mit Abgas und/oder Luft verdünntes, homogenes Grundgemisch durch zusätzliches Einspritzen eines Pilotkraftstoffs entzündet wird, wobei der Einspritzzeitpunkt des Pilotkraftstoffs so gewählt wird, dass keine vollständige Homogenisierung, d.h. nur eine Teilhomogenisierung, des Pilotkraftstoffs mit dem Grundgemisch stattfindet.
In Ausgestaltung wird der Pilotkraftstoff etwa 70 bis 20 0KW vor ZOT, vorzugsweise 70 bis 30 0KW vor ZOT einge- spritzt.
Als Pilotkraftstoff kann Diesel verwendet wird. In einer Ausführung entspricht die Menge des Pilotkraftstoffs etwa 5% bis 15% der gesamten Kraftstoffmenge, bei hoher Last we- niger, nämlich etwa 5%, als bei niedriger Last, nämlich etwa 15%.
Als Kraftstoff für das Grundgemisch kann Benzin verwendet werden. Als weitere Kraftstoffe für das homogene Grundge- misch kommen Iso-Oktan, Ethanol, Methanol, LNG, LPG oder CNG in Betracht. Das Grundgemisch kann neben diesen Kraftstoffen auch Anteile eines Dieselkraftstoffs enthalten. Alternativen für den Pilotkraftstoff sind n-Heptan, Kerosin oder Naphta. Weiterhin kann der Einspritzzeitpunkt in Abhängigkeit bestimmter Randbedingungen gewählt werden. So kann der Einspritzzeitpunkt in Abhängigkeit der Anzahl der Einspritzlöcher eingestellt werden. In Ausgestaltung des Verfahrens werden sechs bis zwölf Einspritzlöcher zum Einspritzen des Pilotkraftstoffs verwendet.
Der Einspritzdruck; der Piloteinspritzung kann zwischen 300 und 1.200 bar, vorzugsweise zwischen 800 und 1.200 bar liegen.
Das Grundgemisch kann mit einer Saugrohreinspritzung oder einer Direkteinspritzung erzielt werden.
Die vorgestellte Brennkammer in einem Verbrennungsmotor dient für ein Brennverfahren, insbesondere für ein Brenn- verfahren der vorstehend beschriebenen Art, und weist eine erste Einrichtung zum Einführen eines Kraftstoffs für ein Grundgemisch und eine Einspritzung zum Einspritzen eines Pilotkraftstoffes auf, wobei die Brennkammer derart ausgestaltet ist, dass diese Einspritzung in Abhängigkeit eines Kurbelwinkels des Verbrennungsmotors erfolgt.
In Ausgestaltung sind sechs bis zwölf Spritzlöcher zum Einspritzen des Pilotkraftstoffs vorgesehen.
Es kann eine externe Abgasrückführung und eine zweistufige Aufladung vorgesehen sein.
Mit dem beschriebenen Verfahren zum Betreiben eines Verbrennungsmotors wird ein sogenanntes Dual-Fuel- Brennverfahren (Brennverfahren mit zwei Kraftstoffen) vorgestellt, mit dem es möglich ist, die Selbstzündung eines stark mit Abgas und/oder Luft verdünnten, homogenen Luftge- mischs durch die Piloteinspritzung einer kleinen Menge zündwilligen Kraftstoffs zu steuern. Der Kraftstoff im Grundgemisch ist bspw. Benzin. Als PilotkraftStoff kann Diesel eingesetzt werden. Der Pilotkraftstoff muss dabei zu einem bestimmten Zeitpunkt in den Brennraum gelangen, um einerseits die Steuerung der Verbrennung zu übernehmen und andererseits sehr geringe Ruß- und Stickoxidemissionen zu erzielen .
Das Verfahren benötigt, zumindest in einigen der Ausführun- gen, eine äußerst hohe Ladungsverdünnung mit externer Abgasrückführung (AGR) , da die Zündwilligkeit des Gemischs durch die gezielte Piloteinspritzung erhöht wird.
Im Gegensatz zu bekannten HCCI-Verfahren kann das beschrie- bene Brennverfahren im gesamten Motorkennfeldbereich eingesetzt werden. Insbesondere können zukünftige Emissionsvorschriften ohne aufwendige und kostenträchtige Abgasbehandlungsmaßnahmen erfüllt werden. Außerdem ist die Möglichkeit gegeben, verschiedene Kraftstoffe einzusetzen.
Bei dem vorgestellten Dual-Fuel-Brennverfahren wird somit ein stark mit Luft und/oder Abgas verdünntes homogenes Grundgemisch durch die heterogene Einspritzung einer kleinen Menge leicht entflammbaren Pilotkraftstoffs (bspw. Die- selkraftstoff z.B. EN590, Kerosin) , etwa 5% bis 15% der gesamten Kraftstoffmenge, sicher und schnell entzündet. Damit gelingt es, die Vorteile des HCCI-Brennverfahrens zu nutzen, wobei gleichzeitig die damit verbundenen Nachteile vermieden werden. Die Einspritzung des leicht entflammbaren Pilotkraftstoffs bietet die Möglichkeit, die Verbrennung zu steuern. Gleichzeitig gewährleistet dies eine sichere Zündung auch bei sehr hohen AGR-Raten. Der Zeitpunkt der Pi- loteinspritzung nimmt dabei einen entscheidenden Einfluss auf Verbrennung und Emissionen.
Es handelt sich somit in einer Ausgestaltung um ein Otto- HCCI-Brennverfahren, dessen Selbstzündung durch die Zuführung eines zündwilligeren Kraftstoffs kontrolliert wird.
Ein weiteres Dual-Fuel-Brennverfahren zeichnet sich durch die Verbindung eines Otto-HCCI-Brennverfahrens mit der me- chanischen Auslegung und dem Anwendungsbereich eines Großdieselmotors aus. Diese Kombination ermöglicht es, das komplette Motorkennfeld einer C&I-Anwendung abzudecken. Dadurch entfällt die Umschaltung zwischen zwei Brennverfahren, was wiederum die Steuer- bzw. Regelbarkeit erleichtert und niedrigste Stickoxid- und Rußemissionen im gesamten Kennfeldbereich ermöglicht. Grundsätzlich sind auch Anwendungen im Bereich von Schiffsmotoren und Generatoren denkbar .
Verwendet man eine homogene Dieselverbrennung (Diesel- HCCI), so führt die hohe Zündwilligkeit des Dieselkraftstoffs zu derart hohen Druckgradienten, dass selbst die mechanischen Belastungsgrenzen von Großdieselmotoren überschritten werden können. Deshalb sollte das Diesel-HCCI- Brennverfahren vornehmlich im Teillastbereich (<50% Last) eingesetzt werden. Hierbei ist zu beachten, dass bei der heutigen Struktur (max. Spitzendruck < 100 bar bei Saugmotoren) von Ottomotoren und den Anforderungen an Akustik und Kaltstartbetrieb das Otto-HCCI-Brennverfahren ebenfalls nur bei niedrigen Lasten und Drehzahlen eingesetzt werden sollte. Im Gegensatz dazu bieten Dieselmotoren die optimalen Randbedingungen für Otto-HCCI. Diese Motoren können mit externer Abgasrückführung (AGR) und zweistufiger Aufladung ausgestattet sein, so dass die Komponenten für die benötigte Ladungsverdünnung bereits zur Verfügung stehen. Durch den hohen zulässigen Spitzendruck von bis zu 230 bar ist eine hohe Verdünnung mit AGR (60%) möglich, ohne an die Grenzen der mechanischen Belastung zu stoßen. Die hohe Abgasrück- führrate hat den Zweck, einen gewünschten Brennbeginn und eine gewünschte Brenndauer der Ladung einzustellen. Die Ab- gasrückführrate kann in Abhängigkeit von Last und Drehzahl vorgenommen werden. Im Vergleich zu einer Anwendung im Pkw sind zudem deutlich höhere Druckgradienten, bspw. 100 bar/ms) , zulässig, so dass 20 bar effektiver Mitteldruck bei 1.300 l/min ohne Einschränkungen erreicht werden kann. Dazu sollte die zweistufige Abgasturboladung (ATL) ange- passt werden, um die benötigte Luft bei maximalem Drehmoment bereitzustellen. Die Turbinen der ATL sind wegen der benötigten Abgasrückführrate zur Verdünnung der Ladung in der Brennkammer bzgl. ihres Durchflusses im Vergleich zu konventionellen Dieselanwendungen um den Faktor 3 bis 4 kleiner zu wählen.
Da die Temperatur der Zylinderladung entscheidenden Ein- fluss auf die Verbrennungslage der Dual-Fuel-Verbrennung nimmt, sollte eine gekühlte AGR vorgesehen sein, um maximales Drehmoment und maximale Leistung zu erreichen.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung.
Es versteht sich, dass die voranstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Die Erfindung ist anhand von Ausführungsformen in der Zeichnung schematisch dargestellt und wird nachfolgend unter Bezugnahme auf die Zeichnung ausführlich beschrieben.
Figur 1 zeigt unterschiedliche Gemischbildungen im Dual- Fuel-Betrieb.
Figur 2 zeigt Druckverläufe in Abhängigkeit des Einspritzzeitpunkts .
Figur 3 zeigt den Ablauf von Einspritzung und Verbrennung.
In Figur 1 sind unterschiedliche Gemischbildungen mit dazugehöriger Verbrennung im Dual-Fuel-Betrieb dargestellt. Da- bei findet die Einspritzung des Pilotkraftstoffs zu unterschiedlichen Zeitpunkten in Bezug auf Zünd-OT bzw. ZOT (OT: oberer Totpunkt) statt.
Auf der linken Seite der Darstellung ist ein Brennraum 10 dargestellt, in dem ein homogener Benzin-Diesel- Mischbereich 12 vorliegt, wobei ein Pilotstrahl 14 eingeführt wird.
In der Mitte der Darstellung ist ein weiterer Brennraum 20 dargestellt mit einem homogenen Benzin-Diesel-Mischbereich 22 und einer Flammenfront 24. Auf der rechten Seite der Darstellung ist ein dritter Brennraum 30 wiedergegeben mit einem Pilotstrahl 32 und einer Flammenfront 34.
Figur 1 verdeutlicht den Einfluss des Einspritzzeitpunkts der Pilotkraftstoffmenge. Wird der Pilotkraftstoff sehr früh, etwa 180 bis 70 0KW vor ZOT in den Brennraum 10 eingespritzt, so vermischt sich der zündwillige Pilotkraftstoff bis zum ZOT nahezu mit dem Grundgemisch, was einem HCCI-Brennverfahren entspricht. In diesem Fall nimmt der Einspritzzeitpunkt keinen Einfluss auf die Verbrennungslage. Sehr frühe Einspritzzeitpunkte bewirken äußerst niedrige Ruß- und NOx-Emissionen.
Gelangt der Pilotkraftstoff etwa 70 bis 20 0KW vor ZOT in den Brennraum 20, so steht weniger Zeit für eine Homogenisierung mit dem Grundgemisch zur Verfügung. Da die Temperatur zu diesem Zeitpunkt für eine Zündung des Pilotkraftstoffs noch nicht ausreicht, findet eine Teilhomogenisie- rung statt und die Zündung startet in den fetteren Bereichen, die sich infolge des Pilotstrahls bilden. Dabei bleiben die Partikel und Stickoxide auf dem gleichen, sehr niedrigen Niveau wie bei der vollständig homogenen Verbrennung im Brennraum 10. Allerdings kann in diesem Fall die Verbrennungslage mit Hilfe des Einspritzventils gesteuert werden. Dabei führt eine frühe Einspritzung in dem genannten Winkelbereich zu einer späteren Verbrennung, da das Druck- und Temperaturniveau hierbei niedriger als bei einer späteren Einspritzung ist, die einen kürzeren Zündverzug aufweist.
Wird der Pilotkraftstoff, wie auf der rechten Seite der Figur 1 dargestellt, etwa 20 bis 0 0KW vor ZOT eingespritzt, erfolgt die Homogenisierung nur noch unzureichend und die Verbrennung verlagert sich verbunden mit starken Klopfphänomenen hin zu früheren Zeitpunkten. NOx- und Rußemissionen steigen hierbei deutlich an.
Die Darstellung zeigt, dass eine Einspritzung des Pilotkraftstoffs im Bereich von etwa 70 bis 20 0KW vor ZOT anzustreben ist, wobei die Piloteinspritzmenge etwa 5% bis 15 % der Gesamtkraftstoffmenge beträgt. Es ist allerdings zu be- achten, dass dieser Bereich in Abhängigkeit weiterer Randbedingungen, wie bspw. der Anzahl der Spritzlöcher in der Kraftstoffdüse des Pilotkraftstoffs, variiert. Mit steigender Anzahl der Spritzlöcher verbessert sich die Homogenisierung des Kraftstoffs, so dass mit zwölf Spritzlöchern im Vergleich zu sechs Spritzlöchern etwa 10 bis 20 0KW später eingespritzt werden kann, ohne den teilhomogenen Bereich zu verlassen.
Als zweckmäßig hat sich eine Spritzlochanzahl von sechs bis zwölf, vorzugsweise acht bis zwölf herausgestellt, wobei auch deren räumliche Anordnung deutliche Auswirkungen auf die Verbrennung zeigt. Durch die Anordnung der Spritzlöcher in zwei oder mehr Kaskaden in Verbindung mit unterschiedlichen Spritzlochwinkeln kann der Kraftstoff besser im Brenn- räum verteilt werden. Die Zündherde entstehen mit besserer räumlicher Verteilung, wobei die Klopfneigung sinkt.
Weiterhin hat sich ein Einspritzdruck der Piloteinspritzung von 300 bis 1.200 bar als geeignet erwiesen. Höhere Drücke sind aufgrund der kleinen Pilotkraftstoffmenge nicht erforderlich . Die benötigte AGR-Rate variiert in Abhängigkeit des Lastpunkts. Obgleich bis zu indizierten Mitteldrücken von 11 bar eine Verdünnung mit Luft ausreichend ist und ggf. eine AGR-Rate von 15% Vorteile im Hinblick auf Verbrauch und E- missionen bringt, wird bei einem indizierten Mitteldruck von 16 bar 50 bis 60% externe AGR benötigt, um klopfende Verbrennungen zu vermeiden und mäßige Druckanstiegraten zu gewährleisten.
Es ist festzuhalten, dass ein homogenes Grundgemisch sowohl mit einer Saugrohreinspritzung als auch mit einer Direkteinspritzung erzielt werden kann.
Der Start des Verbrennungsmotors erfolgt in einer Ausfüh- rung mit 100% Pilotkraftstoff. Sobald der Motor die Betriebstemperatur erreicht hat (60 bis 80 0C Wassertemperatur) , wird kontinuierlich das Grundgemisch erhöht, bis die Pilotkraftstoffmenge nur noch ca. 5% bis 15% der Gesamt- kraftstoffmenge beträgt. Bei Lasten von größer als 3 bar pme und Drehzahlen von mehr als 1.000 U/min sind das etwa 10%, bei Lasten größer als 12 bar pme sind es etwa 5%. Im Leerlaufbereich muss die Pilotkraftstoffmenge ggf. erhöht werden (15%), um eine sichere Zündung zu erreichen. Dann erfolgt die Einspritzung des Pilotkraftstoffs zwischen 70 und 20 0KW. Mit steigender Motorlast erhöht sich die AGR- Rate von 0% im Leerlauf auf etwa 50 bis 70% bei Volllast.
In Figur 2 sind unterschiedliche Druckverläufe in Abhängigkeit des Kurbelwinkels 0KW dargestellt. Dabei ist an der Abszisse 50 der Kurbelwinkel °KW und an der Ordinate 52 der Druck im Zylinder aufgetragen. Eine erste Kurve zeigt den Verlauf bei einem Einspritzzeitpunkt des Pilotkraftstoffs von 10 CKW vor ZOT. Eine zweite Kurve 56 zeigt den Verlauf bei 25 °KW vor ZOT. Eine dritte Kurve 58 gibt die Abhängigkeit bei 35 0KW vor ZOT wieder.
In Figur 3 ist der Ablauf von Einspritzung und Verbrennung dargestellt. Dabei ist an der Abszisse 70 der Kurbelwinkel in 0KW aufgetragen. Eine Kurve 72 zeigt den Zylinderdruckverlauf. Zu einem Zeitpunkt 74 erfolgt die Piloteinsprit- zung. In einem Zeitraum 76 wird die Einspritzung des Ottokraftstoffs vorgenommen. Zu einem Zeitpunkt 78 öffnet der Einlass. Figur 3 zeigt, dass die Pilotkraftstoffeinspritzung während der Kompression durchgeführt wird.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Verbrennungsmotors, bei dem ein verdünntes Grundgemisch durch zusätzliches Ein- spritzen eines Pilotkraftstoffs entzündet wird, wobei der Einspritzzeitpunkt (74) des Pilotkraftstoffs so gewählt wird, dass keine vollständige Homogenisierung des Pilotkraftstoffs mit dem Grundgemisch stattfindet.
2. Verfahren nach Anspruch 1, bei dem der Pilotkraftstoff etwa 70 bis 20 °KW vor ZOT eingespritzt wird.
3. Verfahren nach Anspruch 1 oder 2, bei dem als Pilotkraftstoff Diesel verwendet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Menge des Pilotkraftstoffs etwa 5% bis 15% der gesamten Kraftstoffmenge entspricht.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem als Kraftstoff für das Grundgemisch Benzin verwendet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem der Einspritzzeitpunkt (74) in Abhängigkeit bestimmter Randbedingungen gewählt wird.
7. Verfahren nach Anspruch 6, bei dem der Einspritzzeitpunkt (74) in Abhängigkeit der Anzahl der Einspritzlöcher gewählt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem sechs bis zwölf Einspritzlöcher verwendet werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem der Einspritzdruck der Piloteinspritzung zwischen 300 und 1.200 bar liegt.
10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem das Grundgemisch mit einer Saugrohreinspritzung erzielt wird,
11. Verfahren nach einem der Ansprüche 1 bis 9, bei dem das Grundgemisch mit einer Direkteinspritzung in die Brennkammer erzielt wird.
12. verfahren nach einem der Ansprüche 1 bis 11, bei dem Abgas zur Einstellung der Brenndauer der Ladung rückgeführt wird.
13. Verfahren nach Anspruch 12, bei dem eine ausreichende Füllung der Brennkammer mit Verbrennungsluft durch Anpassung der Ladeluft im Druckniveau vorgesehen ist.
14. Brennkammer in einem Verbrennungsmotor für ein Brennverfahren, insbesondere für ein Brennverfahren nach einem der Ansprüche 1 bis 13, die eine erste Einrichtung zum Einführen eines Kraftstoffs für ein Grundgemisch und eine Einspritzung zum Einspritzen eines Pilotkraftstoffs aufweist, wobei die Brennkammer (10, 20, 30) deeart ausgestaltet ist, dass diese Einspritzung in Abhängigkeit eines Kurbelwinkels des Verbrennungsmotors erfolgt.
15. Brennkammer nach Anspruch 14, bei der acht bis zwölf Spritzlöcher zum Einspritzen des Pilotkraftstoffs vorgesehen sind.
16. Brennkammer nach Anspruch 14 oder 15, bei der eine externe Abgasrückführung und eine zweistufige Aufladung vorgesehen sind.
EP10728134A 2009-06-26 2010-06-24 Verfahren zum betreiben eines verbrennungsmotors Withdrawn EP2446133A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009030837 2009-06-26
PCT/EP2010/003795 WO2010149362A1 (de) 2009-06-26 2010-06-24 Verfahren zum betreiben eines verbrennungsmotors

Publications (1)

Publication Number Publication Date
EP2446133A1 true EP2446133A1 (de) 2012-05-02

Family

ID=42542998

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10728134A Withdrawn EP2446133A1 (de) 2009-06-26 2010-06-24 Verfahren zum betreiben eines verbrennungsmotors

Country Status (8)

Country Link
US (1) US20120173125A1 (de)
EP (1) EP2446133A1 (de)
JP (1) JP2012530867A (de)
KR (1) KR20120058502A (de)
CN (1) CN102483007A (de)
DE (1) DE102009051137A1 (de)
RU (1) RU2541346C2 (de)
WO (1) WO2010149362A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041037A1 (de) * 2008-08-06 2010-02-11 Robert Bosch Gmbh Verfahren und Vorrichtung einer Steuerung für einen Start-Stopp-Betrieb einer Brennkraftmaschine
DE102012008125B4 (de) * 2012-04-25 2019-07-25 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem HCCI-Brennverfahren
DE102013021242A1 (de) * 2013-12-13 2015-06-18 Daimler Ag Ottomotor für einen Kraftwagen sowie Verfahren zum Betreiben eines solchen Ottomotors
DE102014007575A1 (de) 2014-05-22 2015-08-27 Mtu Friedrichshafen Gmbh Verfahren zum Betrieb eines Verbrennungsmotors und Verbrennungsmotor
DE102014017124A1 (de) 2014-11-20 2016-05-25 Man Diesel & Turbo Se Verfahren und Steuerungseinrichtung zum Betreiben eines Motors
AT516490B1 (de) 2014-12-19 2016-06-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Betreiben einer funkengezündeten Brennkraftmaschine
AT516543B1 (de) 2014-12-19 2021-01-15 Innio Jenbacher Gmbh & Co Og Verfahren zum Betreiben einer funkengezündeten Brennkraftmaschine
DE102015007368B3 (de) * 2015-06-10 2016-09-29 Mtu Friedrichshafen Gmbh Verfahren zur Ausführung mit dem Betrieb einer Brennkraftmaschine
CN105649810A (zh) * 2016-02-04 2016-06-08 大连理工大学 双燃料发动机燃料喷射方式
DE102019135330A1 (de) * 2019-12-19 2021-06-24 Jürgen Gildehaus Verfahren zum Betreiben einer Hubkolbenmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE287366C (de) *
US20040118557A1 (en) * 2000-12-26 2004-06-24 Richard Ancimer Method and apparatus for pilot fuel introduction and controlling combustion in gaseous-fuelled internal combustion engine
DE10344423A1 (de) * 2003-09-25 2005-04-21 Daimler Chrysler Ag Verfahren zum Betrieb einer Brennkraftmaschine
WO2007073329A1 (en) * 2005-12-21 2007-06-28 Scania Cv Ab (Publ) Arrangement and method for a combustion engine
EP1953375A1 (de) * 2007-01-30 2008-08-06 Mazda Motor Corporation Verfahren und Computerprogrammprodukt zum Betreiben eines Verbrennungsmotors und Motorbetriebssystem

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2400247A (en) * 1945-03-14 1946-05-14 Worthington Pump & Mach Corp Internal-combustion engine
US4087050A (en) * 1975-09-18 1978-05-02 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Swirl type pressure fuel atomizer
US4603674A (en) * 1981-06-19 1986-08-05 Yanmar Diesel Engine Co., Ltd. Gas-diesel dual fuel engine
US4543930A (en) * 1983-11-17 1985-10-01 Southwest Research Institute Staged direct injection diesel engine
GB8521244D0 (en) * 1985-08-24 1985-10-02 Gas Power International Ltd Dual fuel compression ignition engine
US4823756A (en) * 1988-03-24 1989-04-25 North Dakota State University Of Agriculture And Applied Science Nozzle system for engines
US4955326A (en) * 1989-04-12 1990-09-11 Cooper Industries, Inc. Low emission dual fuel engine and method of operating same
JP2864526B2 (ja) * 1989-04-19 1999-03-03 トヨタ自動車株式会社 複燃料ディーゼル機関
US5050550A (en) * 1990-07-11 1991-09-24 Litang Gao Hybrid step combustion system
SU1759727A1 (ru) * 1990-08-20 1992-09-07 М. М, Гойхенберг, Ю. А. Кэнахин, А. А, Полевин и В.Ф. Р занцее Теплогенератор
US5365902A (en) * 1993-09-10 1994-11-22 General Electric Company Method and apparatus for introducing fuel into a duel fuel system using the H-combustion process
US5450829A (en) * 1994-05-03 1995-09-19 Servojet Products International Electronically controlled pilot fuel injection of compression ignition engines
FI101170B (fi) * 1995-06-15 1998-04-30 Waertsilae Nsd Oy Ab Polttoaineen ruiskutusventtiilin ohjausjärjestely
US6230683B1 (en) * 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
US5713327A (en) * 1997-01-03 1998-02-03 Tilton; Charles L. Liquid fuel injection device with pressure-swirl atomizers
US6095101A (en) * 1997-01-29 2000-08-01 Man B&W Diesel A/S Internal combustion engine of the diesel type for combustion of gas, and a method of supplying such an engine with fuel
US5875743A (en) * 1997-07-28 1999-03-02 Southwest Research Institute Apparatus and method for reducing emissions in a dual combustion mode diesel engine
JPH1182139A (ja) * 1997-08-29 1999-03-26 Denso Corp 内燃機関の燃料噴射制御装置
JPH11101127A (ja) * 1997-09-26 1999-04-13 Mitsubishi Motors Corp 燃焼制御装置
DE69936081T2 (de) * 1998-02-23 2008-01-17 Cummins, Inc., Columbus Regelung einer verbrennungskraftmaschine mit kompressionszündung und kraftstoff-luftvormischung
DE19810935C2 (de) * 1998-03-13 2000-03-30 Daimler Chrysler Ag Verfahren zum Betrieb einer im Viertakt arbeitenden Hubkolben-Brennkraftmaschine
US6032617A (en) * 1998-05-27 2000-03-07 Caterpillar Inc. Dual fuel engine which ignites a homogeneous mixture of gaseous fuel, air, and pilot fuel
US6029913A (en) * 1998-09-01 2000-02-29 Cummins Engine Company, Inc. Swirl tip injector nozzle
US6095102A (en) * 1998-10-02 2000-08-01 Caterpillar Inc. Dual fuel engine which creates a substantially homogeneous mixture of gaseous fuel, air, and pilot fuel during a compression stroke
JP2000297682A (ja) * 1999-04-16 2000-10-24 Mitsubishi Motors Corp 筒内噴射式内燃機関
JP2001098975A (ja) * 1999-09-29 2001-04-10 Mazda Motor Corp エンジンの制御装置、およびディーゼルエンジンの制御装置
US6202601B1 (en) * 2000-02-11 2001-03-20 Westport Research Inc. Method and apparatus for dual fuel injection into an internal combustion engine
WO2001086126A2 (en) 2000-05-08 2001-11-15 Cummins, Inc. Multiple operating mode engine and method of operation
JP3760725B2 (ja) * 2000-05-16 2006-03-29 日産自動車株式会社 圧縮自己着火式ガソリン機関
DE10033597C2 (de) * 2000-07-11 2003-12-11 Daimler Chrysler Ag Verfahren zum Betrieb eines Dieselmotors
US6598584B2 (en) * 2001-02-23 2003-07-29 Clean Air Partners, Inc. Gas-fueled, compression ignition engine with maximized pilot ignition intensity
US6550430B2 (en) * 2001-02-27 2003-04-22 Clint D. J. Gray Method of operating a dual fuel internal
US6637381B2 (en) * 2001-10-09 2003-10-28 Southwest Research Institute Oxygenated fuel plus water injection for emissions control in compression ignition engines
US6679224B2 (en) * 2001-11-06 2004-01-20 Southwest Research Institute Method and apparatus for operating a diesel engine under stoichiometric or slightly fuel-rich conditions
KR100756281B1 (ko) * 2001-12-25 2007-09-06 니이가타 겐도키 가부시키가이샤 듀얼 연료 엔진
DE10213011B4 (de) * 2002-03-22 2014-02-27 Daimler Ag Selbstzündende Brennkraftmaschine
US6666185B1 (en) * 2002-05-30 2003-12-23 Caterpillar Inc Distributed ignition method and apparatus for a combustion engine
US6978760B2 (en) * 2002-09-25 2005-12-27 Caterpillar Inc Mixed mode fuel injector and injection system
NL1026215C2 (nl) * 2003-05-19 2005-07-08 Sasol Tech Pty Ltd Koolwaterstofsamenstelling voor gebruik in CI motoren.
JP4225153B2 (ja) * 2003-07-30 2009-02-18 日産自動車株式会社 排気フィルタの再生制御装置
JP2005048746A (ja) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP3960283B2 (ja) * 2003-09-01 2007-08-15 トヨタ自動車株式会社 内燃機関の燃料噴射装置
CA2444163C (en) * 2003-10-01 2007-01-09 Westport Research Inc. Method and apparatus for controlling combustion quality of a gaseous-fuelled internal combustion engine
JP4007310B2 (ja) * 2003-11-05 2007-11-14 トヨタ自動車株式会社 2種類の燃料を用いる予混合圧縮自着火運転可能な内燃機関
US7007661B2 (en) * 2004-01-27 2006-03-07 Woodward Governor Company Method and apparatus for controlling micro pilot fuel injection to minimize NOx and UHC emissions
JP4492192B2 (ja) * 2004-04-13 2010-06-30 いすゞ自動車株式会社 ディーゼルエンジン
JP2006046299A (ja) * 2004-08-09 2006-02-16 Toyota Motor Corp 圧縮着火内燃機関の燃焼制御システム
JP2006214292A (ja) * 2005-02-01 2006-08-17 Hitachi Ltd 燃料噴射弁
US7121254B2 (en) 2005-02-17 2006-10-17 General Motors Corporation Compression-ignited IC engine and method of operation
US20060218904A1 (en) * 2005-03-08 2006-10-05 Brady William J Diesel emissions control system and method
EP1705355B1 (de) * 2005-03-25 2008-02-20 Delphi Technologies, Inc. Verfahren zur Bestimmung von Parametern eines Einspritzsystems
US7270108B2 (en) * 2005-03-31 2007-09-18 Achates Power Llc Opposed piston, homogeneous charge pilot ignition engine
JP2007051624A (ja) * 2005-08-19 2007-03-01 Denso Corp 燃料噴射ノズル
JP4077004B2 (ja) * 2005-10-27 2008-04-16 三菱電機株式会社 燃料噴射弁装置
US7284506B1 (en) * 2006-05-08 2007-10-23 Ford Global Technologies, Llc Controlling engine operation with a first and second fuel
JP4635974B2 (ja) * 2006-07-12 2011-02-23 トヨタ自動車株式会社 ディーゼル機関の制御装置
US20080060608A1 (en) * 2006-09-07 2008-03-13 Angela Priscilla Breakspear Method and use for the prevention of fuel injector deposits
JP4737103B2 (ja) * 2007-01-30 2011-07-27 マツダ株式会社 ガソリンエンジンの制御装置
US20080314360A1 (en) * 2007-06-21 2008-12-25 Deyang Hou Premix Combustion Methods, Devices and Engines Using the Same
JP2009041474A (ja) * 2007-08-09 2009-02-26 Idemitsu Kosan Co Ltd 内燃機関、内燃機関システムおよび内燃機関の制御方法
US8882863B2 (en) * 2008-05-14 2014-11-11 Alliant Techsystems Inc. Fuel reformulation systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE287366C (de) *
US20040118557A1 (en) * 2000-12-26 2004-06-24 Richard Ancimer Method and apparatus for pilot fuel introduction and controlling combustion in gaseous-fuelled internal combustion engine
DE10344423A1 (de) * 2003-09-25 2005-04-21 Daimler Chrysler Ag Verfahren zum Betrieb einer Brennkraftmaschine
WO2007073329A1 (en) * 2005-12-21 2007-06-28 Scania Cv Ab (Publ) Arrangement and method for a combustion engine
EP1953375A1 (de) * 2007-01-30 2008-08-06 Mazda Motor Corporation Verfahren und Computerprogrammprodukt zum Betreiben eines Verbrennungsmotors und Motorbetriebssystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010149362A1 *

Also Published As

Publication number Publication date
DE102009051137A1 (de) 2011-01-05
RU2541346C2 (ru) 2015-02-10
WO2010149362A1 (de) 2010-12-29
JP2012530867A (ja) 2012-12-06
CN102483007A (zh) 2012-05-30
KR20120058502A (ko) 2012-06-07
RU2012102607A (ru) 2013-08-10
US20120173125A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
DE10147529B4 (de) Verfahren zum Betreiben einer mit selbstzündbarem Kraftstoff betriebenen Brennkraftmaschine
DE102006007279B4 (de) Kompressionsgezündeter Verbrennungsmotor und Betriebsverfahren
EP2446133A1 (de) Verfahren zum betreiben eines verbrennungsmotors
DE112005001363B4 (de) Verfahren für den Mittellastbetrieb einer Selbstzündungsverbrennung
DE112006003590B4 (de) Verdichtungszündungseinleitungsvorrichtung und Verbrennungsmotor, der diese verwendet
DE10161551B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE112007000944B4 (de) Hochleistungsmaschinen mit geringer Emission, Mehrzylindermaschinen und Betriebsverfahren
DE102016008911A1 (de) Mit Vormischungsbeschickung und Kompressionszündung arbeitender Motor, Steuer- bzw. Regeleinrichtung hierfür, Verfahren zum Steuern bzw. Regeln eines Motors und Computerprogrammerzeugnis
WO2004088109A1 (de) Brennkraftmaschine mit selbstzündung
EP3006708B1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2012045452A2 (de) Betriebsverfahren mit wassereinspritzung
DE102016008916B4 (de) Mit Vormischungsbeschickung und Kompressionszündung arbeitender Motor, Steuer- bzw. Regeleinrichtung hierfür, Verfahren zum Steuern bzw. Regeln eines Motors und Computerprogrammerzeugnis
DE10204407B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102011015626B4 (de) Betriebsverfahren für einen direkteinspritzenden Ottomoto mit NOx-armer Verbrennung (NAV)
WO2004029428A1 (de) Brennkraftmaschine mit selbstzündung
WO2004101972A1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102013219982A1 (de) Verfahren zum Betrieb einer Brennkraftmaschine
DE102014109113A1 (de) Verfahren und Vorrichtung zum Steuern einer Verbrennung eines Verbrennungsmotors mit Mischverbrennungsmodus
WO2009024170A1 (de) Verbrennungskraftmaschine mit nockengesteuertem variablen ventiltrieb
WO2021048024A1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2012045461A2 (de) Betriebsverfahren einer brennkraftmaschine
EP4045784B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102006004235B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015221325B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
AT5134U1 (de) Verfahren zum betreiben einer mit sowohl fremd- als auch selbstzündbarem kraftstoff betriebenen brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130612

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170614