EP2441893B1 - Support device for a wind turbine for producing electric power at sea, corresponding facility for producing electric power at sea. - Google Patents

Support device for a wind turbine for producing electric power at sea, corresponding facility for producing electric power at sea. Download PDF

Info

Publication number
EP2441893B1
EP2441893B1 EP11306345.7A EP11306345A EP2441893B1 EP 2441893 B1 EP2441893 B1 EP 2441893B1 EP 11306345 A EP11306345 A EP 11306345A EP 2441893 B1 EP2441893 B1 EP 2441893B1
Authority
EP
European Patent Office
Prior art keywords
column
wind turbine
sea
footing
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11306345.7A
Other languages
German (de)
French (fr)
Other versions
EP2441893A1 (en
Inventor
Peter Broughton
Richard Davies
Peter Martin
Michel Hamon
Nicolas Parsloe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BROUGHTON, PETER
Davies Richard
DORIS ENGINEERING
MARINE ENGINEERING ENERGY SOLUTIONS Ltd
Original Assignee
DORIS ENGINEERING
Marine Engineering Energy Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DORIS ENGINEERING, Marine Engineering Energy Solutions Ltd filed Critical DORIS ENGINEERING
Publication of EP2441893A1 publication Critical patent/EP2441893A1/en
Application granted granted Critical
Publication of EP2441893B1 publication Critical patent/EP2441893B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/027Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto steel structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0065Monopile structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines

Definitions

  • the present invention relates to a device for supporting a wind turbine for producing electrical energy at sea, of the type comprising a base resting on the seabed and a support column of said wind turbine connected to said base.
  • These structures are suitable for the support of wind turbines in shallow waters, that is for water depths of less than about 40 m.
  • the size of these structures increases significantly with water depth, as well as their manufacturing, transportation and installation costs. Indeed, these structures must be sufficiently massive and robust to withstand the forces generated by the current, the swell and the wind.
  • a device according to the preamble of claim 1 is known by WO 03/098038 A .
  • the object of the invention is therefore to propose a device for supporting a wind turbine at sea and an installation for producing electrical energy at sea having a reduced cost and good resistance to the forces generated by the current, the swell and the wind.
  • the subject of the invention is a device of the aforementioned type, characterized in that said column and said base are linked by a swiveling connection, allowing tilting movements of said column relative to said base in all directions. relative to a vertical axis.
  • tilt connection means any connection allowing the column to tilt in all directions relative to the vertical.
  • the subject of the invention is also an installation for producing electrical energy at sea, characterized in that it comprises a wind turbine and a support device for this wind turbine according to the invention.
  • FIG. 1 We have shown on the figure 1 an installation 1 for producing electrical energy at sea or off-shore, installed on a horizontal seabed F at a depth P of the surface S of the water E.
  • the installation 1 comprises a device 3 for supporting a wind turbine, resting on the seabed F, and a wind turbine 5, attached to an upper end of the support device 3.
  • the support device 3 comprises a base 7, resting on the seabed F, a support column 9, and a swivel joint 11 connecting the base 7 and the column 9.
  • the base 7 rests on the seabed F. It is fixed to the swivel joint 11.
  • the base 7 can be weighted.
  • the base 7 also includes buoyancy chambers 20, positioned and dimensioned so as to ensure the floatation and stability of the support structure 3 during its towing to the final operating site of the next power generation installation. the invention.
  • the buoyancy chambers 20 also ensure the stability of the device 3 during its descent to the seabed F.
  • the base 7 is for example made of prestressed reinforced concrete or metal, or as a steel-concrete composite structure comprising two concentric steel envelopes between which is poured concrete.
  • the column 9 is of substantially cylindrical shape, and is closed at its two lower ends 21 and upper 23.
  • Column 9 comprises, at its lower end 21, a solid ballast, for example of concrete, or liquid.
  • Column 9 comprises at its upper part a number of internal and sealed internal compartments 27, as shown in FIG. figure 2 . These compartments 27 are not completely submerged, so that in case of collision between a ship and the installation 1 causing a breach and invasion of these compartments, the column is not completely filled with water.
  • Column 9 further comprises at its upper end or apex 23 an access platform 29 annular, allowing personnel to access the wind turbine 5.
  • the height h of the column 9 is such that its top 23 is positioned above the surface S of the water, so that the access platform 29 remains out of reach of the highest waves, whatever the inclination of the column 9 with respect to a vertical axis A in a situation of maximum storm.
  • Column 9 is for example made of prestressed reinforced concrete or metal, or as a steel-concrete composite structure comprising two concentric steel envelopes between which is poured concrete. Alternatively, a portion of the column may be a wire mesh structure.
  • the lower end 21 of the column 9 is connected to the base 7 via the swivel joint 11, and the base of the wind turbine 5 is fixed to the top 23 of the column 9.
  • the swivel joint 11 connects the column 9 to the base 7, while allowing tilting movements of the column 9 relative to the base 7, so with respect to the seabed F, in all directions with respect to the vertical axis A.
  • the swivel joint 11 is for example a joint of the universal joint type, comprising a first yoke 30 fixed on the upper surface of the base 7, a second yoke 31 fixed to the lower end of the column 9, these two yokes being connected to each other by a spider 32 so that their respective planes are perpendicular when the axis of the column 9 is vertical.
  • the wind turbine 5 which is entirely above the surface S of the water E, comprises a mast 33 and a device 35 for producing electrical energy from wind energy.
  • the mast 33 is of substantially frustoconical shape converging upwards. Its lower end 37 is fixed to the top 23 of the column 9, and its vertical axis is aligned with the vertical axis of the column 9.
  • the device 35 for producing electrical energy comprises an electric generator 39 whose rotor is rotated by blades 41 set in motion by the wind, in a known manner.
  • the blades 41 are sized according to the electrical power required.
  • the mast 33 is dimensioned in length so that the blades 41 can rotate above the access platform 29, at a minimum distance of the order of several meters above this platform 29.
  • the installation 1 In calm weather, that is to say in the absence of wind, sea current and swell, the installation 1 is subjected to very weak external forces. Under these conditions, the vertical axis of the column 9 is substantially aligned with the vertical axis A, that is to say perpendicular to the seabed F.
  • the installation 1 In the presence of wind, of marine current and / or of waves, the installation 1 is subjected to forces tending to incline the column 9 with respect to the vertical axis A.
  • the swiveling connection between the base 7 and the column 9 then allows it to tilt relative to the vertical axis A, in the direction of the resultant forces exerted on the installation 1, the base remaining fixed relative to the seabed F.
  • the column 9 is then subjected to restoring forces, which tend to oppose its inclination, and which are due to the buoyancy of the column 9 and a hydrostatic booster.
  • the buoyancy of the column 9 is increased by the air contained in its compartments 27 and in the rest of the column, and the buoyancy force exerted on the column 9 is even higher than this column is more inclined, so submerged.
  • the hydrostatic restoring force exerted on the column 9, as a function of the displacement of this column, its mass, its inertia at the passage of the surface S and the relative position of the center of buoyancy of this column and its center mass, is also higher as the column 9 is more inclined.
  • the column 9 Under the effect of the forces exerted by the wind, the current and the waves and restoring forces, the column 9 has oscillation movements around an equilibrium position.
  • the support device 3 and the wind turbine 5 are built independently.
  • the base 7 and the column 9 are thus constructed and assembled via the swivel joint 11, for example at the dock or in dry dock. Solid or liquid ballast may be introduced into column 9 during this construction.
  • the support device 3 is floated, its flotation being ensured by the air volumes contained in the compartments 27 and in the rest of the column 9, as well as by the caissons 20 of flotation of the base 7.
  • the support device 3 is loaded 77 horizontally on a submersible transport vessel 78, and then transported to the final site of operation of the installation.
  • the draft t of the ship 78 of transport is increased, by ballasting with water, so as to immerse at least partially the support device 3, and the device 3 is gradually rectified in vertical position, by ballasting.
  • the ballasting then continues until the base 7 is placed on the seabed F.
  • the position of the support device 3 at the end of this step is shown in FIG. figure 6 .
  • the wind turbine 5 is fixed to the support device 3.
  • Self-raising platforms generally used for offshore construction, are not suitable for depths greater than 50 m.
  • the fixing step is therefore performed by means of a ship 88 provided with a crane 90, also called floating crane.
  • the floating crane 88 is moored to the column 9, this mooring being made possible by the fact that the column 9 is able to tilt in all directions with respect to the vertical axis A, so to follow the movements of the floating crane 88 induced by the current or the swell. This mooring thus makes it possible to minimize the relative movements between the column 9 and the floating crane 88.
  • the wind turbine 5 is then put in place by the crane 90 at the top 23 of the column 9, then fixed at the top 23 of this column 9.
  • the floating crane 88 is then detached from the column 9, as shown in FIG. figure 7 .
  • the structure of the installation 1 for the production of electrical energy at sea, and in particular of the support device 3, ensures a great resistance of this structure to external conditions, while facilitating its construction and its implementation.
  • the swivel connection between the column 9 and the base 7 of the support device 3 makes it possible not only to improve the robustness of the installation in the face of the swell, the current and the wind, but also to facilitate the installation. of this installation.
  • this rotulante connection allows the column 9 to tilt relative to the vertical axis A, so that the forces and moments induced on the column 9 and the wind turbine 5 by the wind, the swell and the current are significantly reduced compared to the case of a fixed support.
  • This inclination remains controlled, however, because of the restoring forces exerted on the column 9 when it is inclined.
  • the independence of the compartments 27 of the column 9 makes it possible to guard against complete invasion of the column 9 in the event of rupture of the wall of this column, for example following an impact with a ship.
  • the installation of the figure 8 differs from the installation 1 described with reference to the figure 1 in that it comprises wetting lines 92, connecting the column 9 to the seabed.
  • Each of these wetting lines 92 is anchored at one of its ends to the seabed F, and fixed at its second so-called free end to the column 9, in the vicinity of the surface S of the water.
  • each line 92 of wetting to the seabed is carried out as follows.
  • Line 92 is attached at its lower end to a block 100 of ballast, placed on the seabed.
  • each block 100 of ballast is attached to a first end of an anchor chain 98, whose second end is fixed to a pile 96 driven into the seabed, so that the line 92 of dampening and the chain 98 anchor are substantially in the same vertical plane.
  • the wetting lines 92 are for example three in number and arranged at an angle of 120 ° to one another.
  • lines 92 can also be doubled, each block 100 then being fixed to two lines 92.
  • the lines 92 are for example made of steel.
  • the process of construction and installation of the installation represented on the figure 8 comprises the same steps as the method described with reference to Figures 4 to 7 but also comprises a step of anchoring the column 9 to the seabed F.
  • each line 92 of anchoring is fixed at one of its ends to a block 100 of concrete.
  • Each block of concrete is then put into the water, and then anchored to the seabed F via a pile 96 and an anchor chain 98.
  • each wetting line 92 is then adjusted, then each line 92 is fixed to the column 9 by locking means.
  • the column 9 does not necessarily have a cylindrical shape, but may have a conical or polygonal shape.
  • the column can be made from several segments 102, 104, 106 of different lengths and sections, fixed one above the other. Such a structure makes it possible to improve the hydrodynamic behavior of the column 9 and to minimize its oscillations. For example, widening the section of the column near the surface of the water increases the hydrostatic restoring force exerted on this column.
  • the installation comprises buoyancy chambers 108, attached to and surrounding the column 9 near the surface S of the water E, at an adjustable height.
  • These caissons 108 make it possible to optimize the hydrodynamic behavior of the installation 1 independently of the diameter of the column 9, thus to minimize this diameter, while simplifying the construction of the support device 3.
  • the buoyancy of the installation 1 is for example adjusted by changing the position of the caissons 108 relative to the surface of the water or by changing their size.
  • These boxes 108 can also replace the compartments 27 of the column 9.
  • the swivel connection between the column and the base does not necessarily include a universal joint, but can be achieved by any means providing a swivel connection between the column and the base, that is to say allowing movements tilting of the column relative to the base, in all directions relative to its vertical axis.
  • the base is fixed to the seabed F, for example by means of a suction anchor or beaten piles.
  • the vertical axis of the mast 33 may be eccentric from the vertical axis of the column.
  • the support device is transported to the site of use by towing.
  • the support device is thus rectified in vertical or oblique position before transport to the operating site, and then transported by a tug in this position.
  • the wind turbine is fixed to the support device before transport to the operating site, which avoids the use of floating cranes on the operating site.
  • the column may advantageously have at its apex a substantially cylindrical central recess adapted to receive the lower end of the mast of the wind turbine. The mast of the wind turbine is then inserted in the column in a protected site, then raised by cylinders after the establishment of the assembly on the site of exploitation, which makes it possible to increase the stability of the whole during transportation to the operating site.
  • the invention can be used with any type of wind turbine.
  • a wind turbine which lowers the center of wind pressure such as a vertical axis wind turbine and / or a wind turbine which lowers the center of gravity of the installation, such as a wind turbine whose generator is disposed on the platform 29 or in the vicinity thereof.
  • the axis X-X of rotation of the blades 41 may advantageously be preset at an angle inclined relative to the horizontal, when the column 9 is vertical. This presetting makes it possible to limit the deviation of the axis of rotation of the blades 41 from its optimum operating angle when the column 9 inclines with respect to the vertical.
  • the angle formed by the axis of rotation of the blades 41 and the column 9 may also be adjustable, depending on the inclination of the column 9, so that the axis of rotation of the blades 41 has a substantially horizontal direction regardless of the inclination of the column 9.

Description

La présente invention est relative à un dispositif de support d'une éolienne de production d'énergie électrique en mer, du type comprenant une embase reposant sur le fond marin et une colonne de support de ladite éolienne reliée à ladite embase.The present invention relates to a device for supporting a wind turbine for producing electrical energy at sea, of the type comprising a base resting on the seabed and a support column of said wind turbine connected to said base.

Différents types de supports ont été développés pour soutenir les éoliennes en mer, et notamment les plateformes gravitaires, dont la stabilité est due uniquement à leur propre poids sur le fond marin, les structures de type « monopile », qui sont des colonnes d'acier s'enfonçant de plusieurs mètres dans le fond marin, les structures de type « tripode », comprenant une colonne et au moins trois pieds de support de cette colonne sur le fond marin, et les supports de type « jacket », c'est-à-dire des tours en treillis métalliques.Various types of supports have been developed to support offshore wind turbines, including gravity platforms, whose stability is due solely to their own weight on the seabed, "monopile" type structures, which are steel columns. sinking several meters into the seabed, the "tripod" structures, comprising a column and at least three support legs of this column on the seabed, and the "jacket" type supports, that is, ie towers made of metal lattice.

Ces structures sont adaptées au support d'éoliennes en eaux peu profondes, c'est-à-dire pour des profondeurs d'eau inférieures à 40 m environ. Cependant, la taille de ces structures augmente sensiblement avec la profondeur d'eau, de même que leurs coûts de fabrication, de transport et d'installation. En effet, ces structures doivent être suffisamment massives et robustes pour résister aux forces générées par le courant, la houle et le vent.These structures are suitable for the support of wind turbines in shallow waters, that is for water depths of less than about 40 m. However, the size of these structures increases significantly with water depth, as well as their manufacturing, transportation and installation costs. Indeed, these structures must be sufficiently massive and robust to withstand the forces generated by the current, the swell and the wind.

Pour installer des éoliennes dans des eaux plus profondes, il est connu de disposer celles-ci sur des plateformes flottantes, comprenant une ou plusieurs colonnes immergées sur une centaine de mètres mais ne reposant pas le fond marin. Ces plateformes flottantes sont néanmoins coûteuses, et leur mise en place nécessite une profondeur d'eau supérieure à 200 m.To install wind turbines in deeper waters, it is known to arrange them on floating platforms, comprising one or more columns immersed for a hundred meters but not resting the seabed. These floating platforms are nevertheless expensive, and their installation requires a water depth greater than 200 m.

Un dispositif selon le préambule de la revendication 1 est connu par WO 03/098038 A .A device according to the preamble of claim 1 is known by WO 03/098038 A .

Le but de l'invention est donc de proposer un dispositif de support d'une éolienne en mer et une installation de production d'énergie électrique en mer ayant un coût réduit et une bonne résistance aux forces générées par le courant, la houle et le vent.The object of the invention is therefore to propose a device for supporting a wind turbine at sea and an installation for producing electrical energy at sea having a reduced cost and good resistance to the forces generated by the current, the swell and the wind.

A cet effet, l'invention a pour objet un dispositif du type précité, caractérisé en ce que ladite colonne et ladite embase sont liées par une liaison rotulante, autorisant des mouvements d'inclinaison de ladite colonne par rapport à ladite embase dans toutes les directions par rapport à un axe vertical.For this purpose, the subject of the invention is a device of the aforementioned type, characterized in that said column and said base are linked by a swiveling connection, allowing tilting movements of said column relative to said base in all directions. relative to a vertical axis.

Par « liaison rotulante », on entend toute liaison permettant à la colonne de s'incliner dans toutes les directions par rapport à la verticale.By "swivel connection" means any connection allowing the column to tilt in all directions relative to the vertical.

Suivant des modes particuliers de réalisation, le dispositif comporte l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toutes les combinaisons techniquement possibles :

  • ladite liaison rotulante comprend un joint universel, notamment un joint de cardan ;
  • le dispositif comprend en outre des lignes de mouillage munies d'un lest, reliant ladite colonne au fond marin ;
  • ladite colonne comprend, dans sa partie supérieure, au moins un compartiment interne étanche ;
  • ladite colonne comprend, dans sa partie supérieure, au moins deux compartiments internes étanches indépendants ;
  • au moins un compartiment interne est partiellement émergé lorsque l'axe de la colonne est sensiblement aligné avec l'axe vertical ;
  • ladite colonne présente en sa partie supérieure, à proximité de la surface de l'eau, une section transversale plus large qu'en sa partie inférieure ;
  • le dispositif comprend au moins un caisson de flottaison attaché à ladite colonne ;
  • l'embase est équipée d'au moins un caisson de flottaison pouvant être lesté ;
  • ladite colonne comprend une structure en treillis métallique ;
  • ladite colonne comprend en son sommet un évidement apte à recevoir une extrémité inférieure de ladite éolienne, et autorisant un mouvement de coulissement de ladite éolienne par rapport à ladite colonne.
According to particular embodiments, the device comprises one or more of the following characteristics, taken separately or in any technically possible combination:
  • said swivel connection comprises a universal joint, in particular a universal joint;
  • the device further comprises mooring lines provided with a ballast, connecting said column to the seabed;
  • said column comprises, in its upper part, at least one sealed internal compartment;
  • said column comprises, in its upper part, at least two independent sealed internal compartments;
  • at least one inner compartment is partially emerged when the axis of the column is substantially aligned with the vertical axis;
  • said column has in its upper part, near the surface of the water, a wider cross section than its lower part;
  • the device comprises at least one buoyancy chamber attached to said column;
  • the base is equipped with at least one buoyancy chamber that can be ballasted;
  • said column comprises a wire mesh structure;
  • said column comprises at its top a recess adapted to receive a lower end of said wind turbine, and allowing a sliding movement of said wind turbine relative to said column.

L'invention a également pour objet une installation de production d'énergie électrique en mer, caractérisée en ce qu'elle comprend une éolienne et un dispositif de support de cette éolienne suivant l'invention.The subject of the invention is also an installation for producing electrical energy at sea, characterized in that it comprises a wind turbine and a support device for this wind turbine according to the invention.

L'invention a encore pour objet un procédé de construction et de mise en place d'une installation de production d'énergie électrique en mer comprend les étapes suivantes :

  • construction d'une éolienne et d'un dispositif de support de ladite éolienne, comprenant une embase destinée à reposer sur le fond marin et une colonne de support de ladite éolienne reliée à l'embase, ladite colonne et ladite embase étant liés par une liaison rotulante, autorisant des mouvements d'inclinaison de ladite colonne par rapport à ladite embase dans toutes les directions par rapport à un axe vertical,
  • transport dudit dispositif de support et de ladite éolienne jusqu'à un site d'exploitation,
  • descente dudit dispositif de support jusqu'au fond marin par ballastage dudit dispositif de support.
The subject of the invention is also a method of constructing and installing an installation for producing electrical energy at sea that comprises the following steps:
  • construction of a wind turbine and a device for supporting said wind turbine, comprising a base intended to rest on the seabed and a support column of said wind turbine connected to the base, said column and said base being linked by a link rotulante, allowing tilting movements of said column relative to said base in all directions with respect to a vertical axis,
  • transporting said support device and said wind turbine to an operating site,
  • descent from said support device to the seabed by ballasting said support device.

Dans un mode de mise en oeuvre de ce procédé :

  • il est prévu en outre une étape de fixation de ladite éolienne audit dispositif de support, réalisée après l'étape de descente du dispositif de support jusqu'au fond marin ;
  • l'étape de fixation de ladite éolienne audit dispositif de support est mise en oeuvre au moyen d'une grue flottante amarrée audit dispositif de support.
In one embodiment of this method:
  • there is further provided a step of fixing said wind turbine to said support device, performed after the step of lowering the support device to the seabed;
  • the step of fixing said wind turbine to said support device is implemented by means of a floating crane moored to said support device.

L'invention sera mieux comprise à la lecture qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :

  • la figure 1 représente schématiquement, vue de côté, une installation de production d'énergie électrique en mer selon un mode de réalisation de l'invention ;
  • la figure 2 est une vue schématique prise en coupe suivant la ligne II-II de la figure 1 ;
  • la figure 3 est un schéma détaillé d'une partie de l'installation de la figure 1 ;
  • les figures 4 à 7 illustrent schématiquement des étapes de la construction et de la mise en place de l'installation de la figure 1 ;
  • la figure 8 représente, vue de côté, une installation de production d'énergie électrique en mer selon un autre mode de réalisation de l'invention ;
  • la figure 9 représente schématiquement une autre variante ;
  • la figure 10 représente, vue de côté, une installation de production d'énergie électrique en mer selon un autre mode de réalisation de l'invention ; et
  • la figure 11 est une vue schématique prise en coupe suivant la ligne XI-XI de la figure 10.
The invention will be better understood on reading which will be given, given solely by way of example, and with reference to the appended drawings, in which:
  • the figure 1 schematically shows, from the side, an installation for producing electrical energy at sea according to one embodiment of the invention;
  • the figure 2 is a schematic view taken in section along the line II-II of the figure 1 ;
  • the figure 3 is a detailed diagram of a part of the installation of the figure 1 ;
  • the Figures 4 to 7 schematically illustrate steps in the construction and installation of the installation of the figure 1 ;
  • the figure 8 is a side view of an offshore electric power generation plant according to another embodiment of the invention;
  • the figure 9 schematically represents another variant;
  • the figure 10 is a side view of an offshore electric power generation plant according to another embodiment of the invention; and
  • the figure 11 is a schematic view taken in section along the line XI-XI of the figure 10 .

On a représenté sur la figure 1 une installation 1 de production d'énergie électrique en mer ou « off-shore », installée sur un fond marin F horizontal à une profondeur P de la surface S de l'eau E.We have shown on the figure 1 an installation 1 for producing electrical energy at sea or off-shore, installed on a horizontal seabed F at a depth P of the surface S of the water E.

L'installation 1 comprend un dispositif 3 de support d'une éolienne, reposant sur le fond marin F, et une éolienne 5, fixée à une extrémité supérieure du dispositif 3 de support.The installation 1 comprises a device 3 for supporting a wind turbine, resting on the seabed F, and a wind turbine 5, attached to an upper end of the support device 3.

Le dispositif 3 de support comprend une embase 7, reposant sur le fond marin F, une colonne 9 de support, et un joint rotulant 11 reliant l'embase 7 et la colonne 9.The support device 3 comprises a base 7, resting on the seabed F, a support column 9, and a swivel joint 11 connecting the base 7 and the column 9.

L'embase 7 repose sur le fond marin F. Elle est fixée au joint rotulant 11. L'embase 7 peut être lestée.The base 7 rests on the seabed F. It is fixed to the swivel joint 11. The base 7 can be weighted.

L'embase 7 comprend également des caissons de flottaison 20, positionnés et dimensionnés de manière à assurer la flottaison et la stabilité de la structure 3 de support pendant son remorquage sur le site final d'exploitation de l'installation de production d'électricité suivant l'invention. Les caissons de flottaison 20 assurent également la stabilité du dispositif 3 lors de sa descente vers le fond marin F.The base 7 also includes buoyancy chambers 20, positioned and dimensioned so as to ensure the floatation and stability of the support structure 3 during its towing to the final operating site of the next power generation installation. the invention. The buoyancy chambers 20 also ensure the stability of the device 3 during its descent to the seabed F.

L'embase 7 est par exemple réalisée en béton armé précontraint ou en métal, ou comme une structure composite acier-béton comprenant deux enveloppes concentriques en acier entre lesquelles est coulé du béton.The base 7 is for example made of prestressed reinforced concrete or metal, or as a steel-concrete composite structure comprising two concentric steel envelopes between which is poured concrete.

La colonne 9 est de forme sensiblement cylindrique, et est fermée à ses deux extrémités inférieure 21 et supérieure 23.The column 9 is of substantially cylindrical shape, and is closed at its two lower ends 21 and upper 23.

La colonne 9 comprend, à son extrémité inférieure 21, un lest 25 solide, par exemple en béton, ou liquide. La colonne 9 comprend dans sa partie supérieure plusieurs compartiments internes étanches et indépendants 27, comme représenté sur la figure 2. Ces compartiments 27 ne sont pas entièrement immergés, de telle sorte qu'en cas de choc entre un navire et l'installation 1 entraînant une brèche et un envahissement de ces compartiments, la colonne ne se remplisse pas entièrement d'eau.Column 9 comprises, at its lower end 21, a solid ballast, for example of concrete, or liquid. Column 9 comprises at its upper part a number of internal and sealed internal compartments 27, as shown in FIG. figure 2 . These compartments 27 are not completely submerged, so that in case of collision between a ship and the installation 1 causing a breach and invasion of these compartments, the column is not completely filled with water.

La colonne 9 comprend par ailleurs à son extrémité supérieure ou sommet 23 une plateforme d'accès 29 annulaire, permettant à du personnel d'accéder à l'éolienne 5.Column 9 further comprises at its upper end or apex 23 an access platform 29 annular, allowing personnel to access the wind turbine 5.

La hauteur h de la colonne 9 est telle que son sommet 23 soit positionné au-dessus de la surface S de l'eau, de telle sorte que la plateforme d'accès 29 reste hors d'atteinte des plus hautes vagues, quelle que soit l'inclinaison de la colonne 9 par rapport à un axe vertical A en situation de tempête maximale.The height h of the column 9 is such that its top 23 is positioned above the surface S of the water, so that the access platform 29 remains out of reach of the highest waves, whatever the inclination of the column 9 with respect to a vertical axis A in a situation of maximum storm.

La colonne 9 est par exemple réalisée en béton armé précontraint ou en métal, ou comme une structure composite acier-béton comprenant deux enveloppes concentriques en acier entre lesquelles est coulé du béton. En variante, une partie de la colonne peut être une structure en treillis métallique.Column 9 is for example made of prestressed reinforced concrete or metal, or as a steel-concrete composite structure comprising two concentric steel envelopes between which is poured concrete. Alternatively, a portion of the column may be a wire mesh structure.

L'extrémité inférieure 21 de la colonne 9 est reliée à l'embase 7 par l'intermédiaire du joint rotulant 11, et la base de l'éolienne 5 est fixée au sommet 23 de la colonne 9.The lower end 21 of the column 9 is connected to the base 7 via the swivel joint 11, and the base of the wind turbine 5 is fixed to the top 23 of the column 9.

Le joint rotulant 11 relie la colonne 9 à l'embase 7, tout en permettant des mouvements d'inclinaison de la colonne 9 par rapport à l'embase 7, donc par rapport au fond marin F, dans toutes les directions par rapport à l'axe vertical A.The swivel joint 11 connects the column 9 to the base 7, while allowing tilting movements of the column 9 relative to the base 7, so with respect to the seabed F, in all directions with respect to the vertical axis A.

Comme représenté sur la figure 3, le joint rotulant 11 est par exemple un joint du type joint de cardan, comprenant une première chape 30 fixée sur la surface supérieure de l'embase 7, une deuxième chape 31 fixée à l'extrémité inférieure de la colonne 9, ces deux chapes étant reliés l'un à l'autre par un croisillon 32 de manière à ce que leurs plans respectifs soient perpendiculaires lorsque l'axe de la colonne 9 est vertical.As shown on the figure 3 , the swivel joint 11 is for example a joint of the universal joint type, comprising a first yoke 30 fixed on the upper surface of the base 7, a second yoke 31 fixed to the lower end of the column 9, these two yokes being connected to each other by a spider 32 so that their respective planes are perpendicular when the axis of the column 9 is vertical.

L'éolienne 5, qui se trouve entièrement au-dessus de la surface S de l'eau E, comprend un mât 33 et un dispositif 35 de production d'énergie électrique à partir d'énergie éolienne.The wind turbine 5, which is entirely above the surface S of the water E, comprises a mast 33 and a device 35 for producing electrical energy from wind energy.

Le mât 33 est de forme sensiblement tronconique convergente vers le haut. Son extrémité inférieure 37 est fixée au sommet 23 de la colonne 9, et son axe vertical est aligné avec l'axe vertical de la colonne 9.The mast 33 is of substantially frustoconical shape converging upwards. Its lower end 37 is fixed to the top 23 of the column 9, and its vertical axis is aligned with the vertical axis of the column 9.

Le dispositif 35 de production d'énergie électrique comprend un générateur électrique 39 dont le rotor est entraîné en rotation par des pales 41 mises en mouvement par le vent, de manière connue.The device 35 for producing electrical energy comprises an electric generator 39 whose rotor is rotated by blades 41 set in motion by the wind, in a known manner.

Les pales 41 sont dimensionnées en fonction de la puissance électrique requise. Le mât 33 est dimensionné en longueur de manière à ce que les pales 41 puissent tourner au dessus de la plateforme d'accès 29, à une distance minimale de l'ordre de plusieurs mètres au-dessus de cette plateforme 29.The blades 41 are sized according to the electrical power required. The mast 33 is dimensioned in length so that the blades 41 can rotate above the access platform 29, at a minimum distance of the order of several meters above this platform 29.

Par temps calme, c'est-à-dire en l'absence de vent, de courant marin et de houle, l'installation 1 est soumise à des très faibles forces extérieures. Dans ces conditions, l'axe vertical de la colonne 9 est sensiblement aligné avec l'axe vertical A, c'est-à-dire perpendiculaire au fond marin F.In calm weather, that is to say in the absence of wind, sea current and swell, the installation 1 is subjected to very weak external forces. Under these conditions, the vertical axis of the column 9 is substantially aligned with the vertical axis A, that is to say perpendicular to the seabed F.

En présence de vent, de courant marin et/ou de houle, l'installation 1 est soumise à des forces tendant à incliner la colonne 9 par rapport à l'axe vertical A. La liaison rotulante entre l'embase 7 et la colonne 9 permet alors à celle-ci de s'incliner par rapport à l'axe vertical A, dans la direction de la résultante des forces exercées sur l'installation 1, l'embase restant fixe par rapport au fond marin F.In the presence of wind, of marine current and / or of waves, the installation 1 is subjected to forces tending to incline the column 9 with respect to the vertical axis A. The swiveling connection between the base 7 and the column 9 then allows it to tilt relative to the vertical axis A, in the direction of the resultant forces exerted on the installation 1, the base remaining fixed relative to the seabed F.

La colonne 9 est alors soumise à des forces de rappel, qui tendent à s'opposer à son inclinaison, et qui sont dues à la flottabilité de la colonne 9 et à un rappel hydrostatique. La flottabilité de la colonne 9 est accrue par l'air contenu dans ses compartiments 27 et dans le reste de la colonne, et la poussée d'Archimède exercée sur la colonne 9 est d'autant plus élevée que cette colonne est plus inclinée, donc immergée. Par ailleurs, la force de rappel hydrostatique exercée sur la colonne 9, fonction du déplacement de cette colonne, de sa masse, de son inertie au passage de la surface S et de la position relative du centre de flottabilité de cette colonne et de son centre de masse, est également d'autant plus élevée que la colonne 9 est plus inclinée.The column 9 is then subjected to restoring forces, which tend to oppose its inclination, and which are due to the buoyancy of the column 9 and a hydrostatic booster. The buoyancy of the column 9 is increased by the air contained in its compartments 27 and in the rest of the column, and the buoyancy force exerted on the column 9 is even higher than this column is more inclined, so submerged. Moreover, the hydrostatic restoring force exerted on the column 9, as a function of the displacement of this column, its mass, its inertia at the passage of the surface S and the relative position of the center of buoyancy of this column and its center mass, is also higher as the column 9 is more inclined.

Sous l'effet des forces exercées par le vent, le courant et la houle et des forces de rappel, la colonne 9 a des mouvements d'oscillation autour d'une position d'équilibre.Under the effect of the forces exerted by the wind, the current and the waves and restoring forces, the column 9 has oscillation movements around an equilibrium position.

En cas d'arrêt du vent, du courant marin et de la houle, l'axe de la colonne 9 s'aligne de nouveau avec l'axe vertical A, sous l'effet des forces de rappel.In case of wind, sea current and wave stop, the axis of the column 9 aligns again with the vertical axis A, under the effect of the restoring forces.

On décrira maintenant, au regard des figures 4 à 7, les étapes successives d'un procédé de construction et de mise en place de l'installation 1.We will now describe, with regard to Figures 4 to 7 , the successive stages of a process of construction and installation of the installation 1.

Dans une première étape de construction, le dispositif 3 de support et l'éolienne 5 sont construits de manière indépendante. L'embase 7 et la colonne 9 sont ainsi construits et assemblés par l'intermédiaire du joint rotulant 11, par exemple à quai ou en cale sèche. Un lest 25 solide ou liquide peut être introduit dans la colonne 9 lors de cette construction.In a first construction step, the support device 3 and the wind turbine 5 are built independently. The base 7 and the column 9 are thus constructed and assembled via the swivel joint 11, for example at the dock or in dry dock. Solid or liquid ballast may be introduced into column 9 during this construction.

Une fois assemblé, le dispositif 3 de support est mis en flottaison, sa flottaison étant assurée par les volumes d'air contenus dans les compartiments 27 et dans le reste de la colonne 9, ainsi que par les caissons 20 de flottaison de l'embase 7.Once assembled, the support device 3 is floated, its flotation being ensured by the air volumes contained in the compartments 27 and in the rest of the column 9, as well as by the caissons 20 of flotation of the base 7.

Puis, dans une étape de chargement illustrée sur la figure 4, le dispositif 3 de support est chargé 77 à l'horizontale sur un navire 78 de transport submersible, puis transporté jusqu'au site final d'exploitation de l'installation.Then, in a loading step illustrated on the figure 4 , the support device 3 is loaded 77 horizontally on a submersible transport vessel 78, and then transported to the final site of operation of the installation.

Dans une étape de mise à flot, illustrée sur la figure 5, le tirant d'eau t du navire 78 de transport est augmenté, par lestage avec de l'eau, de manière à immerger au moins partiellement le dispositif 3 de support, et le dispositif 3 est progressivement redressé en position verticale, par ballastage.In a launching step, illustrated on the figure 5 , the draft t of the ship 78 of transport is increased, by ballasting with water, so as to immerse at least partially the support device 3, and the device 3 is gradually rectified in vertical position, by ballasting.

Le ballastage se poursuit ensuite jusqu'à ce que l'embase 7 soit posée sur le fond marin F. La position du dispositif 3 de support à l'issue de cette étape est représentée sur la figure 6.The ballasting then continues until the base 7 is placed on the seabed F. The position of the support device 3 at the end of this step is shown in FIG. figure 6 .

Puis, lors d'une étape illustrée sur la figure 7, l'éolienne 5 est fixée au dispositif 3 de support. Les plateformes autoélévatrices, généralement utilisées pour les constructions en mer, ne sont pas adaptées à des profondeurs supérieures à 50 m. Dans un tel cas, comme représenté, l'étape de fixation est donc réalisée au moyen d'un navire 88 muni d'une grue 90, également appelé grue flottante.Then, during a step illustrated on the figure 7 , the wind turbine 5 is fixed to the support device 3. Self-raising platforms, generally used for offshore construction, are not suitable for depths greater than 50 m. In such a case, as shown, the fixing step is therefore performed by means of a ship 88 provided with a crane 90, also called floating crane.

En présence de courant ou de houle, la position de la grue flottante 88 n'est pas fixe par rapport au dispositif 3 de support, ce qui rend la fixation de l'éolienne 5 difficile.In the presence of current or waves, the position of the floating crane 88 is not fixed relative to the support device 3, which makes the fixing of the wind turbine 5 difficult.

Pour résoudre ce problème, la grue flottante 88 est amarrée à la colonne 9, cet amarrage étant rendu possible par le fait que la colonne 9 est apte à s'incliner dans toutes les directions par rapport à l'axe vertical A, donc à suivre les mouvements de la grue flottante 88 induits par le courant ou la houle. Cet amarrage permet ainsi de minimiser les mouvements relatifs entre la colonne 9 et la grue flottante 88.To solve this problem, the floating crane 88 is moored to the column 9, this mooring being made possible by the fact that the column 9 is able to tilt in all directions with respect to the vertical axis A, so to follow the movements of the floating crane 88 induced by the current or the swell. This mooring thus makes it possible to minimize the relative movements between the column 9 and the floating crane 88.

L'éolienne 5 est alors mise en place par la grue 90 au sommet 23 de la colonne 9, puis fixée au sommet 23 de cette colonne 9. La grue flottante 88 est alors détachée de la colonne 9, comme représenté sur la figure 7.The wind turbine 5 is then put in place by the crane 90 at the top 23 of the column 9, then fixed at the top 23 of this column 9. The floating crane 88 is then detached from the column 9, as shown in FIG. figure 7 .

La structure de l'installation 1 de production d'énergie électrique en mer, et en particulier du dispositif 3 de support, assure une grande résistance de cette structure face aux conditions extérieures, tout en facilitant sa construction et sa mise en place.The structure of the installation 1 for the production of electrical energy at sea, and in particular of the support device 3, ensures a great resistance of this structure to external conditions, while facilitating its construction and its implementation.

La liaison rotulante entre la colonne 9 et l'embase 7 du dispositif 3 de support permet en effet non seulement d'améliorer la robustesse de l'installation faces à la houle, au courant et au vent, mais également de faciliter la mise en place de cette installation.The swivel connection between the column 9 and the base 7 of the support device 3 makes it possible not only to improve the robustness of the installation in the face of the swell, the current and the wind, but also to facilitate the installation. of this installation.

En effet, cette liaison rotulante permet à la colonne 9 de s'incliner par rapport à l'axe vertical A, de telle sorte que les efforts et moments induits sur la colonne 9 et l'éolienne 5 par le vent, la houle et le courant sont diminués de manière significative par rapport au cas d'un support fixe. Cette inclinaison reste cependant contrôlée, en raison des forces de rappel exercées sur la colonne 9 lorsqu'elle est inclinée.Indeed, this rotulante connection allows the column 9 to tilt relative to the vertical axis A, so that the forces and moments induced on the column 9 and the wind turbine 5 by the wind, the swell and the current are significantly reduced compared to the case of a fixed support. This inclination remains controlled, however, because of the restoring forces exerted on the column 9 when it is inclined.

De plus, puisque la colonne 9 est libre de s'incliner, il est possible d'amarrer cette colonne 9 à une grue flottante.In addition, since the column 9 is free to tilt, it is possible to moor this column 9 to a floating crane.

En outre, l'indépendance des compartiments 27 de la colonne 9 permet de se prémunir d'un envahissement complet de la colonne 9 en cas de rupture de la paroi de cette colonne, par exemple suite à un choc avec un navire.In addition, the independence of the compartments 27 of the column 9 makes it possible to guard against complete invasion of the column 9 in the event of rupture of the wall of this column, for example following an impact with a ship.

On a représenté sur la figure 8 une installation de production d'énergie électrique en mer selon un autre mode de réalisation de l'installation. Sur cette figure, les éléments identiques aux éléments représentés sur la figure 1 portent les mêmes numéros.We have shown on the figure 8 an installation for producing electrical energy at sea according to another embodiment of the installation. In this figure, the elements identical to the elements represented on the figure 1 bear the same numbers.

L'installation de la figure 8 diffère de l'installation 1 décrite en référence à la figure 1 en ce qu'elle comprend des lignes 92 de mouillage, reliant la colonne 9 au fond marin. Chacune de ces lignes 92 de mouillage est ancrée à l'une de ses extrémités au fond marin F, et fixée à sa seconde extrémité dite libre à la colonne 9, au voisinage de la surface S de l'eau.The installation of the figure 8 differs from the installation 1 described with reference to the figure 1 in that it comprises wetting lines 92, connecting the column 9 to the seabed. Each of these wetting lines 92 is anchored at one of its ends to the seabed F, and fixed at its second so-called free end to the column 9, in the vicinity of the surface S of the water.

L'ancrage de chaque ligne 92 de mouillage au fond marin est réalisé comme suit. La ligne 92 est fixée à son extrémité inférieure à un bloc 100 de lest, posé sur le fond marin. Par ailleurs, chaque bloc 100 de lest est fixé à une première extrémité d'une chaîne 98 d'ancrage, dont la deuxième extrémité est fixée à un pieu 96 enfoncé dans le fond marin, de telle sorte que la ligne 92 de mouillage et la chaîne 98 d'ancrage se situent sensiblement dans un même plan vertical.The anchoring of each line 92 of wetting to the seabed is carried out as follows. Line 92 is attached at its lower end to a block 100 of ballast, placed on the seabed. Furthermore, each block 100 of ballast is attached to a first end of an anchor chain 98, whose second end is fixed to a pile 96 driven into the seabed, so that the line 92 of dampening and the chain 98 anchor are substantially in the same vertical plane.

Les lignes 92 de mouillage sont par exemple au nombre de trois, et disposées selon un angle de 120 ° l'une de l'autre.The wetting lines 92 are for example three in number and arranged at an angle of 120 ° to one another.

Elles permettent d'augmenter les forces de rappel exercées sur la colonne 9 lorsqu'elle s'écarte de sa position verticale, donc de réduire l'amplitude des mouvements d'oscillation de la colonne 9, tout en gardant suffisamment de souplesse grâce à la possibilité de soulèvement des blocs 100, pour autoriser des oscillations de cette colonne nécessaires à la réduction des efforts et des moments générés par le vent, la houle et le courant.They make it possible to increase the restoring forces exerted on the column 9 when it deviates from its vertical position, and thus to reduce the amplitude of the oscillation movements of the column 9, while keeping sufficient flexibility thanks to the possibility of raising the blocks 100, to allow oscillations of this column necessary to reduce the forces and moments generated by the wind, the swell and the current.

Pour augmenter la sécurité et faciliter les opérations de maintenance, les lignes 92 peuvent par ailleurs être doublées, chaque bloc 100 étant alors fixé à deux lignes 92.To increase security and facilitate maintenance operations, lines 92 can also be doubled, each block 100 then being fixed to two lines 92.

Les lignes 92 sont par exemple réalisées en acier.The lines 92 are for example made of steel.

Le procédé de construction et de mise en place de l'installation représentée sur la figure 8 comprend les mêmes étapes que le procédé décrit en référence aux figures 4 à 7, mais comporte en outre une étape d'ancrage de la colonne 9 au fond marin F. Lors de cette étape, chaque ligne 92 de mouillage est fixée à l'une de ses extrémités à un bloc 100 de béton. Chaque bloc de béton est alors mis à l'eau, puis ancré au fond marin F par l'intermédiaire d'un pieu 96 et d'une chaîne 98 d'ancrage.The process of construction and installation of the installation represented on the figure 8 comprises the same steps as the method described with reference to Figures 4 to 7 but also comprises a step of anchoring the column 9 to the seabed F. During this step, each line 92 of anchoring is fixed at one of its ends to a block 100 of concrete. Each block of concrete is then put into the water, and then anchored to the seabed F via a pile 96 and an anchor chain 98.

La tension de chaque ligne 92 de mouillage est alors ajustée, puis chaque ligne 92 est fixée à la colonne 9 par des moyens de blocage.The tension of each wetting line 92 is then adjusted, then each line 92 is fixed to the column 9 by locking means.

D'autres modes de réalisation de l'installation de production d'énergie électrique en mer selon l'invention sont envisageables.Other embodiments of the installation for producing electrical energy at sea according to the invention are conceivable.

Notamment, la colonne 9 ne présente pas nécessairement une forme cylindrique, mais peut présenter une forme conique ou polygonale. En outre (figure 9), la colonne peut être réalisée à partir de plusieurs segments 102, 104, 106 de longueurs et de sections différentes, fixés les uns au-dessus des autres. Une telle structure permet d'améliorer le comportement hydrodynamique de la colonne 9 et de minimiser ses oscillations. Par exemple, un élargissement de la section de la colonne à proximité de la surface de l'eau permet d'augmenter la force de rappel hydrostatique exercée sur cette colonne.In particular, the column 9 does not necessarily have a cylindrical shape, but may have a conical or polygonal shape. In addition ( figure 9 ), the column can be made from several segments 102, 104, 106 of different lengths and sections, fixed one above the other. Such a structure makes it possible to improve the hydrodynamic behavior of the column 9 and to minimize its oscillations. For example, widening the section of the column near the surface of the water increases the hydrostatic restoring force exerted on this column.

Selon un autre mode de réalisation, illustré sur les figures 10 et 11, l'installation comporte des caissons 108 de flottaison, attachés à la colonne 9 et entourant celle-ci à proximité de la surface S de l'eau E, à une hauteur ajustable. Ces caissons 108 permettent d'optimiser le comportement hydrodynamique de l'installation 1 indépendamment du diamètre de la colonne 9, donc de minimiser ce diamètre, tout en simplifiant la construction du dispositif 3 de support. La flottabilité de l'installation 1 est par exemple ajustée en modifiant la position des caissons 108 par rapport à la surface de l'eau ou encore en modifiant leur taille. Ces caissons 108 peuvent également remplacer les compartiments 27 de la colonne 9.According to another embodiment, illustrated on the Figures 10 and 11 , the installation comprises buoyancy chambers 108, attached to and surrounding the column 9 near the surface S of the water E, at an adjustable height. These caissons 108 make it possible to optimize the hydrodynamic behavior of the installation 1 independently of the diameter of the column 9, thus to minimize this diameter, while simplifying the construction of the support device 3. The buoyancy of the installation 1 is for example adjusted by changing the position of the caissons 108 relative to the surface of the water or by changing their size. These boxes 108 can also replace the compartments 27 of the column 9.

De plus, la liaison rotulante entre la colonne et l'embase ne comprend pas nécessairement un joint universel, mais peut être réalisée par tout moyen offrant une liaison rotulante entre la colonne et l'embase, c'est-à-dire autorisant des mouvements d'inclinaison de la colonne par rapport à l'embase, dans toutes les directions par rapport à son axe vertical.In addition, the swivel connection between the column and the base does not necessarily include a universal joint, but can be achieved by any means providing a swivel connection between the column and the base, that is to say allowing movements tilting of the column relative to the base, in all directions relative to its vertical axis.

Selon une variante, l'embase est fixée au fond marin F, par exemple au moyen d'une ancre à succion ou de pieux battus.According to a variant, the base is fixed to the seabed F, for example by means of a suction anchor or beaten piles.

En outre, l'axe vertical du mât 33 peut être excentré de l'axe vertical de la colonne.In addition, the vertical axis of the mast 33 may be eccentric from the vertical axis of the column.

D'autres modes de réalisation du procédé de construction et de mise en place selon l'invention sont également envisageables.Other embodiments of the method of construction and implementation according to the invention are also conceivable.

Notamment, selon une variante, le dispositif de support est transporté jusqu'au site d'utilisation par remorquage. Dans cette variante, le dispositif de support est ainsi redressé en position verticale ou oblique avant son transport jusqu'au site d'exploitation, puis transporté par un remorqueur, dans cette position.In particular, according to one variant, the support device is transported to the site of use by towing. In this variant, the support device is thus rectified in vertical or oblique position before transport to the operating site, and then transported by a tug in this position.

Par ailleurs, selon un autre mode de réalisation, l'éolienne est fixée au dispositif de support avant leur transport jusqu'au site d'exploitation, ce qui évite l'utilisation de grues flottantes sur le site d'exploitation. Dans ce mode de réalisation, la colonne peut avantageusement présenter en son sommet un évidement central sensiblement cylindrique, apte à recevoir l'extrémité inférieure du mât de l'éolienne. Le mât de l'éolienne est alors inséré dans la colonne dans un site protégé, puis relevé par des vérins après la mise en place de l'ensemble sur le site d'exploitation, ce qui permet d'accroître la stabilité de l'ensemble lors du transport jusqu'au site d'exploitation.Furthermore, according to another embodiment, the wind turbine is fixed to the support device before transport to the operating site, which avoids the use of floating cranes on the operating site. In this embodiment, the column may advantageously have at its apex a substantially cylindrical central recess adapted to receive the lower end of the mast of the wind turbine. The mast of the wind turbine is then inserted in the column in a protected site, then raised by cylinders after the establishment of the assembly on the site of exploitation, which makes it possible to increase the stability of the whole during transportation to the operating site.

On comprendra que l'invention peut être utilisée avec tout type d'éolienne. En particulier, on peut avantageusement prévoir une éolienne qui abaisse le centre de poussée du vent, telle qu'une éolienne à axe vertical et/ou une éolienne qui abaisse le centre de gravité de l'installation, telle qu'une éolienne dont le générateur est disposé sur la plateforme 29 ou au voisinage de celle-ci.It will be understood that the invention can be used with any type of wind turbine. In particular, it is advantageous to provide a wind turbine which lowers the center of wind pressure, such as a vertical axis wind turbine and / or a wind turbine which lowers the center of gravity of the installation, such as a wind turbine whose generator is disposed on the platform 29 or in the vicinity thereof.

En outre, l'axe X-X de rotation des pales 41 peut avantageusement être préréglé selon un angle incliné par rapport l'horizontale, lorsque la colonne 9 est verticale. Ce préréglage permet de limiter l'écart de l'axe de rotation des pales 41 par rapport à son angle de fonctionnement optimal lorsque la colonne 9 s'incline par rapport à la verticale.In addition, the axis X-X of rotation of the blades 41 may advantageously be preset at an angle inclined relative to the horizontal, when the column 9 is vertical. This presetting makes it possible to limit the deviation of the axis of rotation of the blades 41 from its optimum operating angle when the column 9 inclines with respect to the vertical.

L'angle formé par l'axe de rotation des pales 41 et la colonne 9 peut également être ajustable, en fonction de l'inclinaison de la colonne 9, de telle sorte que l'axe de rotation des pales 41 ait une direction sensiblement horizontale, quelle que soit l'inclinaison de la colonne 9.The angle formed by the axis of rotation of the blades 41 and the column 9 may also be adjustable, depending on the inclination of the column 9, so that the axis of rotation of the blades 41 has a substantially horizontal direction regardless of the inclination of the column 9.

Claims (12)

  1. Support device (3) for a wind turbine (5) for producing electric power at sea of the type comprising a footing (7) that rests on the sea floor (F) and a column (9) connected to said footing (7) to support said wind turbine (5), wherein said column (9) and said footing (7) are connected by a link that allows movements on an inclination (9) of said column (9) relative to said footing (7) in all directions in relation to a vertical axis (A), characterised in that a ball and socket joint (11) connects said column (9) to said footing (7).
  2. Device (3) according to claim 1, characterised in that said ball and socket joint is a universal joint (11), in particular a cardan joint.
  3. Device (3) according to one of the preceding claims, characterised in that it additionally comprises anchorage lines (92) provided with a ballast (100) connecting said column (9) to the sea bed (F).
  4. Device (3) according to one of the preceding claims, characterised in that said column (9) comprises at least one sealed internal compartment (27) in its upper section.
  5. Device (3) according to one of the preceding claims, characterised in that said column (9) comprises at least two sealed internal compartments (27) in its upper section.
  6. Device (3) according to one of claims 4 or 5, characterised in that at least one internal compartment (27) partially projects when the axis of the column (9) is substantially aligned with the vertical axis (A).
  7. Device (3) according to one of the preceding claims, characterised in that in its upper section close to the surface (S) of the water (E), said column (9) has a wider cross-section than in its lower section.
  8. Device (3) according to one of the preceding claims, characterised in that it comprises at least one floatation tank (108) attached to said column (9).
  9. Device (3) according to one of the preceding claims, characterised in that the footing (7) is equipped with at least one floatation tank (20) that can be ballasted.
  10. Device (3) according to one of the preceding claims, characterised in that said column (9) has a metal mesh structure.
  11. Device (3) according to one of the preceding claims, characterised in that at its top said column (9) has a recess, which is suitable to receive a lower end of said wind turbine (5) and allows a sliding movement of said wind turbine (5) relative to said column (9).
  12. Marine electric power generation plant (1), characterised in that it comprises a wind turbine (5) and a device (3) for supporting this wind turbine (5) according to any one of claims 1 to 11.
EP11306345.7A 2010-10-18 2011-10-18 Support device for a wind turbine for producing electric power at sea, corresponding facility for producing electric power at sea. Active EP2441893B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1058458A FR2966175B1 (en) 2010-10-18 2010-10-18 DEVICE FOR SUPPORTING A WIND TURBINE FOR PRODUCING ELECTRIC ENERGY AT SEA, INSTALLATION FOR PRODUCING CORRESPONDING ELECTRIC ENERGY IN SEA.

Publications (2)

Publication Number Publication Date
EP2441893A1 EP2441893A1 (en) 2012-04-18
EP2441893B1 true EP2441893B1 (en) 2014-04-23

Family

ID=44065705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11306345.7A Active EP2441893B1 (en) 2010-10-18 2011-10-18 Support device for a wind turbine for producing electric power at sea, corresponding facility for producing electric power at sea.

Country Status (4)

Country Link
US (1) US8864419B2 (en)
EP (1) EP2441893B1 (en)
ES (1) ES2471071T3 (en)
FR (1) FR2966175B1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8474219B2 (en) * 2011-07-13 2013-07-02 Ultimate Strength Cable, LLC Stay cable for structures
AU2013268170B2 (en) * 2012-05-30 2017-09-28 Cytroniq Co., Ltd. System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with six degrees of freedom, and the location of marine structure
CN102900097B (en) * 2012-11-06 2015-04-29 浙江大学 Reverse filtering layer device for assisting in mounting suction barrel-shaped foundation applied to silt seabed and method for mounting barrel-shaped foundation
FR3001471B1 (en) * 2013-01-28 2015-07-24 Foure Lagadec PYLONE OF MEASUREMENTS
US10583898B2 (en) * 2018-01-27 2020-03-10 Lone Gull Holdings, Ltd. Wind-powered computing buoy
PL3530809T3 (en) * 2018-02-21 2021-08-02 Siemens Energy Global GmbH & Co. KG Connecting structure for a marine installation
NL2021129B1 (en) * 2018-06-15 2019-05-27 Marine Innovators B V Process to place a wind turbine
WO2019240570A2 (en) * 2018-06-15 2019-12-19 Marine Innovators B.V. Process to place a wind turbine
CN108797552B (en) * 2018-06-19 2020-05-08 安徽枫雅轩科技信息服务有限公司 Supporting device for offshore drilling platform
CN108589764A (en) * 2018-07-02 2018-09-28 天津大学 Bucket foundation wind turbine entirety deep water sinking attitude control method
DE102019101209B4 (en) * 2019-01-17 2022-06-09 Gicon Windpower Ip Gmbh Offshore wind turbine for converting wind energy into electrical energy
DE102019110311A1 (en) * 2019-04-18 2020-10-22 Innogy Se Anchoring element
WO2021070786A1 (en) * 2019-10-12 2021-04-15 株式会社四国Ga Bottom-mounted offshore platform, offshore wind power generation device, and offshore wind condition observation device
DE102020112997A1 (en) 2020-05-13 2021-11-18 Rwe Renewables Gmbh Foundation for an offshore structure
CN114658040A (en) * 2020-11-03 2022-06-24 阳光学院 Offshore wind turbine pile foundation shock-absorbing structure capable of reducing impact
DE102021118462A1 (en) 2021-07-16 2023-01-19 Rwe Renewables Gmbh Foundation structure of an offshore structure

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524323A (en) * 1969-02-24 1970-08-18 Chicago Bridge & Iron Co Offshore storage tank with self-contained guy system
US3720066A (en) * 1969-11-20 1973-03-13 Metalliques Entrepr Cie Fse Installations for submarine work
US3636716A (en) * 1970-03-30 1972-01-25 Exxon Production Research Co Swivel joint connection
US3667239A (en) * 1970-04-30 1972-06-06 Texaco Inc Anchor for buoyant marine structures
US3708985A (en) * 1970-12-07 1973-01-09 Texaco Inc Articulated marine platform
NZ179925A (en) * 1975-02-06 1979-04-26 Taylor Woodrow Const Ltd Flexible joint suba queous structure
DE2549859C3 (en) * 1975-11-06 1979-03-22 Bilfinger + Berger Bauaktiengesellschaft, 6800 Mannheim Connection between an overwater platform or the like. and a foundation
US4222682A (en) * 1976-06-30 1980-09-16 Enterprise D'equipments Mechaniques Et Hydrauliques, E.M.H. Platforms for sea-bottom exploitation
FR2384902A2 (en) * 1976-07-23 1978-10-20 Doris Dev Richesse Sous Marine OSCILLATING STRUCTURE TO BE INSTALLED IN A WATER BODY AND PROCESS FOR ITS CONSTRUCTION
FR2377516A1 (en) * 1977-01-17 1978-08-11 Emh METHODS FOR THE HANDLING OF GEAR ON AN UNDERWATER BOTTOM, IN PARTICULAR FOR THE MANEUVERING AND MAINTENANCE OF WELL HEADS
FR2396127A1 (en) * 1977-06-29 1979-01-26 Bretagne Atel Chantiers METHOD FOR IMPLEMENTING A TORCHER SUPPORT STRUCTURE FOR OIL PLATFORM
FR2396125A1 (en) * 1977-06-30 1979-01-26 Emh ADDITIONAL COLUMN IN A MARINE SITE LOCATED NEAR A SEA BOTTOM EXPLOITATION COLUMN OR PLATFORM
FR2396128A1 (en) * 1977-07-01 1979-01-26 Emh Ent Equip Meca Hydraulique INTERVENTION STRUCTURE ON THE SEA BOTTOM
FR2404096A1 (en) * 1977-09-23 1979-04-20 Emh OPERATING STRUCTURE OF THE SEA BOTTOM ALLOWING TO ENSURE THE DIFFERENT FUNCTIONS FOR SUCH EXPLOITATION
FR2408063A1 (en) * 1977-11-04 1979-06-01 Emh SEA BOTTOM COLUMN ARTICULATION DEVICE TO ITS BASE, CONNECTION AND DISCONNECTION METHODS INCLUDING APPLICATION AND PRODUCT FORMING JOINT JOINT
GB1582813A (en) * 1978-01-20 1981-01-14 Shell Int Research Offshore installation comprising a base and an elongate structure interconnected by a joint and method of placing the installation
US4266499A (en) * 1979-08-27 1981-05-12 Chicago Bridge & Iron Company Offshore column with mooring hawser system
US4797033A (en) * 1980-04-07 1989-01-10 Amtel, Inc. Anchor line-stabilized system
JPS57127022A (en) * 1981-01-29 1982-08-07 Kawasaki Steel Corp Installation and securing method of base of column for structure
DE3132711C1 (en) * 1981-08-19 1982-12-16 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Ankle joint for connecting a movable supply tower of an offshore system to a foundation
FR2583101B1 (en) * 1985-06-10 1988-03-11 Elf Aquitaine GUIDE TUBE FOR RAIN COLUMN OF MARINE OIL EXPLOITATION
US4813815A (en) * 1985-08-01 1989-03-21 University Of Florida Buoyant, elastically tethered articulated marine platform
JP2543405B2 (en) * 1989-02-28 1996-10-16 株式会社ゼニライトブイ Super buoy type boring turret and mooring device
NL1016111C2 (en) * 2000-09-06 2002-03-07 P & R Systems Method for entering a post placed in the sea, as well as a device to be used thereby.
FR2827015B1 (en) * 2001-07-06 2005-12-23 Bouygues Offshore OFFSHORE WIND TURBINE AND METHOD OF CONSTRUCTION
NO317431B1 (en) 2002-05-22 2004-10-25 Sway As Device for deep water wind turbines
GB2394498B (en) * 2002-10-23 2006-08-09 Engineering Business Ltd Mounting of offshore structures
NO324756B1 (en) * 2003-04-28 2007-12-10 Sway As Liquid wind turbine with stiffening system
US9003631B2 (en) * 2003-10-23 2015-04-14 Shigeyuki Yamamoto Power generation assemblies and apparatus
NO20041208L (en) * 2004-03-22 2005-09-23 Sway As Procedure for reducing axial power variations for rotor and directional control for wind power with active pitch control
NO20052704L (en) * 2005-06-06 2006-12-07 Norsk Hydro As Liquid wind turbine installation.
NO326937B1 (en) * 2007-06-29 2009-03-16 Seatower Device and method of marine yarn structure
EP2065593A1 (en) * 2007-11-27 2009-06-03 Wind en Water Technologie Holding B.V. Tower for a wind turbine
GB0809521D0 (en) * 2008-05-24 2008-07-02 Marine Current Turbines Ltd Installation of structures in water
US8613569B2 (en) * 2008-11-19 2013-12-24 Efficient Engineering, Llc Stationary positioned offshore windpower plant (OWP) and the methods and means for its assembling, transportation, installation and servicing
US20120045345A1 (en) * 2010-08-20 2012-02-23 Horton Wison Deepwater, Inc. Offshore wind turbine and methods of installing same
US8192160B2 (en) * 2010-09-01 2012-06-05 General Electric Company Wind turbine having variable height and method for operating the same
US9457873B2 (en) * 2010-12-21 2016-10-04 Lockheed Martin Corporation On-site fabricated fiber-composite floating platforms for offshore applications
US20120201608A1 (en) * 2011-02-04 2012-08-09 Sidney Irving Belinsky Foundation for offshore wind turbine and method and means for its transportation and installation in deepwaters

Also Published As

Publication number Publication date
ES2471071T3 (en) 2014-06-25
US8864419B2 (en) 2014-10-21
FR2966175A1 (en) 2012-04-20
EP2441893A1 (en) 2012-04-18
US20120093589A1 (en) 2012-04-19
FR2966175B1 (en) 2012-12-21

Similar Documents

Publication Publication Date Title
EP2441893B1 (en) Support device for a wind turbine for producing electric power at sea, corresponding facility for producing electric power at sea.
EP3854670B1 (en) Method for installing an offshore wind turbine provided with a floating support structure
EP3472458B1 (en) Floating device supporting an offshore wind turbine, and corresponding floating wind turbine unit
DK1777348T3 (en) Apparatus and method for offshore installations
EP2495162B1 (en) Transport vessel of a wind turbine to an offshore site and method for its implementation
WO2017207937A1 (en) Float with reduced heaving, in particular for a floating wind turbine
FR3051823A1 (en)
EP2454149A1 (en) Catamaran ship used for assembling, transporting and installing a marine wind turbine on the seafloor
FR3049567A1 (en)
FR2935005A1 (en) SEAT STRUCTURE OF A HYDRAULIC TURBOMACHINE
WO2014060420A1 (en) V-shaped, bi-rotor wind generator on a spar floating structure
FR2631355A1 (en) PROTECTION DEVICE FOR SEA WORKS AND METHOD FOR IMPLEMENTING SAID DEVICE
EP3286069B1 (en) Floating mounting having a depth-variable horizontal cross-section
FR2499935A1 (en) STRUCTURE OF DRILLING AND PRODUCTION AT SEA
EP0231134B1 (en) Method for precisely positioning a prefabricated structure by sinking into the sea or into a river, and maritime or fluvial construction obtained by said method
EP3259404B1 (en) Gravity-base-type structure for supporting and anchoring an offshore wind turbine, and method for towing and installing same in the sea
WO2018019526A1 (en) Floating support structure comprising a floater and a damping plate with a row of apertures
WO2005068832A1 (en) Floating device for recovery of swell energy with a spiral lift
FR2581362A1 (en) Semi-submersible platform, in particular for exploration and/or working underwater deposits in cold seas
WO2016132056A1 (en) Lattice-tower-type structure for supporting and anchoring an offshore wind turbine, and method for towing and installing same in the sea
FR2675169A1 (en) Support for a structure at sea and method of installing it
FR2731727A1 (en) Construction and installation of offshore platforms and islands
FR3025536A1 (en) FOUNDATION FOR SEA CONSTRUCTIONS AND METHODS OF MANUFACTURING, ADJUSTING AND DISMANTLING SUCH A FOUNDATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20120928

RIC1 Information provided on ipc code assigned before grant

Ipc: E02D 27/42 20060101AFI20130408BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130523

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BROUGHTON, PETER

Owner name: MARINE ENGINEERING ENERGY SOLUTIONS LTD

Owner name: DORIS ENGINEERING

Owner name: DAVIES, RICHARD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140131

INTG Intention to grant announced

Effective date: 20140206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 663967

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011006358

Country of ref document: DE

Effective date: 20140612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2471071

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140625

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20140423

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 663967

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140423

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140423

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140823

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140723

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140724

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011006358

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

26N No opposition filed

Effective date: 20150126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011006358

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011006358

Country of ref document: DE

Effective date: 20150126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141018

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111018

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140423

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20200116 AND 20200122

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: DORIS ENGINEERING

Effective date: 20200323

REG Reference to a national code

Ref country code: NO

Ref legal event code: CHAD

Owner name: DORIS ENGINEERING, GB

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230926

Year of fee payment: 13

Ref country code: IE

Payment date: 20230919

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230911

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231114

Year of fee payment: 13