WO2005068832A1 - Floating device for recovery of swell energy with a spiral lift - Google Patents

Floating device for recovery of swell energy with a spiral lift Download PDF

Info

Publication number
WO2005068832A1
WO2005068832A1 PCT/FR2004/003379 FR2004003379W WO2005068832A1 WO 2005068832 A1 WO2005068832 A1 WO 2005068832A1 FR 2004003379 W FR2004003379 W FR 2004003379W WO 2005068832 A1 WO2005068832 A1 WO 2005068832A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
swell
elevator
turbine
floating
Prior art date
Application number
PCT/FR2004/003379
Other languages
French (fr)
Inventor
Georges Hildebrand
Original Assignee
Georges Hildebrand
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georges Hildebrand filed Critical Georges Hildebrand
Priority to EP04817592A priority Critical patent/EP1700032A1/en
Publication of WO2005068832A1 publication Critical patent/WO2005068832A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/20Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the tripod floating central unit with helical water lift captures the vertical energy of the swell on the surface. It is independent of any external reaction force, according to the principle of the isolated system. It floats freely like a cork. However, it is anchored so as not to be moved by wind or sea currents. This anchoring is designed so as not to counteract the oscillations due to the swell. 35
  • the construction technique is part of an ordinary shipyard. The architecture, although original, does not present any notorious technical challenge and uses materials and components which have been tried and tested for a long time. The elements of electricity production are limited to a Kaplan, Francis or Banki type turbine, coupled to a generator, possibly with a speed multiplier, a large fleet of which operates on all continents.
  • the production of electricity is independent of the wave wave cycle, the turbine being continuously supplied by the potential energy of the water to be turbined stored in the tank.
  • the maintenance of the exterior surfaces is comparable to that of the hull of a conventional ship, and that of the interior surfaces to that of land-based power stations, especially since it is possible to use fresh water as an energy fluid.
  • the installation is essentially constituted by a floating platform which transforms the movement of the swell into combined and synchronous oscillations as well as by a helical lift which raises the water up to a reservoir from which it will flow without interruption to drive a turbine located below.
  • the buoyancy of the platform is ensured by a central hull as well as by three pendulums sufficiently spaced to obtain an oscillation torque at each passage of the waves.
  • the horizontal surface of the floating tripod central elevator can be identified like that of a ship: the front by which the swell arrives, the aft, and the two sides starboard and port.
  • Two so-called pitch beams are placed at the starboard angles, and the so-called roll beam is located between the two port angles.
  • the dimensions of the rectangular platform are proportioned so that when the two pitch pendulums are at the same height overlapping a crest, the roll pendulum is on the crest line and inclines the platform to starboard.
  • the two pitch pendulums When the wave has advanced by half its length, the two pitch pendulums will again be at the same height, but overlapping a trough.
  • the roll float will be in a hollow and will tilt the platform to port.
  • the platform will have returned to its initial position, tilted to starboard.
  • the platform rolls from port to starboard, then from starboard to port.
  • the combination of the two roll oscillations and continuous pitch and almost synchronized makes describe in space to the vertical axis of the platform an inverted cone.
  • the platform is subjected to a tilt in perpetual pivoting around its vertical axis. We can say that it is a tilt and turn angle.
  • this combination of oscillations causes the slope line of the inclined platform to describe a sweep of 360 degrees per cycle.
  • the body of water is higher and eccentric with respect to this axis, since it consists of multiple siphons stacked on top of each other in the turns of the helical water lift to the level of the tank .
  • the installation is tilted to starboard by the swell, the transfer of load from all the siphons to starboard causes an additional deposit. It is the mass lodging.
  • a third factor intervenes, that of the centrifugal force of the siphons moving at a significant speed in the helical water lift. It is the kinetic shelter. The cumulation of the initial deposit, the mass deposit and the kinetic deposit, gives the effective inclination, therefore greater than that due to the swell itself.
  • FIG. 4 is the perspective of the whole of the tripod floating central unit with a helical water lift.
  • Figure 5 is the perspective of the helical water elevator seen from below.
  • Figures 6 and 7 show a non-return panel.
  • Figure 8 illustrates the port sector of the helical water lift and the hull.
  • Figure 9 shows the longitudinal section of the coil and the hull.
  • Figure 10 is the cross section of the coil at mid-height.
  • Figure 11 shows the cross section of the coil at the last turn.
  • FIG. 1 represents a tripod floating central unit with a helical water lift, seen from the rear and on the starboard side, in operation on a swell shown in transparent layer, at the instant of the starboard tilt, to illustrate the appearance of the whole and to locate the layout of the main elements.
  • FIG. 1 represents the underside of the platform.
  • the deck 1 comprising four angles surrounding the shell 2 in the form of a basin.
  • the stabilizers 3, 4, 5 and 6 are fixed at each angle. At the starboard angles, the stabilizers are extended vertically by the pitch beams 7 and 8.
  • the port side has in its middle the roll balance 9 forming the triangular layout.
  • the three pendulums and the bottom of the hull constitute the lively works ensuring buoyancy.
  • the stabilizers and floats can be built in hollow bodies in the materials usually used, (wood, metals, concrete, composites ...) or in full with expanded synthetic materials or in inflatable elements. Their shape may be different from the parallelepiped shape shown.
  • the volume of the port balance is equal to that of the two starboard balance to ensure the horizontality of the platform (at rest).
  • each of the port stabilizers is greater than that of each of the starboard stabilizers, these being assisted in the stabilization function by the pendulums which extend them.
  • a horizontal triangular reinforcement structure 10 joins the three pendulums.
  • the two tie rods 11 secure the stabilizers 4 and 5 to the structure 10.
  • To starboard three spars 12 connect the structure to deck 1 to form a docking facade for service or maintenance buildings, with a section ladder 13 and mooring bollards.
  • a high amplitude of swell is desirable and sought after, the performance of the power station depends on it. However, a sliding or surfing effect could appear in the event of excessive wave camber.
  • the tripod floating unit could slide in the direction of the swell when it is tilted backwards and in the opposite direction when the bow is plunging. With these shifts relative to the mass of seawater that is almost immobile horizontally, a rotation of the power plant would be combined, the roll float seeking to be placed at the same height as the pitch float located downstream. To avoid this phenomenon, it is advisable to place three anti-gyration drifts 14 starting from the floats to meet under the center of the hull 2.
  • the star arrangement ensures good resistance to pivoting, and in addition the asymmetry of the surfaces of the daggerboards facing the slope, brakes the roll balance more than the downstream pitch balance.
  • the fins 14 also constitute a reinforcement and rigidity structure for the whole of the platform by connecting together the most stressed elements: the deck 1, the hull 2, and the pendulums 7, 8 and 9. They are sufficiently solid as a seat when the power plant rests on the ground, during construction for example.
  • the exhaust volume 15 is intended to facilitate the exit of water from the turbine.
  • Figure 4 are visible three of the four upper stabilizers 16, 17, 18, 19 respectively placed at each angle above the stabilizers 3, 4, 5 and 6 to increase their efficiency.
  • the upper deck 20 includes above the elevator 21 a cavity with a hole at its base for recovering rainwater intended to compensate for the losses of water to be turbined by evaporation.
  • the turbine room below the reservoir 23 encloses the conventional elements of power plants: drop conduit 24, turbine-generator group 25, as well as the elements not shown such as transformer flow regulators, overflow control 35 and 36
  • a partition with movable openings protects everything from bad weather and seawater packets. It may be envisaged to install a second group of turbines there for floating tripod power stations intended for heavy swell sites.
  • the staircase 26 can be completed by a hoist or by a winch.
  • a tripod structure 27 covers the whole. It is formed by three gallows
  • Each station includes a windlass 54 and a fairlead 55.
  • the front and rear are anchored by a chain 56 in Y whose two strands have a length at least equal to the distance between the two windlasses concerned. Just shorten one of the strands of each chain to change the orientation by about 45 °. By the same operation with the opposite strand, the same result is obtained in the opposite direction.
  • the chains 56 are fixed to a ton of anchoring so as not to subject the center to downward tensions.
  • Figure 5 in perspective shows the starboard side, the rear, the bottom of the helical water lift with the turbine room.
  • the slightly gray areas symbolize a water outlet, the darker ones an entrance.
  • the lines with dots in a chain mean that they are hermetically in contact with the inner wall of the shell. It is by the lower end of the elevator called collecting orifice 29 that the water to be turbined enters the water elevator to form siphons, which will rise from one turn to another, at the rate waves of the swell, until the last turn to reach the reservoir.
  • the turns of the water elevator 21 could be produced in a tube of circular section, according to a helix whose pitch corresponds to the diameter of the tube.
  • the realization would be very simple and the elevator would work, but with a low production, the volume of the siphons being low.
  • a rectangular shape makes it possible to obtain a larger cross-sectional area for a given pitch, the pitch being limited by the average effective heel possible on the operating site.
  • the elevator presented is constituted by a parallelepipedic tower with rounded angles of about 8 meters on the side, surrounded by a second cylindrical or oval tower of about 15 meters in diameter, creating the space necessary to place a spiral ramp, a dozen turns, with a section of one meter high varying from 2 to 3.5 m in width. The whole must support several hundred tonnes of load.
  • the four fixing plates 30 ensure the seat and the assembly of the helical water elevator with the shell 2.
  • the deck seal 32 covers the hull 2.
  • the starboard partition wall 31 and the port partition wall (not visible) separate the water to be turbined in two bunkers 44 and 45.
  • the filling terminal 33 is designed to introduce the water to be turbinated before start-up, either at the quay or on site using a tanker. Each turn has a vent to prevent an overpressure of air, or a depression, between the siphons slowing down the flow.
  • These vents simple bent conduits fixed on the outer wall, are comparable to an anti-ram column. They are grouped into a beam 34. Depending on the type of swell, it might be advisable to install four beams.
  • the overflow stop 35 is constituted by a pipe which connects the hold to the outside of the hull, in order to facilitate the evacuation of an excess of water to be turbined before the commissioning of the power plant. It is fitted with a non-return valve to prevent seawater from entering and a manually operated valve accessible from the turbine room or a motorized valve.
  • the overflow step 36 is identical: placed lower it allows to evacuate an excessively large amount of rainwater which would unnecessarily weigh down the power station during its operation.
  • a water level indicator is part of the instrumentation of the turbine room.
  • the ground 37 of the turbine room receives the turbine-generator group.
  • the exhaust pipe 38 passes through it.
  • a non-return separation panel 39 separates the two bunkers.
  • FIG. 6 represents a non-turn winding panel comprising an inclined grid 40 covered by a valve 41 made of a sheet of semi-rigid material, of the vulcanized textile type used as a conveyor belt or any other synthetic material having the same characteristics, multiple weights 42 and the fastening screws 43.
  • the view is truncated to reveal the grid without the valve
  • Figure 7 corresponds to the section of the non-return panel along AA to show the panel in the Closed position and in the open position.
  • the gray area illustrates the flow of water with the valve open. * The hydraulic symbol specifies the function.
  • These non-return panels are thus designed to facilitate flow with a minimum pressure drop. Their sealing is ensured by the flexibility of the valve, the weights as well as by the pressure of the water exerted on the valve.
  • the non-return valves usually used do not allow large flows, are bulky, have mechanical axes of limited longevity and weigh heavier.
  • the anti-retraction panel 39 is constructed using the same technology.
  • a non-return panel 52 is essential at the end of the last reservoir turn 23 in order to prevent the counter-flow of part of the contents of the reservoir 23 when it is full. In cases where the swell is frequently irrigated or random (fetch, passage of large buildings nearby, transverse swell, sea currents), the synchronization of the oscillations could be disturbed. It is therefore advisable to place non-return panels in each turn to avoid any descent of the siphons. On sites where the swell is regular and well formed, even of small amplitude, the non-return panels are useless. FIG.
  • S Figure 9 is the longitudinal section BB of the elevator and the shell shown in the previous figure.
  • the non-return distribution panel 39 retains the water from the front hold 44 at a higher level than that from the rear hold 45, which makes it possible to install the turbine 25 at a lower level to increase the height of fall. At this instant, and as long as the rear pitching has not disappeared, the water escapes from the turbine falls into the rear s ⁇ ufee 45.
  • FIG. 10 represents the riser in a horizontal section CC at the level of the turn located above the bridge joint 32.
  • the non-return separation panel 39 In the center we see, through the interior of the water riser , the non-return separation panel 39, partially covered by the water in the front hold 44, as well as part of the funnel forming the collection orifice 29.
  • the valve of the non-return separation panel 39 is cut to show Grid.
  • the siphon is shown in the gray area * 11 is asymmetrical with respect to the longitudinal axis of the plant although it is inclined towards the bitter. This is due to the pitch of the elevator propeller. To stop the f ⁇ mctioi ement of the power plant it is enough to stop the rise in water by obstructing one of the lower turns.
  • the tripod floating central unit with a helical water lift thus represented for information purposes, which is in no way limitative, is proportioned and dimensioned for a weak swell with an amplitude of 1 meter, a length of 50 meters and a periodicity of
  • the specific power is proportional to the step and inversely proportional to the period. It can work in isolation, in a group, connected or not to a public network or not, to supply homes, industries, desalination plants, liquid hydrogen production, on land or at sea.

Abstract

The invention relates to a floating device, for transforming swell movements into synchronous oscillations for lifting water into a reservoir supplying a hydroelectric turbine. The device comprises a central floating tripod with a spiral water lift, functioning as an isolated system for capturing the archimedean thrust of the surface of the waves of the swell. The present embodiment has a floating platform comprising a bridge (1), a shell (2), arranged between two pitch rockers (7 and 8) and a roll rocker (9). The combination of the oscillations creates a continuous oscillating pivoting inclination, amplified by the displacement of masses and synchronised with the progress of the swell, used by a spiral water lift (21). As a result of the inclination, the water for application to a turbine rises from turn to turn, up to the reservoir (23), from which said water flows down in a continuous manner to supply the turbine coupled to the generator (25). The generator operates with fresh water to limit corrosion and prevent harm to the marine fauna. The device may be constructed in a conventional shipyard with proven electricity generators and may be positioned and moved as a function of the characteristics of the swell, with a production capacity comparable to a modern large wind turbine.

Description

DISPOSITIF FLOTTANT RECUPERATEUR DE L ' ENERGIE DES HOULES AVEC ELEVATEUR HELICOÏDALFLOATING DEVICE RECOVERING THE ENERGY OF THE SURF WITH A HELICOIDAL LIFTER
On connaît dans le domaine de la récupération de l'énergie de la houle pour produire de l'électricité plusieurs systèmes faisant appel au captage de l'énergie cinétique ou de l'énergie potentielle, ou des deux combinées, par des installations fixes ou flottantes, ou immergées (1) : 5 - Les installations fixes, inamovibles, situées entre deux forces antagonistes, l'action de la houle et des vagues et la réaction de leur fixation, subissent des contraintes énormes et brutales, ainsi qu'un travail de sape par l'eau de mer et le sable. Ne pouvant pas s'adapter aux variations du niveau de la mer du fait des marées, leur rendement moyen est faible. 10 - Les installations flottantes récupérant l'énergie cinétique de la houle subissent les mêmes contraintes . Les installations flottantes qui récupèrent l'énergie dues à la poussée d'Archimède captent l'énergie en douceur, par à-coup, au rythme de l'avancée des ondes de la houle, leur génératrices ne peuvent produire ni régulièrement ni linéairement. 15 - Le mouvement vertical de la houle est important au niveau de la surface, et diminue au fur et à mesure que l'on s'en éloigne. Les installations immergée s'en trouvent pénalisées. La maintenance et entretien nécessitent un équipement de plongée pour les techniciens, au pire la remontée de l'installation pourrait s'avérer nécessaire. 20 La plupart des installations utilisent des composants spécifiques fragiles, tels que : articulations, mécanismes, pistons-cylindres, pompes, moteurs hydrauliques, clapets métalliques rigides, génératrices électriques linéaires, qui subissent la corrosion, l'abrasion, ainsi que les dépôts de mousse et de cravants. Les installations dont la génératrice est entrainée par une hélice à air sont 25 pénalisées par la perte d'énergie due à la compression-décompression. Celles qui captent les ondes de la houle par une rampe inclinée sont pénalisée du fait d'une perte d'énergie par frottement. L'installation suivant l'invention supprime ces inconvénients et apporte des techniques nouvelles. 30 La centrale flottante tripode à élévateur à eau hélicoïdal capte en surface l'énergie verticale de la houle. Elle est indépendante de toute force de réaction externe, selon le principe du système isolé. Elle flotte librement comme un bouchon. Elle est toute fois ancrée afin de ne pas être déplacée par le vent ou les courants marins. Cet ancrage est conçu de façon à ne pas contrarier les oscillations dues à la houle. 35 La technique de construction relève d'un chantier naval banal. L'architecture bien qu'originale, ne présente aucun défi technique notoire et utilise des matériaux et des composants depuis longtemps éprouvés. Les éléments de production d'électricité se limitent à une turbine de type Kaplan, Francis ou Banki, accouplée à une génératrice, éventuellement avec un multiplicateur de vitesse, dont un parc important fonctionne sur tous les continents. La production d'électricité est indépendante du cycle des ondes de la houle, la turbine étant alimentée de façon continue par l'énergie potentielle de l'eau à turbiner stocké dans le réservoir. La maintenance des surfaces extérieures est comparable à celle de la coque d'un navire classique, et celle des surfaces intérieures à celle des centrales terrestres, ce d'autant qu'il est possible d'utiliser de l'eau douce comme fluide énergétique. L'installation est essentiellement constituée par une plate-forme flottante qui transforme le mouvement de la houle en oscillations combinées et synchrones ainsi que par un élévateur hélicoïdal qui élève l'eau jusqu'à jusqu' à un réservoir d'où elle s'écoulera sans interruption pour entraîner une turbine située en contre bas. La flottabilité de la plate-forme est assurée par une coque centrale ainsi que par trois balanciers suffisamment écartés pour obtenir un couple d'oscillation à chaque passage des ondes. La surface horizontale de la centrale flottante tripode à élévateur peut être repérée comme celle d'un navire : l'avant par où arrive la houle, l' arrière, et les deux cotés tribord et bâbord. Deux balanciers dits de tangage sont placés aux angles tribord, et le balancier dit de roulis est situé entre les deux angles de bâbord. Les dimensions de la plate- forme rectangulaire sont proportionnées de telle sorte que lorsque les deux balanciers de tangage sont à hauteur identique en chevauchant une crête, le balancier de roulis est sur la ligne de crête et incline la plate-forme à tribord. Quand l'onde aura avancé de la moitié de sa longueur les deux balanciers de tangage seront à nouveau à même hauteur, mais en chevauchant un creux. Le flotteur de roulis sera dans un creux et inclinera la plate-forme à bâbord. Une demi-onde plus tard la plate-forme aura repris sa position initiale, inclinée à tribord. Durant le cycle, celui d'une onde, la plate-forme roule de bâbord à tribord, puis de tribord à bâbord. Simultanément elle tangue, de l'horizontale elle plonge vers l'avant, revient à l'horizontale puis penche vers l'arrière, et retrouve sa position initiale horizontale. La combinaison des deux oscillations roulis et tangage continue et quasiment synchronisée, fait décrire dans l'espace à l'axe vertical de la plate-forme un cône inversé. La plate-forme est soumise à une inclinaison en perpétuel pivotement autour de son axe vertical . On peut dire qu'il s'agit d'une inclinaison oscillo-pivotante. De même cette combinaison d'oscillations fait décrire à la ligne de pente de la plate-forme inclinée un balayage de 360 degrés par cycle. De sorte que l'eau contenue (que nous appellerons siphon) dans un tube circulaire fermé en cerceau et placé à plat sur la plate-forme, fait un tour de circonférence complet à chaque passage d'onde, la gravité entraînant toujours le siphon au point le plus bas. L ' élévateur à eau hélicoïdal, semblable à un serpentin, exploite ce phénomène, à la différence qu'à chaque cycle le siphon s ' élève d'une spire, à condition que l'inclinaison de la plate-forme soit suffisante. L'inclinaison est provoquée initialement par les ondes de la houle créant les oscillations de roulis et de tangage. C'est le gîte initial. Simultanément le gîte initial est augmenté par le déplacement des masses. Au repos, avant que l'élévation de l'eau n'ait débuté, toute l'eau interne se trouve dans la coque et dans les spires inférieures. Le centre de gravité est au plus bas et sur l'axe vertical. Lors du fonctionnement, la masse d'eau est plus haute et excentrée par rapport à cet axe, puisqu'elle est constituée de siphons multiples empilés les uns sur les autres dans les spires de l'élévateur à eau hélicoïdal jusqu'au niveau du réservoir. Par exemple à un moment précis, l'installation est inclinée à tribord par la houle, le transfert de charge de tous les siphons à tribord provoque un gîte supplémentaire. C'est le gîte de masse. Un troisième facteur intervient, celui de la force centrifuge des siphons se déplaçant à une vitesse non négligeable dans l'élévateur à eau hélicoïdal. C'est le gîte cinétique. Le cumul du gîte initial, du gîte de masse et du gîte cinétique, donne l'inclinaison effective, donc supérieure à celle due à la houle proprement dite. La centrale flottante tripode élévateur à eau hélicoïdal sera de ce fait également exploitable, sur des mers ou de grands lacs bénéficiant de houles modestes ou des façades d'océans moins exposées à la houle, l'inclinaison effective étant plus importante que la pente des ondes. La présence de stabilisateurs permet de maintenir la distance métacentrique largement positive en empêchant une trop forte prise de bande, préjudiciable à la stabilité de l'installation en cas de condition de mer ou(et) climatiques extrêmes tels que tempêtes, typhons ou raz de marée. Une forme de l'invention est décrite ci-après à titre indicatif et nullement limitatif. Les dessins annexés illustrent l'invention : La figure 1 représente l'ensemble du dispositif placé sur la houle, en perspective. La figure 2 est le schéma du principe de fonctionnement. La figure 3 représente le dessous de la plate-forme en perspective. La figure 4 est la perspective de l'ensemble de la centrale flottante tripode à élévateur à eau hélicoïdal. La figure 5 est la perspective de l'élévateur à eau hélicoïdal vu de dessous. La figure 6 et 7 représentent un panneau antiretour. La figure 8 illustre le secteur bâbord de l'élévateur à eau hélicoïdal et de la coque. La figure 9 montre la coupe longitudinale du serpentin et de la coque. La figure 10 est la coupe transversale du serpentin à mi-hauteur. La figure 11 représente la coupe transversale du serpentin au niveau de la dernière spire. En se référant aux dessins, la figure 1 représente une centrale flottante tripode à élévateur à eau hélicoïdal, vu de l'arrière et du coté tribord, en fonctionnement sur une houle représentée en calque transparent, à l'instant de l'inclinaison tribord, afin d'illustrer l'aspect de l'ensemble et de situer la disposition des principaux éléments. Sous le pont 1 on distingue les œuvres vives : la coque 2, les balanciers 7, 8 et 9. Sur le dessus du pont sont visibles l'élévateur 21, le réservoir 23, la conduite de chute 24, ainsi que le groupe turbine-génératrice 25. La Figure 2 est le schéma du principe de fonctionnement. La chronologie des quatre étapes est localisée sur le profil de la centrale tracé en arrière plan : - CAPTAGE de l'eau douce à mouliner dans la soute avant 44 -ELEVATION de l'eau dans l'élévateur à eau hélicoïdal 21 - STOCKAGE et DISTRIBUTION de l'énergie potentielle dans le réservoir 23 -TRANSFORMATION en énergie mécanique puis en énergie électrique dans la salle de turbine 22 et la soute arrière 45. La figure 3 représente le dessous de la plate-forme. Le pont 1 comportant quatre angles entourant la coque 2 en forme de vasque. A chaque angle sont fixés les stabilisateurs 3, 4, 5 et 6. Aux angles tribord les stabilisateurs sont prolongés verticalement par les balanciers de tangage 7 et 8. Le coté bâbord comporte en son milieu le balancier de roulis 9 formant l'implantation triangulaire. Les trois balanciers ainsi que le fond de la coque constituent les œuvres vives assurant la flottabilité. Les stabilisateurs et les flotteurs peuvent être construits en corps creux dans les matériaux habituellement utilisés, (bois,métaux, béton, composites...) ou en plein avec des matières de synthèse expansées ou encore en éléments gonflables. Leur forme peut être différente de la forme parallélépipédique présentée. Le volume du balancier bâbord est égal à celui des deux balanciers tribord pour assurant l'horizontalité de la plate-forme (au repos). Le volume de chacun des stabilisateurs de bâbord est plus important que celui de chacun des stabilisateurs de tribord, ceux-ci étants assistés dans la fonction de stabilisation par les balanciers qui les prolongent. Une structure de renforcement horizontale en triangle 10 joint les trois balanciers. Les deux tirants 11 solidarisent les stabilisateurs 4 et 5 à la structure 10. A tribord trois espars 12 relient la structure au pont 1 pour constituer une façade d'accostage pour les bâtiments de service ou de maintenance, avec une échelle de coupée 13 et des bittes d'amarrage. Une forte amplitude de houle est souhaitable et recherchée, les performances de la centrale en dépendent. Cependant un effet de glissement ou de surf, pourrait apparaître en cas de cambrure d'onde trop importante. La centrale flottante tripode pourrait glisser dans le sens de la houle lorsqu'elle est inclinée vers l'arrière et dans le sens inverse lorsque la proue est plongeante. A ces glissements par rapport à la masse d'eau de mer quasiment immobile horizontalement, se combinerait une rotation de la centrale, le flotteur de roulis cherchant à se placer à la même hauteur que le flotteur de tangage situé en aval. Pour éviter ce phénomène il est judicieux de placer trois dérives antigiration 14 partant des flotteurs pour se rejoindre sous le centre de la coque 2. La disposition en étoile assure une bonne résistance au pivotement, et en outre l'asymétrie des surfaces des dérives faces à la pente, freine davantage le balancier de roulis que le balancier de tangage aval. Les dérives 14 constituent également une structure de renfort et de rigidité pour l'ensemble de la plate-forme en reliant entre eux les éléments les plus sollicités : le pont 1, la coque 2, et les balanciers 7, 8 et 9. Elles sont suffisamment solides en tant qu'assise lorsque la centrale repose à terre, lors de la construction par exemple. Le volume d'échappement 15 est destiné à faciliter la sortie d'eau de la turbine. Sur la figure 4 sont visibles trois des quatre stabilisateurs supérieurs 16, 17, 18, 19 placés respectivement à chaque angle au-dessus des stabilisateurs 3, 4, 5 et 6 pour augmenter leur efficience. Le pont supérieur 20 comporte au-dessus de l'élévateur 21 une cavité trouée à sa base pour récupérer les eaux de pluie destinées à compenser les pertes en eau à turbiner par évaporation. La salle de turbine en dessous du réservoir 23 enferme les éléments classiques des centrales électriques : conduit de chute 24, groupe turbine-génératrice 25, ainsi que les éléments non représentés tels que transformateur organes de régulation de débit, commande des trop pleins 35 et 36. Une cloison avec des ouvertures mobiles protège le tout des intempéries et des paquets d'eau de mer. Il peut être envisagé d'y installer un deuxième groupe de turbine pour les centrales flottantes tripodes destinées à des sites de fortes houles. L'escalier 26 peut être complété par un monte charge ou par un treuil. Une structure en tripode 27 coiffe le tout. Elle est formée par trois potencesWe know in the field of energy recovery from waves to produce electricity several systems using the capture of kinetic energy or potential energy, or both combined, by fixed or floating installations , or submerged (1): 5 - Fixed, immovable installations, located between two opposing forces, the action of swell and waves and the reaction of their fixation, undergo enormous and brutal constraints, as well as a work of undermines by seawater and sand. Unable to adapt to variations in sea level due to the tides, their average yield is low. 10 - Floating installations recovering the kinetic energy of the swell undergo the same constraints. Floating installations which recover the energy due to Archimedes' push capture energy gently, in spurts, at the rate of the advance of waves of swell, their generators can produce neither regularly nor linearly. 15 - The vertical movement of the swell is important at the level of the surface, and decreases as one moves away from it. The submerged installations are penalized. Maintenance and servicing require diving equipment for technicians, at worst the installation of the installation may be necessary. 20 Most installations use specific fragile components, such as: joints, mechanisms, piston-cylinders, pumps, hydraulic motors, rigid metallic valves, linear electric generators, which undergo corrosion, abrasion, as well as foam deposits. and ties. Installations whose generator is driven by an air propeller are penalized by the loss of energy due to compression-decompression. Those which collect waves of waves by an inclined ramp are penalized due to a loss of energy by friction. The installation according to the invention eliminates these drawbacks and provides new techniques. 30 The tripod floating central unit with helical water lift captures the vertical energy of the swell on the surface. It is independent of any external reaction force, according to the principle of the isolated system. It floats freely like a cork. However, it is anchored so as not to be moved by wind or sea currents. This anchoring is designed so as not to counteract the oscillations due to the swell. 35 The construction technique is part of an ordinary shipyard. The architecture, although original, does not present any notorious technical challenge and uses materials and components which have been tried and tested for a long time. The elements of electricity production are limited to a Kaplan, Francis or Banki type turbine, coupled to a generator, possibly with a speed multiplier, a large fleet of which operates on all continents. The production of electricity is independent of the wave wave cycle, the turbine being continuously supplied by the potential energy of the water to be turbined stored in the tank. The maintenance of the exterior surfaces is comparable to that of the hull of a conventional ship, and that of the interior surfaces to that of land-based power stations, especially since it is possible to use fresh water as an energy fluid. The installation is essentially constituted by a floating platform which transforms the movement of the swell into combined and synchronous oscillations as well as by a helical lift which raises the water up to a reservoir from which it will flow without interruption to drive a turbine located below. The buoyancy of the platform is ensured by a central hull as well as by three pendulums sufficiently spaced to obtain an oscillation torque at each passage of the waves. The horizontal surface of the floating tripod central elevator can be identified like that of a ship: the front by which the swell arrives, the aft, and the two sides starboard and port. Two so-called pitch beams are placed at the starboard angles, and the so-called roll beam is located between the two port angles. The dimensions of the rectangular platform are proportioned so that when the two pitch pendulums are at the same height overlapping a crest, the roll pendulum is on the crest line and inclines the platform to starboard. When the wave has advanced by half its length, the two pitch pendulums will again be at the same height, but overlapping a trough. The roll float will be in a hollow and will tilt the platform to port. Half a wave later, the platform will have returned to its initial position, tilted to starboard. During the cycle, that of a wave, the platform rolls from port to starboard, then from starboard to port. Simultaneously it pitched, from the horizontal it dived forward, returned to the horizontal then leaned back, and returned to its initial horizontal position. The combination of the two roll oscillations and continuous pitch and almost synchronized, makes describe in space to the vertical axis of the platform an inverted cone. The platform is subjected to a tilt in perpetual pivoting around its vertical axis. We can say that it is a tilt and turn angle. Likewise, this combination of oscillations causes the slope line of the inclined platform to describe a sweep of 360 degrees per cycle. So that the water contained (which we will call siphon) in a circular tube closed in hoop and placed flat on the platform, makes a complete circumference around each passage of wave, gravity always carrying the siphon at the lowest point. The helical water lift, similar to a coil, exploits this phenomenon, with the difference that with each cycle the siphon rises with one turn, provided that the inclination of the platform is sufficient. The inclination is initially caused by the waves of the swell creating the roll and pitch oscillations. It is the initial lodging. Simultaneously the initial list is increased by the displacement of the masses. At rest, before the water has risen, all the internal water is in the hull and in the lower turns. The center of gravity is at the bottom and on the vertical axis. During operation, the body of water is higher and eccentric with respect to this axis, since it consists of multiple siphons stacked on top of each other in the turns of the helical water lift to the level of the tank . For example at a specific time, the installation is tilted to starboard by the swell, the transfer of load from all the siphons to starboard causes an additional deposit. It is the mass lodging. A third factor intervenes, that of the centrifugal force of the siphons moving at a significant speed in the helical water lift. It is the kinetic shelter. The cumulation of the initial deposit, the mass deposit and the kinetic deposit, gives the effective inclination, therefore greater than that due to the swell itself. The floating tripod central lift with helical water will therefore also be usable on seas or large lakes with modest swells or ocean fronts less exposed to swell, the effective inclination being greater than the slope of the waves . The presence of stabilizers makes it possible to maintain the metacentric distance largely positive by preventing too much band taking, detrimental to the stability of the installation in the event of sea conditions and / or extreme climatic conditions such as storms, typhoons or tidal waves . One form of the invention is described below for information and is in no way limiting. The accompanying drawings illustrate the invention: Figure 1 shows the entire device placed on the swell, in perspective. Figure 2 is the diagram of the operating principle. Figure 3 shows the bottom of the platform in perspective. FIG. 4 is the perspective of the whole of the tripod floating central unit with a helical water lift. Figure 5 is the perspective of the helical water elevator seen from below. Figures 6 and 7 show a non-return panel. Figure 8 illustrates the port sector of the helical water lift and the hull. Figure 9 shows the longitudinal section of the coil and the hull. Figure 10 is the cross section of the coil at mid-height. Figure 11 shows the cross section of the coil at the last turn. Referring to the drawings, FIG. 1 represents a tripod floating central unit with a helical water lift, seen from the rear and on the starboard side, in operation on a swell shown in transparent layer, at the instant of the starboard tilt, to illustrate the appearance of the whole and to locate the layout of the main elements. Under deck 1 there are the living works: the hull 2, the pendulums 7, 8 and 9. On the top of the deck are visible the elevator 21, the tank 23, the fall pipe 24, as well as the turbine group- generator 25. Figure 2 is a diagram of the operating principle. The chronology of the four stages is located on the profile of the power plant traced in the background: - CAPTURE of fresh water to be milled in the front hold 44 - ELEVATION of water in the helical water lift 21 - STORAGE and DISTRIBUTION potential energy in the reservoir 23 - TRANSFORMATION into mechanical energy then into electrical energy in the turbine room 22 and the rear cargo compartment 45. FIG. 3 represents the underside of the platform. The deck 1 comprising four angles surrounding the shell 2 in the form of a basin. The stabilizers 3, 4, 5 and 6 are fixed at each angle. At the starboard angles, the stabilizers are extended vertically by the pitch beams 7 and 8. The port side has in its middle the roll balance 9 forming the triangular layout. The three pendulums and the bottom of the hull constitute the lively works ensuring buoyancy. The stabilizers and floats can be built in hollow bodies in the materials usually used, (wood, metals, concrete, composites ...) or in full with expanded synthetic materials or in inflatable elements. Their shape may be different from the parallelepiped shape shown. The volume of the port balance is equal to that of the two starboard balance to ensure the horizontality of the platform (at rest). The volume of each of the port stabilizers is greater than that of each of the starboard stabilizers, these being assisted in the stabilization function by the pendulums which extend them. A horizontal triangular reinforcement structure 10 joins the three pendulums. The two tie rods 11 secure the stabilizers 4 and 5 to the structure 10. To starboard three spars 12 connect the structure to deck 1 to form a docking facade for service or maintenance buildings, with a section ladder 13 and mooring bollards. A high amplitude of swell is desirable and sought after, the performance of the power station depends on it. However, a sliding or surfing effect could appear in the event of excessive wave camber. The tripod floating unit could slide in the direction of the swell when it is tilted backwards and in the opposite direction when the bow is plunging. With these shifts relative to the mass of seawater that is almost immobile horizontally, a rotation of the power plant would be combined, the roll float seeking to be placed at the same height as the pitch float located downstream. To avoid this phenomenon, it is advisable to place three anti-gyration drifts 14 starting from the floats to meet under the center of the hull 2. The star arrangement ensures good resistance to pivoting, and in addition the asymmetry of the surfaces of the daggerboards facing the slope, brakes the roll balance more than the downstream pitch balance. The fins 14 also constitute a reinforcement and rigidity structure for the whole of the platform by connecting together the most stressed elements: the deck 1, the hull 2, and the pendulums 7, 8 and 9. They are sufficiently solid as a seat when the power plant rests on the ground, during construction for example. The exhaust volume 15 is intended to facilitate the exit of water from the turbine. In Figure 4 are visible three of the four upper stabilizers 16, 17, 18, 19 respectively placed at each angle above the stabilizers 3, 4, 5 and 6 to increase their efficiency. The upper deck 20 includes above the elevator 21 a cavity with a hole at its base for recovering rainwater intended to compensate for the losses of water to be turbined by evaporation. The turbine room below the reservoir 23 encloses the conventional elements of power plants: drop conduit 24, turbine-generator group 25, as well as the elements not shown such as transformer flow regulators, overflow control 35 and 36 A partition with movable openings protects everything from bad weather and seawater packets. It may be envisaged to install a second group of turbines there for floating tripod power stations intended for heavy swell sites. The staircase 26 can be completed by a hoist or by a winch. A tripod structure 27 covers the whole. It is formed by three gallows
28 dont les trois montants traversent le pont 1 puis les trois flotteurs pour se solidariser avec la structure en triangle 10 comme illustré par les zones légèrement grisées. Cette ossature confère à l'ensemble de la centrale flottante tripode une cohésion et une rigidité à l'épreuve des éléments les plus déchaînés. Les angles du pont 1 sont équipés d'un accastillage destiné à l'ancrage et à l'orientation de la centrale. Chaque poste comprend un guindeau 54 et un chaumard 55 . L'avant et l'arrière sont ancrés par une chaîne 56 en Y dont les deux brins ont une longueur au moins égale à la distance qui sépare les deux guindeaux concernés. Il suffit de raccourcir l'un des brins de chaque chaîne pour modifier l'orientation de 45° environ. Par la même opération avec le brin opposé on obtient le même résultat dans le sens inverse. Les chaînes 56 sont fixées à une tonne d'ancrage afin de ne pas soumettre à la centrale des tensions vers le bas. La figure 5 en perspective montre le coté tribord, l'arrière, le dessous de l'élévateur à eau hélicoïdal avec la salle de turbine. Les zones légèrement grisées symbolisent une sortie d'eau, les plus sombres une entrée. Les lignes avec des points en chapelet signifient qu'elles sont hermétiquement en contact avec la paroi intérieure de la coque. C'est par l'extrémité basse de l'élévateur appelé orifice de captage 29 que l'eau à turbiner pénètre dans l'élévateur à eau pour former les siphons, qui s'élèveront d'une spire à l'autre, au rythme des ondes de la houle, jusqu'à la dernière spire pour atteindre le réservoir. Les spires de l'élévateur à eau 21 pourraient être réalisées en tube de section circulaire, selon une hélice dont le pas correspond au diamètre du tube. La réalisation serait très simple et l'ascenseur fonctionnerait, mais avec une faible production, le volume des siphons étant faible. Une forme rectangulaire permet d'obtenir une surface de section plus importante pour un pas donné, le pas étant limité par le gîte effectif moyen possible sur le site d'exploitation. L'élévateur présenté est constitué par une tour parallélépipédique aux angles arrondis de 8 mètres environ de coté, cernée par une deuxième tour cylindrique ou ovale de 15 mètres environ de diamètre, créant l'espace nécessaire pour y placer une rampe en colimaçon, d'une dizaine de spires, avec une section d'un mètre de haut variant de 2 à 3,5 m en largeur . Le tout doit supporter plusieurs centaines de tonnes de charge. Les quatre platines de fixation 30 assurent l'assise et l'assemblage de l'élévateur à eau hélicoïdal avec la coque 2 . Le joint de pont 32 recouvre la coque 2. La paroi de séparation tribord 31 et la paroi de séparation bâbord (non visible) départagent l'eau à turbiner dans deux soutes 44 et 45. La borne de remplissage 33 est prévue pour introduire l'eau à turbiner avant la mise en route, soit à quai, soit sur le site grâce un navire citerne. Chaque spire dispose d'un évent afin d'éviter qu'une surpression d'air, ou une dépression, entre les siphons ne ralentisse l'écoulement. Ces évents, simples conduits coudés fixés sur la paroi extérieure, sont comparable à une colonne anti-bélier. Ils sont regroupés en un faisceau 34. Selon le type de houle il pourrait s'avérer judicieux d'installer quatre faisceaux. Le trop plein d'arrêt 35 est constitué par une tuyauterie qui relie la soute à l'extérieur de la coque, afin de faciliter l'évacuation d'un excès d'eau à turbiner avant la mise en route de la centrale. Il est pourvu d'un clapet antiretour afin d'éviter que l'eau de mer y pénètre et d'une vanne à commande manuelle accessible depuis la salle de turbine ou d'une vanne motorisée. Le trop plein de marche 36 est identique : placé plus bas il permet d'évacuer un apport d'eau de pluie trop important qui alourdirait inutilement la centrale durant son fonctionnement. Un indicateur du niveau d'eau fait partie de l'instrumentation de la salle de turbine. Le sol 37 de la salle de turbine reçoit le groupe turbine-génératrice. La conduite d'échappement 38 le traverse. Un panneau de séparation antiretour 39 départage les deux soutes. La Figure 6 représente un panneau antiretour de spire comportant une grille 40 inclinée recouverte par un clapet 41 en feuille de matière semi-rigide, genre textile vulcanisé utilisé comme bande transporteuse ou toute autre matière synthétique possédant les mêmes caractéristiques, des masselottes multiples 42 et la visserie de fixation 43. La vue est tronquée pour laisser apparaître la grille sans le clapet, La Figure 7 correspond â la coupe du panneau antiretour suivant AA pour montrer le panneau en position Fermée et en position ouverte. La zone grisée illustre le flux de l'eau le clapet étant ouvert* Le symbole hydraulique précise la fonction. Ces panneaux antiretour sont ainsi conçus pour faciliter l'écoulement avec un minimum de perte de charge. Leur étanchéitë est assurée par la souplesse du clapet, les masselottes ainsi que par la pression de l'eau exercée sur le clapet. Les clapets antiretour habituellement utilisés ne permettent pas de grands débits, sont encombrants, comportent des axes mécaniques de longévité limitée et pèsent plus lourd. Le panneau de répartition antiretαur 39 est construit selon la même technologie. Un panneau antiretour 52 est indispensable à l'extrémité de la dernière spire â réservoir 23 afin d'empêcher l'écoulement â contre sens d'une partie du contenu du réservoir 23 lorsqu'il est plein. Dans les cas où la houle est fréquemment irrëguMêre ou aléatoire (fetch, passage de gros bâtiments à proximité, houle transversale, courants marins), la synchronisation des oscillations pourraient être perturbées. Il est alors judicieux de placer des panneaux antiretour dans chaque spire afin d'éviter toute descente des siphons. Sur les sites où la houle est régulière et bien formée, même de faible amplitude, les panneaux antiretour sont inutiles. La Figure 8 illustre le secteur bâbord 49 de l'élévateur et de la coque 2tinclinës vers l'arrière, au moment où le balancier de tangage avant 7 est plus haut que le balancier de tangage arrière 8. L'em lacement des siphons est symbolisé par les zones grisées dans chaque spire. L'onde de la houle, également grisée, est mise en évidence par la ligne horizontale du niveau de la mer. S La Figure 9 est la coupe longitudinale BB de l'élévateur et de la coque représentés par la figure précédente. Le panneau de répartition antîretour 39 retient l'eau de la soute avant 44 â un niveau plus élevé que celui de la soute arrière 45, ce qui permet d'installer la turbine 25 à un niveau plus b s pour augmenter la hauteur de chute. A cet instant, et tant que le tangage arrière n'aura pas disparu, l'eau s'échappent de la turbine tombe dans la sαufee arrière 45. En phase de tangage avant elle s'écoule dans la soute avant 44 en passant â travers le panneau séparateur antiretour 39- Elle recouvre alors l'criSce de c&ptage 29 qui puisera le volume d'eau nécessaire pour constituer un siphon. Les spires du secteur arrière 46 de l'élévateur sont remplies par les siphons. Les grilles des panneaux antiretour 52 sont visibles. Les tracés des spires du secteur tribord 47 permettent d'évaluer la pente due au pas de l'élévateur à eau hélicoïdal. Le secteur 48 est vide à cet instant. Les clapets des panneaux antiretour 52 sont visibles, La Figure 10 représente l'élévateur en ooupe horizontale CC au niveau de la spire située a -dessus du Joint de pont 32. Au centre on distingue, à tra ers Intérieur de l'élévateur à eau, le panneau de séparation antiretour 39, partiellement recouvert pax l'eau de la soute avant 44, ainsi qu'une partie de l'entonnoir formant l'orifice de captage 29. Le clapet du panneau de séparation antiretour 39 est découpé afin de montrer la grille. Le siphon est représenté e» zone grisé* 11 est dissymétrique par rapport à l'axe longitudinal de la centrale bien qu'elle soit inclinée vers l'amère. Ceci est dû au pas de l'hélice de l'élévateur. Pour stopper le fαmctioi ement de la centrale il suffit de stopper l'élévation de l'eau en obstruant l'une des spires inférieures. C'est le rôle du panneau de vanne SU logé dans les glissières ëtanches 51, que l'on pousse en travers de la spire située au niveau du joint e po t- La centrale s'arrêtera après un nombre de cycles correspondant au nombre de spires en amont du panneau vanne 50. Inversement pour la «lise en route de la centrale il suffît d'ouvrir la vanne pour laisser monter les siphons jusqu'au réservoir. La manœuvre du panneau vanne peut être manuelle, mécanisée et automatisée aisément L Fi ure 11 est la coupe de la dernière spire et du réservoir 23 qui occupe toute la aMic hachurée. Le siphon élevé par la dernière spire s'est déversé en partie dans le réservoir 23. Quelques instants après, lorsque la centrale sera inclinée â tribord, le reste pourra s'écouler jusqu'au fond 53 du réservoir. Le dernier des panneau antiretour 52 évitera tout reflux intempestif dans la spire. Le réservoir sera plein et pourra alimenter de façon, continue la turbine en attendant le siphon suivant» y La centrale flottante tripode à élévateur à eau hélicoïdal ainsi représentée à titre indicatif nullement limitatif, est proportionnée et dimensionnée pour une faible houle d'une amplitude de 1 mètre, d'une longueur de 50 mètres et d'un périodicité de28, the three uprights of which cross the deck 1 and then the three floats to join the triangle structure 10 as illustrated by the slightly shaded areas. This frame gives the entire tripod floating unit cohesion and rigidity to the test of the most raging elements. The corners of deck 1 are fitted with fittings intended for anchoring and orienting the plant. Each station includes a windlass 54 and a fairlead 55. The front and rear are anchored by a chain 56 in Y whose two strands have a length at least equal to the distance between the two windlasses concerned. Just shorten one of the strands of each chain to change the orientation by about 45 °. By the same operation with the opposite strand, the same result is obtained in the opposite direction. The chains 56 are fixed to a ton of anchoring so as not to subject the center to downward tensions. Figure 5 in perspective shows the starboard side, the rear, the bottom of the helical water lift with the turbine room. The slightly gray areas symbolize a water outlet, the darker ones an entrance. The lines with dots in a chain mean that they are hermetically in contact with the inner wall of the shell. It is by the lower end of the elevator called collecting orifice 29 that the water to be turbined enters the water elevator to form siphons, which will rise from one turn to another, at the rate waves of the swell, until the last turn to reach the reservoir. The turns of the water elevator 21 could be produced in a tube of circular section, according to a helix whose pitch corresponds to the diameter of the tube. The realization would be very simple and the elevator would work, but with a low production, the volume of the siphons being low. A rectangular shape makes it possible to obtain a larger cross-sectional area for a given pitch, the pitch being limited by the average effective heel possible on the operating site. The elevator presented is constituted by a parallelepipedic tower with rounded angles of about 8 meters on the side, surrounded by a second cylindrical or oval tower of about 15 meters in diameter, creating the space necessary to place a spiral ramp, a dozen turns, with a section of one meter high varying from 2 to 3.5 m in width. The whole must support several hundred tonnes of load. The four fixing plates 30 ensure the seat and the assembly of the helical water elevator with the shell 2. The deck seal 32 covers the hull 2. The starboard partition wall 31 and the port partition wall (not visible) separate the water to be turbined in two bunkers 44 and 45. The filling terminal 33 is designed to introduce the water to be turbinated before start-up, either at the quay or on site using a tanker. Each turn has a vent to prevent an overpressure of air, or a depression, between the siphons slowing down the flow. These vents, simple bent conduits fixed on the outer wall, are comparable to an anti-ram column. They are grouped into a beam 34. Depending on the type of swell, it might be advisable to install four beams. The overflow stop 35 is constituted by a pipe which connects the hold to the outside of the hull, in order to facilitate the evacuation of an excess of water to be turbined before the commissioning of the power plant. It is fitted with a non-return valve to prevent seawater from entering and a manually operated valve accessible from the turbine room or a motorized valve. The overflow step 36 is identical: placed lower it allows to evacuate an excessively large amount of rainwater which would unnecessarily weigh down the power station during its operation. A water level indicator is part of the instrumentation of the turbine room. The ground 37 of the turbine room receives the turbine-generator group. The exhaust pipe 38 passes through it. A non-return separation panel 39 separates the two bunkers. FIG. 6 represents a non-turn winding panel comprising an inclined grid 40 covered by a valve 41 made of a sheet of semi-rigid material, of the vulcanized textile type used as a conveyor belt or any other synthetic material having the same characteristics, multiple weights 42 and the fastening screws 43. The view is truncated to reveal the grid without the valve, Figure 7 corresponds to the section of the non-return panel along AA to show the panel in the Closed position and in the open position. The gray area illustrates the flow of water with the valve open. * The hydraulic symbol specifies the function. These non-return panels are thus designed to facilitate flow with a minimum pressure drop. Their sealing is ensured by the flexibility of the valve, the weights as well as by the pressure of the water exerted on the valve. The non-return valves usually used do not allow large flows, are bulky, have mechanical axes of limited longevity and weigh heavier. The anti-retraction panel 39 is constructed using the same technology. A non-return panel 52 is essential at the end of the last reservoir turn 23 in order to prevent the counter-flow of part of the contents of the reservoir 23 when it is full. In cases where the swell is frequently irrigated or random (fetch, passage of large buildings nearby, transverse swell, sea currents), the synchronization of the oscillations could be disturbed. It is therefore advisable to place non-return panels in each turn to avoid any descent of the siphons. On sites where the swell is regular and well formed, even of small amplitude, the non-return panels are useless. FIG. 8 illustrates the port sector 49 of the elevator and of the hull 2 t inclined towards the rear, at the moment when the forward pitch balance 7 is higher than the aft pitch balance 8. The location of the siphons is symbolized by the shaded areas in each turn. The wave, also gray, is highlighted by the horizontal line of sea level. S Figure 9 is the longitudinal section BB of the elevator and the shell shown in the previous figure. The non-return distribution panel 39 retains the water from the front hold 44 at a higher level than that from the rear hold 45, which makes it possible to install the turbine 25 at a lower level to increase the height of fall. At this instant, and as long as the rear pitching has not disappeared, the water escapes from the turbine falls into the rear sαufee 45. In the pitching phase before it flows into the front hold 44 passing through the non-return separator panel 39- It then covers the screen of the panel 29 which will draw the volume of water necessary to constitute a siphon. The turns of the rear sector 46 of the elevator are filled by the siphons. The grids of the non-return panels 52 are visible. The plots of the turns of the starboard sector 47 make it possible to evaluate the slope due to the pitch of the helical water elevator. Sector 48 is empty at this time. The valves of the non-return panels 52 are visible. FIG. 10 represents the riser in a horizontal section CC at the level of the turn located above the bridge joint 32. In the center we see, through the interior of the water riser , the non-return separation panel 39, partially covered by the water in the front hold 44, as well as part of the funnel forming the collection orifice 29. The valve of the non-return separation panel 39 is cut to show Grid. The siphon is shown in the gray area * 11 is asymmetrical with respect to the longitudinal axis of the plant although it is inclined towards the bitter. This is due to the pitch of the elevator propeller. To stop the fαmctioi ement of the power plant it is enough to stop the rise in water by obstructing one of the lower turns. This is the role of the SU valve panel housed in the waterproof slides 51, which are pushed across the turn located at the joint e po t- The control unit will stop after a number of cycles corresponding to the number of turns upstream of the valve panel 50. Conversely for the readout of the plant on the way, it suffices to open the valve to let the siphons rise to the tank. The operation of the valve panel can be manual, mechanized and automated easily L Fi ure 11 is the section of the last turn and of the reservoir 23 which occupies the entire hatched area. The siphon raised by the last turn partially poured into the tank 23. A few moments later, when the power plant is tilted to starboard, the rest can flow to the bottom 53 of the tank. The last of the non-return panels 52 will prevent any unwanted backflow into the coil. The tank will be full and will be able to supply the turbine continuously, pending the next siphon ” y The tripod floating central unit with a helical water lift thus represented for information purposes, which is in no way limitative, is proportioned and dimensioned for a weak swell with an amplitude of 1 meter, a length of 50 meters and a periodicity of
10 secondes. Elle mesure approximativement 25 mètres de coté et 18 mètres de haut et peut produire 0.5 MW environ. Sur une houle de 2 mètres le pas de l'élévateur hélicoïdal sera doublé, ce qui doublera la production. La puissance spécifique est proportionnelle au pas et inversement proportionnelle à la période. Elle peut travailler en isolé, en groupe, connectée ou non à un réseau public ou non, pour alimenter des foyers, des industries, des unités de dessalinisation, de production d'hydrogène liquide, sur terre ou sur mer.10 seconds. It measures approximately 25 meters on the side and 18 meters in height and can produce around 0.5 MW. On a 2 meter swell the pitch of the helical elevator will be doubled, which will double production. The specific power is proportional to the step and inversely proportional to the period. It can work in isolation, in a group, connected or not to a public network or not, to supply homes, industries, desalination plants, liquid hydrogen production, on land or at sea.
(1) principaux documents : - Science et Vie 10/2002 - www.uni-leipzig.de/ grw/welle/wenergie_prinzipien.htlm www, waweplane . com / classification .htm (1) main documents: - Science and Life 10/2002 - www.uni-leipzig.de/ grw / welle / wenergie_prinzipien.htlm www, waweplane. com / classification .htm

Claims

REVENDICATIONS
1 ) Dispositif pour capter l'énergie verticale et le profil de l a hou le, caractérisé en ce qu'il est constitué d'une plate-forme flottante composée d' une part par un pont ( 1 ) sur lequel repose un élévateur hélicoïdal à eau (21 ) surmonté par un réservoir (23) relié par u ne cond uite de ch ute (24) à une turbine-génératrice (25) destinée à produire de l'électricité, le dit pont étant pourvu de moyens permettant la récupération des oscillations de rou lis et de tangage, d'autre part d'une coque (2) contenant l'eau douce destinée à alimenter la turbine après son transport par l'élévateur hélicoïdal. 2) Dispositif selon la revendication 1 caractérisé en ce que l e moyen permettant la récupération des oscillations de roulis et de tangage est constitué par deux balanciers de tangage (7) et (8), ainsi que par un balancier de rou lis (9) , implanté autour de la coq ue. 3) Dispositif selon la revendication 1 et 2 caractérisé en ce que l es q uatre ang les de la plate-forme comportent un stabilisateur (3), (4) , (5) et (6) , dou blé par un stabilisateur supérieur ( 1 7), ( 18), ( 1 9), et (16). 4) Dispositif selon l'une quelconque des revendications précédentes en ce que trois dérives antigiration ( 14) disposées en étoile relient les oeuvres vives: la coque et les trois balanciers. 5) Dispositif selon les revendications 1 et 2 caractérisé en ce que la coque (2) comprends deux soutes (44) et (45) départagées par un pan neau de séparation antiretour (39). 6) Dispositif selon l' u ne q uelconque des revend ications précédentes caractérisé en ce que un trop plein d'arrêt (35) et un trop plein de ma rche (36) éq u ipent la coq ue (2) . 7) Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élévateur à eau hélicoïdal (21 ) est constitué d' un tube formant un empilage de spires à travers lesquelles la masse d'eau est acheminée jusq u'au réservoir (23). 8) Dispositif selon la revendication 7 caractérisé en ce que un ou plusieurs panneaux antiretour (52) équipent les spires de l'élévateur (21 ). 9) Dispositif selon les revendications 5 et 8 caractérisé en ce que les panneaux antiretour (39) et (52) comportent un clapet (41 ) en matière semi rigide avec des masselottes de rappel (42) afin de le plaquer sur la grill e (40). 10) Dispositif selon la revendication 7 caractérisé en ce q ue u n ou plusieu rs faisceaux d'évents (34) équipent les spires de l'élévateur hélicoïdal (21 ) . 1 1 ) Dispositif selon la revendication 7 en ce que l'élévateur (21 ) comporte un panneau vanne (50) pour la mise en route et l'arrêt de la centrale flottante tripode. 12) Dispositif selon les revendications précédentes prises dans leur ensemble caractérisé en ce que l'ensemble des éléments de la centrale est maintenu par une structure en trièdre (27) solidarisée à la structure en triangle (10). 13) Dispositif selon les revendications (1) et (2) caractérisé en ce que la plate-forme est attachée à deux tonnes d'ancrage par deux chaînes en Y (56) dont les deux brins sont pris dans la noix des guindeaux (54). 1) Device for capturing the vertical energy and the profile of the coal, characterized in that it consists of a floating platform composed on the one hand by a bridge (1) on which rests a helical elevator with water (21) surmounted by a reservoir (23) connected by a fall pipe (24) to a turbine generator (25) intended to generate electricity, the said bridge being provided with means allowing the recovery of rolling and pitching oscillations, on the other hand a shell (2) containing fresh water intended to supply the turbine after its transport by the helical elevator. 2) Device according to claim 1 characterized in that the means allowing the recovery of the roll and pitch oscillations is constituted by two pitch pendulums (7) and (8), as well as by a rou lis pendulum (9), implanted around the rooster. 3) Device according to claim 1 and 2 characterized in that the es q uatre ang les of the platform comprise a stabilizer (3), (4), (5) and (6), dou wheat by an upper stabilizer ( 1 7), (18), (1 9), and (16). 4) Device according to any one of the preceding claims in that three anti-rotation drifts (14) arranged in a star connect the live works: the hull and the three pendulums. 5) Device according to claims 1 and 2 characterized in that the shell (2) includes two bunkers (44) and (45) separated by a non-return separation panel (39). 6) Device according to u u q uelconque of resells ications characterized in that an overflow stop (35) and an overflow of my rche (36) eq u ipent the cock ue (2). 7) Device according to any one of the preceding claims, characterized in that the helical water elevator (21) consists of a tube forming a stack of turns through which the mass of water is conveyed uqau tank (23). 8) Device according to claim 7 characterized in that one or more non-return panels (52) equip the turns of the elevator (21). 9) Device according to claims 5 and 8 characterized in that the non-return panels (39) and (52) comprise a valve (41) in semi-rigid material with return weights (42) in order to place it on the grill e ( 40). 10) Device according to claim 7 characterized in that q ue one or more rs bundles of vents (34) equip the turns of the helical elevator (21). 1 1) Device according to claim 7 in that the elevator (21) comprises a valve panel (50) for starting and stopping the tripod floating unit. 12) Device according to the preceding claims taken as a whole characterized in that all of the elements of the power station are maintained by a trihedral structure (27) secured to the triangle structure (10). 13) Device according to claims (1) and (2) characterized in that the platform is attached to two tonnes of anchorage by two Y-chains (56) whose two strands are caught in the walnut windlass (54 ).
PCT/FR2004/003379 2003-12-26 2004-12-24 Floating device for recovery of swell energy with a spiral lift WO2005068832A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04817592A EP1700032A1 (en) 2003-12-26 2004-12-24 Floating device for recovery of swell energy with a spiral lift

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0315473 2003-12-26
FR0315473A FR2864586B1 (en) 2003-12-26 2003-12-26 FLOATING DEVICE TRANSFORMING HOLE MOVEMENTS IN SYNCHRONOUS OSCILLATIONS TO ACT A HELICOIDAL WATER ELEVATOR WHICH FILLS A TANK SUPPLYING A HYDROELECTRIC TURBINE.

Publications (1)

Publication Number Publication Date
WO2005068832A1 true WO2005068832A1 (en) 2005-07-28

Family

ID=34639643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/003379 WO2005068832A1 (en) 2003-12-26 2004-12-24 Floating device for recovery of swell energy with a spiral lift

Country Status (3)

Country Link
EP (1) EP1700032A1 (en)
FR (1) FR2864586B1 (en)
WO (1) WO2005068832A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020172599A1 (en) * 2019-02-23 2020-08-27 Lone Gull Holdings, Ltd. Wave-energized diode pump

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2334089B1 (en) * 2008-05-21 2011-03-15 Miguel Mañanas Alvaro MAREOMOTRIC SYSTEM OF ENERGY GENERATION THROUGH POTENTIAL DIFFERENCE.
EP2133555A1 (en) * 2008-06-11 2009-12-16 Padraig Molloy Water elevation type wave energy converter and method of conversion of wave energy
FR2935158B1 (en) * 2008-08-19 2013-05-17 Georges Hildebrand TRIPOD FLOATING ELECTRICAL POWER PLANT WITH INERTIAL PENDULUM TRANSFORMING THE HOLES IN ELECTRICITY THROUGH AN INCREASED ROTULATING MOTION BY A DISPLACEMENT OF THE MASSES AND BY A TORQUE AMPLIFIER
FR2941016B1 (en) * 2009-01-13 2011-01-07 Georges Hildebrand FLOATING CENTRAL FLOATING TRIPOD CENTRIFUGAL CONVERTING DIRECTLY IN ELECTRICITY THE PHENOMENON OF ROTULATING CREATED BY THE HOLES.
FR2943742A1 (en) * 2009-03-24 2010-10-01 Pierre Andre Marie Dieudonne Ocean power harvester for use with swell sensor to directly convert kinetic energy of swell into continuous rotary movement, has post arranged coaxially to vertical central axis of corresponding float
GB2473659B (en) * 2009-09-19 2012-04-11 Bruce Gregory Dynamically tuned wave energy conversion system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191305788A (en) * 1913-03-08 1913-09-18 James Drayton Mcfarland Improvements in Wave Motors.
FR2499161A2 (en) * 1979-04-26 1982-08-06 Rodriguez Andre Floating sea wave energy converter - raises water to above wave level using chambers with trap-doors through which water travels gravity and by oscillations
US5366341A (en) * 1990-08-24 1994-11-22 Giovani Marino Helical hydraulic pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191305788A (en) * 1913-03-08 1913-09-18 James Drayton Mcfarland Improvements in Wave Motors.
FR2499161A2 (en) * 1979-04-26 1982-08-06 Rodriguez Andre Floating sea wave energy converter - raises water to above wave level using chambers with trap-doors through which water travels gravity and by oscillations
US5366341A (en) * 1990-08-24 1994-11-22 Giovani Marino Helical hydraulic pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020172599A1 (en) * 2019-02-23 2020-08-27 Lone Gull Holdings, Ltd. Wave-energized diode pump

Also Published As

Publication number Publication date
FR2864586A1 (en) 2005-07-01
EP1700032A1 (en) 2006-09-13
FR2864586B1 (en) 2006-03-03

Similar Documents

Publication Publication Date Title
EP3717343B1 (en) Floating support structure for offshore wind turbine and method for installing a wind turbine provided with such a support structure
EP3472458B1 (en) Floating device supporting an offshore wind turbine, and corresponding floating wind turbine unit
EP2441893B1 (en) Support device for a wind turbine for producing electric power at sea, corresponding facility for producing electric power at sea.
EP3094858B1 (en) Method for installing a so-called "marine" pumped-storage hydroelectric power station and corresponding station
WO2017207937A1 (en) Float with reduced heaving, in particular for a floating wind turbine
EP3394424B1 (en) Device for collecting energy from broad wave spectra
WO2014060107A1 (en) Offshore aquaculture installation
EP2195232B1 (en) Installation for transferring a fluid between a tanker and a fixed structure
WO2013079831A1 (en) Device for recovering energy from sea currents or bodies of flowing water
EP3286069B1 (en) Floating mounting having a depth-variable horizontal cross-section
WO2005068832A1 (en) Floating device for recovery of swell energy with a spiral lift
FR2948423A1 (en) HYDROLIENNE MODULAR
WO2008068390A1 (en) Wave energy recovery device
BE1024212B1 (en) FLOATING EOLIENNE
FR2503268A1 (en) Ocean energy extractor utilising wind and waves - incident on anchored and steerable floating barrage with funnels channelling flow towards turbogenerator
EP3707371B1 (en) Floating hydroelectric power plant for shallow rivers
FR3022955A1 (en) DEVICE FOR THE RECOVERY OF ENERGY ON BROAD SPARES OF HOLES
EP3332115B1 (en) Device for producing electricity from flows of liquid fluid
FR3026146A1 (en) CONTINUOUS GENERATION GENERATOR MARINE DIGUE AND ASSOCIATED METHODS
WO2015055962A1 (en) Compact floating hydroelectric plant
WO2013167820A2 (en) Assembly of interconnected buoyant offshore wind turbines
FR3133217A1 (en) Energy Generator from the Gravitation Field
FR3026442A1 (en) WAVE ENERGY RECOVERY SYSTEM
FR3113928A1 (en) Modular tidal turbine.
EP3867454A1 (en) Method and facility for supplying fresh water to a coastal area

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004817592

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004817592

Country of ref document: EP