EP2440716A2 - Bauelement - Google Patents

Bauelement

Info

Publication number
EP2440716A2
EP2440716A2 EP10724504A EP10724504A EP2440716A2 EP 2440716 A2 EP2440716 A2 EP 2440716A2 EP 10724504 A EP10724504 A EP 10724504A EP 10724504 A EP10724504 A EP 10724504A EP 2440716 A2 EP2440716 A2 EP 2440716A2
Authority
EP
European Patent Office
Prior art keywords
fibers
fiber
component according
component
fiber bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10724504A
Other languages
English (en)
French (fr)
Inventor
Andreas Weier
Ralf Schnelle
Eva Kohler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sto SE and Co KGaA
Original Assignee
Sto SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sto SE and Co KGaA filed Critical Sto SE and Co KGaA
Publication of EP2440716A2 publication Critical patent/EP2440716A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0056Hollow or porous fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1022Non-macromolecular compounds
    • C04B20/1025Fats; Fatty oils; Ester type waxes; Higher fatty acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1051Organo-metallic compounds; Organo-silicon compounds, e.g. bentone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00267Materials permeable to vapours or gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to a component of a multi-phase material having the features of the preamble of claim 1. Furthermore, the invention relates to a component and a thermal insulation composite system, wherein the component and the thermal insulation composite system each comprise such a component.
  • Components in particular plate-shaped components for on-site attachment and / or further processing, such as plaster base plates, thermal insulation boards and the like, are available on the market in large numbers and made of different materials available.
  • the material for such a device is usually selected depending on the intended use of the device.
  • a structural member having a supporting function is usually made of a material having a high strength.
  • a component which can be used as a thermal insulation panel is preferably made of a material which has a low thermal conductivity.
  • Components serve to form components, such as an outer wall, a ceiling or the like. Since components usually have to fulfill several functions in the same way, they often have a layered structure consisting of different components of different materials.
  • a modern component is expected to be "breathable" like modern functional clothing, that is, to allow some vapor diffusion along the thermodynamic gradient, usually from the inside to the outside, thus requiring every component of such a component to have This requirement is particularly difficult to meet if the component is made of a material which, on the one hand, permits vapor diffusion but, on the other hand, should prevent the ingress of water, since the component is suitable, for example, for use as a vapor diffusion material Facade element is provided in the outer area.
  • thermal insulation panels which are usually made of a material having a microstructure having cavities, wherein the cavities are gas-filled.
  • rigid foam panels made of polystyrene, in particular extruded or expanded polystyrene, called.
  • Such materials are usually not only water impermeable, but also have a high
  • Vapor diffusion resistance ⁇ If such a device used in the facade area, then it is necessary to provide sufficient ventilation of the device or the layer formed by the device so that from the inside to the outside diffusing water vapor, which condenses on colder boundary layers, transported away via the provided for ventilation air layer can be.
  • an additionally provided air layer increases the respective component structure, so that valuable space is given away.
  • such air layers in the respective connection areas are expensive to produce.
  • EPS / XPS polystyrene
  • PUR polyurethane
  • ⁇ ⁇ 10 water vapor diffusion coefficient
  • EPS / XPS polystyrene
  • PUR polyurethane
  • the thermal insulation board with surface-distributed holes with a small diameter.
  • the bore diameter is preferably between 1 and 5 mm and the spacing of the holes between them preferably between 10 and 100 mm.
  • the thermal insulation value of the insulation board should be maintained substantially.
  • To form the holes is also proposed to subsequently pierce the finished plates with hot pins (needles), so that there are welds and thus smooth surfaces of the borehole walls, which should be beneficial for the emission of water vapor.
  • the fibers, fiber bundles and / or fiber aggregates contained in the multiphase material cause the component to have a higher vapor permeability than a corresponding component of the same material but no fiber portion.
  • the fibers, fiber bundles and / or fiber aggregates form another phase at their interfaces - both between the fibers and between the fibers and the surrounding material - cavities and / or cavity-crosslinking microstructures are formed, the facilitate vapor diffusion through the device.
  • the vapor diffusion resistance coefficient ⁇ of the component can be significantly reduced.
  • the altered microstructure caused by the fiber fraction essentially has no influence on the further properties of the component, such as strength or thermal conductivity.
  • the component according to the invention is therefore particularly suitable for use in outdoor areas, for example as a facade element, thermal insulation or plaster base plate.
  • multi-phase material is understood to mean a material which may comprise different substances of the same physical state, for example solid, or different states of aggregation, for example solid / gaseous the aggregates form a first phase and the binder phase at least one further phase.
  • the multiphase material containing the fibers, fiber bundles and / or fiber aggregates is a polystyrene (PS) -based insulating material, further preferably based on expanded polystyrene (EPS) or extruded polystyrene (XPS), which has a gas-filled cell microstructure has.
  • PS polystyrene
  • EPS expanded polystyrene
  • XPS extruded polystyrene
  • the fibers, fiber bundles and / or fiber aggregates cause a connection of the gas-filled cells while maintaining the internal structure of the primary polymer and facilitate depending on the respective thermodynamic parameters, the vapor diffusion along the thermodynamic gradient through the device, so that a reduction in the vapor diffusion resistance coefficient ⁇ at is ensured substantially constant low thermal conductivity and substantially constant high strength of the device.
  • voids are created only between the primary polymer particles to allow the desired vapor diffusion. In this case, these cavities or cavity networks do not form capillary-active cavities, that is, the penetration of surface water is still counteracted.
  • the multiphase material containing the fibers, fiber bundles and / or fiber aggregates may alternatively also be a polyurethane (PU), polyisocyanurate (PIR) or phenolic resin (PH) based insulating material.
  • the fibers, fiber bundles and / or fiber aggregates thereby effect a microstructure which, depending on the respective thermodynamic parameters, facilitates vapor diffusion along the thermodynamic gradient through the component, so that a reduction of the vapor diffusion resistance coefficient ⁇ is achieved with essentially constant low thermal conductivity and substantially more constant high strength of the device is ensured.
  • the fibers, fiber bundles and / or fiber aggregates contain natural fibers, such as flax fibers, hemp fibers or wool, and / or synthetic synthetic fibers, such as polyester fibers, polyamide fibers, polyacrylonitrile, rubber or polypropylene, and / or silicate fibers, such as glass fibers, and / or or cellulosic synthetic fibers.
  • the fibers, fiber bundles and / or fiber aggregates may also contain fiber blends of various natural and / or synthetic fibers. Synthetic fibers have the advantage that they can be made up and precisely matched to the respective multiphase material. The most significant improvements in the vapor permeability of a device have therefore been achieved with the use of synthetic fibers.
  • the fibers, fiber bundles and / or fiber aggregates can therefore be arranged in a directional or undirected arrangement in the component. However, a substantially uniformly distributed arrangement in the component has proved to be advantageous.
  • the fiber fraction based on the multiphase material is between 1 and 15% by weight, preferably between 3 and 10% by weight, more preferably between 5 and 8% by weight.
  • a higher fiber content is usually associated with an undesirable lower strength of the device.
  • a higher fiber content does not remain without influence on the other material characteristics, such as for example, the thermal insulation value. However, it is precisely these typical component material values that are to remain essentially unchanged.
  • the thickness of the fibers can be between 0.01 ⁇ m and 1000 ⁇ m, preferably between 0.05 ⁇ m and 500 ⁇ m, furthermore preferably between 1 ⁇ m and 250 ⁇ m.
  • At least a portion of the fibers is also crimped.
  • the fibers is also crimped.
  • An increased vapor permeability of the component is also beneficial if the fibers, fiber bundles and / or fiber aggregates consist of hollow fibers or contain such.
  • the fiber traversing cavity promotes vapor diffusion and also contributes to a better cross-linking of the cavities already present in the material.
  • microstructures are formed which not only form cavities at the phase boundary surfaces but whose phase-forming constituents partly have cavities themselves.
  • the fibers contained in the multiphase material may have a round and / or an angular cross-sectional profile with respect to their outer shape, for example, if they are filled fibers. If hollow fibers are used, they can also have a round and / or angular cross-sectional profile with respect to the cross-sectional shape of the cavity. For example, an edged outer contour of the fiber has the advantage of having multiple such fibers Fiber bundles or fiber aggregates gussets remain, which in turn form the vapor diffusion facilitating cavities or allow networking of corresponding cavities.
  • a comparable effect can be achieved with fibers, fiber bundles and / or fiber aggregates containing profile fibers.
  • the profile is preferably designed in such a way that the fibers have profiling structures running substantially circumferentially in the longitudinal direction of the fiber.
  • substantially in the longitudinal direction is to be understood in such a way that this also helically to the outer circumference of the fiber pulling grooves and / or channels are understood.
  • At least part of the fibers is water-repellent or provided with a water-repellent coating.
  • coatings based on waxes are suitable for this purpose.
  • the fibers can also be provided with a protective coating, for example, increasing the alkali resistance of the fiber, and / or a coating which refines the surface of the fiber.
  • a protective coating for example, increasing the alkali resistance of the fiber, and / or a coating which refines the surface of the fiber.
  • Coating can be provided, for example, a finish or a size, in particular a size, based on silicon, organosilicon compounds and / or silanes.
  • a coating of the fiber has the further advantage that its material properties with regard to the processing of
  • Fiber can be improved in the production of the device. Since a component according to the invention is suitable for the formation of components, such as, for example, inner or outer walls, ceilings and the like, a component comprising such a component is also proposed. In this case, a vapor diffusion-open component proves to be advantageous not only in the application as an external component. Even with an internal arrangement, an increased vapor permeability may be advantageous, for example, if it is provided for internal insulation of a component.
  • a component according to the invention may in particular also be part of a thermal insulation composite system. Accordingly, a composite thermal insulation system is further claimed with at least one device according to the invention.
  • thermal insulation board based on polystyrene in this case based on expanded polystyrene (EPS).
  • EPS expanded polystyrene
  • the fibers are mixed either with the original or already prefoamed expanded polystyrene particles and the mixture is welded in preferably non-gas-tight forms with impact of water vapor to moldings, which can optionally be cut and contoured.
  • First experiments with appropriately prepared insulation boards have surprisingly shown that they have an increased vapor permeability, but at the same time their high strength and maintain low thermal conductivity.
  • the cavities are interconnected. However, no capillary-active cavities are formed, so that penetrating surface water is counteracted. At the same time, the structure of the primary polymer particles, that is the EPS particles, is retained.
  • polyester fibers were added to the prefoamed expanded polystyrene particles in the form of crimped hollow fibers, which had previously been given a siliconized size. Based on 100% by weight of polystyrene particles, 4% by weight of polyester fibers were added.
  • the vapor diffusion resistance ⁇ could be reduced by an average of 20% compared to a corresponding thermal insulation panel of the same material but without fiber content. The diffusion measurement was carried out in accordance with DIN EN 12086. The thermal conductivity ⁇ of the thermal insulation board was not changed by the fiber content.
  • polyester fibers in the form of crimped hollow fibers were added to the prefoamed expanded polystyrene particles, which in turn have previously received a siliconized size. Based on 100 wt .-% polystyrene particles this time 7.6 wt .-% of said polyester fibers were added.
  • the vapor diffusion resistance ⁇ could thereby on average even by 25% compared to a corresponding thermal insulation board be reduced from the same material but without fiber content (again measured in accordance with DIN EN 12086).
  • the thermal conductivity ⁇ of the thermal insulation board was changed only insignificantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Building Environments (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)

Abstract

Die Erfindung betrifft ein Bauelement aus einem mehrphasigen Material mit einer Wärmeleitfähigkeit λ < 2000 W/(m*K)5 vorzugsweise λ < 100 W/(m*K), weiterhin vorzugsweise λ ≤ 50 W/(m*K). Erfindungsgemäß enthält das Material Fasern, Faserbündel und/oder Faseraggregate, die bewirken, dass das Bauelement eine höhere Dampfdurchlässigkeit besitzt als ein entsprechendes Bauelement aus dem gleichen Material jedoch ohne Faseranteil. Weiterhin betrifft die Erfindung ein solches Bauelement umfassendes Bauteil sowie ein Wärmedämmverbundsystem mit wenigstens einem solchen Bauelement.

Description

Bauelement
Gebiet der Erfindung
Die Erfindung betrifft ein Bauelement aus einem mehrphasigen Material mit den Merkmalen des Oberbegriffes des Anspruchs 1. Weiterhin betrifft die Erfindung ein Bauteil sowie ein Wärmedämmverbundsystem, wobei das Bauteil und das Wärmedämm Verbundsystem jeweils ein solches Bauelement umfassen.
Hintergrund der Erfindung
Bauelemente, insbesondere plattenförmige Bauelemente zur bauseitigen Anbringung und/oder weiteren Verarbeitung, wie beispielsweise Putzträgerplatten, Wärmedämmplatten und dergleichen, sind auf dem Markt in großer Anzahl und aus verschiedenen Werkstoffen bestehend verfugbar. Der Werkstoff für ein solches Bauelement, wird in der Regel in Abhängigkeit vom jeweiligen Verwendungszweck des Bauelementes gewählt. So besteht beispielsweise ein Bauelement, das eine tragende Funktion besitzt, in der Regel aus einem Werkstoff bzw. Material, das eine hohe Festigkeit aufweist. Ein als Wärmedämmplatte einsetzbares Bauelement dagegen besteht vorzugsweise aus einem Material, das eine geringe Wärmeleitfähigkeit besitzt. Bauelemente dienen der Ausbildung von Bauteilen, wie beispielsweise einer Außenwand, einer Decke oder dergleichen. Da Bauteile in der Regel gleich mehrere Funktionen zu erfüllen haben, weisen sie oftmals einen geschichteten Aufbau bestehend aus unterschiedlichen Bauelementen aus unterschiedlichen Werkstoffen auf. Zugleich wird von einem modernen Bauteil erwartet, dass es gleich moderner Funktionskleidung „atmungsaktiv" ist, das heißt eine gewisse Dampfdiffusion entlang des thermodynamischen Gefälles - in der Regel von innen nach außen - zulässt. Somit besteht auch an jedes Bauelement eines solchen Bauteils die Anforderung, dass es hinreichend dampfdiffusionsoffen ist. Diese Anforderung ist besonders schwierig zu erfüllen, wenn das Bauelement aus einem Werkstoff bzw. Material besteht, das zum Einen eine Dampfdiffusion zulassen, zum Anderen jedoch das Eindringen von Wasser verhindern soll, da das Bauelement beispielsweise für den Einsatz als Fassadenelement im Außenbereich vorgesehen ist.
Derartige Anforderungen werden beispielsweise an Wärmedämmplatten gestellt, die in der Regel aus einem Material bestehen, das eine Hohlräume aufweisende Mikrostruktur besitzt, wobei die Hohlräume gasgefüllt sind. Als Beispiel seien hier Hartschaumstoffplatten aus Polystyrol, insbesondere extrudiertem oder expandiertem Polystyrol, genannt. Derartige Materialien sind in der Regel nicht nur wasserundurchlässig, sondern weisen zudem eine hohe
Dampfdiffusionswiderstandszahl μ auf. Wird eine solches Bauelement im Fassadenbereich eingesetzt, dann gilt es für eine ausreichende Hinterlüftung des Bauelementes bzw. der durch das Bauelement ausgebildeten Schicht zu sorgen, damit von innen nach außen diffundierender Wasserdampf, der dabei an kälteren Grenzschichten kondensiert, über die zur Hinterlüftung vorgesehene Luftschicht abtransportiert werden kann. Eine zusätzlich vorgesehene Luftschicht erhöht jedoch den jeweiligen Bauteilaufbau, so dass wertvoller Bauraum verschenkt wird. Zudem sind derartige Luftschichten in den jeweiligen Anschlussbereichen aufwendig herzustellen. Stand der Technik
Aus der DE 100 07 774 Al geht beispielsweise eine Wärmedämmplatte aus Polystyrol (EPS/XPS) oder Polyurethan (PUR) mit einer Wasserdampfdiffusionszahl μ < 10 hervor. Um diesen Wert zu erreichen, wird vorgeschlagen, die Wärmedämmplatte mit flächig verteilten Bohrungen mit geringem Durchmesser zu versehen. Der Bohrungsdurchmesser liegt dabei bevorzugt zwischen 1 und 5 mm und der Abstand der Bohrungen untereinander vorzugsweise zwischen 10 und 100 mm. Dabei soll der Wärmedämmwert der Dämmplatte im Wesentlichen erhalten bleiben. Zur Ausbildung der Bohrungen wird weiterhin vorgeschlagen, die fertigen Platten nachträglich mit heißen Stiften (Nadeln) zu durchstechen, so dass sich Verschweißungen und damit glatte Flächen an den Bohrlochwänden ergeben, die für das Emittieren des Wasserdampfes von Vorteil sein sollen.
Als Nachteil erweist sich jedoch, dass die Bohrungen kapillaraktive Hohlräume ausbilden und somit das Eindringen von Wasser fördern. Eine feuchte Wärmedämmplatte besitzt jedoch einen wesentlich schlechteren Wärmedämm wert als eine trockene Wärmedämmplatte aus dem gleichen Material, denn Wasser leitet Wärme besonders gut.
Es besteht daher ein allgemeines Interesse an einem Bauelement, wie beispielsweise einer Wärmedämmplatte, das aus einem Material besteht, das dem Eindringen von Wasser entgegen wirkt, zugleich jedoch eine ausreichende Dampfdiffusion ermöglicht. Es ist Aufgabe der vorliegenden Erfindung ein solches Bauelement anzugeben.
Offenbarung der Erfindung
Es wird ein Bauelement aus einem mehrphasigen Material mit einer Wärmeleitfähigkeit λ < 2000 W/(m*K), vorzugsweise λ < 100 W/(m*K), weiterhin vorzugsweise λ < 50 W/(m*K) vorgeschlagen, wobei das Material erfmdungsgemäß Fasern, Faserbündel und/oder Faseraggregate enthält. Die in dem mehrphasigen Material enthaltenen Fasern, Faserbündel und/oder Faseraggregate bewirken, dass das Bauelement eine höhere Dampfdurchlässigkeit als ein entsprechendes Bauelement aus dem gleichen Material jedoch ohne Faseranteil besitzt. Diese Wirkung liegt darin begründet, dass die Fasern, Faserbündel und/oder Faseraggregate eine weitere Phase bilden an deren Grenzflächen — sowohl zwischen den Fasern untereinander als auch zwischen den Fasern und dem sie umgebenden Material - Hohlräume und/oder hohlraumvernetzende Mikro Strukturen ausgebildet werden, die eine Dampfdiffusion durch das Bauelement erleichtern. Dadurch kann die Dampfdiffusionswiderstandszahl μ des Bauelementes deutlich gesenkt werden. Die durch den Faseranteil bewirkte, veränderte Mikrostruktur hat im Wesentlichen jedoch keinen Einfluss auf die weiteren Eigenschaften des Bauelementes, wie beispielsweise Festigkeit oder Wärmeleitfähigkeit. Das erfindungsgemäße Bauelement ist daher insbesondere für den Einsatz im Außenbereich, beispielsweise als Fassadenelement, Wärmedämm- oder Putzträgerplatte geeignet.
Versuche haben ergeben, dass die Dampfdiffusionswiderstandszahl μ in Abhängigkeit vom jeweiligen Faseranteil um 15 bis 25% gesenkt werden konnte. Als Vergleichswert diente jeweils die gemessene Dampfdiffusionswiderstandszahl μ eines entsprechenden Bauelementes aus dem gleichen Material jedoch ohne Faseranteil. Auf konkrete Ausführungsbeispiele wird nachfolgend noch näher eingegangen.
Sofern vorliegend von einem „mehrphasigen Material" die Rede ist, wird hierunter ein Material verstanden, das unterschiedliche Stoffe gleichen Aggregatzustandes, beispielsweise fest/fest, oder unterschiedlichen Aggregatzustandes, beispielsweise fest/gasförmig, umfassen kann. Somit fallen hierunter auch Materialien wie Beton, in dem die Zuschlagstoffe eine erste Phase und die Binderphase wenigstens eine weitere Phase bilden. Vorzugsweise ist das die Fasern, Faserbündel und/oder Faseraggregate enthaltende, mehrphasige Material ein Dämmmaterial auf der Basis von Polystyrol (PS), weiterhin vorzugsweise auf der Basis von expandiertem Polystyrol (EPS) oder extrudiertem Polystyrol (XPS), das eine gasgefüllte Zellen aufweisende Mikrostruktur besitzt. Die Fasern, Faserbündel und/oder Faseraggregate bewirken dabei eine Verbindung der gasgefüllten Zellen unter Beibehaltung der inneren Struktur der Primärpolymerteilchen und erleichtern in Abhängigkeit von den jeweiligen thermodynamischen Parametern die Dampfdiffusion entlang des thermodynamischen Gefälles durch das Bauelement hindurch, so dass eine Senkung der Dampfdiffusionswiderstandszahl μ bei im Wesentlichen gleichbleibender geringer Wärmeleitfähigkeit und im Wesentlichen gleichbleibender hoher Festigkeit des Bauelementes gewährleistet ist. Indem die Struktur der Primärpolymerteilchen erhalten bleibt, werden lediglich zwischen den Primärpolymerteilchen Hohlräume bzw. Hohlraumvernetzungen geschaffen, die die gewünschte Dampfdiffusion ermöglichen. Dabei bilden diese Hohlräume bzw. Hohlraumvernetzungen keine kapillaraktiven Hohlräume aus, das heißt, dass dem Eindringen von Oberflächenwasser weiterhin entgegen gewirkt wird.
Das die Fasern, Faserbündel und/oder Faseraggregate enthaltende mehrphasige Material kann alternativ auch ein Dämmmaterial auf der Basis von Polyurethan (PU), Polyisocyanurat (PIR) oder Phenolharz (PH) sein. Die Fasern, Faserbündel und/oder Faseraggregate bewirken dabei eine Mikrostruktur, die in Abhängigkeit von den jeweiligen thermodynamischen Parametern eine Dampfdiffusion entlang des thermodynamischen Gefälles durch das Bauelement hindurch erleichtert, so dass eine Senkung der Dampfdiffusionswiderstandszahl μ bei im Wesentlichen gleichbleibender geringer Wärmeleitfähigkeit und im Wesentlichen gleichbleibender hoher Festigkeit des Bauelementes gewährleistet ist. Durch die enthaltenen Fasern werden die Dampfdiffusion erleichternde Hohlräume bzw. Hohlraumvernetzungen geschaffen, wobei auch hier der Faseranteil im Wesentlichen keinen Einfluss auf die weiteren Materialeigenschaften hat. Insbesondere werden keine kapillaraktiven Hohlräume ausgebildet, so dass Oberflächenwasser in das Bauelement weiterhin nicht einzudringen vermag.
Bevorzugt enthalten die Fasern, Faserbündel und/oder Faseraggregate Naturfasern, wie beispielsweise Flachsfasern, Hanffasern oder Wolle, und/oder synthetische Kunstfasern, wie beispielsweise Polyesterfasern, Polyamidfasern, Polyacrylnitril, Kautschuk oder Polypropylen, und/oder silikatische Fasern, wie beispielsweise Glasfasern, und/oder cellulosische Kunstfasern. Darüber hinaus können die Fasern, Faserbündel und/oder Faseraggregate auch Fasermischungen aus verschiedenen Natur- und/oder Kunstfasern enthalten. Kunstfasern haben den Vorteil, dass sie konfektioniert und auf das jeweilige mehrphasige Material genau abgestimmt werden können. Die deutlichsten Verbesserungen in Bezug auf die Dampfdurchlässigkeit eines Bauelementes wurden daher bei Einsatz von Kunstfasern erreicht.
Wenig Einfluss auf die Dampfdurchlässigkeit hat die Ausrichtung der Fasern, Faserbündel und/oder Faseraggregate innerhalb des Bauelementes. Die Fasern, Faserbündel und/oder Faseraggregate können daher in gerichteter oder ungerichteter Anordnung im Bauelement angeordnet sein. Als vorteilhaft hat sich jedoch eine im Wesentlichen gleichmäßig verteilte Anordnung im Bauelement erwiesen.
Um das gewünschte Ergebnis einer erhöhten Dampfdurchlässigkeit zu erzielen, beträgt der Faseranteil bezogen auf das mehrphasige Material zwischen 1 und 15 Gew.-%, vorzugsweise zwischen 3 und 10 Gew.-%, weiterhin vorzugsweise zwischen 5 und 8 Gew.-%. Ein höherer Faseranteil geht in der Regel mit einer unerwünschten geringeren Festigkeit des Bauelementes einher. Des Weiteren bleibt ein höherer Faseranteil nicht ohne Einfluss auf die sonstigen Materialkennwerte, wie beispielsweise den Wärmedämmwert. Gerade diese bauelementtypischen Materialkennwerte sollen jedoch im Wesentlichen unverändert bleiben.
Als vorteilhaft haben sich ferner Fasern erwiesen, deren Länge zwischen 0,02 mm und 500 mm, vorzugsweise zwischen 1 mm und 100 mm, weiterhin vorzugsweise zwischen 5 mm und 85 mm beträgt. Die Dicke der Fasern kann zwischen 0,01 μm und 1000 μm, vorzugsweise zwischen 0,05 μm und 500 μm, weiterhin vorzugsweise zwischen 1 μm und 250 μm betragen.
Vorteilhafterweise ist zudem zumindest ein Teil der Fasern gekräuselt. Hiermit konnten im Rahmen von Versuchen besonders gute Ergebnisse erzielt werden.
Einer erhöhten Dampfdurchlässigkeit des Bauelementes zuträglich ist auch, wenn die Fasern, Faserbündel und/oder Faseraggregate aus Hohlfasern bestehen oder solche enthalten. Der die Faser durchziehende Hohlraum fördert die Dampfdiffusion und trägt ferner zu einer besseren Vernetzung der im Material bereits vorhandenen Hohlräume bei. Somit werden Mikrostrukturen ausgebildet, die nicht nur an den Phasengrenzflächen Hohlräume ausbilden sondern deren phasenbildende Bestandteile zum Teil selbst Hohlräume aufweisen.
Die im mehrphasigen Material enthaltenen Fasern können ein rundes und/oder ein kantiges Querschnittsprofil in Bezug auf ihre äußere Form aufweisen, wenn es sich beispielsweise um gefüllte Fasern handelt. Werden Hohlfasern eingesetzt, können diese zudem ein rundes und/oder kantiges Querschnittsprofil in Bezug auf die Querschnittsform des Hohlraumes aufweisen. Eine kantige Außenkontur der Faser hat zum Beispiel den Vorteil, dass in mehrere solche Fasern aufweisenden Faserbündeln oder Faseraggregaten Zwickelräume verbleiben, die wiederum die Dampfdiffusion erleichternde Hohlräume bilden bzw. eine Vernetzung entsprechender Hohlräume ermöglichen.
Eine vergleichbare Wirkung kann mit Fasern, Faserbündeln und/oder Faseraggregaten erzielt werden, die Profilfasern enthalten. Vorzugsweise ist das Profil derart ausgebildet, dass die Fasern außenumfangseitig im Wesentlichen in Längsrichtung der Faser verlaufende, profilgebende Strukturen aufweisen. Dabei soll „im Wesentlichen in Längsrichtung" in der Weise verstanden werden, dass hierunter auch schraubenförmig sich um den Außenumfang der Faser ziehende Nuten und/oder Kanäle verstanden werden.
Um dem Eindringen von Oberflächenwasser in das erfindungsgemäße Bauelement entgegen zu wirken, wird weiterhin vorgeschlagen, dass zumindest ein Teil der Fasern wasserabweisend ist oder mit einer wasserabweisenden Beschichtung versehen ist. Hierzu eignen sich beispielsweise Beschichtungen auf der Basis von Wachsen.
Alternativ oder ergänzend kann zumindest ein Teil der Fasern auch mit einer schützenden, beispielsweise die Alkalibeständigkeit der Faser erhöhenden, und/oder einer die Oberfläche der Faser veredelnden Beschichtung versehen sein. Als
Beschichtung kann beispielsweise eine Appretur oder eine Schlichte, insbesondere eine Schlichte, auf der Basis von Silizium, siliziumorganischen Verbindungen und/oder Silanen, vorgesehen sein. Eine Beschichtung der Faser hat weiterhin den Vorteil, dass deren stoffliche Eigenschaften im Hinblick auf die Verarbeitung der
Faser im Rahmen der Herstellung des Bauelementes verbessert werden können. Da ein erfindungsgemäßes Bauelement zur Ausbildung von Bauteilen, wie beispielsweise Innen- oder Außenwände, Decken und dergleichen, geeignet ist, wird ferner ein solches Bauelement umfassendes Bauteil vorgeschlagen. Dabei erweist sich ein dampfdiffusionsoffenes Bauelement nicht nur in der Anwendung als außenliegendes Bauelement als vorteilhaft. Auch bei innenliegender Anordnung kann eine erhöhte Dampfdurchlässigkeit von Vorteil sein, beispielsweise, wenn es zur Innendämmung eines Bauteils vorgesehen ist.
Als außenliegendes Dämmelement kann ein erfindungsgemäßes Bauelement insbesondere auch Bestandteil eines Wärmedämmverbundsystems sein. Dementsprechend wird ferner ein Wärmedämmverbundsystem mit wenigstens einem erfindungsgemäßen Bauelement beansprucht.
Ausführungsbeispiele der Erfindung
Die Erfindung soll anhand der nachfolgenden Ausfuhrungsbeispiele näher erläutert werden. Bei allen Ausführungsbeispielen handelt es sich jeweils um eine Wärmedämmplatte auf der Basis von Polystyrol, vorliegend auf der Basis von expandiertem Polystyrol (EPS). Zur Herstellung werden die Fasern entweder mit den ursprünglichen oder bereits vorgeschäumten expandierten Polystyrolpartikel vermischt und die Mischung in vorzugsweise nicht gasdichten Formen unter Aufschlag von Wasserdampf zu Formkörpern verschweißt, die gegebenenfalls geschnitten und konturiert werden können. Erste Versuche mit entsprechend hergestellten Dämmplatten haben überraschenderweise gezeigt, dass diese eine erhöhte Dampfdurchlässigkeit aufweisen, zugleich jedoch ihre hohe Festigkeit und geringe Wärmeleitfähigkeit beibehalten. In Abhängigkeit vom jeweiligen Faseranteil und der Art der enthaltenen Fasern wird eine Hohlräume aufweisende Mikrostruktur bewirkt, deren Hohlräume untereinander verbunden sind. Dabei werden jedoch keine kapillaraktiven Hohlräume ausgebildet, so dass eindringendem Oberflächenwasser entgegen gewirkt wird. Zugleich bleibt die Struktur der Primärpolymerteilchen, das heißt der EPS-Partikel erhalten.
Erstes Ausfϊihrungsbeispiel:
Bei der Herstellung einer Wärmedämmplatte auf der Basis von expandiertem Polystyrol (EPS) wurden den vorgeschäumten expandierten Polystyrolpartikeln Polyesterfasern in Form von gekräuselten Hohlfasern zugegeben, die zudem zuvor eine silikonisierte Schlichte erhalten haben. Bezogen auf 100 Gew.-% Polystyrolpartikel wurden 4 Gew.-% Polyesterfasern zugegeben. Die Dampfdiffusionswiderstandszahl μ konnte dadurch im Durchschnitt um 20% gegenüber einer entsprechenden Wärmedämmplatte aus dem gleichen Material jedoch ohne Faseranteil gesenkt werden. Die Diffusionsmessung wurde in Anlehnung an DIN EN 12086 durchgeführt. Die Wärmeleitfähigkeit λ der Wärmedämmplatte wurde durch den Faseranteil nicht verändert.
Zweites Ausfuhrungsbeispiel:
Bei der Herstellung einer entsprechenden Wärmedämmplatte auf der Basis von expandiertem Polystyrol (EPS) wurden den vorgeschäumten expandierten Polystyrolpartikeln Polyesterfasern in Form von gekräuselten Hohlfasern zugegeben, die zuvor wiederum eine silikonisierte Schlichte erhalten haben. Bezogen auf 100 Gew.-% Polystyrolpartikel wurden diesmal 7,6 Gew.-% der genannten Polyesterfasern zugegeben. Die Dampfdiffusionswiderstandszahl μ konnte dadurch im Durchschnitt sogar um 25% gegenüber einer entsprechenden Wärmedämmplatte aus dem gleichen Material jedoch ohne Faseranteil gesenkt werden (wiederum gemessen in Anlehnung an DIN EN 12086). Die Wärmeleitfähigkeit λ der Wärmedämmplatte wurde dabei nur unwesentlich verändert.

Claims

Patentansprüche
1. Bauelement aus einem mehrphasigen Material mit einer Wärmeleitfähigkeit λ < 2000 W/(m*K), vorzugsweise λ < 100 W/(m*K)5 weiterhin vorzugsweise λ < 50 W/(m*K),
dadurch gekennzeichnet, dass das Material Fasern, Faserbündel und/oder Faseraggregate enthält, die bewirken, dass das Bauelement eine höhere Dampfdurchlässigkeit besitzt als ein entsprechendes Bauelement aus dem gleichen Material jedoch ohne Faseranteil.
2. Bauelement nach Anspruch 1,
dadurch gekennzeichnet, dass das Fasern, Faserbündel und/oder Faseraggregate enthaltende, mehrphasige Material ein Dämmmaterial auf der Basis von Polystyrol (PS), vorzugsweise auf der Basis von expandiertem Polystyrol (EPS) oder extrudiertem Polystyrol (XPS), ist, das eine gasgefüllte Zellen aufweisende Mikrostruktur besitzt, wobei die Fasern, Faserbündel und/oder Faseraggregate eine Verbindung der gasgefüllten Zellen unter Beibehaltung der inneren Struktur der Primärpolymerteilchen bewirken und in Abhängigkeit von den jeweiligen thermodynamischen Parametern die Dampfdiffusion entlang des thermodynamischen Gefälles durch das Bauelement hindurch erleichtern, so dass eine Senkung der Dampfdiffusionswiderstandszahl μ bei im Wesentlichen gleichbleibender geringer Wärmeleitfähigkeit und im Wesentlichen gleichbleibender hoher Festigkeit des Bauelementes gewährleistet ist.
3. Bauelement nach Anspruch 1,
dadurch gekennzeichnet, dass das Fasern, Faserbündel und/oder Faseraggregate enthaltende, mehrphasige Material ein Dämmmaterial auf Basis von Polyurethan (PU)5 Polyisocyanurat (PIR) oder Phenolharz (PH) ist, wobei die Fasern, Faserbündel und/oder Faseraggregate eine Mikro struktur bewirken, die in Abhängigkeit von den jeweiligen thermodynamischen Parametern eine Dampfdiffusion entlang des thermodynamischen Gefälles durch das Bauelement hindurch erleichtert, so dass eine Senkung der Dampfdiffusionswiderstandszahl μ bei im Wesentlichen gleichbleibender geringer Wärmeleitfähigkeit und im Wesentlichen gleichbleibender hoher Festigkeit des Bauelementes gewährleistet ist.
4. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Fasern, Faserbündel und/oder Faseraggregate Naturfasern, wie beispielsweise Flachsfasern, Hanffasern oder Wolle, und/oder synthetische Kunstfasern, wie beispielsweise Polyesterfasern, Polyamidfasern, Polyacrylnitril, Kautschuk oder Polypropylen, und/oder silikatische Fasern, wie beispielsweise Glasfasern, und/oder cellulosische Kunstfasern und/oder Fasermischungen aus verschiedenen Natur- und/oder Kunstfasern enthalten.
5. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Fasern, Faserbündel und/oder Faseraggregate in gerichteter oder ungerichteter Anordnung und/oder gleichmäßig verteilt im Bauelement angeordnet sind.
6. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Faseranteil bezogen auf das mehrphasige Material zwischen 1 und 15 Gew.-%, vorzugsweise zwischen 3 und 10 Gew.-%, weiterhin vorzugsweise zwischen 5 und 8 Gew.-% beträgt.
7. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Länge der Fasern zwischen 0,02 mm und 500 mm, vorzugsweise zwischen l mm und 100 mm, weiterhin vorzugsweise zwischen 5 mm und 85 mm beträgt.
8. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Dicke der Fasern zwischen 0,01 μm und 1000 μm, vorzugsweise zwischen 0,05 μm und 500 μm, weiterhin vorzugsweise zwischen 1 μm und 250 μm beträgt.
9. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass zumindest ein Teil der Fasern gekräuselt ist.
10. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Fasern, Faserbündel und/oder Faseraggregate aus Hohlfasern bestehen oder solche enthalten.
11. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass zumindest ein Teil der Fasern ein rundes und/oder ein kantiges Querschnittsprofil aufweist.
12. Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fasern, Faserbündel und/oder Faseraggregate Profilfasern enthalten, die im Wesentlichen in Längsrichtung der Faser verlaufende, profilgebende Strukturen aufweisen.
13. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass zumindest ein Teil der Fasern wasserabweisend ist oder mit einer wasserabweisenden Beschichtung versehen ist.
14. Bauelement nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass zumindest ein Teil der Fasern mit einer schützenden und/oder einer die Oberfläche der Faser veredelnden Beschichtung versehen ist, wobei die Beschichtung vorzugsweise eine Appretur oder eine Schlichte ist.
15. Bauteil umfassend wenigstens ein Bauelement nach einem der Ansprüche 1 bis 14.
16. Wärmedämmverbundsystem umfassend wenigstens ein Bauelement nach einem der Ansprüche 1 bis 14.
EP10724504A 2009-06-12 2010-06-09 Bauelement Withdrawn EP2440716A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910025163 DE102009025163A1 (de) 2009-06-12 2009-06-12 Bauelement
PCT/EP2010/058110 WO2010142742A2 (de) 2009-06-12 2010-06-09 Bauelement

Publications (1)

Publication Number Publication Date
EP2440716A2 true EP2440716A2 (de) 2012-04-18

Family

ID=43069857

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10724504A Withdrawn EP2440716A2 (de) 2009-06-12 2010-06-09 Bauelement

Country Status (3)

Country Link
EP (1) EP2440716A2 (de)
DE (1) DE102009025163A1 (de)
WO (1) WO2010142742A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018100850A1 (de) * 2018-01-16 2019-07-18 Universität Kassel Feststoffmasse zur Herstellung eines thermisch stabilen und zyklisch beanspruchbaren ultrahochfesten Betons oder hochfesten Betons bzw. eines ultrahochfesten oder hochfesten Betonbauteils

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB882296A (en) * 1957-03-14 1961-11-15 Owens Corning Fiberglass Corp A composite foam and mineral product and methods for producing same
FR1438893A (fr) * 1965-07-05 1966-05-13 Rohpappen Fabrik Worms Zweigni Plaque armée en matière plastique mousse
AT296858B (de) * 1970-01-19 1972-02-25 Josef Dabernig Leichtbaustoff und Verfahren zu dessen Herstellung
DE102005042235A1 (de) * 2005-09-05 2007-03-08 Basf Ag Transluzente Polymer- und Schaumstoffplatten mit optischen Fasern

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7000211U (de) * 1970-01-05 1970-04-09 Suedbau Sueddeutsche Bautechni Leichtbauplatte
DE4307648A1 (de) * 1993-03-11 1994-09-15 Basf Ag Schaumstoffe auf Basis thermoplastischer Polyurethane sowie expandierbare, partikelförmige, thermoplastische Polyurethane, insbesondere geeignet zur Herstellung von Schaumstoff-Formkörpern
DE10007774A1 (de) 2000-02-14 2001-09-20 Wki Isoliertechnik Gmbh Berlin Wärmedämmplatte aus Polystyrol (EPS/XPS) oder Polyurethan (PUR) mit niedriger Wasserdampfdiffusionszahl mu 10
DE10051923B4 (de) * 2000-10-19 2005-05-04 AEG Hausgeräte GmbH Backgerät und Herstellungsverfahren dafür
DE20121159U1 (de) * 2001-08-31 2002-05-08 Hochtief Ag Hoch Tiefbauten Gegen Brandeinwirkung geschütztes Bauteil aus Beton
US7063887B2 (en) * 2002-02-04 2006-06-20 3M Innovative Properties Company Stretch releasable foams, articles including same and methods for the manufacture thereof
DE10260096A1 (de) * 2002-12-19 2004-07-01 Röhm GmbH & Co. KG Neue, schwer brennbare Schaumstoffe unter Verwendung von Ammoniumsulfat und anderen Flammschutzmitteln
EP1792698A3 (de) * 2005-11-30 2009-08-19 DELCOTEX - Delius Conze & Colsmann Techtex GmbH & Co. KG Platte
DE102006033818A1 (de) * 2006-07-19 2008-01-24 R & T Pur-Verbundsysteme Ohg Verfahren zur Herstellung eines Baumaterials sowie Bauelement daraus
DE102007024311A1 (de) * 2007-05-24 2008-11-27 GM Global Technology Operations, Inc., Detroit Schaumstoffelement
DE102007050100A1 (de) * 2007-10-19 2009-04-23 Entwicklungsgesellschaft für Akustik (EfA) mit beschränkter Haftung Schallisolierung mit CO2-beladener Kompakt-Polyurethan-Schaumstoff (RIM)-Schicht

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB882296A (en) * 1957-03-14 1961-11-15 Owens Corning Fiberglass Corp A composite foam and mineral product and methods for producing same
FR1438893A (fr) * 1965-07-05 1966-05-13 Rohpappen Fabrik Worms Zweigni Plaque armée en matière plastique mousse
AT296858B (de) * 1970-01-19 1972-02-25 Josef Dabernig Leichtbaustoff und Verfahren zu dessen Herstellung
DE102005042235A1 (de) * 2005-09-05 2007-03-08 Basf Ag Transluzente Polymer- und Schaumstoffplatten mit optischen Fasern

Also Published As

Publication number Publication date
WO2010142742A3 (de) 2012-04-19
DE102009025163A1 (de) 2010-12-16
WO2010142742A2 (de) 2010-12-16

Similar Documents

Publication Publication Date Title
EP1643046B1 (de) Aussenputzzubereitung für Wärmedämmverbundsysteme
DE102011119029B4 (de) Verfahren zur Herstellung eines Dämmstoffformteils, Dämmstoffformteil, dessen Verwendung und Dämmelement, hergestellt unter Verwendung des Dämmstoffformteils
DE102006024730A1 (de) Außenverkleidungssystem
DE102009048422A1 (de) Verbundwerkstoff aus Carbonfaser-Weichfilz und Carbonfaser-Hartfilz
DE102007040938A1 (de) Wandaufbau und Wärmedämmplatte
EP1824902B1 (de) Dampfbremsfolie
WO2010142508A1 (de) Beschichtungsmasse
EP3253722B1 (de) Baustoffmischung
DE202009008493U1 (de) Wandaufbau und Wärmedämmplatte
DE202013010599U1 (de) Sandwichstruktur mit einem Aerogel enthaltenden Kernwerkstoff
DE102011011056A1 (de) Glasfaservlies sowie Glasfaservliese enthaltende Erzeugnisse
EP2758610B1 (de) Bauplatte mit geschäumtem kern und einer abdeckung mit nanozusatzstoffen
DE102008011627A1 (de) Verfahren zur Herstellung eines platten- oder profilförmigen Bauelementes sowie platten- oder profilförmiges Bauelement
DE202006016406U1 (de) Polymere Hohlkörper mit Schaumfüllung
EP3371250B1 (de) Funktionswerkstoff mit zumindest einem additiv
EP2440716A2 (de) Bauelement
DE102009033367A1 (de) Aerogel-Aerogel Verbundwerkstoff
EP3351369B1 (de) Dreidimensionales faserformteil, vorrichtung und verfahren zur herstellung eines dreidimensionalen faserformteils
EP2835462B1 (de) Faservlies enthaltender CV-Bodenbelag sowie Faservlies
DE102015218288A1 (de) Dämmstoffplatte und Verfahren zur Herstellung einer Dämmstoffplatte
DE102016209244B4 (de) Verfahren zur Herstellung eines Garnes, Verfahren zur Herstellung eines Vlieses und Vlies
DE102007037137B4 (de) Lüftungs- oder Leitungskanal
EP2292674A2 (de) Formschaumelement mit zumindest zwei unterscheidbaren Geometriestrukturen
EP2647607B2 (de) Formteil sowie Verfahren zur Herstellung eines solchen Formteils
DE102009038773B4 (de) Innendämmpaneel mit einem hydrophilen, porösen Grundkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111205

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

R17D Deferred search report published (corrected)

Effective date: 20120419

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 1/80 20060101AFI20120518BHEP

Ipc: C04B 28/02 20060101ALI20120518BHEP

Ipc: C04B 20/10 20060101ALI20120518BHEP

Ipc: C04B 30/02 20060101ALI20120518BHEP

Ipc: C04B 20/00 20060101ALI20120518BHEP

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STO SE & CO. KGAA

17Q First examination report despatched

Effective date: 20150213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150624