EP2435608A1 - Fibre conductrice multicouche et son procede d'obtention par co-extrusion - Google Patents

Fibre conductrice multicouche et son procede d'obtention par co-extrusion

Info

Publication number
EP2435608A1
EP2435608A1 EP10728834A EP10728834A EP2435608A1 EP 2435608 A1 EP2435608 A1 EP 2435608A1 EP 10728834 A EP10728834 A EP 10728834A EP 10728834 A EP10728834 A EP 10728834A EP 2435608 A1 EP2435608 A1 EP 2435608A1
Authority
EP
European Patent Office
Prior art keywords
nanotubes
polyamide
fiber
copolymers
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10728834A
Other languages
German (de)
English (en)
Inventor
Patrice Gaillard
Alexander Korzhenko
Philippe Poulin
Nour Eddine El Bounia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Arkema France SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Arkema France SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2435608A1 publication Critical patent/EP2435608A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2916Rod, strand, filament or fiber including boron or compound thereof [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3146Strand material is composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/3154Sheath-core multicomponent strand material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material

Definitions

  • the present invention relates to a multilayer conductive fiber of core-shell structure, the core of which contains nanotubes, especially carbon nanotubes. It also relates to a process for manufacturing this fiber by coextrusion, as well as its uses. Finally, it relates to a composite material comprising such multilayer composite fibers bonded together by weaving or using a polymeric matrix.
  • Carbon nanotubes are known and possess particular crystalline structures, tubular, hollow and closed, composed of atoms arranged regularly in pentagons, hexagons and / or heptagons, obtained from carbon.
  • CNTs generally consist of one or more graphite sheets wound coaxially.
  • SWNTs single wall nanotubes
  • Multi Wall Nanotubes or MWNTs Multi Wall Nanotubes
  • CNTs are commercially available or can be prepared by known methods. There are several methods for synthesizing CNTs, including electrical discharge, laser ablation and CVD (Chemical Vapor
  • This process consists precisely in injecting a relatively high temperature carbon source onto a a catalyst which may itself consist of a metal such as iron, cobalt, nickel or molybdenum, supported on an inorganic solid such as alumina, silica or magnesia.
  • Carbon sources may include methane, ethane, ethylene, acetylene, ethanol, methanol or even a mixture of carbon monoxide and hydrogen (HIPCO process).
  • CNTs have many powerful properties, namely electrical, thermal, chemical and mechanical. Among their applications are, in particular, composite materials intended in particular for the automotive, nautical and aeronautical industries, electromechanical actuators, cables, resistant wires, chemical detectors, energy storage and conversion, electron emission displays, electronic components, and functional textiles. In the automotive, aeronautical and electronic fields, conductive loads such as NTCs allow the heat and electrical dissipation of heat and electricity accumulated during friction.
  • the CNTs are in the form of a disorganized powder, consisting of entangled filaments, which makes them difficult to implement.
  • the CNTs to be present in large quantities and oriented in a preferred direction.
  • One of the solutions to overcome this problem is to develop composite fibers.
  • the nanotubes may be incorporated in a matrix such as an organic polymer.
  • this technique requires a high purity of the CNTs and an elimination of aggregates that these, because of their entangled structure, naturally tend to form. These aggregates are indeed detrimental to the spinning process and frequently lead to breakage of the composite fibers obtained.
  • the conductivity of the composite fibers obtained according to the aforementioned technique is not always satisfactory. Indeed, the electrical properties of CNTs are all the better that they are dispersed homogeneously and randomly, while the spinning processes lead instead to a significant orientation of the CNTs.
  • Still another route for making CNT composite fibers has been to coagulate a dispersion of CNTs in a polymer flow such as polyvinyl alcohol (FR 2 805 179).
  • This coagulation method however does not achieve the high spinning speeds conventionally used today. It is indeed difficult to stabilize the co-flow of the dispersion of CNT and the coagulant solution, due to the change from a laminar regime to a turbulent regime at high speed, and also the fragility, in a viscous medium, of newly coagulated fibers.
  • multilayer fibers of core-shell structure whose core contains a dispersion of CNTs.
  • These fibers are in particular manufactured by co- extrusion of two polymer matrices based on thermoplastic polymer, one of which contains the CNTs.
  • conductive fibers having a core-shell structure possibly obtained by coextrusion, comprising carbon nanotubes have been described.
  • these fibers comprise a primary component forming the core and a secondary component forming the bark. Only the secondary component contains CNTs.
  • the conductive fibers consist of a core containing a first dispersion of CNT and a bark containing a second dispersion of CNTs.
  • the conductive material such as CNTs or carbon black is present only in the bark of the conductive fiber.
  • the present invention thus relates to a multilayer conductive fiber, comprising:
  • a core consisting of a first polymeric matrix containing at least one thermoplastic polymer and a dispersion of nanotubes of at least one chemical chemical element chosen from the elements of columns IHa, IVa and Va of the periodic table, said nanotubes being capable of providing thermal and / or electrical conduction, - a bark consisting of a second polymeric matrix containing at least one thermoplastic polymer other than polyvinyl alcohol and not containing a dispersion of nanotubes of at least one selected chemical chemical element among the elements of columns IHa, IVa and Va of the periodic table.
  • the expression "included (e) between” must be interpreted as including the boundaries cited.
  • the term "fiber” means a filament whose diameter is between 100 nm and 10 mm, advantageously between 100 nm and 3 mm, preferably between 1 ⁇ m and 3 mm, more particularly between 1 and 100 ⁇ m.
  • the core of the fiber forms a solid structure. Alternatively, it can however define a hollow structure. This structure may also be porous or non-porous.
  • a fiber is intended to ensure the holding of a mechanical part, to strengthen, and is thus distinguished from a tube or pipe for transporting a fluid.
  • the fiber according to the invention is manufactured from at least two polymer matrices, one of which (the first polymeric matrix) forms the core and the other
  • the second polymeric matrix forms the bark.
  • Other polymeric matrices may also be used in the manufacture of the fiber according to the invention. It is thus possible to have a multilayer fiber containing only two layers (the heart and the bark) or more than two layers, in the case where one or more other layers are interposed between the heart and the bark and / or cover the bark.
  • the first and / or second polymeric matrix contains at least one thermoplastic polymer, which may be a homopolymer or a block copolymer, alternate, statistical or gradient.
  • the thermoplastic polymer may especially be chosen from:
  • polyamides such as polyamide 6 (PA-6), polyamide 11 (PA-11), polyamide 12 (PA-12), polyamide 6.6 (PA-6.6), polyamide 4.6 (PA-4.6), polyamide 6.10 (PA-6.10) and polyamide 6.12 (PA-6.12), some of these polymers are especially sold by the company Arkema under the name Rilsan ® and preferred being those of fluid grade such as Rilsan ® AMNO TLD as well as copolymers, including block copolymers containing amide monomers and other monomers such as polytetramethylene glycol (PTMG) (Pebax ®); aromatic polyamides such as polyphthalamides;
  • PTMG polytetramethylene glycol
  • fluoropolymers chosen from:
  • X 1 , X 2 and X 3 independently denote a hydrogen or halogen atom (in particular fluorine or chlorine), such as polyvinylidene fluoride (PVDF), preferably in ⁇ form, poly (trifluoroethylene) (PVF3), polytetrafluoroethylene (PTFE), copolymers of vinylidene fluoride with either hexafluoropropylene (HFP) or trifluoroethylene (VF3), or tetrafluoroethylene (TFE), or chlorotrifluoroethylene (CTFE), fluoroethylene / propylene copolymers (FEP), copolymers of ethylene with either fluoroethylene / propylene (FEP), or tetrafluoroethylene (TFE), or chlorotrifluoroethylene (CTFE); (ii) those comprising at least 50 mol% of at least one monomer of formula (II):
  • PVDF polyvinylidene fluoride
  • PVDF polyviny
  • PPVE perfluoropropyl vinyl ether
  • PEVE perfluoroethyl vinyl ether
  • PMVE perfluoromethylvinyl ether
  • PAEK polyaryletherketones
  • PEEK polyetheretherketone
  • PEKK polyetherketoneketone
  • polyolefins such as polyethylene (PE), polypropylene (PP) and copolymers of ethylene and / or propylene (PE / PP) optionally functionalized; thermoplastic polyurethanes (TPU);
  • PE polyethylene
  • PP polypropylene
  • TPU thermoplastic polyurethanes
  • thermoplastic polymer (s) contained in the first polymeric matrix may or may not be chosen from the same family as, or even identical to, that or those contained in the second polymeric matrix.
  • the first polymer matrix contains, in addition to the thermoplastic polymer mentioned above, nanotubes of at least one chemical element selected from the elements of columns IHa, IVa and Va of the periodic table.
  • the polymer matrix advantageously comprises at least one polymer chosen from: PVDF, PA-II, PA-12, PEKK and PE.
  • These nanotubes by their nature and their quantity, must be capable of providing thermal and / or electrical conduction. They may be based on carbon, boron, phosphorus and / or nitrogen (borides, nitrides, carbides, phosphides) and for example consisting of carbon nitride, boron nitride, boron carbide, boron, phosphorus nitride or carbon boronitride. Carbon nanotubes (hereinafter, CNTs) are preferred for use in the present invention.
  • the nanotubes that can be used according to the invention can be single-walled, double-walled or multi-walled.
  • the double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem. Com. (2003), 1442.
  • the multi-walled nanotubes may themselves be prepared as described in WO 03/02456.
  • the nanotubes usually have a mean diameter ranging from 0.1 to 200 nm, preferably from 0.1 to 100 nm, more preferably from 0.4 to 50 nm and better still from 1 to 30 nm and advantageously a length of from 0 to 100 nm. , 1 to 10 ⁇ m.
  • Their length / diameter ratio is preferably greater than 10 and most often greater than 100.
  • Their specific surface area is for example between 100 and 300 m 2 / g and their apparent density may especially be between 0.05 and 0.5 g / cm 3 and more preferably between 0.1 and 0.2 g / cm 3 .
  • the multiwall nanotubes may for example comprise from 5 to 15 sheets (or walls) and more preferably from 7 to 10 sheets. These nanotubes may or may not be processed.
  • crude carbon nanotubes is especially commercially available from Arkema under the trade name Graphistrength® ® C100.
  • nanotubes may be purified and / or treated (for example oxidized) and / or milled and / or functionalized before being used in the process according to the invention.
  • the grinding of the nanotubes may in particular be carried out cold or hot and be carried out according to known techniques used in devices such as ball mills, hammers, grinders, knives, gas jet or any other system. Grinding capable of reducing the size of the entangled network of nanotubes. It is preferred that this grinding step is performed according to a gas jet grinding technique and in particular in an air jet mill.
  • the purification of the crude or milled nanotubes can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metallic impurities originating from their preparation process.
  • the weight ratio of the nanotubes to the sulfuric acid may especially be between 1: 2 and 1: 3.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C., for example for a period of 5 to 10 hours. This operation may advantageously be followed by rinsing steps with water and drying the purified nanotubes.
  • the nanotubes may alternatively be purified by high temperature heat treatment, typically greater than 1000 0 C.
  • the oxidation of the nanotubes is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCl and preferably from 1 to 10% by weight of NaOCl, for example in a weight ratio of nanotubes to
  • Sodium hypochlorite ranging from 1: 0.1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature of less than 60 ° C. and preferably at ambient temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by filtration and / or centrifugation, washing and drying steps of the oxidized nanotubes.
  • the functionalization of the nanotubes can be carried out by grafting reactive units such as vinyl monomers on the surface of the nanotubes.
  • the constituent material of the nanotubes is used as a radical polymerization initiator after having been subjected to a heat treatment at more than 900 ° C., in an anhydrous and oxygen-free medium, which is intended to eliminate the oxygenated groups from its surface. It is thus possible to polymerize methyl methacrylate or hydroxyethyl methacrylate on the surface of carbon nanotubes in order, in particular, to facilitate their dispersion. in PVDF or polyamides.
  • the functionalization of the nanotubes included in the bark of the fiber can improve their attachment to the core of the fiber.
  • Crude nanotubes are preferably used in the present invention, that is to say nanotubes which are neither oxidized nor purified nor functionalized and have undergone no other chemical and / or thermal treatment.
  • the nanotubes may represent from 0.1 to 30% by weight, preferably from 0.5 to 10% by weight, and even more preferably from 1 to 5% by weight, relative to the weight of the core or the bark. container.
  • the present invention also relates to a method of manufacturing a fiber as described above, as well as the fiber obtainable by this method.
  • This method comprises a step of coextrusion of the first and second polymer matrices, through a die having an opening which comprises a first outlet port fed by said first polymeric matrix and having the cross-sectional shape of said core, and a second outlet port fed by said second polymeric matrix and having the cross-sectional shape of said bark.
  • Such a coextrusion process is well known to those skilled in the art. It usually involves a preliminary stage of introduction, then mixing, in a mixing device, for example in an extruder (in particular a co-rotating twin-screw extruder) or a BUSS®-type co-kneader, respective constituents of the first and second polymer matrices.
  • a mixing device for example in an extruder (in particular a co-rotating twin-screw extruder) or a BUSS®-type co-kneader, respective constituents of the first and second polymer matrices.
  • thermoplastic polymers are generally introduced in the form of granules or in the form of a powder in the kneading device.
  • the nanotubes can be introduced into the same feed hopper as the polymer or in a separate hopper.
  • the polymer matrices used according to the invention may also contain at least one adjuvant chosen from plasticizers, anti-oxygen stabilizers, light stabilizers, dyes, anti-shock agents and antistatic agents (other than nanotubes). ), flame retardants, lubricants, and mixtures thereof.
  • the polymer matrix containing the conductive nanotubes contains at least one dispersant, intended to improve the dispersion of the nanotubes in this matrix.
  • This may be a block copolymer as described in the application WO 2005/108485, that is to say a copolymer comprising at least one block 1 bearing ionic or ionizable functions, resulting from the polymerization of a monomer.
  • M1 representing at least 10% by weight of block 1 (such as (meth) acrylic acid or maleic anhydride) and at least one monomer M2 (such as a (meth) acrylate or a styrene derivative) , and optionally at least one block 2 compatible with the thermoplastic polymer of the polymeric matrix conductive, if block 1 is not.
  • the dispersant may be a plasticizer which is then advantageously introduced into the kneading device upstream, or into the melting zone of the thermoplastic polymer.
  • the plasticizer, the thermoplastic polymer and the nanotubes may be introduced simultaneously or successively into the same feed hopper of the mixer. It is generally preferred to introduce all the plasticizer into this hopper.
  • the aforementioned materials can be introduced successively, in any order, either directly into the hopper, or into a suitable container where they are homogenized before being introduced into the hopper.
  • the polymer is predominantly in the form of powder, rather than granules.
  • the Applicant has in fact demonstrated that this results in a better dispersion of the nanotubes in the polymer matrix, and a better conductivity of the resulting conductive matrix.
  • This embodiment of the invention is well suited to solid plasticizers. These can optionally be introduced into the feed hopper of the mixer in the form of pre-composite with nanotubes.
  • pre-composite containing 70% by weight of cyclized poly (butylene terephthalate) plasticizer and 30% by weight of multi-walled nanotubes, is for example commercially available from the company ARKEMA under the trade name Graphistrength® C M12-30.
  • the nanotubes and the plasticizer can be introduced into the hopper or the aforementioned container in the form of precomposite.
  • a pre-composite may for example be obtained by a process involving: 1-bringing a plasticizer in liquid form into contact, possibly in the molten state or in solution in a solvent, with the powdered nanotubes, for example by dispersion or direct introduction by pouring the plasticizer into the nanotube powder (or the opposite), by drip introduction of the plasticizer into the powder or by nebulization of the plasticizer by means of a sprayer on the nanotube powder , and
  • the first step above can be carried out in conventional synthesis reactors, blade mixers, fluidized bed reactors or in Brabender mixers, Z-arm mixer or extruder. It is generally preferred to use a conical mixer, for example of the HOSOKAWA Vrieco-Nauta type, comprising a rotating screw rotating along the wall of a conical tank.
  • a conical mixer for example of the HOSOKAWA Vrieco-Nauta type, comprising a rotating screw rotating along the wall of a conical tank.
  • a pre-composite may be formed from the liquid plasticizer and the thermoplastic polymer before mixing with the nanotubes.
  • the conductive polymer matrix obtained is introduced into a coextrusion die, with the other polymer matrix not containing nanotubes.
  • This die may have first and second exit orifices of any shape and arrangement, respectively for the first and second polymeric matrixes, provided that the second polymeric matrix at least partially forms a bark around the first polymeric matrix.
  • the first and second orifices are concentric.
  • the second orifice may in this case be disposed over the entire periphery of the first orifice or on only a portion thereof.
  • the second orifice may be partially disposed at the periphery of the first orifice and partially through the first orifice.
  • the first orifice can thus take the form of two half-moons, for example.
  • the core of the fiber according to the invention can take a shape, in cross section, circular, elliptical, square, rectangular, triangular or multilobal.
  • the use of a multilobal shape makes it possible, in particular during the subsequent weaving of the fibers, to connect the surface lines of the fibers.
  • the method according to the invention may further comprise an additional step of stretching the obtained fibers at a temperature above the glass transition temperature (Tg) of the thermoplastic polymer of the non-conductive matrix and optionally greater than the Tg of the thermoplastic polymer of the conductive polymeric matrix and preferably less than the melting temperature of the thermoplastic polymer of the non-conductive matrix.
  • Tg glass transition temperature
  • This stretching step may also optionally be conducted at a temperature above the melting point of the thermoplastic polymer of the conductive polymer matrix, in order to improve its conductive properties.
  • the stretching step described in US Pat. No. 6,331,265, which is incorporated herein by reference, makes it possible to orient the nanotubes and the polymer substantially in the same direction, along the axis of the fiber, and thus to improve the mechanical properties of the latter, in particular its tensile modulus (Young's modulus) and its toughness (breaking point).
  • the draw ratio defined as the ratio of the length of the fiber after drawing to its length before drawing, may be from 1 to 20, preferably from 1 to 10, inclusive. Stretching can be done in one go, or several times, allowing the fiber to relax slightly between each stretch.
  • This stretching step is preferably conducted by passing the fibers through a series of rolls having different rotational speeds, those which unroll the fiber rotating at a lower speed than those receiving it.
  • the fibers can be passed through ovens arranged between rollers, either use heated rollers, or combine these two techniques.
  • the multilayer conductive fibers obtained by this method are intrinsically conductive, i.e. the conductive polymer matrix has a resistivity which may be less than 10 5 ohm. cm at room temperature, the electrical conductivity of these fibers can be further improved by heat treatments.
  • the multilayer conductive fibers according to the invention can be used for the manufacture of nose, wings or cockles of rockets or airplanes; off-shore flexible armor; automotive bodywork components, engine chassis or automobile support parts; automotive seat coverings; structural elements in the field of buildings or bridges and roadways; packaging and antistatic textiles, in particular antistatic curtains, antistatic clothing (for example, safety or clean room) or materials for the protection of silos or the packaging and / or transport of powders or granular materials; furnishing items, including clean room furniture; filters; electromagnetic shielding devices, in particular for the protection of electronic components; heated textiles; conductive cables; sensors, in particular deformation sensors or mechanical stresses; electrodes; hydrogen storage devices; or biomedical devices such as sutures, prostheses or catheters.
  • the manufacture of these composite parts can be carried out according to various processes, generally involving a step of impregnating the fibers with a polymeric composition containing at least one thermoplastic, elastomeric or thermosetting material.
  • This impregnation stage may itself be carried out according to various techniques, depending in particular on the physical form of the composition used (pulverulent or more or less liquid).
  • the impregnation of the fibers is preferably carried out according to a fluidized bed impregnation process, in which the polymeric composition is in the form of powder.
  • the polymeric impregnating matrix comprises at least one of the thermoplastic materials used for the manufacture of the multilayer conductive fibers according to the invention.
  • the manufacture of the finished part comprises a consolidation step of the polymeric composition, which is, for example, melted locally to create zones for fixing the fibers. between them and / or secure the fiber ribbons in the filament winding process.
  • a film from the impregnating composition in particular by means of an extrusion or calendering process, said film having for example a thickness of about 100 ⁇ m, and then of placed between two mats of fibers according to the invention, the assembly then being hot pressed to allow the impregnation of the fibers and the manufacture of the composite.
  • the multilayer fibers according to the invention can be woven or knitted, alone or with other fibers, or used, alone or in combination with other fibers, for the manufacture of felts or nonwoven materials .
  • materials constituting these other fibers include, but are not limited to: - stretched polymer fibers, based in particular: polyamide such as polyamide 6 (PA-6), polyamide 11 (PA-II), polyamide 12 (PA-12), polyamide 6.6 (PA-6.6), polyamide 4.6 (PA-4.6), polyamide 6.10 (PA-6.10) or polyamide 6.12 (PA-6.12), of polyamide / polyether block copolymer (Pebax ® ), high density polyethylene, polypropylene or polyester such as polyhydroxyalkanoates and polyesters marketed by Du Pont under the trade name Hytrel ® ;
  • the invention therefore also relates to a composite material comprising multilayer composite fibers as described above, bonded together by weaving or using a polymeric matrix.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Multicomponent Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

La présente invention concerne une fibre conductrice multicouche, de structure coeur-écorce, dont le coeur renferme des nanotubes, notamment de carbone. Elle concerne également un procédé de fabrication de cette fibre par co-extrusion, ainsi que ses utilisations. Elle concerne enfin un matériau composite comprenant les fibres composites multicouches précitées, liées entre elles par tissage ou à l'aide d'une matrice polymérique.

Description

Fibre conductrice multicouche et son procédé d'obtention par co-extrusion
La présente invention concerne une fibre conductrice multicouche, de structure coeur-écorce, dont le coeur renferme des nanotubes, notamment de carbone. Elle concerne également un procédé de fabrication de cette fibre par co-extrusion, ainsi que ses utilisations. Elle concerne enfin un matériau composite comprenant de telles fibres composites multicouches, liées entre elles par tissage ou à l'aide d'une matrice polymérique.
Les nanotubes de carbone (ou NTC) sont connus et possèdent des structures cristallines particulières, de forme tubulaire, creuses et closes, composées d'atomes disposés régulièrement en pentagones, hexagones et/ou heptagones, obtenues à partir de carbone. Les NTC sont en général constitués d'un ou plusieurs feuillets de graphite enroulés coaxialement . On distingue ainsi les nanotubes monoparois (Single Wall Nanotubes ou SWNT) et les nanotubes multiparois (Multi Wall Nanotubes ou MWNT) .
Les NTC sont disponibles dans le commerce ou peuvent être préparés par des méthodes connues. Il existe plusieurs procédés de synthèse de NTC, notamment la décharge électrique, l'ablation laser et le dépôt chimique en phase vapeur ou CVD (Chemical Vapour
Déposition) qui permet d'assurer la fabrication en grande quantité de nanotubes de carbone et donc leur obtention à un prix de revient compatible avec leur utilisation massive. Ce procédé consiste précisément à injecter une source de carbone à relativement haute température sur un catalyseur qui peut lui-même être constitué d'un métal tel que le fer, le cobalt, le nickel ou le molybdène, supporté sur un solide inorganique tel que l'alumine, la silice ou la magnésie. Les sources de carbone peuvent comprendre le méthane, l'éthane, l'éthylène, l'acétylène, l'éthanol, le méthanol, voire un mélange de monoxyde de carbone et d'hydrogène (procédé HIPCO).
Les NTC possèdent de nombreuses propriétés performantes, à savoir électriques, thermiques, chimiques et mécaniques. Parmi leurs applications, on peut citer, notamment, les matériaux composites destinés en particulier à l'industrie automobile, nautique et aéronautique, les actionneurs électromécaniques, les câbles, les fils résistants, les détecteurs chimiques, le stockage et la conversion d'énergie, les afficheurs à émission d'électrons, les composants électroniques, et les textiles fonctionnels. Dans les domaines automobile, aéronautique et électronique, les charges conductrices telles que les NTC permettent la dissipation thermique et électrique de la chaleur et de l'électricité accumulées lors de frottements.
Généralement, lorsqu'ils sont synthétisés, les NTC sont sous la forme d'une poudre désorganisée, constituée de filaments enchevêtrés, ce qui les rend difficile à mettre en œuvre. Notamment, pour exploiter leurs propriétés mécaniques et/ou électriques à l'échelle macroscopique, il est nécessaire que les NTC soient présents en grandes quantités et orientés dans une direction privilégiée. L'une des solutions pour pallier ce problème consiste à élaborer des fibres composites. Pour cela, les nanotubes peuvent être incorporés dans une matrice telle qu'un polymère organique. On peut alors procéder au filage, selon des technologies traditionnelles, telles que décrites notamment dans EP-I 181 331, qui permet par des étirements et/ou des cisaillements d'orienter les NTC selon l'axe de la fibre et d'obtenir ainsi les propriétés mécaniques et/ou électriques recherchées. Toutefois, cette technique nécessite une grande pureté des NTC et une élimination des agrégats que ceux-ci, en raison de leur structure enchevêtrée, ont naturellement tendance à former. Ces agrégats sont en effet néfastes au procédé de filage et conduisent fréquemment à une casse des fibres composites obtenues.
Par ailleurs, la conductivité des fibres composites obtenues selon la technique précitée n'est pas toujours satisfaisante. En effet, les propriétés électriques des NTC sont d'autant meilleures que ceux-ci sont dispersés de façon homogène et aléatoire, alors que les procédés de filage conduisent au contraire à une orientation importante des NTC.
Pour surmonter cet inconvénient, il a été envisagé de déposer des NTC par voie solvant sur une fibre préformée. Toutefois, lorsque ces fibres composites sont utilisées pour fabriquer des tissus, eux-mêmes empilés en plusieurs couches pour former des pièces de structure ou des disques de freins utilisés dans le domaine de l'aérospatiale ou dans le domaine automobile, par exemple, le frottement de ces pièces dans l'air ou sur le sol provoque une usure des fibres. Il en résulte une perte de NTC dans l'atmosphère, dont l'impact environnemental peut s'avérer problématique, et une réduction possible des propriétés mécaniques de la pièce.
Une autre voie encore pour fabriquer des fibres composites à base de NTC a consisté à faire coaguler une dispersion de NTC dans un écoulement de polymère tel que le poly(alcool vinylique) (FR 2 805 179) . Ce procédé de coagulation ne permet toutefois pas d'atteindre les hautes vitesses de filage classiquement utilisées aujourd'hui. Il est en effet difficile de stabiliser le co-écoulement de la dispersion de NTC et de la solution coagulante, en raison du passage d'un régime laminaire à un régime turbulent à grande vitesse, et également de la fragilité, en milieu visqueux, des fibres nouvellement coagulées .
Il subsiste donc le besoin de disposer d'une fibre composite présentant de bonnes propriétés mécaniques, notamment un module de traction sous contrainte et une ténacité élevés, ainsi éventuellement que de bonnes propriétés de résistance thermique et/ou chimique, tout en ayant une conductivité suffisante pour lui permettre de dissiper des charges électrostatiques, même à faible taux de nanotubes. Il subsiste également le besoin de disposer d'un procédé de fabrication stable et économique de cette fibre, à grande vitesse, qui soit peu influencé par la présence d'agrégats de nanotubes.
La Demanderesse a découvert que ce besoin pouvait être satisfait par des fibres multicouches, de structure coeur-écorce, dont le coeur contient une dispersion de NTC. Ces fibres sont en particulier fabriquées par co- extrusion de deux matrices polymériques à base de polymère thermoplastique, dont l'une renferme les NTC.
Il a, certes, déjà été suggéré de fabriquer des fibres composites conductrices par co-extrusion de matrices polymériques dont l'une, formant le coeur de la fibre, renferme des charges conductrices et l'autre, formant l'écorce de la fibre, contient un polymère thermoplastique conférant des propriétés de traction à la fibre. A la connaissance des inventeurs, ce procédé n'a toutefois été appliqué qu'au noir de carbone (voir notamment US-3,803,453 et US-5, 260, 013 ) . Or, les traitements d'étirage avantageusement mis en oeuvre pour augmenter les propriétés mécaniques des fibres composites conductrices, et décrits notamment dans le document EP 1 183 331, ne sont pas applicables à ce type de fibre. En effet, lors de ces opérations d'étirage, il se produit une disruption du réseau de particules de noir de carbone, c'est-à-dire une réduction sensible de leurs points de contact, qui affecte négativement la conductivité de la fibre. Les inventeurs ont observé que ce phénomène ne se produisait pas dans le cas des nanotubes, notamment des NTC.
II a par ailleurs été décrit des fibres conductrices ayant une structure cœur-écorce, éventuellment obtenues par co-extrusion, comprenant des nanotubes de carbone. Dans le document EP 1 559 815, ces fibres comprennent un composant primaire formant le cœur et un composant secondaire formant l'écorce. Seul le composant secondaire renferme des NTC. Dans le document US 2006/019079, les fibres conductrices sont constituées d'un cœur renfermant une première dispersion de NTC et une écorce renfermant une seconde dispersion de NTC. Dans le document WO 2009/053470, le matériau conducteur tel que des NTC ou du noir de carbone n'est présent uniquement dans l'écorce de la fibre conductrice.
II a maintenant été trouvé que l'absence de nanotubes dans l'écorce d'une fibre conductrice multicouche permet d'éviter le relarguage de ceux-ci lors d'opérations entraînant une abrasion superficielle de la fibre (notamment lors du tissage ou du tricotage) , sans pour autant affecter négativement la conductivité entre fibres, qui est assurée par chauffage au-delà de la température de transition vitreuse lors de leur mise en forme .
La présente invention a ainsi pour objet une fibre conductrice multicouche, comprenant :
- un coeur constitué d'une première matrice polymérique renfermant au moins un polymère thermoplastique et une dispersion de nanotubes d'au moins un élément chimique chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, lesdits nanotubes étant capables d'assurer une conduction thermique et/ou électrique, - une écorce constituée d'une seconde matrice polymérique renfermant au moins un polymère thermoplastique autre que le poly (alcool vinylique)et ne contenant pas de dispersion de nanotubes d'au moins un élément chimique chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique. En préambule, il est précisé que dans l'ensemble de cette description, l'expression "compris (e) entre" doit être interprétée comme incluant les bornes citées.
Par "fibre", on entend, au sens de la présente invention, un filament, dont le diamètre est compris entre 100 nm et 10 mm, avantageusement entre 100 nm et 3 mm, de préférence entre 1 μm et 3 mm, plus particulièrement entre 1 et 100 μm. Selon un mode de réalisation de l'invention, le coeur de la fibre forme une structure pleine. En variante, il peut toutefois définir une structure creuse. Cette structure peut par ailleurs être ou non poreuse. Sur le plan de son utilisation, une fibre est destinée à assurer la tenue d'une pièce mécanique, à la renforcer, et se distingue ainsi d'un tube ou canalisation destiné à transporter un fluide.
La fibre selon l'invention est fabriquée à partir de deux matrices polymériques au moins, dont l'une (la première matrice polymérique) forme le coeur et l'autre
(la seconde matrice polymérique) forme l'écorce. D'autres matrices polymériques peuvent également être utilisées dans la fabrication de la fibre selon l'invention. Il est ainsi possible de disposer d'une fibre multicouche renfermant uniquement deux couches (le coeur et l'écorce) ou plus de deux couches, dans le cas où une ou plusieurs autres couches sont interposées entre le coeur et l'écorce et/ou recouvrent l'écorce.
La première et/ou la seconde matrice polymérique contiennent au moins un polymère thermoplastique, qui peut être un homopolymère ou un copolymère à blocs, alterné, statistique ou à gradient. Le polymère thermoplastique peut notamment être choisi parmi :
- les polyamides tels que le polyamide 6 (PA-6), le polyamide 11 (PA-Il), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10 (PA-6.10) et le polyamide 6.12 (PA-6.12), certains de ces polymères étant notamment commercialisés par la société ARKEMA sous la dénomination Rilsan® et les préférés étant ceux de grade fluide tels que le Rilsan® AMNO TLD, ainsi que les copolymères, notamment les copolymères blocs, renfermant des monomères amides et d'autres monomères tels que le polytétraméthylène glycol (PTMG) (Pebax®) ; les polyamides aromatiques tels que les polyphtalamides ;
- les polymères fluorés choisis parmi :
(i) ceux comprenant au moins 50% molaire d'au moins un monomère de formule (I) :
CFX1=CX2X3 (I)
où Xi, X2 et X3 désignent indépendamment un atome d'hydrogène ou d'halogène (en particulier de fluor ou de chlore), tels que le poly (fluorure de vinylidène) (PVDF), de préférence sous forme α, le poly (trifluoroéthylène) (PVF3), le polytétrafluoroéthylène (PTFE), les copolymères de fluorure de vinylidène avec soit 1 ' hexafluoropropylène (HFP), soit le trifluoroéthylène (VF3), soit le tétrafluoroéthylène (TFE), soit le chlorotrifluoroéthylène (CTFE), les copolymères fluoroéthylène / propylène (FEP) , les copolymères d'éthylène avec soit le fluoroéthylène/propylène (FEP), soit le tétrafluoroéthylène (TFE) , soit le chlorotrifluoroéthylène (CTFE) ; (ii) ceux comprenant au moins 50% molaire d'au moins un monomère de formule (II) :
R-O-CH-CH2 (II) où R désigne un radical alkyle perhalogéné (en particulier perfluoré) , tels que le perfluoropropyl vinyléther (PPVE) , le perfluoroéthyl vinyléther (PEVE) et les copolymères d'éthylène avec le perfluorométhylvinyl éther (PMVE), certains de ces polymères étant notamment commercialisés par la société ARKEMA sous la dénomination Kynar® et les préférés étant ceux de grade injection tels que les Kynar® 710 ou 720 ;
- les polyaryléther cétones (PAEK) telles que la polyétheréther cétone (PEEK) et la polyéthercétone cétone (PEKK) ;
- les poly (chlorure de vinyle) ;
- les polyoléfines telles que le polyéthylène (PE) , le polypropylène (PP) et les copolymères d'éthylène et/ou de propylène (PE/PP) éventuellement fonctionnalisés ; - les polyuréthanes thermoplastiques (TPU) ;
- les polytéréphtalates d'éthylène ou de butylène ;
- les polymères siliconés ;
- les polymères acryliques ; et
- leurs mélanges ou leurs alliages.
On comprend que le (s) polymère (s) thermoplastique (s) contenu (s) dans la première matrice polymérique peu(ven)t ou non être choisi (s) dans la même famille que, voire identique à, celui ou ceux contenus dans la seconde matrice polymérique.
La première matrice polymérique renferme, outre le polymère thermoplastique mentionné ci-dessus, des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique. La matrice polymérique comprend avantageusement au moins un polymère choisi parmi : le PVDF, le PA-Il, le PA-12, le PEKK et le PE.
Ces nanotubes, de par leur nature et leur quantité, doivent être capables d'assurer une conduction thermique et/ou électrique. Ils peuvent être à base de carbone, de bore, de phosphore et/ou d'azote (borures, nitrures, carbures, phosphures) et par exemple constitués de nitrure de carbone, de nitrure de bore, de carbure de bore, de phosphure de bore, de nitrure de phosphore ou de boronitrure de carbone. Les nanotubes de carbone (ci- après, NTC) sont préférés pour une utilisation dans la présente invention.
Les nanotubes utilisables selon l'invention peuvent être du type monoparoi, à double paroi ou à parois multiples. Les nanotubes à double paroi peuvent notamment être préparés comme décrit par FLAHAUT et al dans Chem. Com. (2003), 1442. Les nanotubes à parois multiples peuvent de leur côté être préparés comme décrit dans le document WO 03/02456.
Les nanotubes ont habituellement un diamètre moyen allant de 0,1 à 200 nm, de préférence de 0,1 à 100 nm, plus préférentiellement de 0,4 à 50 nm et, mieux, de 1 à 30 nm et avantageusement une longueur de 0,1 à 10 μm. Leur rapport longueur/diamètre est de préférence supérieur à 10 et le plus souvent supérieur à 100. Leur surface spécifique est par exemple comprise entre 100 et 300 m2 /g et leur densité apparente peut notamment être comprise entre 0,05 et 0,5 g/cm3 et plus préférentiellement entre 0,1 et 0,2 g/cm3. Les nanotubes multiparois peuvent par exemple comprendre de 5 à 15 feuillets (ou parois) et plus préférentiellement de 7 à 10 feuillets. Ces nanotubes peuvent ou non être traités.
Un exemple de nanotubes de carbone bruts est notamment disponible dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength® C100.
Ces nanotubes peuvent être purifiés et/ou traités (par exemple oxydés) et/ou broyés et/ou fonctionnalisés, avant leur mise en oeuvre dans le procédé selon l'invention.
Le broyage des nanotubes peut être notamment effectué à froid ou à chaud et être réalisé selon les techniques connues mises en oeuvre dans des appareils tels que broyeurs à boulets, à marteaux, à meules, à couteaux, à jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de nanotubes. On préfère que cette étape de broyage soit pratiquée selon une technique de broyage par jet de gaz et en particulier dans un broyeur à jet d'air.
La purification des nanotubes bruts ou broyés peut être réalisée par lavage à l'aide d'une solution d'acide sulfurique, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, provenant de leur procédé de préparation. Le rapport pondéral des nanotubes à l'acide sulfurique peut notamment être compris entre 1 :2 et 1 :3. L'opération de purification peut par ailleurs être effectuée à une température allant de 90 à 12O0C, par exemple pendant une durée de 5 à 10 heures. Cette opération peut avantageusement être suivie d'étapes de rinçage à l'eau et de séchage des nanotubes purifiés. Les nanotubes peuvent en variante être purifiés par traitement thermique à haute température, typiquement supérieur à 10000C.
L'oxydation des nanotubes est avantageusement réalisée en mettant ceux-ci en contact avec une solution d'hypochlorite de sodium renfermant de 0,5 à 15% en poids de NaOCl et de préférence de 1 à 10% en poids de NaOCl, par exemple dans un rapport pondéral des nanotubes à
1 'hypochlorite de sodium allant de 1:0,1 à 1:1. L'oxydation est avantageusement réalisée à une température inférieure à 6O0C et de préférence à température ambiante, pendant une durée allant de quelques minutes à 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de filtration et/ou centrifugation, lavage et séchage des nanotubes oxydés .
La fonctionnalisation des nanotubes peut être réalisée par greffage de motifs réactifs tels que des monomères vinyliques à la surface des nanotubes. Le matériau constitutif des nanotubes est utilisé comme initiateur de polymérisation radicalaire après avoir été soumis à un traitement thermique à plus de 9000C, en milieu anhydre et dépourvu d'oxygène, qui est destiné à éliminer les groupes oxygénés de sa surface. Il est ainsi possible de polymériser du méthacrylate de méthyle ou du méthacrylate d ' hydroxyéthyle à la surface de nanotubes de carbone en vue de faciliter notamment leur dispersion dans le PVDF ou les polyamides. En outre, la fonctionnalisation des nanotubes inclus dans l'écorce de la fibre peut améliorer leur fixation au coeur de la fibre .
On utilise de préférence dans la présente invention des nanotubes bruts éventuellement broyés, c'est-à-dire des nanotubes qui ne sont ni oxydés ni purifiés ni fonctionnalisés et n'ont subi aucun autre traitement chimique et/ou thermique.
Les nanotubes peuvent représenter de 0,1 à 30% en poids, de préférence de 0,5 à 10% en poids, et encore plus préférentiellement de 1 à 5% en poids, par rapport au poids du coeur ou de l'écorce les contenant.
La présente invention a également pour objet un procédé de fabrication d'une fibre telle que décrite précédemment, ainsi que la fibre susceptible d'être obtenue suivant ce procédé.
Ce procédé comprend une étape de co-extrusion des première et seconde matrices polymériques, au travers d'une filière présentant une ouverture qui comprend un premier orifice de sortie alimenté par ladite première matrice polymérique et ayant la forme, en section transversale, dudit coeur, et un second orifice de sortie alimenté par ladite seconde matrice polymérique et ayant la forme, en section transversale, de ladite écorce .
Un tel procédé de co-extrusion est bien connu de l'homme du métier. Il implique généralement une étape préliminaire d'introduction, puis de mélange, dans un dispositif de malaxage, par exemple dans une extrudeuse (notamment une extrudeuse bivis co-rotative) ou un co- malaxeur de type BUSS®, des constituants respectifs des première et seconde matrices polymériques .
Les polymères thermoplastiques sont généralement introduits sous forme de granulés ou sous forme de poudre dans le dispositif de malaxage. Les nanotubes peuvent être introduits dans la même trémie d'alimentation que le polymère ou dans une trémie distincte.
Les matrices polymériques utilisées selon l'invention peuvent par ailleurs contenir au moins un adjuvant choisi parmi les plastifiants, les stabilisants anti-oxygène, les stabilisants à la lumière, les colorants, les agents anti-choc, les agents antistatiques (autres que les nanotubes), les agents ignifugeants, les lubrifiants, et leurs mélanges.
On préfère que la matrice polymérique renfermant les nanotubes conducteurs (ci-après, matrice polymérique conductrice) contienne au moins un dispersant, destiné à améliorer la dispersion des nanotubes dans cette matrice. Celui-ci peut être un copolymère à blocs tel que décrit dans la demande WO 2005/108485, c'est-à-dire un copolymère comportant au moins un bloc 1 porteur de fonctions ioniques ou ionisables, issu de la polymérisation d'un monomère Ml représentant au moins 10% en poids du bloc 1 (tel que l'acide (méth) acrylique ou l'anhydride maléique) et d'au moins un monomère M2 (tel qu'un (méth) acrylate ou un dérivé du styrène), et éventuellement au moins un bloc 2 compatible avec le polymère thermoplastique de la matrice polymérique conductrice, si le bloc 1 ne l'est pas. En variante, le dispersant peut être un agent plastifiant qui est alors avantageusement introduit dans le dispositif de malaxage en amont, ou dans, la zone de fusion du polymère thermoplastique.
Selon une forme d'exécution de l'invention, le plastifiant, le polymère thermoplastique et les nanotubes peuvent être introduits simultanément ou successivement dans la même trémie d'alimentation du mélangeur. On préfère en général introduire l'intégralité du plastifiant dans cette trémie. Les matériaux précités peuvent être introduits successivement, dans un ordre quelconque, soit directement dans la trémie, soit dans un récipient approprié où ils sont homogénéisés avant d'être introduits dans la trémie.
Dans cette forme d'exécution, on préfère que le polymère se trouve majoritairement sous forme de poudre, plutôt que de granulés. La Demanderesse a en effet démontré qu'il en résultait une meilleure dispersion des nanotubes dans la matrice polymère, et une meilleure conductivité de la matrice conductrice obtenue. En pratique, on pourra utiliser un mélange de polymère sous forme de poudre et de polymère sous forme de granulés, dans un rapport pondéral du polymère sous forme de poudre au polymère sous forme de granulés allant de 70:30 à 100:0, plus préférentiellement de 90:10 à 100:0.
Cette forme d'exécution de l'invention est bien adaptée aux plastifiants solides. Ceux-ci peuvent éventuellement être introduits dans la trémie d'alimentation du mélangeur sous forme de pré-composite avec les nanotubes. Un tel pré-composite, renfermant 70% en poids de poly (butylène téréphtalate) cyclisé comme plastifiant et 30% en poids de nanotubes multi-parois, est par exemple disponible dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength® C M12-30.
Cette forme d'exécution de l'invention peut toutefois être également mise en oeuvre dans le cas où le plastifiant se trouve à l'état liquide. Dans ce cas, les nanotubes et le plastifiant peuvent être introduits dans la trémie ou le récipient précité sous forme de précomposite. Un tel pré-composite peut par exemple être obtenu suivant un procédé impliquant : 1- la mise en contact d'un plastifiant sous forme liquide, éventuellement à l'état fondu ou en solution dans un solvant, avec les nanotubes en poudre, par exemple par dispersion ou introduction directe par déversement du plastifiant dans la poudre de nanotubes (ou le contraire) , par introduction goutte-à-goutte du plastifiant dans la poudre ou par nébulisation du plastifiant à l'aide d'un pulvérisateur sur la poudre de nanotubes, et
2- le séchage du pré-composite obtenu, éventuellement après élimination du solvant (typiquement par évaporation) .
La première étape ci-dessus peut être réalisée dans des réacteurs de synthèse traditionnels, des mélangeurs à pales, des réacteurs à lit fluidisé ou dans des appareils de mélange de type Brabender, mélangeur bras en Z ou extrudeuse. On préfère généralement utiliser un mélangeur conique, par exemple de type Vrieco-Nauta d'HOSOKAWA, comprenant une vis rotative tournant le long de la paroi d'une cuve conique.
En variante, un pré-composite peut être formé à partir du plastifiant liquide et du polymère thermoplastique, avant mélange avec les nanotubes.
Dans tous les cas, la matrice polymérique conductrice obtenue est introduite dans une filière de co-extrusion, avec l'autre matrice polymérique ne contenant pas de nanotubes.
Cette filière peut présenter des premier et second orifices de sortie de forme et de disposition quelconques, respectivement pour les première et seconde matrices polymériques, pour autant que la seconde matrice polymérique forme au moins partiellement une écorce autour de la première matrice polymérique. Dans une première variante de l'invention, les premier et second orifices sont concentriques. Le second orifice peut dans ce cas être disposé sur toute la périphérie du premier orifice ou sur une portion seulement de celle-ci. Dans une seconde variante, le second orifice peut être disposé partiellement à la périphérie du premier orifice et partiellement au travers du premier orifice. Le premier orifice peut ainsi revêtir la forme de deux demi-lunes, par exemple. En outre, le coeur de la fibre selon l'invention peut revêtir une forme, en section transversale, circulaire, elliptique, carrée, rectangulaire, triangulaire ou multilobale. Le recours à une forme multilobale permet notamment, lors du tissage ultérieure des fibres, de faire connecter les lignes de surface des fibres. Après cette étape de co-extrusion, le procédé selon l'invention peut en outre comprendre une étape supplémentaire consistant à étirer les fibres obtenues, à une température supérieure à la température de transition vitreuse (Tg) du polymère thermoplastique de la matrice non conductrice et éventuellement supérieure à la Tg du polymère thermoplastique de la matrice polymérique conductrice et de préférence inférieure à la température de fusion du polymère thermoplastique de la matrice non conductrice. Cette étape d'étirage peut en outre éventuellement être conduite à une température supérieure à la température de fusion du polymère thermoplastique de la matrice polymérique conductrice, afin d'améliorer ses propriétés conductrices. L'étape d'étirage, décrite dans le brevet US-6,331,265 qui est incorporé ici par référence, permet d'orienter les nanotubes et le polymère sensiblement dans la même direction, selon l'axe de la fibre, et d'améliorer ainsi les propriétés mécaniques de cette dernière, notamment son module de traction (module d'Young) et sa ténacité (seuil de rupture) . Le rapport d'étirage, défini comme le rapport de la longueur de la fibre après étirage à sa longueur avant étirage, peut être compris entre 1 et 20, de préférence entre 1 et 10, bornes incluses. L'étirage peut se faire en une seule fois, ou en plusieurs fois en laissant la fibre relaxer légèrement entre chaque étirage. Cette étape d'étirage est de préférence conduite en faisant passer les fibres dans une série de rouleaux ayant des vitesses de rotation différentes, ceux qui déroulent la fibre tournant à plus faible vitesse que ceux qui la réceptionnent. Pour atteindre la température d'étirage voulue, on peut soit faire passer les fibres dans des fours disposés entre les rouleaux, soit utiliser des rouleaux chauffants, soit combiner ces deux techniques.
En outre, bien que les fibres conductrices multicouches obtenues selon ce procédé soient intrinsèquement conductrices, c'est-à-dire que la matrice polymérique conductrice présente une résistivité qui peut être inférieure à 105 ohm. cm à température ambiante, la conductivité électrique de ces fibres peut encore être améliorée par des traitements thermiques.
Les fibres conductrices multicouches selon l'invention peuvent être utilisées pour la fabrication de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexible off-shore ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; de revêtements de sièges automobiles ; d'éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées ; d'emballages et de textiles antistatiques, notamment de rideaux antistatiques, de vêtements antistatiques (par exemple, de sécurité ou pour salle blanche) ou de matériaux pour la protection de silos ou le conditionnement et/ou le transport de poudres ou de matériaux granulaires ; d'éléments d'ameublement, notamment de mobilier pour salle blanche ; de filtres ; de dispositifs de blindage électromagnétique, notamment pour la protection de composants électroniques ; de textiles chauffants ; de câbles conducteurs; de capteurs, notamment de capteurs de déformation ou de contraintes mécaniques ; d'électrodes ; de dispositifs de stockage d'hydrogène ; ou de dispositifs biomédicaux tels que des fils de suture, des prothèses ou des cathéters. La fabrication de ces pièces composites peut être réalisée suivant différents procédés, impliquant en général une étape d'imprégnation des fibres par une composition polymérique renfermant au moins un matériau thermoplastique, élastomère ou thermodurcissable . Cette étape d'imprégnation peut elle-même être effectuée suivant différentes techniques, en fonction notamment de la forme physique de la composition utilisée (pulvérulente ou plus ou moins liquide). L'imprégnation des fibres est de préférence réalisée suivant un procédé d'imprégnation en lit fluidisé, dans lequel la composition polymérique se trouve à l'état de poudre. On préfère en outre que la matrice polymérique d'imprégnation comprenne au moins l'un des matériaux thermoplastiques utilisés pour la fabrication des fibres conductrices multicouches selon l'invention.
On obtient ainsi des semi-produits qui sont ensuite utilisés dans la fabrication de la pièce composite recherchée. Différents tissus de fibres pré-imprégnés, de composition identique ou différente, peuvent être empilés pour former une plaque ou un matériau stratifié, ou en variante soumis à un procédé de thermoformage. En variante, les fibres peuvent être associées pour former des rubans qui sont susceptibles d'être utilisés dans un procédé d'enroulement filamentaire permettant l'obtention de pièces creuses de forme quasi-illimitée, par enroulement des rubans sur un mandrin ayant la forme de la pièce à fabriquer. Dans tous les cas, la fabrication de la pièce finie comprend une étape de consolidation de la composition polymérique, qui est par exemple fondue localement pour créer des zones de fixation des fibres entre elles et/ou solidariser les rubans de fibres dans le procédé d'enroulement filamentaire .
En variante encore, il est possible de préparer un film à partir de la composition d'imprégnation, notamment au moyen d'un procédé d'extrusion ou de calandrage, ledit film ayant par exemple une épaisseur d'environ 100 μm, puis de le placer entre deux mats de fibres selon l'invention, l'ensemble étant alors pressé à chaud pour permettre l'imprégnation des fibres et la fabrication du composite .
Dans ces procédés, les fibres multicouches selon l'invention peuvent être tissées ou tricotées, seules ou avec d'autres fibres, ou être utilisées, seules ou en association avec d'autres fibres, pour la fabrication de feutres ou de matériaux non-tissés. Des exemples de matériaux constitutifs de ces autres fibres comprennent, sans limitation : - les fibres de polymère étiré, à base notamment : de polyamide tel que le polyamide 6 (PA-6), le polyamide 11 (PA-Il), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10 (PA-6.10) ou le polyamide 6.12 (PA-6.12), de copolymère bloc polyamide/polyéther (Pebax®) , de polyéthylène haute densité, de polypropylène ou de polyester tel que les polyhydroxyalcanoates et les polyesters commercialisés par DU PONT sous la dénomination commerciale Hytrel® ;
- les fibres de carbone ; - les fibres de verre, notamment de type E, R ou S2 ;
- les fibres d'aramide (Kevlar®) ;
- les fibres de bore ; - les fibres de silice ;
- les fibres naturelles telles que le lin, le chanvre, le sisal, le coton, la laine ou la soie ; et
- leurs mélanges, tels que les mélanges de fibres de verre, carbone et aramide.
L'invention a donc également pour objet un matériau composite comprenant des fibres composites multicouches telles que décrites précédemment, liées entre elles par tissage ou à l'aide d'une matrice polymérique.

Claims

REVENDICATIONS
1. Fibre conductrice multicouche, comprenant : - un coeur constitué d'une première matrice polymérique renfermant au moins un polymère thermoplastique et une dispersion de nanotubes d'au moins un élément chimique chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, lesdits nanotubes étant capables d'assurer une conduction thermique et/ou électrique,
- une écorce constituée d'une seconde matrice polymérique renfermant au moins un polymère thermoplastique autre que le poly (alcool vinylique)et ne contenant pas de dispersion de nanotubes d'au moins un élément chimique chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique.
2. Fibre selon la revendication 1, caractérisée en ce que le coeur de la fibre forme une structure pleine.
3. Fibre selon la revendication 1 ou 2, caractérisée en ce que les nanotubes sont des nanotubes de carbone.
4. Fibre selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le polymère thermoplastique de la première et/ou de la seconde matrice polymérique est choisi parmi :
- les polyamides tels que le polyamide 6 (PA-6), le polyamide 11 (PA-Il), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10 (PA-6.10) et le polyamide 6.12 (PA-6.12), ainsi que les copolymères, notamment les copolymères blocs, renfermant des monomères amides et d'autres monomères tels que le polytétraméthylène glycol (PTMG) ; les polyamides aromatiques tels que les polyphtalamides ; - les polymères fluorés choisis parmi :
(i) ceux comprenant au moins 50% molaire d'au moins un monomère de formule (I) :
CFX1=CX2X3 (I)
où Xi, X2 et X3 désignent indépendamment un atome d'hydrogène ou d'halogène (en particulier de fluor ou de chlore), tels que le poly (fluorure de vinylidène) (PVDF), de préférence sous forme α, le poly (trifluoroéthylène) (PVF3), le polytétrafluoroéthylène (PTFE), les copolymères de fluorure de vinylidène avec soit 1 ' hexafluoropropylène (HFP), soit le trifluoroéthylène (VF3), soit le tétrafluoroéthylène (TFE), soit le chlorotrifluoroéthylène (CTFE) , les copolymères fluoroéthylène / propylène (FEP) , les copolymères d'éthylène avec soit le fluoroéthylène/propylène (FEP), soit le tétrafluoroéthylène (TFE) , soit le chlorotrifluoroéthylène (CTFE) ;
(ii) ceux comprenant au moins 50% molaire d'au moins un monomère de formule (II) : R-O-CH-CH2 (II) où R désigne un radical alkyle perhalogéné (en particulier perfluoré) , tels que le perfluoropropyl vinyléther (PPVE) , le perfluoroéthyl vinyléther (PEVE) et les copolymères d'éthylène avec le perfluorométhylvinyl éther (PMVE;
- les polyaryléther cétones (PAEK) telles que la polyétheréther cétone (PEEK) et la polyéthercétone cétone (PEKK) ; - les poly (chlorure de vinyle) ;
- les polyoléfines telles que le polyéthylène (PE) , le polypropylène (PP) et les copolymères d'éthylène et/ou de propylène (PE/PP) éventuellement fonctionnalisés ; - les polyuréthanes thermoplastiques (TPU) ;
- les polytéréphtalates d'éthylène ou de butylène ;
- les polymères siliconés ;
- les polymères acryliques ; et
- leurs mélanges ou leurs alliages.
5. Fibre selon la revendication 4, caractérisée en ce que la matrice polymérique renfermant les nanotubes comprend au moins un polymère choisi parmi : le PVDF, le PA-Il, le PA-12, le PEKK et le PE.
6. Fibre selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le coeur renfermant les nanotubes contient de 0,1 à 30% en poids, de préférence de 0,5 à 10% en poids, de nanotubes.
7. Procédé de fabrication d'une fibre selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend une étape de co-extrusion desdites matrices polymériques, au travers d'une filière présentant une ouverture qui comprend un premier orifice de sortie alimenté par ladite première matrice polymérique et ayant la forme, en section transversale, dudit coeur, et un second orifice de sortie alimenté par ladite seconde matrice polymérique et ayant la forme, en section transversale, de ladite écorce.
8. Procédé selon la revendication 7, caractérisé en ce que le coeur a une forme, en section transversale, circulaire, elliptique, carrée, rectangulaire, triangulaire ou multilobale.
9. Procédé selon l'une des revendications 7 et 8, caractérisé en ce que le second orifice est disposé partiellement à la périphérie du premier orifice et partiellement au travers du premier orifice.
10. Procédé selon l'une des revendications 7 et 8 caractérisé en ce que les premier et second orifices sont concentriques .
11. Fibre conductrice multicouche susceptible d'être obtenue suivant le procédé selon l'une quelconque des revendications 7 à 10.
12. Utilisation de la fibre conductrice multicouche selon la revendication 11 pour la fabrication de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexible off-shore ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; de revêtements de sièges automobiles ; d'éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées ; d'emballages et de textiles antistatiques, notamment de rideaux antistatiques, de vêtements antistatiques (par exemple, de sécurité ou pour salle blanche) ou de matériaux pour la protection de silos ou le conditionnement et/ou le transport de poudres ou de matériaux granulaires ; d'éléments d'ameublement, notamment de mobilier pour salle blanche ; de filtres ; de dispositifs de blindage électromagnétique, notamment pour la protection de composants électroniques ; de textiles chauffants ; de câbles conducteurs; de capteurs, notamment de capteurs de déformation ou de contraintes mécaniques ; d'électrodes ; de dispositifs de stockage d'hydrogène ; ou de dispositifs biomédicaux tels que des fils de suture, des prothèses ou des cathéters.
13. Matériau composite comprenant des fibres composites multicouches selon la revendication 11, liées entre elles par tissage ou à l'aide d'une matrice polymérique.
EP10728834A 2009-05-27 2010-05-27 Fibre conductrice multicouche et son procede d'obtention par co-extrusion Withdrawn EP2435608A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953507A FR2946176A1 (fr) 2009-05-27 2009-05-27 Fibre conductrice multicouche et son procede d'obtention par co-extrusion.
PCT/FR2010/051026 WO2010136729A1 (fr) 2009-05-27 2010-05-27 Fibre conductrice multicouche et son procede d'obtention par co-extrusion

Publications (1)

Publication Number Publication Date
EP2435608A1 true EP2435608A1 (fr) 2012-04-04

Family

ID=41402432

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10728834A Withdrawn EP2435608A1 (fr) 2009-05-27 2010-05-27 Fibre conductrice multicouche et son procede d'obtention par co-extrusion

Country Status (8)

Country Link
US (1) US20120077403A1 (fr)
EP (1) EP2435608A1 (fr)
JP (1) JP2012528253A (fr)
KR (1) KR20120017436A (fr)
CN (1) CN102449211A (fr)
FR (1) FR2946176A1 (fr)
IL (1) IL216216A0 (fr)
WO (1) WO2010136729A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683312B2 (en) * 2011-12-10 2017-06-20 The Boeing Company Fiber with gradient properties and method of making the same
US9683310B2 (en) * 2011-12-10 2017-06-20 The Boeing Company Hollow fiber with gradient properties and method of making the same
CN102785437B (zh) * 2012-07-19 2016-08-03 中国航空工业集团公司北京航空材料研究院 一种复合导电薄层及其制备方法和应用
CN103088463A (zh) * 2012-09-11 2013-05-08 厦门厦迪亚斯环保过滤技术有限公司 一种复合单丝
KR102066482B1 (ko) * 2013-07-16 2020-01-15 삼성전자주식회사 섬유 강화 플라스틱 소재 및 그를 포함하는 전자 기기
CN104451950A (zh) * 2014-12-23 2015-03-25 常熟市云燕化纤有限公司 复合抗静电纤维
FR3058167B1 (fr) * 2016-10-28 2019-11-22 Arkema France Nouveau procede de fabrication de materiaux hautement carbones et materiau hautement carbone obtenu
EP3536836B1 (fr) * 2016-11-01 2022-07-27 Teijin Limited Tissu, son procédé de fabrication et produit fibreux
WO2019079478A1 (fr) 2017-10-18 2019-04-25 University Of Central Florida Research Foundation, Inc. Fibres ayant un noyau électriquement conducteur et un revêtement changeant de couleur
KR20190125711A (ko) * 2018-04-30 2019-11-07 한국과학기술원 고 신축성 압저항 와이어 센서 및 이의 제조 방법
CN109778347A (zh) * 2018-12-06 2019-05-21 中国纺织科学研究院有限公司 异形截面复合导电纤维及其制备方法、抗静电面料及其放电方法
JP7233286B2 (ja) * 2019-03-29 2023-03-06 林テレンプ株式会社 車両用外装部材及びその製造方法
CN109972430B (zh) * 2019-04-23 2021-12-10 东华大学 一种基于碳纳米管纱线的断裂预警绳索及其制备方法
US11479886B2 (en) 2020-05-21 2022-10-25 University Of Central Florida Research Foundation, Inc. Color-changing fabric and applications
US11708649B2 (en) 2020-05-21 2023-07-25 University Of Central Florida Research Foundation, Inc. Color-changing fabric having printed pattern
CN115522270B (zh) * 2022-10-26 2023-04-28 山东金冠网具有限公司 一种具有皮芯结构的导电聚合物纤维及制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803453A (en) * 1972-07-21 1974-04-09 Du Pont Synthetic filament having antistatic properties
US5260013A (en) * 1989-05-22 1993-11-09 E. I. Du Pont De Nemours And Company Sheath-core spinning of multilobal conductive core filaments
GB9910664D0 (en) 1999-05-07 1999-07-07 Zeneca Ltd Cells and assay
EP1054036A1 (fr) 1999-05-18 2000-11-22 Fina Research S.A. Polymères renforcées
FR2805179B1 (fr) 2000-02-23 2002-09-27 Centre Nat Rech Scient Procede d'obtention de fibres et de rubans macroscopiques a partir de particules colloidales, et notamment de nanotubes de carbone
FR2826646B1 (fr) 2001-06-28 2004-05-21 Toulouse Inst Nat Polytech Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
US20050170177A1 (en) * 2004-01-29 2005-08-04 Crawford Julian S. Conductive filament
FR2870251B1 (fr) 2004-05-11 2010-09-17 Arkema Materiaux composites a base de nanotubes de carbone et matrices polymeres et leurs procedes d'obtention
US7238415B2 (en) * 2004-07-23 2007-07-03 Catalytic Materials, Llc Multi-component conductive polymer structures and a method for producing same
KR100583366B1 (ko) * 2004-12-31 2006-05-26 주식회사 효성 도전성이 우수한 복합섬유의 제조방법
CN1840750A (zh) * 2006-02-09 2006-10-04 东华大学 一种含碳纳米管的导电复合纤维及其制备方法
CN101835542A (zh) * 2007-10-11 2010-09-15 佐治亚科技研究公司 碳纤维和碳薄膜及其制造方法
WO2009053470A1 (fr) * 2007-10-24 2009-04-30 Queen Mary And Westfield College, University Of London Composite polymère conducteur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010136729A1 *

Also Published As

Publication number Publication date
JP2012528253A (ja) 2012-11-12
FR2946176A1 (fr) 2010-12-03
KR20120017436A (ko) 2012-02-28
CN102449211A (zh) 2012-05-09
US20120077403A1 (en) 2012-03-29
IL216216A0 (en) 2012-01-31
WO2010136729A1 (fr) 2010-12-02

Similar Documents

Publication Publication Date Title
EP2435608A1 (fr) Fibre conductrice multicouche et son procede d'obtention par co-extrusion
EP2370619B1 (fr) Fibre composite a base de pekk, son procede de fabrication et ses utilisations
EP2160275B1 (fr) Procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé
EP2256236A1 (fr) Procédé de fabrication de fibres composites conductrices à haute teneur en nanotubes
WO2009007617A2 (fr) Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere thermoplastique
EP2430081B1 (fr) Substrat fibreux, procede de fabrication et utilisations d'un tel substrat fibreux
FR2946178A1 (fr) Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation.
FR2978170A1 (fr) Fibres composites conductrices a base de graphene
WO2009047466A2 (fr) Procédé de préparation de matériaux composites
WO2009047456A2 (fr) Procede continu d ' obtention de fibres composites a base de particules colloïdales et fibre obtenue par ce procede
WO2013190224A1 (fr) Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique
EP3172269A1 (fr) Procédé de préparation d'une structure composite stratifiée électriquement conductrice
FR2918067A1 (fr) Materiau composite comprenant des nanotubes disperses dans une matrice polymerique fluroree.
EP3008130A1 (fr) Composition a base de polyamide mxd.10
FR2991333A1 (fr) Utilisation de nanocharges carbonees a tres faible taux pour le renfort mecanique de materiaux composites eventuellement charges
WO2012131265A1 (fr) Matériau composite renfermant des nanotubes de carbone et des particules de structure coeur-écorce
WO2012160288A1 (fr) Fibres composites conductrices comprenant des charges conductrices carbonees et un polymere conducteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130325

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130806