EP2433302A2 - Teiltransparente flexible dünnschichtsolarzellen und verfahren zu ihrer herstellung - Google Patents

Teiltransparente flexible dünnschichtsolarzellen und verfahren zu ihrer herstellung

Info

Publication number
EP2433302A2
EP2433302A2 EP10734025A EP10734025A EP2433302A2 EP 2433302 A2 EP2433302 A2 EP 2433302A2 EP 10734025 A EP10734025 A EP 10734025A EP 10734025 A EP10734025 A EP 10734025A EP 2433302 A2 EP2433302 A2 EP 2433302A2
Authority
EP
European Patent Office
Prior art keywords
film solar
solar cells
flexible
thin
flexible thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10734025A
Other languages
English (en)
French (fr)
Inventor
Steffen Ragnow
Alexander Braun
Karsten Otte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OC3 AG
Original Assignee
Solarion AG Photovotaik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solarion AG Photovotaik filed Critical Solarion AG Photovotaik
Publication of EP2433302A2 publication Critical patent/EP2433302A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a process for producing semi-transparent flexible thin-film solar cells, which can be used both in architecture and in the automotive industry.
  • thin-film solar cells are connected to a solid support, usually glass, and scored with laser beams.
  • the result is an opening through which light can pass through and thus creates the transparency.
  • transparent carriers in particular with glass as carrier.
  • expensive production technology such as Laser technology, necessary to create crossing points.
  • crystalline silicon wafers are milled in such a way that a cross lattice is formed.
  • the crossing points are characterized by total material removal, so that here creates a transparency that is desired.
  • the invention aims to provide transparent or partially transparent thin-film solar cells in an economically justifiable manner. This is to be achieved by an intelligent procedure of production.
  • the thin-film solar cells according to the invention should have a balanced ratio of optical transparency and electrical power in order to meet the respective specific requirements of the field of application.
  • the invention has the object of specifying a method for producing transparent or partially transparent thin-film solar cells on a flexible support and to produce transparent or partially transparent thin-film solar cells by this method.
  • the object is achieved in that first a flexible thin-film solar cell is produced in a conventional manner by layer construction on a flexible support.
  • the flexible carrier may be a plastic such as polyimide, metal foil, thin ceramic, textile or the like.
  • the layer structure of the thin-film solar cell can lead to CuInSe 2 (CIS), Cu (In 1 Ga) Se 2 (CIGS), Cu (In 1 Ga) (Se 1 S) 2 (CIGSS) or CuGaSe 2 (CGS) or comparable thin-film solar cells.
  • flexible thin-film solar cells are processed with a tool in such a way that the entire cell structure, including the flexible carrier, is broken through. Suitable for this is, for example, a punch that creates openings as a pattern through the cell. The openings ensure transparency, they act as windows for the light, while the framework of the thin-film solar cells ensures their stability.
  • Particularly suitable tools are rotary punching tools, but also micro drills or laser beam arrangements.
  • the ratio of areas between the removed and remaining thin-film solar cell is 5: 1 to 1:60. Preference is given to a ratio of 1: 8. This ensures stability as well as transparency and limits the loss of energy conversion capacity.
  • the stamped thin-film solar cells are laminated between transparent rigid sheets or films, so that a rigid or flexible stability is ensured, which may be required in a number of applications. Extensive tests have determined which stamping patterns are particularly suitable for ensuring the stability of the flexible thin-film solar cell, ensuring transparency to the desired extent and keeping the energy yield at the required level.
  • This example 1 is not inventive and describes the manufacturing process of a CIGS thin-film solar cell, which is subsequently made partially transparent. The procedure is as follows:
  • a buffer layer over its entire area, preferably consisting of cadmium sulfide (CdS) in the wet-chemical bath, e.g. to DE 10 2007 036 715
  • the following variants have been realized: on (a): in addition to polyimide film, other temperature-stable polymer films, metal foils, glass substrates or composite materials (eg glass fiber reinforced textiles) have been used as substrates.
  • the molybdenum layer can also consist of several metal layers.
  • the compounds CuGaSe 2 , CuInSe 2 , CuGaS 2 , CuInS 2 , Cu (In 1 Ga) (S 1 Se) 2 have also been used as the photoactive layer.
  • the photoactive layer can also be represented by a printing process, a galvanic deposition or the sputtering of the metals and Cu, In, Ga and subsequent selenization.
  • the CdS layer has been replaced by alternative buffers such as ZnS, ZnSe, InS, InSe, ZnMgO, etc.
  • the process for producing partially transparent thin-film solar cells is based on functional thin-film solar cells and treats them as follows.
  • process step g) application of the contact grid
  • the cells are separated into required sizes by means of a rotary die.
  • areas are punched out between the contact fingers with the same rotary die to achieve partial transparency.
  • the punched out areas can have any shapes such as rectangles, squares, stars, crosses, etc. (each with or without rounded corners). Preferred shapes are circles. For circles there is the least risk of tearing and thus damage to the flexible thin-film solar cell.
  • the entire layer structure of the solar cell including the flexible substrate is severed.
  • any mechanical punching such as punching
  • Flat bed punches, micro drills or lasers are used.
  • the punching tool used is a rotary die cutter. After treatment, the cells have the following parameters.
  • Example cell 1 Example cell 2
  • the punching can also take place before the application of the contact fingers (process step g) or before the structuring trenches (process step f) are produced.
  • Example 3 The flexible thin-film solar cells are fixed and contacted between two transparent rigid bearing surfaces, namely glass plates.
  • the thin-film solar cells are fixed and contacted between two transparent flexible bearing surfaces, namely transparent plastic films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung hat die Aufgabe, transparente und teiltransparente flexible Dünnschichtsolarzellen zur Verfügung zu stellen. Die Aufgabe wird gelöst, indem flexible Dünnschichtsolarzellen mit einem Werkzeug dergestalt bearbeitet werden, dass der gesamte Zellenaufbau durchstoßen wird, durch die geschaffenen Öffnungen die Transparenz gesichert ist und die Ausbeute der Energiewandlung hoch bleibt. Ein Beispiel ist eine flexible Dünnschichtsolarzelle, die der Abbildung entspricht.

Description

Teiltransparente flexible Dünnschichtsolarzellen und Verfahren zu ihrer Herstellung
Die Erfindung betrifft ein Verfahren zur Herstellung teiltransparenter flexibler Dünnschichtsolarzellen, die sowohl in der Architektur als auch in der Autoindustrie angewendet werden können.
Es ist bereits bekannt, teiltransparente Dünnschichtsolarzellen herzustellen. Zu diesem Zweck werden Dünnschichtsolarzellen auf einem festen Träger, meistens Glas, verschaltet und mit Laserstrahlen geritzt. Es entsteht eine Öffnung, durch welche Licht durchtreten kann und damit die Transparenz erzeugt. Dies funktioniert naturgemäß nur bei transparenten Trägern, insbesondere bei Glas als Träger. Zusätzlich ist die Verwendung einer teuren Produktionstechnologie, wie z.B. Lasertechnologie, zur Erzeugung der Kreuzungspunkte notwendig.
Es ist weiterhin bekannt, dass kristalline Silizium-Wafer dergestalt gefräst werden, dass ein Kreuzgitter entsteht. Dabei sind die Kreuzungspunkte durch totalen Materialabtrag gekennzeichnet, so dass hier eine Transparenz entsteht, die gewünscht ist.
Es ist bisher nicht bekannt, teiltransparente Dünnschichtsolarzellen auf flexiblem Trägermaterial herzustellen.
Die Erfindung hat das Ziel, in ökonomisch vertretbarer Weise transparente oder teiltransparente Dünnschichtsolarzellen zur Verfügung zu stellen. Das soll durch einen intelligenten Verfahrensablauf der Herstellung erreicht werden. Die erfindungsgemäßen Dünnschichtsolarzellen sollen ein ausgewogenes Verhältnis von optischer Transparenz und elektrischer Leistung aufweisen, um den jeweiligen spezifischen Anforderungen des Einsatzgebietes gerecht zu werden.
Die Erfindung hat die Aufgabe, ein Verfahren zur Herstellung transparenter oder teiltransparenter Dünnschichtsolarzellen auf einem flexiblen Träger anzugeben und nach diesem Verfahren transparente oder teiltransparente Dünnschichtsolarzellen herzustellen. Die Aufgabe wird dadurch gelöst, dass zunächst eine flexible Dünnschichtsolarzelle in an sich bekannter Weise durch Schichtaufbau auf einem flexiblen Träger hergestellt wird. Der flexible Träger kann dabei ein Kunststoff wie Polyimid, Metallfolie, dünne Keramik, Textil oder dergleichen sein. Der Schichtaufbau der Dünnschichtsolarzelle kann zu CuInSe2 (CIS), Cu(In1Ga)Se2 (CIGS), Cu(In1Ga)(Se1S)2 (CIGSS) oder CuGaSe2 (CGS) oder vergleichbaren Dünnschichtsolarzellen führen.
Erfindungsgemäß werden flexible Dünnschichtsolarzellen mit einem Werkzeug dergestalt bearbeitet, dass der gesamte Zellenaufbau einschließlich des flexiblen Trägers durchbrochen wird. Geeignet dazu ist zum Beispiel ein Stanzwerkzeug, das Öffnungen als ein Muster durch die Zelle erzeugt. Die Öffnungen gewährleisten die Transparenz, sie wirken als Fenster für das Licht, während das Gerüst der Dünnschichtsolarzellen die Stabilität derselben sichert.
Als Werkzeug besonders geeignet sind Rotationsstanzwerkzeuge, aber auch Mikro- bohrer oder Laserstrahlanordnungen.
Das Verhältnis der Flächen zwischen entfernter und verbliebener Dünnschichtsolarzelle beträgt 5:1 bis zu 1 :60. Bevorzugt ist ein Verhältnis von 1:8. Das gewährleistet sowohl Stabilität als auch Transparenz und begrenzt den Verlust an Energiewandlungskapazität.
Die angesprochenen Flächenverhältnisse werden in Abbildung 1 gezeigt.
In einer Ausführungsform der Erfindung werden die gestanzten Dünnschichtsolarzellen zwischen transparenten starren Platten bzw. Folien einlaminiert, so dass eine starre bzw. flexible Stabilität gewährleistet ist, die in einer Reihe von Anwendungsfällen gefordert sein kann. Durch umfangreiche Versuche wurde festgestellt, welche Stanzmuster sich besonders eignen, um einmal die Stabilität der flexiblen Dünnschichtsolarzelle zu sichern, die Transparenz im gewünschten Umfang zu gewährleisten und die Energieausbeute auf erforderlichem Niveau zu halten.
Die Erfindung soll nachstehend an Ausführungsbeispielen näher erläutert werden.
Beispiel 1
Dieses Beispiel 1 ist nicht erfinderisch und beschreibt den Herstellungsprozess einer CIGS-Dünnschichtsolarzelle, die nachfolgend teiltransparent gestaltet wird. Es wird wie folgt verfahren:
(a) ganzflächiges Abscheiden einer Molybdänschicht auf einer Polyimidfolie in bekannter Weise mittels DC-Sputtern.
(b) ganzflächiges Abscheiden der photoaktiven Halbleiterleiterschicht (Cu(In1Ga)Se2) mittels Vakuum-Koverdampfung der Elemente Kupfer (Cu), Indium (In), Gallium (Ga) und Selen (Se).
(c) ganzflächiges Abscheiden einer Pufferschicht, vorzugsweise bestehend aus Cadmiumsulfid (CdS) im nasschemischen Bad, z.B. nach DE 10 2007 036 715
(d) ganzflächiges Abscheiden einer intrinsischen Zinkoxidschicht (i-ZnO) mittels RF- Sputtern.
(e) ganzflächiges Abscheiden einer Aluminium-dotierten Zinkoxidschicht (ZnO:AI) über DC-Sputtern.
(f) Erzeugen von Strukturierungsgräben mittels mechanischem Ritzen.
(g) Aufbringen der Kontaktfinger und Sammelkontakte über Bedruckung mit Polymerpaste mit darin enthaltenen elektrisch leitfähigen Partikeln im Siebdruckverfahren und anschließende Trocknung der gedruckten Paste.
(h) Vereinzeln der Solarzellen in entsprechende Abmessungen mittels Rotationsstanze.
In weiteren Beispielen sind die folgenden Varianten realisiert worden: zu (a): neben Polyimidfolie sind andere temperaturstabile Polymerfolien, Metallfolien, Glassubstrate oder Verbundwerkstoffe (z.B. glasfaserverstärkten Textilien) als Substrate verwendet worden. Die Molybdänschicht kann auch aus mehreren Metallschichten bestehen.
zu (b): neben Cu(In1Ga)Se2 sind als photoaktive Schicht auch die Verbindungen CuGaSe2, CuInSe2, CuGaS2, CuInS2, Cu(In1Ga)(S1Se)2 verwendet worden. Die photoaktive Schicht kann auch durch einen Druckprozess, eine galvanische Abscheidung oder dem Aufsputtern der Metalle und Cu, In, Ga und nachfolgender Selenisierung dargestellt werden. zu (c): die CdS-Schicht ist durch alternative Puffer wie z.B. ZnS, ZnSe, InS, InSe, ZnMgO etc. ersetzt worden. zu (e): ZnO:AI sind z.B. durch ZnO:Ga, ZnO:B oder ITO ersetzt worden zu (f): das Erzeugen der Strukturierungsgraben ist mit Hilfe von Lasern erfolgt zu (g): die Kontaktfinger und Sammelkontakte sind mittels Vakuumverdampfung eines Metalls und der Verwendung von Schattenmasken abgeschieden worden. zu (h): das Vereinzeln der Solarzellen ist mit Lasern oder mechanischen Stanzen wie z. B. Flachbettstanzen erfolgt.
Beispiel 2
Das Verfahren zur Herstellung teiltransparenter Dünnschichtsolarzellen geht von funktionsfähigen Dünnschichtsolarzellen aus und behandelt diese wie folgt.
Nach dem Prozessschritt g) (Aufbringen des Kontaktgrids) erfolgt das Vereinzeln der Zellen in geforderte Größen mittels einer Rotationsstanze. Gleichzeitig werden mit der selben Rotationsstanze Bereiche zwischen den Kontaktfingern ausgestanzt, um eine Teiltransparenz zu erreichen.
Die ausgestanzten Bereiche können neben den in den Abbildungen dargestellten Mustern beliebige Formen wie z.B. Rechtecke, Quadrate, Sterne, Kreuze etc. aufweisen (jeweils mit oder ohne abgerundete Ecken). Bevorzugte Formen sind Kreise. Bei Kreisen besteht das geringste Risiko des Einreißens und somit Beschädigung der flexiblen Dünnschichtsolarzelle.
Beim Stanzen wird der gesamte Schichtaufbau der Solarzelle inklusive des flexiblen Substrates durchtrennt.
Alternativ zu Rotationsstanzen können für den Trennprozess beliebige mechanische Stanzen wie z.B. Flachbettstanzen, Mikrobohrer oder Laser verwendet werden.
Die im Beispiel verwendete Dünnschichtsolarzelle stammt aus der Produktion der Solarion AG Leipzig und weist vor dem Stanzen die folgenden Parameter auf: Gesamt Fläche = 3906mm2 Transparenz = 0% Leistung = 25OmW
Nunmehr wird die flexible Dünnschichtsolarzelle bearbeitet.
Als Stanzwerkzeug wird eine Rotationsstanze verwendet. Nach erfolgter Behandlung weisen die Zellen die folgenden Parameter auf.
Beispiel Zelle 1 Beispiel Zelle 2
Gesamt Fläche = 3472 mm2 Gesamt Fläche = 3584 mm2
Transparenz = 11 % Transparenz = 9 %
Leistung = 220 mW Leistung = 212 mW
Das Ausstanzen kann erfindungsgemäß auch vor dem Aufbringen der Kontaktfinger (Prozessschritt g) oder vor dem Erzeugen der Strukturierungsgräben (Prozessschritt f) erfolgen.
Beispiel 3 Die flexiblen Dünnschichtsolarzellen werden zwischen zwei transparenten starren Auflageflächen, nämlich Glasplatten, fixiert und kontaktiert.
Alternativ werden die Dünnschichtsolarzellen zwischen zwei transparenten flexiblen Auflageflächen, nämlich transparenten Kunststofffolien fixiert und kontaktiert.

Claims

Patentansprüche
1. Verfahren zur Herstellung teiltransparenter Dünnschichtsolarzellen, dadurch gekennzeichnet, dass flexible Dünnschichtsolarzellen mit einem Werkzeug dergestalt bearbeitet werden, dass sie einschließlich Trägerfolie in einem Muster durchstoßen werden, wobei das Muster sowohl die mechanische Stabilität der flexiblen Dünnschichtsolarzelle als auch den Wirkungsgrad der Energiewandlung als auch die angestrebte optische Transparenz gewährleistet.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Verhältnis zwischen entfernter und belassener Fläche von flexiblen Dünnschichtsolarzellen zwischen 5:1 und 1 :60 beträgt.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass das Verhältnis wie 1 :8 beträgt.
4. Verfahren nach einem oder mehreren der Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass ein Muster aus regelmäßig angeordneten kreisförmigen Ausstanzungen besteht.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die ausgestanzten Bereiche Rechtecke einschließlich Quadrate oder Sterne oder Kreuze darstellen.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zum Einbringen der Öffnungen in die flexible Dünnschichtsolarzellen als Werkzeuge Stanzen, Mikrobohreranordnungen oder Laserstrahlanordnungen angewendet werden.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die teiltransparenten flexiblen Dünnschichtsolarzellen zu Modulen verschaltet werden.
. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die flexiblen teiltransparenten Dünnschichtsolarzellen zwischen starren transparenten Trägern fixiert werden.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die flexiblen teiltransparenten Dünnschichtsolarzellen zwischen flexiblen transparenten Trägern fixiert werden.
10. Teiltransparente flexible Dünnschichtsolarzelle, dadurch gekennzeichnet, dass die Trägerfolie einschließlich der energiewandelnden Schichten Öffnungen tragen, welche das Durchtreten von Licht ermöglichen und die Teiltransparenz sicherstellen.
EP10734025A 2009-05-23 2010-05-24 Teiltransparente flexible dünnschichtsolarzellen und verfahren zu ihrer herstellung Withdrawn EP2433302A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009022378A DE102009022378B4 (de) 2009-05-23 2009-05-23 Verfahren zur Herstellung von teiltransparenten flexiblen Dünnschichtsolarzellen und teiltransparente flexible Dünnschichtsolarzelle
PCT/EP2010/003159 WO2010136166A2 (de) 2009-05-23 2010-05-24 Teiltransparente flexible dünnschichtsolarzellen und verfahren zu ihrer herstellung

Publications (1)

Publication Number Publication Date
EP2433302A2 true EP2433302A2 (de) 2012-03-28

Family

ID=43223149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10734025A Withdrawn EP2433302A2 (de) 2009-05-23 2010-05-24 Teiltransparente flexible dünnschichtsolarzellen und verfahren zu ihrer herstellung

Country Status (5)

Country Link
US (1) US20120125411A1 (de)
EP (1) EP2433302A2 (de)
CN (1) CN102439732A (de)
DE (1) DE102009022378B4 (de)
WO (1) WO2010136166A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834664B2 (en) 2010-10-22 2014-09-16 Guardian Industries Corp. Photovoltaic modules for use in vehicle roofs, and/or methods of making the same
DE112013002119T5 (de) * 2012-04-18 2014-12-31 Guardian Industries Corp. Verbesserte photovoltaische Module zur Verwendung in Fahrzeugdächern und/oder Verfahren zu ihrer Herstellung
FR2997226B1 (fr) * 2012-10-23 2016-01-01 Crosslux Procede de fabrication d’un dispositif photovoltaique a couches minces, notamment pour vitrage solaire
FR2997227B1 (fr) * 2012-10-23 2015-12-11 Crosslux Dispositif photovoltaique a couches minces, notamment pour vitrage solaire
US9812592B2 (en) 2012-12-21 2017-11-07 Sunpower Corporation Metal-foil-assisted fabrication of thin-silicon solar cell
CN104425637A (zh) * 2013-08-30 2015-03-18 中国建材国际工程集团有限公司 部分透明的薄层太阳能模块

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316283B1 (en) * 1998-03-25 2001-11-13 Asulab Sa Batch manufacturing method for photovoltaic cells

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704369A (en) * 1985-04-01 1987-11-03 Energy Conversion Devices, Inc. Method of severing a semiconductor device
US4795500A (en) * 1985-07-02 1989-01-03 Sanyo Electric Co., Ltd. Photovoltaic device
DE4201571C2 (de) * 1991-01-25 1993-10-14 Phototronics Solartechnik Gmbh Verfahren zur Herstellung einer für Licht teildurchlässigen Solarzelle und eines entsprechenden Solarmoduls
FR2673328A1 (fr) * 1991-02-21 1992-08-28 Solems Sa Dispositif et module solaire a structure inversee pouvant presenter une transparence partielle.
US5176758A (en) * 1991-05-20 1993-01-05 United Solar Systems Corporation Translucent photovoltaic sheet material and panels
JP3055104B2 (ja) * 1998-08-31 2000-06-26 亜南半導体株式会社 半導体パッケ―ジの製造方法
EP1320892A2 (de) * 2000-07-06 2003-06-25 BP Corporation North America Inc. Teilweise lichtdurchlässige photovoltaische module
JP2002299672A (ja) * 2001-01-26 2002-10-11 Ebara Corp 太陽電池及びその製造方法
DE102004057663B4 (de) * 2004-09-15 2015-08-20 Sunways Ag Solarmodul mit durch regulär angeordnete Löcher semitransparenten kristallinen Solarzellen und Verfahren zur Herstellung
JP4681352B2 (ja) * 2005-05-24 2011-05-11 本田技研工業株式会社 カルコパイライト型太陽電池
US20090114262A1 (en) * 2006-08-18 2009-05-07 Adriani Paul M Methods and Devices for Large-Scale Solar Installations
DE102007036715B4 (de) * 2007-08-05 2011-02-24 Solarion Ag Verfahren und Vorrichtung zur Herstellung flexibler Dünnschichtsolarzellen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316283B1 (en) * 1998-03-25 2001-11-13 Asulab Sa Batch manufacturing method for photovoltaic cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2010136166A2 *

Also Published As

Publication number Publication date
DE102009022378B4 (de) 2013-02-07
WO2010136166A3 (de) 2011-10-20
CN102439732A (zh) 2012-05-02
DE102009022378A1 (de) 2011-01-27
WO2010136166A2 (de) 2010-12-02
US20120125411A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
DE69907866T2 (de) Verfahren zum Herstellen von Dünnschicht-Solarzellen-Modulen
EP1052703B1 (de) Dünnschichtsolarzelle auf der Basis der Ib/IIIa/VIa-Verbindungshalbleiter und Verfahren zum Herstellen einer solchen Solarzelle
DE102009041905B4 (de) Verfahren zur seriellen Verschaltung von Dünnschichtsolarzellen
DE102009022378B4 (de) Verfahren zur Herstellung von teiltransparenten flexiblen Dünnschichtsolarzellen und teiltransparente flexible Dünnschichtsolarzelle
WO2001039277A1 (de) Diodenstruktur, insbesondere für dünnfilmsolarzellen
WO2005034149A2 (de) Kugel- oder kornförmiges halbleiterbauelement zur verwendung in solarzellen und verfahren zur herstellung; verfahren zur herstellung einer solarzelle mit halbleiterbauelement und solarzelle
WO2009007375A2 (de) Dünnschichtsolarzellen-modul und verfahren zu dessen herstellung
DE112008003756T5 (de) Stapelstruktur und integrierte Struktur einer Solarzelle auf CIS-Grundlage
DE102007023697A1 (de) Chalkopyrit-Solarzelle und Verfahren zu deren Herstellung
DE4104713C2 (de) Verfahren zum Herstellen eines Solarzellenmoduls
DE102012109883A1 (de) Verfahren zum Herstellen einer Dünnschichtsolarzelle mit pufferfreiem Fertigungsprozess
DE102013105426A1 (de) Verfahren zum Laserritzen einer Solarzelle
EP2058870A2 (de) Kontaktierung und Modulverschaltung von Dünnschichtsolarzellen auf polymeren Trägern
DE202010018454U1 (de) Photoelektrische Umwandlungsvorrichtung
DE112009002356T5 (de) Dünnschicht-Solarzellenreihe
DE102010013253B4 (de) Verfahren zum Strukturieren von CIGS-Dünnschichtsolarzellen
DE19917758C2 (de) Verfahren zur Herstellung einer CuInSe2(CIS)Solarzelle
DE4201571C2 (de) Verfahren zur Herstellung einer für Licht teildurchlässigen Solarzelle und eines entsprechenden Solarmoduls
DE102010020974A1 (de) Verfahren zum Herstellen von Spezialsolarzellen aus einem Wafer
EP2352171A1 (de) Solarzellenanordnung und Dünnschichtsolarmodul, sowie Herstellungsverfahren hierfür
WO2020127142A1 (de) Schaltungsanordnung zur stromerzeugung mit serienverschalteten solarzellen mit bypass-dioden
DE102012204676B4 (de) Chalkopyrit-Dünnschicht-Solarzelle mit Zn(S,O)-Pufferschicht und dazugehöriges Herstellungsverfahren
EP3886184A1 (de) Stapelsolarzellenmodul und verfahren zur herstellung des stapelsolarzellenmoduls
EP1052702A2 (de) Dünnschichtsolarzelle auf der Basis der Ib/IIIa/VIa-Verbindungshalbleiter mit Potentialbarriere innerhalb der Absorberschicht und Verfahren zum Herstellen einer solchen Solarzelle
DE102020131742A1 (de) Feldbreitenanpassung von Zellen in einem photovoltaischen Element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111217

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOLARION AG

17Q First examination report despatched

Effective date: 20140710

19U Interruption of proceedings before grant

Effective date: 20150302

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20160401

R17C First examination report despatched (corrected)

Effective date: 20140710

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OC3 AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171201