EP2426322A1 - Fluid-Kreislauf für eine Kraftwerksanlage und Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs - Google Patents
Fluid-Kreislauf für eine Kraftwerksanlage und Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs Download PDFInfo
- Publication number
- EP2426322A1 EP2426322A1 EP10175409A EP10175409A EP2426322A1 EP 2426322 A1 EP2426322 A1 EP 2426322A1 EP 10175409 A EP10175409 A EP 10175409A EP 10175409 A EP10175409 A EP 10175409A EP 2426322 A1 EP2426322 A1 EP 2426322A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fluid circuit
- cleaning
- temporary
- power plant
- emptying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/006—Auxiliaries or details not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/14—Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
- C23G1/19—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G3/00—Apparatus for cleaning or pickling metallic material
- C23G3/04—Apparatus for cleaning or pickling metallic material for cleaning pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/48—Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
- F22B37/486—Devices for removing water, salt, or sludge from boilers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/48—Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
- F22B37/52—Washing-out devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G9/00—Cleaning by flushing or washing, e.g. with chemical solvents
Definitions
- the invention relates to a fluid circuit for a power plant with a permanent part to be cleaned and a temporary part for the dry cleaning of the permanent part.
- the invention further relates to a method for chemically cleaning a fluid circuit, in particular a water-steam cycle in a power plant.
- the water-steam cycle Before newly built power plants (GUD and DKW) are put into operation, the water-steam cycle must be cleaned.
- the cleaning process consists of three process steps. In a first step, the water-steam cycle is rinsed with water to remove loose particles and deposits. In a second step, the chemical cleaning is carried out to remove iron oxides. In the final step, the water-steam circuit is purged with steam to remove the debris and particles not removed by the first step. In addition to this commonly used method, there is still the less common way to blow out with air or boil with chemicals.
- the invention relates in essence to the step of dry cleaning. This step is usually carried out at GUD and steam power plants with inhibited hydrofluoric acid.
- This step is usually carried out at GUD and steam power plants with inhibited hydrofluoric acid.
- hydrofluoric acid is problematic because it is hazardous to health (Hazardous material: marking T + [very toxic] and C [corrosive]) and it has been shown that new, high temperature resistant materials after chemical cleaning with hydrofluoric acid have massive corrosion.
- the invention has for its object to provide an apparatus and a method by which water-steam cycles can be cleaned for power plants in a reliable and cost-effective manner.
- a cleaning should be possible without the use of hydrofluoric acid.
- the lowest-lying emptying device is suitable for use temperatures above 150 ° C.
- the lowest located emptying device is suitable for application temperatures up to 220 ° C.
- the complexing agent can be used over a wide range of effects.
- the fluid circuit is designed for a pressure up to 40 bar.
- components of the temporary part which come into contact with a solution for the dry cleaning, at least at their contact surface with the solution of a higher-alloyed material.
- the higher-alloyed material is stainless steel.
- the temporary part can be installed in a simple and cost-effective manner.
- the lowest located emptying device is arranged in the permanent part. In this case, the number of emptying devices in the temporary part can be reduced.
- a circulation pump device with a power that makes it possible to pump a volume of the fluid circuit in 0.5 to 1.5 hours.
- Lower power leads to poor temperature distribution in the fluid circuit to be cleaned, faster pumping causes too high flow rates and as a result erosion.
- the fluid circuit comprises a sampling device with a sampling cooler.
- a sampling cooler With the sampling cooler, re-evaporation and thus falsification during sampling of hot media (cleaning solution) is avoided.
- an ammonium salt of an organic complexing agent (EDTA) and hydrazine (N 2 H 4 ) as a reducing agent are components of the cleaning solution.
- EDTA dissolves iron up to a concentration of 30g Fe / 1.
- the EDTA-iron chelate complex is non-toxic.
- the cleaning is carried out at application temperatures between 130 ° C and 160 ° C.
- EDTA is used as the organic complexing agent.
- a reducing agent for example hydrazine, is added to the organic complexing agent.
- Essential in the inventive method is to heat the entire fluid circuit with temporary means to 120 to a maximum of 220 ° C, preferably 150 ° C and then chemically clean the entire fluid circuit with few merging steps without intermediate emptying or cooling.
- FIG. 1 shows schematically and by way of example a fluid circuit 1 of a power plant with a permanent part 2, the water-steam cycle of the power plant part to be cleaned, and a temporary part 3 for the dry cleaning of the permanent part 2.
- the permanent part 2 comprises not shown, low, medium and high pressure areas, which may be cleaned separately.
- the permanent part 2 has higher 4 and lower 5 areas, wherein in the lower areas 5 emptying devices 6 or so-called low point discharges are arranged.
- the temporary part 3 is arranged substantially below the permanent part 2 of the power plant and also has emptying devices 7 at its lowest points.
- the temporary part 3 is designed as a closed system for use temperatures up to 120 ° C, preferably 150 ° C, and pressures of 10 to 40 bar.
- the components of the temporary part 3, which come into contact with the cleaning solution, should be at least at their contact surface with the solution of stainless steel or similar higher alloyed material. All low points 6,7 in the fluid circuit 1 must allow a controlled emptying up to the application temperature.
- the temporary part 3 of the fluid circuit 1 comprises a circulating pump device 8 whose power in m 3 / h approximately corresponds to the system volume of the fluid circuit 1 or, if necessary, is greater. Furthermore, the temporary part 3 comprises a metering pump 9 to dose a defined amount of chemicals 10 at the application temperature, and a sampling device 11 with a sampling cooler. With the sampling cooler, re-evaporation and thus falsification during sampling of hot media (cleaning solution) is avoided. To heat the system up to the application temperature the fluid circuit 1 via a steam line 12 for the controlled steam supply.
- FIG. 2 shows an alternative embodiment of the fluid circuit 1 of the invention.
- the temporary part 3 is arranged substantially above the permanent part 2, or at least arranged such that its lowest lying areas are above the lower edge of the permanent part 2, so that the number of emptying devices 7 in the temporary part 3 can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
Fluid-Kreislauf (1) für eine Kraftwerksanlage, umfassend einen permanenten (2), zu reinigenden Teil und einen temporären Teil (3) für die chemische Reinigung des permanenten Teils (2), wobei eine am tiefsten gelegene Entleerungseinrichtung (6,7) für Anwendungstemperaturen über 120°C geeignet ist und Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs (1) in einem Kraftwerk.
Description
- Die Erfindung betrifft einen Fluid-Kreislauf für eine Kraftwerksanlage mit einem permanenten, zu reinigenden Teil und einen temporären Teil für die chemische Reinigung des permanenten Teils. Die Erfindung betrifft ferner ein Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs insbesondere eines Wasser-Dampf-Kreislaufs in einem Kraftwerk.
- Bevor neugebaute Kraftwerke (GUD und DKW) in Betrieb genommen werden, muss der Wasser-Dampf-Kreislauf gereinigt werden. Das Reinigungsverfahren setzt sich aus drei Verfahrensschritten zusammen. In einem ersten Schritt wird der Wasser-Dampf-Kreislauf mit Wasser gespült, um lose Partikel und Ablagerungen zu entfernen. In einem zweiten Schritt erfolgt die chemische Reinigung, um Eisenoxide zu entfernen. Im letzten Schritt wird der Wasser-Dampf-Kreislauf mit Dampf ausgeblasen, um die mit dem ersten Schritt nicht entfernten Ablagerungen und Partikel zu entfernen. Neben diesem allgemein angewendeten Verfahren gibt es noch die seltener angewendete Möglichkeit, mit Luft auszublasen oder mit Chemikalien auszukochen.
- Die Erfindung bezieht sich im Kern auf den Schritt der chemischen Reinigung. Dieser Schritt wird bei GUD- und Dampf-Kraftwerken meist mit inhibierter Flusssäure durchgeführt. Die Verwendung von Flusssäure ist jedoch problematisch, da sie gesundheitsschädlich ist (Gefahrstoff: Kennzeichnung T+ [sehr giftig] und C [ätzend]) und es sich gezeigt hat, dass neue, hochtemperaturbeständige Werkstoffe nach einer chemischen Reinigung mit Flusssäure massive Korrosion aufweisen.
- Alle gängigen Reinigungsverfahren haben eine Anwendungstemperatur von <100°C. Das selten angewendete Auskochen bei höheren Temperaturen findet ohne die Verwendung temperaturfester Provisorien statt und erlaubt keine kontrollierte Anwendung der Chemikalien.
- Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren anzugeben, mit denen in zuverlässiger und kostengünstiger Weise Wasser-Dampf-Kreisläufe für Kraftwerksanlagen gereinigt werden können. Insbesondere soll eine Reinigung ohne Einsatz von Flusssäure möglich sein.
- Erfindungsgemäß wird diese Aufgabe gelöst durch die Vorrichtung gemäß Anspruch 1 und das Verfahren gemäß Anspruch 13. Vorteilhafte Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen definiert. Indem bei einem Fluid-Kreislauf für eine Kraftwerksanlage, umfassend einen permanenten, zu reinigenden Teil und einen temporären Teil für die chemische Reinigung des permanenten Teils, eine am tiefsten gelegene Entleerungseinrichtung für Anwendungstemperaturen über 120°C geeignet ist, wird folgendes erreicht:
- Bei der Reinigung eines Fluid-Kreislaufs in Kraftwerken kann kontrolliert ein alkalisch reduzierender Komplexbildner eingesetzt werden, dessen Wirkungsbereich über 120°C liegt.
- Dabei ist es vorteilhaft, wenn alle Entleerungseinrichtungen eine kontrollierte Entleerung bis zu Anwendungstemperaturen von 120°C erlauben.
- Weiterhin ist es vorteilhaft, wenn die am tiefsten gelegene Entleerungseinrichtung für Anwendungstemperaturen über 150°C geeignet ist.
- Insbesondere ist es vorteilhaft, wenn die am tiefsten gelegene Entleerungseinrichtung für Anwendungstemperaturen bis 220°C geeignet ist.
- Somit lässt sich der Komplexbildner über einen weiten Wirkungsbereich einsetzten.
- Dabei ist es zweckmäßig, wenn der Fluid-Kreislauf für einen Druck bis zu 40 bar ausgelegt ist.
- In einer vorteilhaften Ausführungsform sind Komponenten des temporären Teils, die mit einer Lösung für die chemische Reinigung in Berührung kommen, zumindest an ihrer Kontaktfläche mit der Lösung aus einem höherlegierten Werkstoff.
- Insbesondere ist es vorteilhaft, wenn der höherlegierte Werkstoff Edelstahl ist.
- Es ist zweckmäßig, wenn die am tiefsten gelegene Entleerungseinrichtung im temporären Teil angeordnet ist. Somit lässt sich der temporäre Teil auf einfache und kostengünstige Weise installieren.
- Es kann aber auch zweckmäßig sein, wenn die am tiefsten gelegene Entleerungseinrichtung im permanenten Teil angeordnet ist. In diesem Fall kann die Anzahl der Entleerungseinrichtungen im temporären Teil reduziert werden.
- Vorteilhafter Weise ist eine Umwälzpumpeinrichtung mit einer Leistung, die es ermöglicht, ein Volumen des Fluid-Kreislaufs in 0,5 bis 1,5 Stunden umzupumpen. Eine geringere Leistung führt zu einer schlechten Temperaturverteilung im zu reinigenden Fluid-Kreislauf, ein schnelleres Umpumpen verursacht zu hohe Strömungsraten und in deren Folge Erosion.
- In einer vorteilhaften Ausführungsform umfasst der Fluid-Kreislauf eine Probenahmeeinrichtung mit einem Probenahmekühler. Mit dem Probenahmekühler werden Nachverdampfung und damit Verfälschungen bei der Probenahme von heißen Medien (Reinigungslösung) vermieden.
- Vorteilhafter Weise sind ein Ammoniumsalz eines organischen Komplexbildners (EDTA) und Hydrazin (N2H4) als Reduktionsmittel Bestandteile der Reinigungslösung. EDTA löst Eisen bis zu einer Konzentration von 30g Fe /1. Der EDTA-Eisen-Chelatkomplex ist nicht-toxisch.
- Im erfinderischen Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs in einem Kraftwerk mit einer Reinigungslösung, die einen organischen Komplexbildner umfasst, werden temporäre Leitungen verlegt und die chemische Reinigung bei Anwendungstemperaturen zwischen 120°C und 220°C durchgeführt.
- Vorteilhafter Weise wird die Reinigung bei Anwendungstemperaturen zwischen 130°C und 160°C durchgeführt.
- Zum Erreichen der Anwendungstemperatur ist es zweckmäßig, wenn Dampf in den Fluid-Kreislauf eingespeist wird.
- Vorteilhafter Weise wird EDTA als organischer Komplexbildner verwendet.
- Zweckmäßiger Weise wird dem organischen Komplexbildner ein Reduktionsmittel, beispielsweise Hydrazin, zugefügt.
- Wesentlich beim erfinderischen Verfahren ist es, den kompletten Fluid-Kreislauf mit temporären Mitteln auf 120 bis maximal 220°C, vorzugsweise 150°C aufzuheizen und dann mit wenigen ineinander übergehenden Schritten ohne Zwischenentleerung oder Abkühlung den gesamten Fluid-Kreislauf chemisch zu reinigen.
- Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch und nicht maßstäblich:
- Figur 1
- einen Fluid-Kreislauf einer Kraftwerksanlage mit einem im Wesentlichen unter dem permanenten Teil angeordneten temporären Teil und
- Figur 2
- einen Fluid-Kreislauf einer Kraftwerksanlage mit einem im Wesentlichen über dem permanenten Teil angeordneten temporären Teil.
- Die
Figur 1 zeigt schematisch und beispielhaft einen Fluid-Kreislauf 1 einer Kraftwerksanlage mit einem permanenten Teil 2, dem Wasser-Dampf-Kreislauf des Kraftwerksteils, der gereinigt werden soll, und einem temporären Teil 3 für die chemische Reinigung des permanenten Teils 2. Der permanente Teil 2 umfasst nicht näher dargestellte Nieder-, Mittel- und Hochdruckbereiche, die gegebenenfalls separat gereinigt werden. Der permanente Teil 2 weist höher 4 und tiefer 5 gelegene Bereiche auf, wobei in den tiefer gelegenen Bereichen 5 Entleerungseinrichtungen 6 oder sogenannte Tiefpunktentleerungen angeordnet sind. - Zur chemischen Reinigung des permanenten Teils 2 müssen temporäre Leitungen verlegt werden. In der Ausführungsform der
Figur 1 ist der temporäre Teil 3 im Wesentlichen unterhalb des permanenten Teils 2 des Kraftwerks angeordnet und weist ebenfalls an seinen am tiefsten gelegenen Stellen Entleerungseinrichtungen 7 auf. Der temporäre Teil 3 ist als geschlossenes System für Anwendungstemperaturen bis 120°C, vorzugsweise 150°C, und Drucke von 10 bis 40 bar ausgelegt. Die Komponenten des temporären Teils 3, die mit der Reinigungslösung in Berührung kommen, sollten zumindest an ihrer Kontaktfläche mit der Lösung aus Edelstahl oder vergleichbarem höherlegiertem Werkstoff bestehen. Alle Tiefpunkte 6,7 im Fluid-Kreislauf 1 müssen eine kontrollierte Entleerung bis zur Anwendungstemperatur erlauben. - Der temporäre Teil 3 des Fluid-Kreislaufs 1 umfasst eine Umwälzpumpeinrichtung 8, deren Leistung in m3/h ungefähr dem Systemvolumen des Fluid-Kreislaufs 1 entspricht oder ggfs. größer ist. Weiterhin umfasst der temporäre Teil 3 eine Dosierpumpe 9, um eine definierte Menge Chemikalien 10 bei Anwendungstemperatur zu dosieren, sowie eine Probenahmeeinrichtung 11 mit einem Probenahmekühler. Mit dem Probenahmekühler werden Nachverdampfung und damit Verfälschungen bei der Probenahme von heißen Medien (Reinigungslösung) vermieden. Zum Aufheizen des Systems bis zur Anwendungstemperatur verfügt der Fluid-Kreislauf 1 über eine Dampfleitung 12 für die kontrollierte Dampfeinspeisung.
-
Figur 2 zeigt eine alternative Ausführungsform des Fluid-Kreislaufs 1 der Erfindung. Im Unterschied zur Ausführungsform derFigur 1 ist der temporäre Teil 3 im Wesentlichen oberhalb des permanenten Teils 2 angeordnet, oder zumindest so angeordnet, dass seine am tiefsten gelegenen Bereiche oberhalb der Unterkante des permanenten Teils 2 liegen, so dass die Anzahl der Entleerungseinrichtungen 7 im temporären Teil 3 reduziert werden kann.
Claims (18)
- Fluid-Kreislauf (1) für eine Kraftwerksanlage, umfassend einen permanenten (2), zu reinigenden Teil und einen temporären Teil (3) für die chemische Reinigung des permanenten Teils (2), dadurch gekennzeichnet, dass eine am tiefsten gelegene Entleerungseinrichtung (6, 7) für Anwendungstemperaturen über 120°C geeignet ist.
- Fluid-Kreislauf (1) nach Anspruch 1, wobei alle Entleerungseinrichtungen (6,7) eine kontrollierte Entleerung bis zu Anwendungstemperaturen von 120°C erlauben.
- Fluid-Kreislauf (1) nach einem der Ansprüche 1 oder 2, wobei die am tiefsten gelegene Entleerungseinrichtung (6,7) für Anwendungstemperaturen über 150°C geeignet ist.
- Fluid-Kreislauf (1) nach einem der vorhergehenden Ansprüche, wobei die am tiefsten gelegene Entleerungseinrichtung (6,7) für Anwendungstemperaturen bis 220°C geeignet ist.
- Fluid-Kreislauf (1) nach einem der vorhergehenden Ansprüche, wobei der Fluid-Kreislauf (1) für einen Druck bis zu 40 bar ausgelegt ist.
- Fluid-Kreislauf (1) nach einem der vorhergehenden Ansprüche, wobei Komponenten des temporären Teils (3), die mit einer Lösung für die chemische Reinigung in Berührung kommen, zumindest an ihrer Kontaktfläche mit der Lösung aus einem höherlegierten Werkstoff sind.
- Fluid-Kreislauf (1) nach Anspruch 6, wobei der höherlegierte Werkstoff Edelstahl ist.
- Fluid-Kreislauf (1) nach einem der vorhergehenden Ansprüche, wobei die am tiefsten gelegene Entleerungseinrichtung (7) im temporären Teil angeordnet ist.
- Fluid-Kreislauf (1) nach einem der Ansprüche 1 bis 7, wobei die am tiefsten gelegene Entleerungseinrichtung (6) im permanenten Teil angeordnet ist.
- Fluid-Kreislauf (1) nach einem der vorhergehenden Ansprüche, weiter umfassend eine Umwälzpumpeinrichtung (8) mit einer Leistung, die es ermöglicht, ein Volumen des Fluid-Kreislaufs (1) in 0,5 bis 1,5 Stunden umzupumpen.
- Fluid-Kreislauf (1) nach einem der vorhergehenden Ansprüche, weiter umfassend eine Probenahmeeinrichtung (11) mit einem Probenahmekühler.
- Fluid-Kreislauf (1) nach einem der vorhergehenden Ansprüche, wobei EDTA und Hydrazin Bestandteile der Reinigungslösung sind.
- Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs (1) in einem Kraftwerk mit einer Reinigungslösung, die einen organischen Komplexbildner umfasst, wobei temporäre Leitungen verlegt werden, dadurch gekennzeichnet, dass die chemische Reinigung bei Anwendungstemperaturen zwischen 120°C und 220°C durchgeführt wird.
- Verfahren nach Anspruch 13, wobei die Reinigung bei Anwendungstemperaturen zwischen 130°C und 160°C durchgeführt wird.
- Verfahren nach einem der Ansprüche 13 oder 14, wobei Dampf in den Fluid-Kreislauf (1) eingespeist wird, bis eine Anwendungstemperatur erreicht ist.
- Verfahren nach einem der Ansprüche 13 bis 15, wobei EDTA als organischer Komplexbildner verwendet wird.
- Verfahren nach einem der Ansprüche 13 bis 16, wobei dem organischen Komplexbildner ein Reduktionsmittel zugefügt wird.
- Verfahren nach Anspruch 17, wobei dem organischen Komplexbildner Hydrazin zugeführt wird.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10175409A EP2426322A1 (de) | 2010-09-06 | 2010-09-06 | Fluid-Kreislauf für eine Kraftwerksanlage und Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs |
PCT/EP2011/064741 WO2012031913A1 (de) | 2010-09-06 | 2011-08-26 | Fluid-kreislauf für eine kraftwerksanlage und verfahren zum chemischen reinigen eines fluid-kreislaufs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10175409A EP2426322A1 (de) | 2010-09-06 | 2010-09-06 | Fluid-Kreislauf für eine Kraftwerksanlage und Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2426322A1 true EP2426322A1 (de) | 2012-03-07 |
Family
ID=43466904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10175409A Withdrawn EP2426322A1 (de) | 2010-09-06 | 2010-09-06 | Fluid-Kreislauf für eine Kraftwerksanlage und Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2426322A1 (de) |
WO (1) | WO2012031913A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107829102A (zh) * | 2017-12-20 | 2018-03-23 | 中国二冶集团有限公司 | 用于碳钢管道的循环酸洗装置及方法 |
CN109338388A (zh) * | 2018-12-27 | 2019-02-15 | 首钢水城钢铁(集团)赛德建设有限公司 | 一种循环式管道酸洗装置及方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109762591B (zh) * | 2019-02-27 | 2024-03-22 | 北京赛福贝特能源技术服务有限公司 | 一种用于原油常减压蒸馏系统的化学清洗装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1198693A (en) * | 1966-08-02 | 1970-07-15 | Beratherm A G | Process for the Chemical Cleansing of Water and Steam Contacted Metal Surfaces. |
EP0299166A1 (de) * | 1987-07-17 | 1989-01-18 | Mitsubishi Jukogyo Kabushiki Kaisha | Verfahren zur Entfernung von Ablagerungen auf Innenflächen von Dampfkesselrohrteilen |
DE19843442C1 (de) * | 1998-09-22 | 2000-03-02 | Siemens Ag | Vorrichtung und Verfahren zur Reinigung von dampfführenden Komponenten in Anlagen mit Dampfkesseln |
DE10238730A1 (de) * | 2002-08-23 | 2004-03-04 | Framatome Anp Gmbh | Verfahren zur Reinigung des Dampferzeugers eines Druckwasserreaktors |
WO2008118450A1 (en) * | 2007-03-27 | 2008-10-02 | Boyle Energy Services & Technology, Inc | Improved method and apparatus for commissioning power plants |
-
2010
- 2010-09-06 EP EP10175409A patent/EP2426322A1/de not_active Withdrawn
-
2011
- 2011-08-26 WO PCT/EP2011/064741 patent/WO2012031913A1/de active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1198693A (en) * | 1966-08-02 | 1970-07-15 | Beratherm A G | Process for the Chemical Cleansing of Water and Steam Contacted Metal Surfaces. |
EP0299166A1 (de) * | 1987-07-17 | 1989-01-18 | Mitsubishi Jukogyo Kabushiki Kaisha | Verfahren zur Entfernung von Ablagerungen auf Innenflächen von Dampfkesselrohrteilen |
DE19843442C1 (de) * | 1998-09-22 | 2000-03-02 | Siemens Ag | Vorrichtung und Verfahren zur Reinigung von dampfführenden Komponenten in Anlagen mit Dampfkesseln |
DE10238730A1 (de) * | 2002-08-23 | 2004-03-04 | Framatome Anp Gmbh | Verfahren zur Reinigung des Dampferzeugers eines Druckwasserreaktors |
WO2008118450A1 (en) * | 2007-03-27 | 2008-10-02 | Boyle Energy Services & Technology, Inc | Improved method and apparatus for commissioning power plants |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107829102A (zh) * | 2017-12-20 | 2018-03-23 | 中国二冶集团有限公司 | 用于碳钢管道的循环酸洗装置及方法 |
CN109338388A (zh) * | 2018-12-27 | 2019-02-15 | 首钢水城钢铁(集团)赛德建设有限公司 | 一种循环式管道酸洗装置及方法 |
CN109338388B (zh) * | 2018-12-27 | 2020-11-27 | 首钢水城钢铁(集团)赛德建设有限公司 | 一种循环式管道酸洗装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2012031913A1 (de) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2700076B1 (de) | Verfahren zur reinigung und konditionierung des wasser-dampfkreislaufes eines kraftwerkes, insbesondere eines kernkraftwerkes | |
EP1960128B1 (de) | Verfahren und vorrichtung zum reinigen von komponenten einer kraftwerksanlage durch einblasen eines mediums sowie messeinrichtung zur messung des reinheitsgrads des mediums | |
EP3374100B1 (de) | Vorrichtung und verfahren zum reinigen eines zu reinigenden anlagenteils einer getränkeabfüllanlage | |
DE3602333A1 (de) | Vorrichtung, die der bildung von ablagerungen in einem stroemungsmittelsystem entgegenwirkt | |
EP2244848B1 (de) | Verfahren zur reinigung eines wärmetauschers | |
EP2426322A1 (de) | Fluid-Kreislauf für eine Kraftwerksanlage und Verfahren zum chemischen Reinigen eines Fluid-Kreislaufs | |
DE2847862C3 (de) | Kühleinrichtung zum Kühlen der Atmosphäre im Primärschutzbehälter eines Kernreaktors | |
EP2603330B1 (de) | Verfahren zum abschluss einer chemischen kraftwerksreinigung | |
DE2241237B2 (de) | Speisewasserreinigungsvorrichtung für eine Dampfkraftanlage mit Siedewasserreaktor | |
EP1532638B1 (de) | Verfahren zur reinigung des dampferzeugers eines druckwasserreaktors | |
DE3428428A1 (de) | Verfahren und vorrichtung zum entfernen von fremdstoffen | |
DE102010013167A1 (de) | Verfahren und Vorrichtung zur Entfernung von Ablagerungen und/oder Biofilmen in Wasser- oder Produktleitungen oder Rohrleitungssystemen | |
DE2328660A1 (de) | Verfahren zur abscheidung von spaltprodukten aus dem kuehlmittel eines kernreaktors | |
WO2013072195A1 (de) | Verfahren zur trocknung eines rohrleitungssystems | |
DE1546090A1 (de) | Verfahren zur chemischen Reinigung eines Rohr- oder Dampferzeugersystems | |
DE3125008C2 (de) | ||
DE69102282T2 (de) | Verfahren und vorrichtung zur überwachung und erneuerung des flüssigkeitsflusses in wärme- und kühlsystemen. | |
DE2911809C2 (de) | Verfahren und Vorrichtung zum Entfernen von Ansatz und/oder Ablagerung aus einem Kühlsystem | |
DE19843442C1 (de) | Vorrichtung und Verfahren zur Reinigung von dampfführenden Komponenten in Anlagen mit Dampfkesseln | |
DE393466C (de) | Verfahren zur Wiederauffrischung von Metallfiltern zur Entgasung von Wasser | |
DE69933997T2 (de) | Verfahren und anlage zur dekontaminierung von metallischen oberflächen | |
EP2513910B1 (de) | Filter für kühlwasser eines primärkreislaufs eines kernkraftwerks und verfahren zum filtern von kühlwasser | |
DE3238138A1 (de) | Vorrichtung zum entfernen von eisenoxiden aus wasser im speisewassersystem eines thermoelektrischen kraftwerkes | |
DE102020104937A1 (de) | Verfahren und Vorrichtung zur Reinigung von Bauteilen | |
DE629675C (de) | Verfahren zum Reinhalten von Tellern in Telleroefen, insbesondere fuer Braunkohle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120908 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |